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Abstract

The specification of an optimizing model of the monetary transmission mechanism requires
selecting a policy regime, commonly commitment or discretion. In this paper we propose a
new procedure for testing optimal monetary policy, relying on moment inequalities that nest
commitment and discretion as two special cases. The approach is based on the derivation of
bounds for inflation that are consistent with optimal policy under either policy regime. We
derive testable implications that allow for specification tests and discrimination between the
two alternative regimes. The proposed procedure is implemented to examine the conduct of
monetary policy in the United States economy.
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1 Introduction

This paper derives new results regarding the structural evaluation of monetary policy in the frame-
work set by the New Keynesian model. Since the work of Kydland and Prescott (1977), the theory
of optimal monetary policy is aware of the time inconsistency problem. An optimal state contin-
gent plan announced ex-ante by the monetary authority fails to steer private sector expectations
because, ex-post, past commitments are ignored. The theoretical literature has considered two
alternative characterizations of optimal monetary policy: the commitment solution, whereby the
optimal plan is history-dependent and the time-inconsistency problem is ignored; and the discretion
solution, whereby the optimal policy is Markov-perfect and the monetary authority re-optimizes
each period. We describe a method for estimating and testing a model of optimal monetary policy
without requiring an explicit choice of the relevant equilibrium concept. Our procedure considers a
general specification, nesting the commitment and the Markov-perfect characterizations of optimal
policy. The approach is based on the derivation of bounds for inflation that are consistent with
both forms of optimal policy and yield set identification of the economy’s structural parameters.
We derive testable implications that allow for specification tests and discrimination between the
monetary authority’s modes of behavior.

In a discretionary regime the inflation rate on average exceeds the level that would be optimal
if commitment to history dependent policy rules was feasible. This is the celebrated Barro and
Gordon (1983) inflationary bias result, arising in the presence of distortions that imply a subop-
timal natural output rate. In addition to this deterministic inflation-bias, under discretion there
is a state-contingent inflation bias resulting from the fact that the monetary authority sets policy
independently of the history of shocks. The upshot of this state-contingent bias is that when the
output gap is negative, the inflation rate under discretion in the following period is higher than
what it would be if the monetary authority was able to commit to history-dependent plans. This
state-contingent inflationary bias allows for the derivation of an inflation lower-bound (obtained
under commitment) and an upper-bound (obtained under discretion), based on the first order con-
ditions that characterize optimal monetary policy under each policy regime. These bounds are
compatible with a continuum of monetary policy rules characterized by differing degrees of com-
mitment, and in which full commitment and discretion are the two extreme cases. In particular,
they include the quasi-commitment model proposed by Schaumburg and Tambalotti (2007), where
the monetary authority deviates from commitment-based optimal plans with a fixed, exogenous
probability, known to the public.

Our framework relies on the state-contingent inflation bounds, which we use to derive moment
inequality conditions associated with optimal monetary policy, and to identify the set of structural
parameters for which the moment inequalities hold, i.e. the identified set. We estimate the identified
set implied by optimal monetary policy, and construct confidence regions that cover the identified
set with a pre-specified probability, using inference methods developed in Chernozhukov, Hong, and
Tamer (2007). We then test whether the moment restrictions implied by a specific policy regime are
satisfied. Assuming either discretion or commitment allows for point identification of the underlying
structural parameters. Hence, parameters can be consistently estimated and it is possible to perform
standard tests of overidentifying restrictions (Hansen, 1982). However, if our objective is to test
for discretion or commitment under the maintained assumption of optimal monetary policy, the



standard Hansen’s J-test does not make use of all the available information. Instead, we propose a
test for discretion and a test for commitment which explore the additional information obtained from
the moment inequality conditions associated with the inflation bounds implied by optimal monetary
policy. Formally, the test is implemented using the criterion function approach of Chernozhukov,
Hong, and Tamer (2007) and an extension of the Generalized Moment Selection method of Andrews
and Soares (2010) that takes into account the contribution of parameter estimation error on the
relevant covariance matrix.

We apply our testing procedure to investigate whether the time series of inflation and output
gap in the United States are consistent with the New Keynesian model of optimal monetary policy
that has been widely used in recent studies of monetary policy, following Rotemberg and Wood-
ford (1997), Clarida, Gali and Gertler (1999), and Woodford (2003). Using the sample period
running from 1983:1 to 2008:3, we find evidence in favor of discretionary optimal monetary policy,
and against commitment. In contrast, the standard J-test of overidentifying restrictions fails to
reject either policy regime. Thus, by making use of the full set of implications of optimal monetary
policy we are able to discriminate across policy regimes, rejecting commitment but not discretion.

The importance of being able to discriminate between different policy regimes on the basis of
the observed time series of inflation and output is well recognized. In an early contribution, Bax-
ter (1988) calls for the development of methods to analyze policy making in a maximizing frame-
work, and suggests that “what is required is the derivation of appropriate econometric specifications
for the models, and the use of established statistical procedures for choosing between alternative, hy-
pothesized models of policymaking ”E] This paper seeks to provide such an econometric specification.
Our paper is also related to work by Ireland (1999), that tests and fails to reject the hypothesis
that inflation and unemployment form a cointegrating relation, as implied by the Barro and Gor-
don model when the natural unemployment rate is non-stationary. Ruge-Murcia (2003) estimates
a model that allows for asymmetric preferences, nesting the Barro and Gordon specification as a
special case, and fails to reject the model of discretionary optimal monetary policy. Both these
papers assume one equilibrium concept (discretion), and test whether some time series implications
of discretionary policies, are rejected or not by the data. Our framework instead derives a general
specification of optimal monetary policy, nesting the commitment and the discretion solutions as
two special cases.

Using a full-information maximum-likelihood approach, Givens (2010) estimates a New Keyne-
sian model for the US economy in which the monetary authority conducts optimal monetary policy.
The model is estimated separately under the two alternatives of commitment and discretion, using
quarterly data over the Volcker—Greenspan—Bernanke era; a comparison of the log-likelihood of
the two alternative models based on a Bayesian information criterion (to overcome the fact that
the two models are non-nested) strongly favors discretion over commitment. A similar Bayesian
approach has been used by Kirsanova and le Roux (2011), who also find evidence in favor of discre-
tion for both monetary and fiscal policy in the UK. The partial identification framework that we
propose in this paper permits, instead, a general econometric specification that nests commitment
and discretion as two special cases. Unlike full-information methods, our approach does not require
a complete representation of the economy, nor strong assumptions about the nature of the forcing
variables.

'Baxter, 1988 (p.145).



Simple monetary policy rules are often prescribed as useful guides for the conduct of monetary
policy. For instance, a commitment to a Taylor rule (after Taylor, 1993)—according to which the
short-term policy rate responds to fluctuations in inflation and some measure of the output gap—
incorporates several features of an optimal monetary policy, from the standpoint of at least one
simple class of optimizing models. Woodford (2001) shows that the response prescribed by these
rules to fluctuations in inflation or the output gap tends to stabilize those variables, and stabilization
of both variables is an appropriate goal, as long as the output gap is properly defined. Furthermore,
the prescribed response to these variables guarantees determinate rational expectations equilibrium,
and so prevents instability due to self-fulfilling expectations. Under certain simple conditions, a
feedback rule that establishes a time-invariant relation between the path of inflation and of the
output gap and the level of nominal interest rates can bring about an optimal pattern of equilibrium
responses to real disturbances. Woodford and Gianonni (2010) show that it is possible to find simple
target criteria that are fully optimal across a wide range of specifications of the economy stochastic
disturbance processes. To the extent that the systematic behavior implied by simple rules takes
into account private sector expectations, commitment-like behavior may be a good representation
of monetary policy. Therefore, as Mcallumn (1999) forcefully argues, neither of the two modes of
central bank behavior has as yet been established as empirically relevant. Our framework develops
a new testing procedure for hypotheses concerning these two alternative policy regimes.

