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Abstract

This paper studies the optimal level of discretion in policymaking. We consider

a fiscal policy model where the government has time-inconsistent preferences with a

present-bias towards public spending. The government chooses a fiscal rule to trade off

its desire to commit to not overspend against its desire to have flexibility to react to

privately observed shocks to the value of spending. We analyze the optimal fiscal rule

when the shocks are persistent. Unlike under i.i.d. shocks, we show that the ex-ante

optimal rule is not sequentially optimal, as it provides dynamic incentives. The ex-ante

optimal rule exhibits history dependence, with high shocks leading to an erosion of future

fiscal discipline compared to low shocks, which lead to the reinstatement of discipline.

The implied policy distortions oscillate over time given a sequence of high shocks, and

can force the government to accumulate maximal debt and become immiserated in the

long run.
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1 Introduction

Governments often impose rules on themselves to constrain their behavior in the future. One

of the most prevalent form of such rules are fiscal rules, typically adopted in response to rising

public debts. In 2009, 80 countries had fiscal rules in place, a dramatic increase from 1990

when only seven countries had them.1

Despite their prevalence, little is known about the optimal structure of fiscal rules. How

much discipline does an optimal fiscal rule impose? How does this level of discipline evolve

over time? And does an optimal rule restrict the growth of debt in the long run? Any theory of

fiscal rules must take into account a fundamental tradeoff between commitment and flexibility:

on the one hand, rules provide valuable commitment as they can limit distorted incentives in

policymaking which result in a spending bias and excessive deficits; on the other hand, there

is a cost of reduced flexibility as fiscal constitutions cannot spell out policy prescriptions for

every single shock or contingency, and some discretion may be optimal.2

This paper studies the tradeoff between commitment and flexibility in a dynamic self-

control setting. In our model, a present-biased government privately observes a shock to the

economy in each period, and a fiscal rule is a mechanism that assigns a policy as a function

of the government’s reported shocks. We follow a similar approach to that used in Amador,

Werning, and Angeletos (2006), but we depart from their work by considering an environment

in which shocks are persistent over time.3 We are motivated by the fact that shocks underlying

fiscal policy are likely to be autocorrelated, consistent with the observation that fiscal policy

variables are persistent in the data.4 As is well known, persistence introduces new difficulties

into the mechanism design problem; we consider a simple framework that allows for a full

characterization of the optimal mechanism.5

Our environment is a small open economy in which the government makes repeated spend-

ing and borrowing decisions. In each period, a shock to the social value of deficit-financed

1See International Monetary Fund (2009). Of those 80 countries, 60 had a deficit limit, 60 a debt limit,
and 25 a spending limit. These limits vary in their specification and the extent to which they adjust to levels
of GDP and to the business cycle. Moreover, these limits also vary in the degree to which they are enforced.

2The importance of commitment devices in policymaking dates back to Kydland and Prescott (1977). In
terms of fiscal policy, there are various micro-foundations for how a deficit bias can emerge in a political
economy environment. See, among others, Aguiar and Amador (2011), Alesina and Perotti (1994), Alesina
and Tabellini (1990), Battaglini and Coate (2008), Caballero and Yared (2010), Lizzeri (1999), Persson and
Svensson (1989), and Tornell and Lane (1999).

3See also Amador and Bagwell (2011), Ambrus and Egorov (2012), and Athey, Atkeson, and Kehoe (2005).
All these papers consider settings with i.i.d. shocks.

4For example, see Barro (1990) for evidence.
5Persistence complicates the mechanism design problem because single-crossing conditions generally used

in the analysis may fail and a recursive representation is more difficult. Recent work addresses this issue in
principal-agent and optimal taxation settings (see, e.g., Battaglini and Lamba, 2012, Farhi and Werning, 2010,
Golosov, Troshkin, and Tsyvinski, 2011, and Pavan, Segal, and Toikka, 2010), but this analysis does not apply
to a self-control setting, which is our interest.
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government spending is realized, where this shock follows a first-order Markov process. We

consider two shocks in our benchmark setting and a continuum of shocks in an extension.