This paper also contributes to a growing literature proposing partial identification methods
to overcome lack of information about the economic environment. For instance, Manski and
Tamer (2002) examine inference on regressions with interval outcomes. In the industrial organiza-
tion literature, Haile and Tamer (2003) use partial identification to construct bounds on valuation
distributions in second price auctions. Blundell, Browning and Crawford (2008) derive bounds that
allow to set-identify predicted demand responses in the study of consumer behavior. Ciliberto and
Tamer (2009) study inference in entry games without requiring equilibrium selection assumptions.
Galichon and Henry (2011) derive set-identifying restrictions for games with multiple equilibria in
pure and mixed strategies.

The rest of the paper is organized as follows. Section [2] describes the theoretical economy and
characterizes optimal monetary policy. Section [3| derives the bounds for inflation implied by the
structural model of optimal monetary policy. Section [4] outlines the inference procedure. Section
describes the proposed test for optimal monetary policy under discretion and under commitment.
Finally, Section [6] reports the empirical findings and Section [7] concludes. Appendix [A] contains
details about the theoretical model and Appendix [B] collects all proofs.

2 Optimal Monetary Policy

The structural framework corresponds to the new-Keynesian model with staggered prices and mo-
nopolistic competition that has become widely used to study optimal monetary policy. As is well
known, the optimizing model of staggered price-setting proposed by Calvo (1983) results in the
following equation relating the inflation rate to the economy-wide real marginal cost and expected
inflation

T = BEimip1 + sy, (1)



often called the New Keynesian Phillips Curveﬂ Here, v and 3 are positive parameters related to
technology and preferences, E; denotes the expectations formed by the economic agents at ¢, 7y is
the rate of change of a general index of goods prices and s; is the real marginal cost in deviation
from the flexible-price steady state.

The welfare-theoretical objective function of the monetary authority is derived as a second order
approximation to the utility of a stand-in agent around the stable equilibrium associated with zero
inflation, taking the form

w = EO{—;Z,Bt [(bﬂ?—l—?,/J(St—i-ut)Q}}, (2)
t=0

where ¢ is a positive parameter that relates to technology and preferences. The variable u; < 0 is
an exogenous stochastic shock resulting from time-varying markups and other distortionsﬂ

The model of optimal monetary policy under commitment is based on the assumption that
the monetary authority maximizes subject to the constraint imposed by the Phillips curve
equation . If the monetary authority is able to commit to a state contingent path for inflation
and the output gap, the first order conditions solving the monetary authority’s problem at some
given period T are

sstur+ XN = 0, t=71,7+1,...
¢7Tt+)\t717)\t == O, t:T,T+1,...

where \; is the Lagrangian multiplier associated with equation (1). The resulting joint path for
inflation and output gap, assuming that the system has been initialized in period 7 = 0 and that
A_1 =0, is given by

o = — (8¢ + ue) + (se—1 + ue—1) - (3)

However, the commitment solution is time inconsistent in the Kydland and Prescott (1977) sense:
each period t, the monetary authority is tempted to behave as if A\;_; = 0, ignoring the impact
of its current actions on the private sector expectations. When the monetary authority lacks a
commitment technology, it must set policy sequentially.

Under discretion, optimal monetary policy satisfies the Markov property in the sense that the
policy is chosen independently of past choices of the monetary authority. Thus, the policymaker
acts as if A1 = 0 and the resulting joint path for inflation and output gap is

ome = — (st + ue) . (4)

Let ¢, denote the “true” value of ¢. We define 7§ (¢) as the inflation in period ¢ consistent
with the first order conditions for optimal policy under commitment, given knowledge of s; and u,
and the structural parameter ¢,. In the same way, 7¢ (¢,) is the inflation in period t consistent
with the first order conditions for optimal policy under discretion. Thus, 7§ (¢o) and 7 (¢,) are,

2See Appendix [A] for a detailed description of the structural model.
3Tt is common to refer to fluctuations of u; around its steady-state as cost-push shocks (Clarida et al., 1999). For
more details, see Appendix E}



respectively, given by

7 (do) = —dg (st +ue) + bt (se—1+ur1), (5)

T (o) = —op " (s+ ). (6)

To model optimal monetary policy requires a decision about whether the first order conditions of
the policy maker are represented by or, instead, by @ But how does one decide whether the
behavior of the monetary authority should be classified as discretionary or commitment-like? We
propose a general characterization of optimal monetary policy that nests both modes of behavior.
The approach is based on the derivation of bounds for the inflation rate under the maintained
assumption that the monetary authority implements optimal monetary policy, in the sense that
at any point in time either or @ is satisfied. This characterization also allows for arbitrarily
frequent switches between commitment and discretion and is, therefore, consistent with the quasi-
commitment model proposed by Schaumburg and Tambalotti (2007)E|

3 Bounds for Inflation

Under a specific equilibrium concept, commitment or discretion, it is in principle possible to identify
¢o from observed data for inflation and the output gap using, respectively, equation or @
Thus, lack of knowledge about the equilibrium concept is what prevents exact identification. A
general specification for optimal monetary policy, nesting the two alternative characterizations of
optimality follows from the next simple result.

Lemma 1 Optimal monetary policy implies that Pr (Wf (Pg) < e (pg) < wf(gbo)’st,l < 0) =1,

where m; (¢g) is the actual inflation rate in period t.

The bounds for inflation in Lemma [l are derived from equations and @ Recalling that u; is
a random variable with support in R™, it follows that

Pr (Stfl +u—g < O‘Stfl < 0) =1,

which implies that ¢ (¢o) > 7§ (¢), whenever s;_1 < 0.
In the sequel, we assume that the observed inflation rate differs from the actual inflation rate
chosen by the monetary authority only through the presence of a zero mean measurement error.

Assumption 1 Let 7 (¢g) be the actual inflation rate in period t. The observed inflation rate is

IT; = m (¢g) + ve, where vy has mean zero and variance 012).

“In the Schaumburg and Tambalotti (2007) model, the monetary policy is delegated to a sequence of policymakers
with tenures of random duration. Each policymaker is assumed to formulate optimal commitment plans that sat-
isfy . However, when a new policymaker takes office it is optimal for her to deviate from the preexisting plan and,
therefore, the inflation rate at the inception of a new policymaker’s tenure satisfies @



The upshot of Lemma [1| is that we are able to derive moment inequality conditions implied
by optimal monetary policy and nesting commitment and discretion as two special cases. From
Lemma [I it is immediate to see that

Pr (7§ (d0) + vn STy < 7f (d) + ves1-1 < 0) = 1, (7)

which establishes a lower bound and an upper bound for the observed inflation rate, Il;. Denoting
by 1 (s¢—1 < 0) an indicator function taking value 1 if s;_1 < 0, we derive moment inequalities that
are implied by optimal monetary policy, as follows

Proposition 1 Under Assumption[l], the following moment inequalities

— E(¢olls + st +ur — dpgve) 1 (s¢-1 < 0)] > 0, (8)

E [(¢oIl; + Asy + Auy — ¢gv) 1 (si—1 < 0)] > 0, (9)
are implied by optimal monetary policy under either commitment or discretion, where ¢y > 0
denotes the “true” structural parameter and E is the unconditional expectation operator.

Proposition |1 follows immediately from @, noticing that the bounds on inflation are valid any

time s;—1 < 0 and, therefore, they also hold when multiplied by 1 (s;—1 < 0).
Next, we define the following set of instruments

Assumption 2 Let Z; denote a p-dimensional vector of instruments such that

1. Z; has bounded support;

2. Efv1(s4—1 <0) Zi] =0;

3. Elur—r 1(st-1 <0) Zi) = E[ug—r 1 (5t-1 S 0)|E[Zy], for r=0,1;

4. E[MI;1(s¢—1 <0)Z] #0, Efs¢1(sp—1 <0)Z] #0 and E[As; 1 (s4—1 <0), Z;] # 0.

Assumption guarantees that (without loss of generality) the vector of instruments can be
restricted to have positive support. The instrumental variables are assumed to be uncorrelated with
the measurement error vy and with u;—, 1 (s;—1 < 0), for r = 0, 1. In particular, Assumption
implies that

E [(Aut) 1 (st—l S 0) Zt] =E [(A’U,t) 1 (St—l S 0)] E [Zt] .

In what follows, we assume that E[u;—11(s;—1 <0)] = E[u;1(si—1 < 0)] = 7o, so that the term
E[(Auy) 1(s4—1 <0)] = 0E| Finally, Assumption requires that the instruments are relevant.
Given Assumption [2| the moment inequalities in Proposition [1| can be written as

E[md,t(%,a@)} = E[_ (BoIL + 5¢) 1 (se_1 < 0) + o) Zt} >0, (10)

E[mc,t(%)} = E[(%Ht + Asy) 1(s0-1 < 0) Zt] > 0. (11)

This approximation is accurate provided cov (Aug, 1 (s4—1 < 0)) = 0. If we do not make this approximation there
is an additional nuisance parameter to be estimated, corresponding to E [us—1 1 (s¢—1 < 0)].



Notice that up is a nuisance parameter to be estimated along with ¢, the structural parameter
of interest. We use 6 = (¢, u) € © C R™ x R~ to denote a representative value of the parameter
space. The “true” underlying vector value of 6 in the model is denoted 6y which, in general, is not
point identified by the conditions and . Thus, we define the identified set consistent with

optimal monetary policy as follows

Definition 1 Let 0 = (¢, u) € © C RT x R™. The identified set is defined as
of = {0 € O : such that E [my (0)] > 0}

with
t E[md,t (¢,a)} — E[ — (611 + 1) 1 (8—1 < 0) +7) zt},
E[m (0)] = (12)
E[mc,t (M - E[(gf)l’[t + Asy) 1(s0-1 < 0) Zt]

Under optimal monetary policy, © is never empty. In fact, the moment inequality conditions
in can be written as

E{mdﬂt((ﬁ, a)] - E[md,t(%,ao)] — E[(¢ — do) I 1 (8_1 < 0) Z + (7 — o) Zt] >0 (13)

E{mc,t(@] = E[mc,t(%)} + E[W) — ¢o) 1 (s¢-1 <0) Zt} >0, (14)

where the first terms on the RHS of equations and are non-negative because of
and . Hence, by construction (¢, %) € ©f. On the other hand, ©/ may be non-empty even
if (7)) does not hold. In fact, violation of (7)) does not necessary imply a violation of and /or .
Thus, (¢, o) may belong to the identified set, even in the case of no optimal monetary policy. In
this sense, a non-empty identified set, while necessary for optimal monetary policy, is not sufficient.

Note that the set of values ¢ for which the inequality condition associated with is satisfied
increases linearly in —w. In fact, since w < 0, the smaller u, the larger the set of values of ¢
satisfying the inequality constraint. Heuristically, the higher the level of distortions, the higher the
level of inflation under discretion and, hence, the larger the range of inflation rates consistent with
optimal monetary policy. This is illustrated graphically in Figure [I, which represents the linear
relation between ¢ and w under discretion and for Z; = 1. The area below the line represents, for
each value of w, the set of values of ¢ compatible with optimal monetary policy.

Although our moment inequalities are linear in the parameters, our set-up is rather different
from Bontemps, Magnac and Maurin (2012). In their case, lack of point identification arises
because one can observe only lower and upper bounds for the dependent variable. In our case,
we observe Il;, s; and s;_1, and lack of identification arises because we do not know which model
generated the observed series. In particular, their sharp characterization of the identified set relies
on the boundedness of the intervals defined by the upper and lower bound of the observed variables,
and thus does not necessarily apply to our set-up. Beresteanu and Molinari (2008) random set
approach also applies to models which are incomplete because the dependent variable and/or the
regressors are interval-valued. For this reason, in the sequel we will estimate the identified set
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Figure 1: Discretion inequality condition in the @ and ¢ space

according to the criterion function of Chernozhukov, Hong and Tamer (2007).
Before proceeding, notice that one may be tempted to reduce the two moment inequalities
in f into a single moment equality condition, given by

E{ (1L + (As; + Aug) + @ (5021 + wr—1)] 1 (80—1 < 0) Zt} —0,

where ¢, € {0,1} is a random variable taking value 0 in the case of commitment and 1 in the case
of discretion. If ¢, is degenerate, it may be treated as a fixed parameter ¢ and the model can be
estimated by GMM, provided appropriate instruments are available. This is an application of the
conduct parameter method sometimes used in the industrial organization literature. However, if
we allow for periodic switches between commitment and discretion, ¢, cannot be in general treated
as a fixed parameter and this approach is no longer implementable (see Corts, 1999 and Rosen,
2007). For example, if the monetary policy authority sticks to a commitment plan unless s;_; gets
“too negative”, then ¢, depends on s;—1 and/or 1(s;—1 < 0) and cannot be consistently estimated.
Instead, the inflation bounds that we derive are compatible with a monetary authority that deviates
from commitment-based optimal plans with some probability, not necessarily exogenous.

4 Set Identification

In this section we describe how to estimate the identified set ©F using a partial identification ap-
proach. The basic idea underlying the estimation strategy is to use the bounds for the observed
inflation rate derived from the theoretical model to generate a family of moment inequality condi-
tions that are consistent with optimal policy. These moment inequality conditions are then used
to construct a criterion function whose set of minimizers is the estimated identified set. Provided
that the estimated identified set is non-empty, we then proceed to construct the corresponding
confidence region.



We define the following 2p vector of moment conditions associated with

(mé,t (p,1),... ’mZ,t (6,7) )/
my (0) = |

(e (), (9))

where mfi’t (¢,u) = — [(QIL; + 1) 1(si—1 < 0) Z} +uZ{], and m; (0) = [(¢IL; + Asy) 1 (si—1 < 0) Zf].
The sample analog of the vector of moment conditions is

where mi(6) is the i-th element of m;(#). Let V (#) be the asymptotic variance of v/T'mz () and
Vr () the corresponding heteroscedasticity and autocorrelation consistent (HAC) estimator|’| The
criterion function we use for the inferential procedure is

2
Qr (0) = Zﬁ)‘ (15)

where [z] =21 (z <0), and @sz (A) is the i—th element of the diagonal of Vi (6). The probability
limit of Q7 () is given by Q (6) = plimr_,ocQ7 (#). The criterion function @ has the property
that Q(0) > 0 for all 0 € © and that Q(f) = 0 if and only if 6 € ©!, where ©7 is as in Definition

The estimator of the identified set @{p can be obtained as

of ={#cost. TQr(9) <d}}, (16)

where dp satisfies the conditions in Proposition [2| below.
Assumption 3 The following conditions are satisfied

1. Wy = (I, 8¢, Zy) is a strong mizing process with size —r/(r — 2), where r > 2;

2. E(’Wi,t’2r+L) <oo,t>0andi=1,2,...,p+2;

3. plimp Vi (0) =V (0) is positive definite for all 0 € ©, where © is compact;

5V (0) is constructed as follows

s T—s
R 1 T T
Vr(0) = 7 >7> 7 Xer (me (6) — mr (0)) (mevk (6) — mr ()
k=—sp t=sp
where A7 =1 — # and st is the lag truncation parameter such sr = o(Tl/Q).

10



4. supgeo |Vomz (8) — D (0)| 25 0 uniformly for all 6 in ©, where D (6) is full rank.

The following result establishes that, under Assumptions the estimator ©7 is a consistent
estimator of the identified set.

Proposition 2 Let Assumptions @ hold. If as T — oo, VInInT/dy — 0, and dp /T — 0, then

P ( lim inf{@l - @;}) —1,

T—o0

RRICRORAC)

It is easy to see that Proposition [2| holds for example with dp = /InT.
To conduct inference, we construct a set Cilp_a that asymptotically contains the identified set
©! with probability 1 — o. This constitutes the confidence region.

Definition 2 The (1 — «) confidence region for the identified set Cilfa s given by
lim P(©'CcCl ) =1-
fim P(OTCCr?) =1-0,

where
C};‘l ={0cO:TQr(0) <car},

and cqr is the (1 — a)-percentile of the distribution of supgegr TQ1 (6).