The government in each period is benevolent ex ante, prior to the realization of the shock,

but present-biased ex post, when it is time to choose fiscal policy.6 The shocks are privately

observed by the government, capturing the fact that not all contingencies in fiscal policy are

contractible or observable. A fiscal rule is defined as a mechanism in which the government

reports the shock in each period and is assigned a policy for every reported shock. Note that

in the absence of private information, the first-best policy could be implemented with full

commitment; i.e. by giving the government no discretion and committing it to the efficient

path of spending. Similarly, absent a present bias, the first best could be implemented with

full flexibility; i.e. by giving the government full discretion to choose spending in each period.

In the presence of both private information and a present bias, however, a tradeoff between

commitment and flexibility arises, and the optimal rule is then not trivial.

We study the ex-ante optimal fiscal rule and the sequentially optimal fiscal rule. The

ex-ante optimal rule is the optimal dynamic mechanism that the government chooses at the

beginning of time. This is a sequence of spending and borrowing levels as a function of

the history of the government’s reports, which maximizes ex-ante social welfare subject to a

sequence of dynamic incentive compatibility constraints. The sequentially optimal rule, on

the other hand, corresponds to a static mechanism that is chosen by the government in every

period t (prior to the realization of the shock), which maximizes social welfare from t onward

taking into account that future governments do the same.

Our motivation for studying sequentially optimal rules is twofold. First, in practice, fiscal

rules often have a bite in the short term for the current fiscal year, but can be renegotiated and

changed by the government in advance for the following year. Second, a central result from the

previous literature is that the ex-ante optimal and sequentially optimal rules coincide when

the shocks are i.i.d.7 That is, under the ex-ante optimal mechanism, at any given date (prior

to the realization of the shock) the government would not want to change the continuation

mechanism. The reason is that no dynamic incentives are provided, and the mechanism at any

date depends only on the payoff-relevant states. Notably, this contrasts with the results of the

principal-agent literature, where, even under i.i.d. shocks, dynamic incentives are provided

to an agent with private information along the equilibrium path. The difference is due to

the fact that there is a single player in a self-control setting, and dynamic incentives cannot

be provided by increasing one player’s welfare at the expense of another. Thus, under i.i.d.

shocks, dynamic incentives would affect the government’s welfare on the equilibrium path

(when reporting the shock truthfully) and off the equilibrium path (when misreporting the

6The preference structure corresponds to the quasi-hyperbolic consumption model; see Laibson (1997).
7See Amador, Werning, and Angeletos (2006) and Athey, Atkeson, and Kehoe (2005).
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shock) equally, and therefore result in no welfare gains.

We first show that, as in the case of i.i.d. shocks, the sequentially optimal fiscal rule under

persistent shocks is history independent and simple, as by definition dynamic incentives are

not provided to the government. Both under two shocks as well as under a continuum of

shocks, the sequentially optimal mechanism can be implemented with a debt limit that is a

function of only the payoff-relevant states, namely the current level of debt and the previous

period’s shock which forecasts the current shock.

Our main result, however, shows that unlike under i.i.d. shocks, the ex-ante optimal rule

does not coincide with the sequentially optimal rule when shocks are persistent. The ex-ante

optimal rule takes into account that the government in every period learns about its current

and future spending needs, and now provides dynamic incentives for the government not to

overspend and overborrow. Specifically, consider a government that is tempted to overspend

today when its needs are low. Dynamic incentives can be provided by introducing excessively

lax and ex-post suboptimal rules tomorrow if the government chooses high levels of spending

today. The expected cost to the government of such lax rules tomorrow is greater if spending

needs are actually low today, as spending needs are then more likely to be low tomorrow.

Thus, lax rules tomorrow affect welfare on and off the equilibrium path differently, and the

threat of no discipline in the future ironically imposes discipline today.

We characterize the ex-ante optimal rule and the dynamics that it induces in fiscal policy.

We show that this rule is history dependent: the mechanism at a given date is a function of

not only the payoff-relevant states, but also the entire history of shocks. History dependence

follows from the fact that the mechanism provides dynamic incentives. Intuitively, because the

shock at date t−2 predicts the realization of the shock at t−1 (since shocks follow a first-order

Markov process), the shock at t − 2 affects the relative tightness of incentive compatibility

constraints at t−1, which in turn affect the policies that are chosen at t in providing dynamic

incentives at t − 1. In particular, the shock at date t − 2 tells us how likely it is that the

shock to the value of spending will be low at t− 1, and thus how beneficial it is to make rules

excessively lax at t following high spending by the government at t− 1.