To compute the critical value ¢, 1 of the distribution of supycgr TQr (6), we replace the un-
known set ©f by its consistent estimator ol , as shown in Proposition [2| and we use bootstrap
critical Valuesﬁ In order to reproduce the serial correlation of the moment conditions, we rely on
block-bootstrap. In particular, let T' = bl, where b denotes the number of blocks and I denotes the
block length, and let W;* = (II}, s}, Z}) denote the re-sampled observations. For each 6 € @{F, we
construct

2p ik —mt ) 2
TQ}(G):Z(x/T mr (9;1,*(5(9)] 1[mZT(G)S\/ﬁ:i(ﬁ)\/ZlnlnT/T]> . an
i=1 _

where m¥ (0) is the bootstrap analog of the sample moment conditions m?. (6), constructed using
the bootstrapped data (I}, sf, Z;), and 2% (6) is the i—th element in the diagonal of the bootstrap
analog of the variance of the moment conditions V;". The indicator function in implements
the Generalized Moment Selection (GMS) procedure introduced by Andrews and Soares (2010),
using information about the slackness of the sample moment conditions to infer which population

"The Hausdorff distance between two sets A and B, is defined as py (A, B) = max [sup,¢ 4 d(a, B),sup,c d(A,b)],
with d(a, B) = infscr ||b — al| .

8 Andrews and Soares (2010) and Bugni (2010) suggest the use of bootstrap percentiles over subsample based and
asymptotic percentiles.

11



moment conditions are binding, and thus enter into the limiting distribution. We perform B boot-
strap replications of sup,_ g, TQ7 (¢), and construct the (1 — a)-percentile c, 7. 5- The following
proposition can be established:

Proposition 3 Given Assumptions @ and given (:)éw defined as in (@, as T, B — 0o, | — 00,
12/)T — 0
lim P(07CCI™)=1-a,
T,B—o0

where @};‘* = {9 €0:TQr(0) < CZ,T,B} :

5 Testing for the policy regime

The next step in our analysis is to test for the null hypothesis of discretion (commitment), taking
into account the lower (upper) bound imposed by optimal monetary policy. Heuristically, this
implies testing whether there is a 6 in the identified set for which the moment inequality conditions
associated with either discretion or commitment hold as equalities. If there is such a 6, then we have
evidence in favor of discretion (commitment). Thus, we test for either policy regimes, each time
maintaining the assumption of optimal monetary policy. The test consists of a two-step procedure
that requires in the first step estimating the structural parameter under the null hypothesis, and in
the second step testing if the parameter is in the identified set implied by optimal monetary policy.
Under discretion, the moment inequalities in hold as equalities and point identify 6y = (¢, o).
Instead under commitment, the moment inequalities in hold as equalities point-identifying ¢,
while ug can only be set-identified by the upper bound implied by optimal monetary policy.

5.1 Testing for discretion

If the monetary authority implements optimal policy under discretion the joint path of actual
inflation and the economy-wide real marginal cost is given by

E[mdvt (¢0,a0)} — E[— (6oL + 1) 1 (501 < 0) + o) Zt} -0, (18)

E[mc,t (¢>O)] - E[(%Ht 4 Asy) 1 (51 < 0) Zt} > 0, (19)

where the moment equality conditions in follow from the assumption of discretion and the
moment inequality conditions impose a lower bound to the observed inflation rate as implied
by optimal monetary policy. As already mentioned, conditions (18 point identify both ¢, and the
nuisance parameter g, provided we can find at least one instrument, in addition to the intercept,
satisfying Assumption[2] We define the following test for optimal monetary policy under discretion.

Definition 3 Let 6y = (¢, Up) € © C RT x R™. We define the null hypothesis of discretion and
optimal monetary policy as,

HY : 0y satisfies conditions (18)—(19).
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against the alternative

Hf : g does not satisfy conditions f.

To test the null hypothesis of discretion we follow a two-step procedure. Under the null hypothesis,
the “true” structural parameter 6y is point-identified and it can be consistently estimated via the
optimal GMM estimator using the moment conditions ﬂ Thus, to test the null hypothesis of
discretion we first obtain an estimate for the structural parameter vector using the optimal GMM

~d
estimator, denoted 6. In the second step, we construct the following test statistic

i @d 2 2 f: /éd ?
Q4 (77) =7 im::((@;)) Py [mT Eég} ,

(20)
i=1 i=p+1  Up

i (~d ~ (~d
where 07! (GT) is the i-th diagonal element of Vi (9T), the HAC estimator of the asymptotic

~d ~d ~d

variance of /T [md,T (GT) s Me,T (9T>}, which takes into account the estimation error in 9T

Notice that since the first p moment conditions hold with equality, they all contribute to the
~d

asymptotic distribution of TQ% (QT). Thus, we apply the GMS procedure only to the inequality

moment conditions.

Andrews and Soares (2010) study the limiting distribution of the statistic in evaluated
at a fixed 6. In our case, due to the two-step testing procedure, we need to take into account
the contribution of the estimation error to the asymptotic variance of the moment conditions.
Furthermore, we need to compute bootstrap critical values that properly mimic the contribution
of parameter estimation error. The first order validity of the bootstrap percentiles is established in
the following Proposition.

Proposition 4 Let Assumptions ﬁ hold. Let ci}le’a be the (1 — «) percentile of the empirical
~kd ~d

distribution of TQ;d <¢9T >, the bootstrap counterpart of TQ% (9T>. Then, as T, B — 0o, | — o0,

/T —0:

~d
(i) under Hg, lima. oo Pr (TQ4 (07) > iy, ) = o

~d
(ii) under H{l, lim7 g0 Pr (TQ% (HT) > CﬁlB@) =1,

where B denotes the number of bootstrap replications.

9If we assume that 6o satisfies 7, then it is possible to obtain an estimator using the approach of Moon
and Schorfheide (2009), who consider the case in which the set of moment equalities point identify the parameters
of interest, and use the additional information provided by the set of moment inequalities to improve efficiency.
However, our objective is to test whether there exists 8y € ©7 satisfying 7.

108ee Appendix [B| for the definition of Vr (5;)
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5.2 Testing for commitment

If the monetary authority implements optimal policy under commitment, the joint path of actual
inflation and the economy-wide real marginal cost is given by

v

E[md,t ((bo,ﬂo)} - E[ — (bl + 5¢) 1 (s1—1 < 0) + Tip) Zt} 0, (21)

E[mc,t (¢0)] — E[(qﬁoﬂt + Asy) 1(si_1 < 0) Zt} - 0, (22)

where the moment equality condition follows from the assumption of commitment and the
moment inequality condition imposes an upper bound to the observed inflation rate, as implied
by optimal monetary policy. Notice that conditions f only set-identify ug. Intuitively, this
happens because under commitment the average level of distortions is irrelevant for the conduct
of optimal monetary policy, since there is no inflationary biaSE We define the following test for
optimal monetary policy under commitment.

Definition 4 Let 0y = (¢y, Up) € © C RT x R™. We define the null hypothesis of commitment
and optimal monetary policy as,

H§ : 0y satisfies conditions (21)-(22).
against the alternative

HY : 6y does not satisfy conditions f.

Although the null hypothesis of optimal monetary policy under commitment has the same structure
as the null hypothesis under discretion, the implementation of the test is different because the
conditions do not point-identify wy. Therefore, we must implement the test for a sequence of
values for w, and select the most conservative test statistic. Instead, ¢, is point identified and it can
be estimated via optimal GMM using the moment equalities in . Let 3; denote the estimated
parameter. For a fixed @, we construct the test statistic

SR e (]

)
i=1 i=p+1 UT (<Z5T7 )

(23)

and compute the corresponding critical value cj7p , (u), as discussed in Section In practice, we
construct the test statistic over a dense grid of values for @ and report the test statistic yielding
the highest p-value.

Proposition 5 Let Assumptions ﬁ hold. Let c5%p , (W) be the (1 — ) percentile of the empirical
distribution of TQ7 (gﬁTc,ﬂ), the bootstrap counterpart of TQ% (3;,@) Then, as T, B — o0,

Tn the commitment case, as Wo cannot be point identified, the estimation procedure of Moon and
Schorfheide (2009) cannot be directly implemented, even if we were willing to assume that (21)) and (22) hold.
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[ — 00, ?/T —0:
(i) under H§, imy o0 Pr (TQCT (@;,a) > B o (ﬂ)) = q,

(11) under Hf, limy p_,o0 Pr (TQCT (5;,@) > B a (H)) =1,

where B denotes the number of bootstrap replications.

6 Empirical Application

In the previous section, we proposed a model specification test based on the criteria functions
and to test for, respectively, discretion and commitment, under the maintained assumption
of optimal monetary policy. We now apply this framework to study the monetary policy in the
United States.

6.1 Data

We use quarterly time-series for the US economy for the sample period 1983:1 to 2008:3. Following
Sbordone (2002) and Gali and Gertler (1999), we exploit the relationship between the economy-wide
real marginal cost s; and the labor income share (equivalently, real unit labor costs). In the theoret-
ical economy, the real marginal cost is proportional to the unit labor cost (see Appendix . Hence,
we use the linearly detrended labor income share in the non-farm business sector to measure s;.
Our measure of inflation is the annualized percentage change in the GDP deflator.

The econometric framework developed in this paper relies on a stationarity assumption (see
Assumption [3). Halunga, Osborn and Sensier (2009) show that there is a change in inflation
persistence from I (1) to I (0) dated at June 1982. This result is related to the study of Lubik
and Schorfheide (2004) who estimate a structural model of monetary policy for the US using full-
information methods, and find that only after 1982 the estimated interest-rate feedback rule that
characterizes monetary policy is consistent with equilibrium determinacy. Moreover, following the
analysis in Clarida, Gali and Gertler (2000), we have decided to study the sample starting from
1983:1, that removes the first three years of the Volcker era. Clarida, Gali and Gertler (2000)
offer two reasons for doing this. First, this period was characterized by a sudden and permanent
disinflation episode bringing inflation down from about 10 percent to 4 percent. Second, over
the period 1979:4-1982:4, the operating procedures of the Federal Reserve involved targeting non-
borrowed reserves as opposed to the Federal Funds rate. Thus, our empirical analysis focuses on the
sample period 1983:1 to 2008:3, which spans the period starting after the disinflation and monetary
policy shifts that occurred in the early 1980s and extends until the period when the interest rate
zero lower bound becomes a binding constraintE Figure |2 plots the time series of the US labor
income share, s¢, and inflation for the sample period 1983:1 to 2008:3.

It is frequently assumed that movements in military purchases are exogenous; moreover, fluc-
tuations in military spending account for much of the variation in government purchases (see

12 After 2008:3, the federal funds rate rapidly fell toward the lower bound, signaling a period of unconventional
monetary policy for which our econometric specification may be inadequate.
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Figure 2: Labor Share and Inflation in the US, 1983:1-2008:3.
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Hall 2009). Thus, we use as instrument the variable ‘Military Spending’, given by the log of real
government expenditure in national defense detrended using the HP—FilterE As a second instru-
ment, we use the variable ‘Oil Price Change’, given by the log difference of the spot oil price. The
instrumental variables are adjusted using the following transformation guaranteeing positiveness:
Zy = Z —min(Z). The complete instrument list includes the variables ‘Military Spending’, ‘Oil
Price Change’, and the unit vector, yielding p = 3 instruments and 6 moment conditions overall.

6.2 Model specification tests

We begin by providing the estimation results for the identified set. For the implementation of the
estimator, we specify a truncation parameter for the computation of the HAC variance estimator
equal to four. The confidence sets are constructed using 1,000 block-bootstrap replications, also
with block size equal to four. In Figure [B, we show the estimated identified set implied by optimal
monetary policy @T, and the corresponding confidence region at 95% confidence level, CO 95 As
discussed earlier, the upper-bound of the identified set grows linearly in the level of d1stort1ons
given by —u. Moreover, the fact that the identified set is not empty provides some evidence in
favor of a path for inflation and output gap consistent with optimal monetary policy.

We next examine the formal test statistics developed in sections and[5.2]to test for discretion
and commitment, under the maintained assumption of optimal monetary policy. The tests are based
on a two-step procedure. In particular, to test discretion we first estimate the parameter vector

~d
9¢ via optimal GMM from condition ; next, using the estimated vector of parameters 6, we

~d
construct the test statistic for discretion TQ% (GT) and compute the bootstrap critical value. To

13Benigno and Woodford (2005) show that in the case of a distorted steady state (i.e., when @ # 0) the optimal
response to a variation in government purchases involves changes in the inflation rate and the output gap (our
endogenous regressors).
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Figure 3: Identified Set and Confidence Set under Optimal Monetary Policy
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Note: The shaded area corresponds to the estimated identified set. The
dashed line denotes the confidence set at 95% confidence level.

test commitment, we proceed in the same way, except that the moment condition only permits
identification of the parameter ¢°. Thus, after estimating $C by optimal GMM, we implement the
test for a sequence of values for w. For each u, we construct the test statistic TQ% <?q§c;ﬂ> and
compute the bootstrap critical value. Therefore, to test commitment we consider the test statistic
over a grid of values for w and select the most conservative test statistic.

Given that we are using a sufficient number of instrumental variables for overidentification, we
start by reporting results from the standard Hansen test statistic for overidentifying restrictions.
The upper panel of Table [I] reports the J-tests and the corresponding p values, for the null hy-
potheses of discretion (first column) and commitment (second column) based, respectively, on the
moment conditions in and . Under the null of commitment or discretion, we can also de-
rive the moment conditions consistent with commitment or discretion directly from the first order
conditions in equations (6) and (). These are given by, respectively,

E[ — (dolL; + 51 + ue) Zt} —0 (24)

E { (oIl + Asy) Zt} ~0 (25)

In this case, the moment conditions does not include the indicator function taking value 1 when
st—1 < 0 (which we used to derive the state-contingent inflation bounds) and, thus, uses the full
sample of data to estimate the parameters. The corresponding test statistics for overidentifying
restrictions, J—test*, are reported in the middle panel of Table [l As can be seen from the Table,
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Table 1: Model Specification Tests

Discretion Commitment
J—test 2.675 3.304
p-val (0.176) (0.261)
J—test* 0.162 1.235
p-val (0.636) (0.562)
TQr 11.177 63.998
p-val (0.244) (0.015)

Note: The upper and middle panels report the
Hansen test of overidentifying restriction based on
the GMM model under discretion or commitment.
The J—test reported in the top panel refer to the
moment conditions and , respectively. The
J—test™ reported in the middle panel refer to the
moment conditions given by and (25, respec-
tively. The p values for the J—tests are computed
using 1,000 block-bootstrap replications with block-
size 4. The bottom panel reports the test statistic
TQr, defined by equations and , for com-
mitment and discretion. The p values for the the test
statistics TQr are computed via the bootstrapping
procedure described in Sections [52' and @

in both cases the standard test for overidentifying restrictions fails to reject either modelE Thus,
by not making use of the full set of implications of optimal monetary policy, we are unable to
discriminate between the two alternative policy regimes.

However, using the additional information implied by the maintained assumption of optimal
monetary policy, we can test the composite null hypothesis of optimal monetary policy and a
specific policy regime—discretion or commitment. The test statistic is based on equation for
the case of discretion, and equation for the case of commitment. The results are shown in the
bottom panel of Table [I} For the case of discretion, the p-value associated with the test statistic
is 24.4 percent and, therefore, we fail to reject the null hypothesis of discretion at all conventional
levels. For the case of commitment, the parameter @ is not identified by GMM and, therefore,
needs to be fixed. We consider a dense grid of values for u, and the resulting p-values associated
with the test statistic (23]) range between 1.1 percent and 1.5 percent. Hence, even choosing the
most conservative case, a p-value of 1.5 percent allows for rejection of the null hypothesis of optimal
policy under commitment at the 5% confidence level.