We explicitly characterize the dynamics implied by the ex-ante optimal fiscal rule in an

infinite horizon economy using a recursive technique similar to that developed by Fernandes

and Phelan (2000) for a principal-agent setting. We show that high shocks to the value of

spending lead to an erosion of future fiscal discipline compared to low shocks, which lead to

the reinstatement of fiscal discipline. This is related to the “no distortion at the top, distortion

at the bottom” result in standard adverse selection problems, although here the result obtains

from the combination of persistent private information and a present bias, and the induced

distortions are reflected in changes to spending over time. For a sequence of high shocks,

we further show that fiscal policy exhibits oscillatory dynamics, with large (small) distortions

3



being followed by relatively smaller (larger) distortions. The logic stems from the self-control

nature of our problem: a reduction in fiscal discipline at date t to provide dynamic incentives

at t− 1 relaxes incentive constraints at t, and hence implies that a smaller reduction in fiscal

discipline at date t + 1 is sufficient to provide dynamic incentives at t. Finally, we study the

implied long-run debt dynamics when the market and social discount rates coincide. We show

that while the self-insurance motive leads to the infinite accumulation of assets in the first best

and the sequentially optimal rule, periods of non-discipline used to provide dynamic incentives

in the ex-ante optimal rule can force the government accumulate maximal debt and become

immiserated in the long run.

The paper is related to several literatures. First, as mentioned, the paper fits into the

mechanism design literature on the tradeoff between commitment and flexibility.8 In contrast

to this literature, we study the optimal dynamic mechanism in a setting with persistent shocks.

Second, the paper relates to the literature on the political economy of fiscal policy.9 Most

closely related is Azzimonti, Battaglini, and Coate (2010), which considers the quantitative

welfare implications of a balanced budget rule in an i.i.d. setting where the government is

present-biased towards pork-barrel spending. Our main departure is that we study optimal

fiscal rules in a private information economy, and we use mechanism design tools to derive

the optimal rule without restricting its structure. Third, our work is related to various papers

studying principal-agent contracts under persistent private information, although, because our

application is a self-control environment, their methods do not directly apply here.10 Finally,

more broadly, our paper contributes to the literature on hyperbolic discounting and the benefits

of commitment devices.11

Section 2 describes our benchmark environment. Section 3 defines the ex-ante optimal and

sequentially optimal fiscal rules. Section 4 illustrates the main insights from our model using a

simple three-period example. Section 5 characterizes optimal fiscal rules in the infinite horizon

economy and their implications for debt in the long run. Section 6 extends the analysis to an

economy with a continuum of shocks. Section 7 concludes. Formal proofs are contained in the

Appendix.

8In addition to the work previously cited, see Bernheim, Ray, and Yeltekin (1999), Bond and Sigurdsson
(2011), and Sleet (2004) for related studies of self-control problems. More generally, the paper relates to the
literature on delegation in principal-agent settings, including Alonso and Matouschek (2008), Ambrus and
Egorov (2009), and Holmström (1977, 1984).

9In addition to the work cited in fn. 2, see also Acemoglu, Golosov, and Tsyvinski (2008), Azzimonti (2011),
Krusell and Rios-Rull (1999), Song, Storesletten, and Zilibotti (2012), and Yared (2010).

10In addition to the work cited in fn. 5, see Golosov and Tsyvinski (2006), Halac (2012), Kapicka (2010),
Strulovici (2011), and Williams (2011).

11See for example Barro (1999), Krusell, Kruscu, and Smith, Jr. (2010), Krusell and Smith, Jr. (2003),
Laibson (1997), and Phelps and Pollak (1968).
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2 The Model

We consider a simple model of fiscal policy in which a government makes repeated spending

and borrowing decisions. Our environment is the same as that analyzed in Amador, Werning,

and Angeletos (2006), with the exception that we allow for persistent private information.12

At the beginning of each period, t ∈ {0, 1, . . .}, the government observes a shock to the

economy, which is the government’s private information or type. The government’s type can

be low or high, θt ∈ {θL, θH} ≡ Θ, where θH > θL > 0.13 This type follows a first-order