“1ncidentally, the failure to reject either model using the standard test of overidentification provides evidence in
favor of the instrumental variables used.
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7 Conclusion

This paper develops a methodology for estimating and testing a model of optimal monetary policy
without requiring an explicit choice of the relevant equilibrium concept. The procedure considers a
general specification of optimal policy that nests discretion and commitment as two special cases.
The general specification is obtained by deriving bounds for inflation that are consistent with both
forms of optimal policy and yield set identification of the economy’s structural parameters. We
propose a two-step model specification test that makes use of the set of moment inequality and
equality conditions implied by optimal monetary policy under a specific policy regime. We test the
null hypotheses of discretionary optimal monetary policy and of optimal monetary policy under
commitment.

We apply our method to investigate if the behavior of the United States monetary authority
is consistent with the New Keynesian model of optimal monetary policy. Our test fails to reject
the null hypothesis of discretion but rejects the null hypothesis of commitment. In contrast, the
standard J-test of overidentifying restrictions fails to reject either policy regime. Thus, by making
use of the full set of implications of optimal monetary policy, we are able to discriminate across
policy regimes, rejecting commitment but not discretion.

By extending the Generalized Moment Selection method of Andrews and Soares (2010) to take
into account the contribution of parameter estimation error on the relevant covariance matrix, our
two-step testing procedure can be used more generally to test the validity of models combining
moment equalities and inequality conditions, when the parameters of the model can be consistently
estimated under the null hypothesis.
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Appendix

A The Structural Model

The framework is that of the New Keynesian forward-looking model with monopolistic competi-
tion and Calvo price-setting exposed in Woodford (2011). The representative household seeks to
maximize the following utility function

Eotf%ﬂt{u@;gt)—/01v<Ht<j>;et>dj},

where ( is a discount factor, Hy (j) is the quantity of labor of type j supplied, and &, is a vector
of exogenous disturbances that includes shocks to preferences; for each value of &, u is an increas-
ing, concave function, and v is an increasing, convex function. The argument C; is a Dixit and
Stiglitz (1977) index of purchases of all the differentiated commodities

1
/ ¢ (1)

9/(9-1)
| |

o-|

where ¢; (i) is the quantity purchased of commodity ¢. The parameter ¢ > 1 is the elasticity of sub-
stitution between goods. Each differentiated commodity i is supplied by a single monopolistically
competitive producer. In each industry j, there are assumed to be many commodities. An industry
J is a set of producers that use the same type of labor and always change their price contempo-
raneously. Thus, all producers from industry j produce the same quantity y/. The representative
household supplies all types of labor and consumes all varieties of goods. The optimal supply of
labor of type j by the representative household is such that the following condition is satisfied

vp (Hy (7)564)
uc (C; &)

where wy (7) is the real wage of labor of type j in period t and x; > 1 is a time-varying labor wedge,

common to all labor markets and capturing the effect of taxes and labor market imperfections.
The aggregate resource constraint is given by

Xe = we (§) (26)

9/(9-1)
] =Y (27)

1
Cy+ Gy < [/ " (i)(ﬂ—l)/ﬁdi
0

where y; (i) is the quantity produced of commodity ¢ and G; (which is included in the vector
of exogenous disturbances ;) represents the government’s expenditure on an exogenously given
quantity of the same basket of commodities that is purchased by the households. In equilibrium
condition holds with equality. Except for the fact that labor is immobile across industries, there
is a common technology for the production of all goods: the commodity ¢ is produced according to
the production function

ye (3) = f (he (7)),
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where hy (i) is the quantity of labor employed by producer ¢ and f is an increasing and concave
function. Thus, for each producer i the relationship between the real marginal cost Sy (i) and the
quantity supplied is given by

Se(i) =S <yt (4) 7Y;f;gt> )

where the real marginal cost function is defined by

v -1 . _
5 (vvi8) = S (29)

and ét augments the vector &, with the the labor wedge x,. It follows that, if prices were fully
flexible, each supplier would charge a relative price satisfying

Ptp(ti) — 1S (yt (1) ,ﬁ%ét) )

where the aggregate price index P; is defined by

P, = [/Olpt (i) di

and =9 (¥ — 1)_1 > 1, is the producers’ markup. Moreover, in the flexible price equilibrium all
producers charge the same price and produce the same quantity Y;", so that

}1/(1—19)

L= 5 (v ), (29)

where Y;" is the natural rate of output, which corresponds to the equilibrium level of output under
flexible prices. Nonetheless, it is assumed prices are sticky, so that the output of each commodity
i differs. A log-linear approximation to the marginal cost function around the deterministic
equilibrium under flexible prices yields the condition

~

se (i) = wiy (1) + oY, — (w+ 0_1) Y,

where all variables are in log deviation from steady state; w > 0 is the elasticity of a firm’s real
marginal cost with respect to its own output level, and ¢ > 0 is the intertemporal elasticity of
substitution of private expenditure. Averaging this condition over all goods i yields

st = (w+ 0'_1) (i}t - }/;t”) , (30)

where s; denotes the economy-wide real marginal cost in log deviation from steady state. Thus the
output gap is related to variations in the economy-wide real marginal costE

!5 The output gap Y, — }A’t” is not directly observable and there is no reason to believe that it can be proxied by
the deviation of output from a smooth statistical trend. Sbordone (2002) and Gali and Gertler (1999) notice that
the most direct way to measure time variation in the output gap is based on the variation in the production costs,

as implied by equation .
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To model the behavior of prices, we employ the probabilistic model due to Calvo (1983). In any
period each industry j has a fixed probability 1 — « that it may adjust its price during that period.
FElse, with probability «, the producers in that industry must keep their price unchanged. A
producer that changes its price in period ¢, chooses the new price to maximize the discounted flow
of profits

i Qi (1 (i), 1, P Vo)
s=t

where Q)¢ s is the stochastic discount factor, given by

U <Ys - Gg; gt)

Qrs =" o (Y} Gt,£t>

P,
P,

and the profit function is given by

) pn ORI D)y,

(.0, PY.E) =pY (5 o Py

The profit function II is homogeneous of degree one in its first three arguments. Moreover, the
price level evolves according to

1/(1-9)
P, = [othl V(1 —a)pt ﬂ} . (31)
The optimal price chosen in period ¢ by the updating sellers, p;, satisfies the conditions
o
s—t
E¢ [2( BT < P Y&) 0, (32)

where the function I is given by

iy} - Piy (P oPE
F<P57Y87£s> - (Y Gsvgt) P <P P 717}/87£>
S\ —U
AV AN VA i .~
Ue (YS Gs,gt) (]' 19)}/8 <P3> P HX¢S (Y <P3> 71/:%515)

By log-linearizing equations and around the deterministic steady state (under zero infla-
tion), we obtain the following two conditions

log P, = alog P_1 + (1 — ) log p; (33)
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and

3 (08 E, llog i —log P, — ¢ (Vs = V') ] =0 (34)

s=t

where ¢ = (w+07!) /(1 4+ w?). Combining the equations and yields the New Keynesian
Phillips curve, given by
mp = PEimi1 + Ky,

where k = (1 —a) (1 —ap) ((/a), and the variable x; = (ﬁ - ?t") is the output gap, which is

proportional to the average real marginal cost. Thus, making use of equation we obtain the
expression in the main text, with ¢ = &/ (w + 0*1).

The efficient level of output satisfies the condition
S (Y77 6) = xe (35)

and corresponds to the level of output under flexible prices and without distortions resulting from
firm’s market power and the labor wedge. Thus, from equations and , we derive the
following relationship

log V" —log V" = (w+ 0_1)_1 Ut

where u; = —log (ux,;) < 0 is an exogenous stochastic shock resulting from time-varying distortions.
If the distortions u; are small, the discounted sum of utility of the representative agent involving
small fluctuations around the steady state can be approximated by a second-order Taylor expansion
around the stable equilibrium associated with zero inflation, as follows

WZEO_;ZH{W?"’Z[wt—i_(w""a_l)_lutr} (86)
=0

1 oo
o Eo {—2 ;ﬁt [¢7T§ + 1 (st + Ut)ﬂ } ;
where ¢ = (w + 0'_1) 1. The derivation of is given in Benigno and Woodford (2005).