Markov process, with p (θt+1|θt) corresponding to the probability of type θt+1 at date t + 1

conditional on type θt at date t. We consider p
(
θL|θL

)
= p

(
θH |θH

)
∈ [0.5, 1), and we compare

the case where types are i.i.d., i.e., p
(
θi|θi

)
= 0.5 for θi ∈ {θL, θH}, to the case where types

are persistent over time, i.e., p
(
θi|θi

)
> 0.5 for θi ∈ {θL, θH}.14

In each period t, following the realization of θt, the government chooses public spending

gt ≥ 0 and debt bt+1 subject to a budget constraint:

gt = τ + bt+1/(1 + r)− bt, (1)

where τ > 0 is the exogenous fixed tax revenue collected by the government in each period, bt is

the level of debt with which the government enters the period, and r is the exogenous interest

rate. b0 is exogenous and limt→∞ bt+1/(1+r)t = 0, so that all debts must be repaid and all assets

must be consumed. Constraint (1) can be rewritten as a weak inequality constraint to allow for

money burning without affecting any of our results. Such a weak inequality constraint would

take into account the possibility of introducing fines in this setting; we ignore this possibility

here to simplify the exposition.15

The government’s welfare at date t, prior to the realization of its type θt, is

∞∑
k=0

δkE [θt+kU(gt+k)|θt−1] , (2)

where θtU(gt) is the social utility from public spending at date t and δ is the discount factor.

The government’s welfare after the realization of its type θt at date t, when choosing spending

12Amador, Werning, and Angeletos (2006) consider a two-period setting, but as shown in Amador, Werning,
and Angeletos (2003), under i.i.d. shocks the results apply directly to a multiple-period environment.

13Section 6 extends our analysis to an economy with a continuum of types.
14Our main results are robust to considering p

(
θi|θi

)
< 0.5, although the intuition is different. Given that

fiscal policy variables are positively autocorrelated in the data, we focus our attention on p
(
θi|θi

)
≥ 0.5. Our

results are also robust to considering p(θL|θL) 6= p(θH |θH); we focus on the symmetric case to simplify the
exposition.

15In the proofs of our results in the Appendix, we allow (1) to be a weak inequality and show that this
constraint must bind in equilibrium.
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gt, is

θtU(gt) + β
∞∑
k=1

δkE [θt+kU(gt+k)|θt] , (3)

where β ∈ (0, 1).

There are two important features of this environment. First, the government’s objective

(3) following the realization of its type does not coincide with its objective (2) prior to this

realization. In particular, the government’s welfare after θt is realized overweighs the impor-

tance of current public spending compared to its welfare before θt is realized. This formulation

captures a friction that is common in various models of political economy interactions. For

instance, preferences such as these may emerge naturally in settings with political uncertainty

where policymakers place a higher value on public spending when they hold power and can

make spending decisions. In such settings, policymakers are biased towards present public

spending relative to future public spending and incur excessively high debts.

The second feature of this environment is that the realization of θt—which affects the

marginal social utility of public spending—is privately observed by the government. One

possible interpretation is that θt is not verifiable ex-post by a rule-making body; therefore,

even if θt is observable, fiscal rules cannot explicitly depend on the value of θt.
16 An alternative

interpretation is that the exact cost of public goods is only observable to the policymaker,

who may be inclined to overspend on these goods. A third possibility is that citizens have

heterogeneous preferences or heterogeneous information regarding the optimal level of public

spending, and the government sees an aggregate that the citizens do not see (see Sleet, 2004).

To facilitate an explicit characterization of optimal fiscal rules, we make the following

assumption.17

Assumption 1. U(gt) = log(gt).

Assumption 1 implies that welfare is separable with respect to the level of debt. To see

this, define

θ̃
i

=
∞∑
k=1

δkE
[
θt+k|θt = θi

]
, (4)

for i = {L,H}, so that at any date t, θ̃t = θ̃
i

if θt = θi. Let the savings rate at t be st ∈ [0, 1],

16Because our focus is a fiscal constitution, we implicitly rule out other punishments that citizens can inflict
on policymakers such as replacement. See Ales, Maziero, and Yared (2012) for a related model with private
government information that allows for this possibility.