B Proofs

Proof of Lemma [1; Immediate from the definition of 7§ (¢y) and 7¢ (¢), Equations f@.
Proof of Proposition 1} Given Assumption |1}, it follows straightforwardly from Equation @
Proof of Proposition The statement follows from Theorem 3.1 in Chernozhukov, Hong and
Tamer (2007), with ¢ = d2, ar = T, v = 2, once we show that Assumptions imply the

satisfaction of their Conditions 1 and 2. Condition 1(a) holds as 8 = (¢, u) lies in a compact subset
of RT x R~. Assumptions allow to state the sample objective function as Q7 (#) in . Given
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Assumption [3 as a straightforward consequence of the uniform law of large numbers for strong
mixing processes, Qr (0) satisfies Condition 1(b)—(e) with by = /T and ap = T. Finally, it is
immediate to see that Qr () in satisfies Condition 2.

Proof of Proposition (3} The events {0 C €17} and {supyegr TQr () < ca,r} are equivalent,
and thus

Pr (@I CCr(l—a))=Pr| sup TQr (0) < car |,
feo!

where ¢, 7 is the (1 — a)—percentile of the limiting distribution of suppegr TQ7 (6). Given As-
sumptions by Theorem 1 of Andrews and Guggenberger (2009), for any § € 61,

2

2p 2p
TQr (0) % S| | Y wiy (0) 2 + hi (9)
i=1 j=1

where Z = (Z1,...,29p) ~ N(0,I5,) and w; ; is the generic element of the correlation matrix
Q(0) = D72 () V (6) D72 (0),

with D (8) = diag (V (8)) and V (8) = plimp_. Vi (6) , as defined in footnote @ Finally, h (0) =

(h1(0), ..., hay (0)) is a vector measuring the slackness of the moment conditions, given by

hi (6) = lim \/TE<mZ,T (0) /v (e)).

T—o00

Given the stochastic equicontinuity on ©7 of TQ7 (6), because of Proposition 2, it also follows that

2

2p 2p
sup TQr (0) % sup Y | [ wiy (6) Zi + i (6) . (37)
0O, 6e’ ;7 \ |j=1

We need to show that the (1 — a)-percentile of the right-hand side of , Ca,T, is accurately
approximated by the (1 — a)-percentile of the bootstrap limiting distribution sup, g, TQ7 (0),
T

cZ’T, conditional on the sample. By the law of the iterated logarithm as T" — oo and for i = 1, ..., 2p,
we have that, almost surely,

( r )Uzwq if m; (0) = 0

2InlnT Vet ()
T \Y? mi7(0)
) L s ifm (0
(21nlnT> 0 if m; (6) >0
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As supgeer [07 (0) — v ()] = o, (1), it follows that

lim Pr (( T >1/2 mir (0) 1) =0 ifmi(0) =0

T—00 2InlnT vt (6)
2
Jim Pr (2115 T> mir ) ) 20 it m(0) > 0.
—00 1111 vyt (9)

Hence, as T' gets large, only the moment conditions holding with equality contribute to the bootstrap
limiting distribution, and the probability of eliminating a non-slack moment condition approaches

zero. Further, given the block resampling scheme, for all i, E* (\/T (sz (0) —myT (9))) =

O, <l/\/T> and var* (ﬁ (m;‘T (9))) =04 (0)+ O, (l/ﬁ) , where E* and var® denote the mean
and variance operator under the probability law governing the resampling scheme. Since [ =
0 (\/T) , as T — o0, conditional on the sample,

(mT,T (6) — mir (0)) N <m§p,T (0) — map 1 (9)> N (O, A, (9)) ‘
ot (0) o (o)

Hence, conditionally on the sample, and for all samples but a set of probability measures ap-
proaching zero, sup,.g: TQr (0) and sup,_g: TQ% () have the same limiting distribution, and so
T T

o1 — Ca,7 = 0p(1). The statement in the Proposition then follows.

Proof of Proposition [4: Letting 6 = (¢, u), we construct the optimal GMM estimator
~d . ~ ~d\ 1
GT = arg m@ln mqrT (0), Qdd,T <9T) mqrT (9) s

~d ~ ~d
where 0 = argming mgr (0) mar (0), and Qgar <<9T) is the HAC estimator of the variance of

VTmgr (09). If we knew 0y = (¢, o), the statement would follow by a similar argument as in
the proof of Proposition [3| simply comparing TQdT (0p) with the (1 — a)-percentile of the empirical
distribution of TQ%¢ (6y). However, as we do not know fy we replace it with the optimal GMM

~d ~d
estimator, f. Thus, the parameter estimation error term, /7' (9T — 00> , contributes to the lim-

iting distribution of the statistics, as it contributes to its variance. Hence, we need a bootstrap
procedure which is able to properly mimic that contribution. Now, via usual mean value expansion,

VTmgr (ai) = VTmar (60) + Do (ﬂ) VT (ai - 90) (38)
VTmer (5‘;) = VTmer (00) + Do (07) VT (53{ — o) (39)

25



with 95} € (@C:lp, 90> , Dar(0) = Vomgr (0) and D7 (0) = Vomer (0). From it follows that

avar <\/fmd7T (5?)) = avar (ﬁmd,T (90)> + avar <Dd7T </6\?§> VT (/9\? - 6?())) +
+2 acov (\/dey (00) , Dar (5?) VT (/é{'; — 90)) . (40)

The asymptotic variance of the moment conditions v/T'm7 (fp) can be estimated by

o fad\ Qdd,T @dT) Qdc,T (ng>
) = | o (32) e (2

Via a mean value expansion of the GMM first order conditions around 6y,

VT @dT = 90) = —Ed,TDd,T (ng)/ ﬁdd,T </9\ch)_1 VTmar (6o), (41)

with ) .
Bur = <D21,T <§dT> Qaar <§dT>_ Dgr (ng>> ;

~_ ~d
hence, given Assumptions B, ;/Zx/f <9T - 00) 4 N (0,I). We define the estimator of the

~d
asymptotic variance of the moment conditions evaluated at the optimal GMM estimator vTmp (9T>
as

o dy Vaar (ng) ‘/}dc,T (5}[)
P00 = G (1) o () |

where the first entry can be computed using and and , ie.

vdd,T (ng) = ﬁdd,T (ng> — Dgr (5;) Bd,TD:LT (ng)

Also,
‘7cc,T @C:lr) = ﬁcc,T (ng) + D @(sz) Ad,T T @dT)
~Qearr 5dT> Quar @dT)_l Da,r @i) gd,TDé,T (A;)

0
—Dc 7 (/9\;) Ed,TDZLT @?p) ﬁdd,T <5§{>71 ﬁcd,T (5;) .

Note that, for the computation of the test statistic we need only an estimate of the diagonal
elements of the asymptotic variance of the moment conditions, hence we do not need a closed-form
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~ ~d
expression for V. 1 (9T>. Let

, N d , ~ d
Viaa (00) = plimp_, o Vaar <9T> y Vee (o) = plimp_, o Veer (QT)-

It is easy to see that Vyq (0) is of rank p — 2, while V.. () is of full rank p, hence the asymptotic
variance covariance matrix V (6p) is of rank 2p — 2. However, this is not a problem, as we are only
concerned with the elements along the main diagonal.

~d
We now outline how to construct bootstrap critical values. The bootstrap counterpart of TQ% <9T>

writes as:

TR (07) = Ty

=1 Dbt * (5;?)
d iy ]?
2| meip (/é;“ ) — Me,T (9T> e ~d
DY - 1 [m;T (eT) <\ [oi <9T) V2 T/T| ,
i=p+1 Gisi (@; >

where m7. (6) denote the moment conditions computed using the resampled observations. Moreover,

~kd | ~d .
01 is the bootstrap analog of 6, given by

37 = axgmin (mir 0) — mar (07)) Qiar (7)) (miz 0) —mar (7))

with E;d = arg ming (mfw (0) —mgr (@dT))/ (m;;,T (0) —mgr (5;)), and

O (57) = 23230 (mascs (55) = mar (3)) (mases () = mar (31)) .

where I; is an independent, identically distributed discrete uniform random variable on [0, 7' —1—1].

. ed ~  [oxd
Finally, v"** (0;«) is the i—th element on the diagonal of of V7 (Q*T ), the bootstrap counterpart

of 17T (@;) , which is given by
PN P (i W
o9 - () Tl

As for the computation of the bootstrap critical values, we need only the elements along the main
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N ~xd -~ ~xd
diagonal, below we report only the expressions for Viar (0; > and Vi r (9; ) , which are

~ ~xd ~ ~xd = ~kd\ S A~y ~xd
Vd*d,T <9T ) = Qjld,T (0T> - Dd,T (9T> Bd,TDd:T <0T> 9

= =~ [(oxd\ =~y ~kd\ ~xd -1
Bd,T = Dd,T (‘9T ) Qdd,T <9T ) DdT (9T ) )
A ~ ~xd ~xd ~ ~xd\ . . . ~xd
with D7 (07 ) = Vom (97 ) and where 03, . (87 ) is defined as in , but with 0 replaced
~kd
by 61, also

where

ce, T (9T ) = ce, T <9T ) :,T (g;d) Bd T <9T )
Qi (07) Qe (37) ﬁ;z,T (07) BirDzir (67)

~d\ 5, Ak ~xd\ Ay ~xd\ 1 ~. ~xd
T <9T ) Bd,TDd:T <9T ) Qcld,T <9T ) cd, T <9T ) )

O (05) = L5005 (s (55) = e (75)) (s (55°) = e (7))

Qi (37) = L3055 (s (55 — e (8)) (s (57) - (52))

sk ~ed s
We compute B bootstrap replication of TQ*Td <0; ), say T Q*T“’ll (0;) N & Q*T“’lB (9; ), and com-

~xd
pute the (1 — a)—th percentile of its empirical distribution, ¢4y (9; ) We now need to establish

—~
o~

the first order validity of the suggested bootstrap critical values. Broadly speaking, we need to
~d
show that to (do not) reject HY whenever TQ% (9T> is larger than (smaller than or equal to)

~xd
cif,flﬂ o (0;) provides a test with asymptotic size o« and unit asymptotic power. To this end, we

~kd ~d

show that, under Hg , TQ*Td (9; ) has the same limiting distribution as TQ% (9T), conditionally on

the sample, and for all samples except a set of probability measure approaching zero. On the other
~xd ~d

hand, under H f, TQ*Td (9T> has a well defined limiting distribution, while TQ% (HT) diverges to

infinity.

~d
Now, a mean value expansion of the bootstrap GMM first order conditions around 6, gives

VT @;d - 9T> = _E:I,TBZ,T <5;d) QZd,T (5;d> VT <m§,T @i) — Myq,rT @g’))
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and
(i (57 - () = (i (5) - (52)) 2507 57 )

Recalling that [ = o (Tl/ 2) , straightforward arithmetics gives that

B (VT (i (57) ~ mar (4))) = 0y (1) o0t

var® (\/T (mZ’T (5;?) — M4 (5;))) =Vr (5;) + 0, <\/ZT> = Vr (56}) +0p(1),
and i oy
G (eT ) Wy (eT) =0, (1).
Hence, VT (mfl’T (@*Td> — MqT (’9\?">> has a well defined limiting distribution under both hypothe-

~d
ses, and such a limiting distribution coincides with that of TQ% <9T) under the null.

As for the moment conditions under commitment, note that they contribute to the limiting distribu-

tion only when m; ;- (HT) <y Jovt (9T> v/2InInT /T, and hence they properly mimic the limiting

distribution of g2
i=p+1  Ur <9T>

The statement in the Proposition then follows.

Proof of Proposition The moment equalities implied by commitment do not depend on ,
and

. s~ e 1
QST = arg mqgn MmeT (Cb) QCC,T <¢T> MeT (¢) 5

where ¢ = arg ming mer (¢) mer (¢) and (AZCQT (acT) is the HAC estimator of the variance of

VTmer (¢y). Via mean value expansion

VTmazr (67.5) = VTmar (90.7) + Dar(@aNT (97— b
VImer (37) = VTmer (60) + Der@VT (37— o)

where 6 € (37, 60), Dar(6,1) = Vgmar (6,0) and Der(¢) = Vgmer (¢). Expanding the GMM
first order condition around ¢

VT (37— d0) = ~BurDer (37) Guur (37) Ve ()
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where -
Bur = (Bir (37) e () D (32))

The asymptotic variance of the moment conditions vT'my (¢g, ) can be estimated by

-~ ~C ~ ~C
(gc 7) Qaar (¢r,w)  Qaer <¢T7 u
T = ~ ~c ~ ~c
ch,T ¢T:u Qcc,T <¢T)

Along the same lines as in the proof of Proposition 4, we define the estimator of the asymptotic
variance of the moment conditions evaluated at the optimal GMM estimator as

~

~ @c 7) ‘A/dd,T achﬂ ‘/}dc,T @CT,@)
T = ~c ~ ~c
Vear | o1, Vee,T (¢T>

where R R R ~ =
Veer (¢CT) = Qee,T (¢CT> <¢T) cTD (¢CT> -
Also,
Vaa.r @CT,E) = Quar (¢T, )+ <¢T’ ) cTﬁ&,T @CTﬂ)
Daar (9r.7) e ( 7)" Dar (97) BorDir (.%)
B (Eo) et (35 (5) o ().
Let

va (d)o) = phmT—mo‘?;:c,T (&E;‘) ) Vdd (¢Oaﬂ) = phmT—>oo‘7dd,T (&E’;aﬂ> .

Again, it is easy to see that V. (¢g) is of rank p — 1, while Vg (¢g, %) is of full rank p, hence the

asymptotic variance covariance matrix XA/T (gAZ)CT,H is of rank 2p — 1. The bootstrap counterpart of
Y/}T (@;,@) is given by
/\* ~%Cc _ ~ ~%
e Vivr (07.) Vir (07,7
VT <¢T7 ) = S ~kc -~
Vear \915%)  Veer (¢T)

As for the computation of the bootstrap critical values, we need only the element among the main
diagonal, below we report only the expressions for Veer (qb?) and VJ, 1 (¢;c,ﬁ) , which are

-~ A~%C ~ ~xC -~ ~*xC\ = [y’ ~%C
cT:,T <¢T) = QZC,T <¢T) - ::k,T <¢T) Z,T Z,T (¢T> )
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where

~ ~ ~*C\ Ay ~xc\ —1 o ~kC
:,T = < :,IT (QST) cc, T <¢T> Dc,T <¢T))

and where
% (75) = 33 zz (e (35) — mer (35)) (meses (35) — mer (35))
and

Viar (¢Tﬂ) = QddT(¢T, >+DdT<¢T7 ) CTD (¢Tﬂ>—
~ ~%cC . ~ke\ —1 ~ ~xc\ =, ~*c
Qar (¢T ﬂ) Qe <¢T> T <<Z5T> BirDyr (¢T 7U>

—1
~, ke _\ By Aa (RO Ay ~c ~, ~%c
_Dd,T (¢T ’ U) BC,TDC,T <¢T) cc, T (¢T) cd, T (¢T ) U) )

with

QddT (a;ci) = ! zb: izl: (md,lkJri @;C,ﬂ) — mq,T @?p,ﬂ» (md,lk+j @;cﬂ) — Mg, T @?pﬂ)),,
k=1j=11i

ﬁch <€Af7;c7 ) = % b zl: zl: (mc,lk+i (QE*T(:) — Me,T ((AbCT» (md,lkﬂ‘ @*Tcaﬂ) — Mqa,T @CTaﬂ)),
k=1 j=1 i=1

The rest of the proof then follows by the same argument used in the proof of Proposition 4.
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