17This assumption is made in previous work studying economies with hyperbolic discounting, such as Barro
(1999). Our main result that dynamic incentives are provided under persistent shocks while not under i.i.d.
shocks does not depend on this assumption.
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corresponding to the fraction of lifetime resources which is not spent at t:

gt = (1− st)[(1 + r)τ/r − bt]. (5)

Using this notation and Assumption 1, welfare in (2), at date t prior to the realization of the

type θt, can be rewritten as

∞∑
k=0

δkE
[
θt+kU(1− st+k) + θ̃t+kU(st+k)|θt−1

]
+ χ(bt), (6)

for a constant χ(bt) which depends on bt.
18 Analogously, welfare in (3), at date t following the

realization of θt, can be rewritten as

θtU(1− st) + βθ̃tU(st) + β
∞∑
k=1

δkE
[
θt+kU(1− st+k) + θ̃t+kU(st+k)|θt

]
+ ϕ(bt), (7)

for a constant ϕ(bt) which depends on bt.
19 Given the representation in (6) and (7), hereafter

we consider the problem of a government which chooses a savings rate st in every period t.

In this environment, the first-best policy is defined by a stochastic sequence of savings rates

sfb ≡ (sfb0 , s
fb
1 , . . .) that satisfy sfbt = sfb(θi) if θt = θi for θi ∈ {θL, θH}, where

θiU ′(1− sfb(θi)) = θ̃
i
U ′(sfb(θi)). (8)

3 Equilibrium Definition

We define a fiscal rule as a mechanism where the government reports the shock in every

period and is assigned a policy as a function of the reports. We distinguish between the ex-

ante optimal rule and the sequentially optimal rule. The ex-ante optimal rule is a dynamic

mechanism chosen by the government at the beginning of time. In contrast, the sequentially

optimal rule is a static mechanism chosen in every period by the current government, taking

into account the future static mechanisms chosen by future governments.

We let θt = (θ0, θ1, . . . , θt) ∈ Θt denote the history of shocks through time t.

3.1 Ex-ante Optimal Rule

Let ht−1 = (θ̂0, θ̂1, . . . , θ̂t−1) ∈ Θt−1 be the history of reported types through time t − 1. A

mechanism is a sequence of savings rates st(ht−1, θ̂t) for all
{

(ht−1, θ̂t)
}∞
t=0

, which effectively

18This constant is equal to
∑∞

k=0 δ
kE
[
θt+kU((1 + r)k[τ(1 + r)/r − bt])|θt−1

]
.

19This constant is equal to θtU(τ(1 + r)/r − bt) + β
∑∞

k=1 δ
kE
[
θt+kU((1 + r)k[τ(1 + r)/r − bt])|θt

]
.
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specify levels of public spending gt(ht−1, θ̂t) and debt bt+1(ht−1, θ̂t), as a function of the history

of past reports and the current report.

Given the mechanism, the government chooses a reporting strategy mt(ht−1, θt) for all

{(ht−1, θt)}∞t=0, where θt is the government’s type at date t and mt(ht−1, θt) ∈ {θL, θH} is the

government’s report of its type at t. We restrict attention to public strategies, that is, strategies

that depend only on the public history—reports and policies—and on the government’s current

private information, but not on privately observed history. It follows by standard arguments

that if all future governments choose public strategies, and if the mechanism is a function

of the public history, then the current government’s best response is also a public strategy.

From the Revelation Principle, we can restrict attention to truthtelling equilibria in which

mt(ht−1, θt) = θt for all ht−1 and θt.

A perfect Bayesian equilibrium of this revelation game is a mechanism and a reporting

strategy such that the budget constraint (1) is satisfied in every period following every history,

and the policy under the mechanism is incentive compatible, meaning that following every

history and type realization, the government prefers to report mt(ht−1, θt) = θt rather than

mt(ht−1, θt) = θ̂t 6= θt. An ex-ante optimal rule in this framework is one that selects a

mechanism and a reporting strategy that maximize the ex-ante welfare (6) in period 0.

We formulate the ex-ante optimal rule as a solution to a sequence program. Given history

θt−1, let Wt+1(θt−1, θt) be the expected continuation value from t+1 on, normalized by bt(θ
t−1),

for a type θt who truthfully reports θ̂t = θt:

Wt+1(θt−1, θt) =
∑

θt+1∈{θL,θH}

p(θt+1|θt)

[
θt+1U(1− st+1(θt−1, θt, θt+1))

+θ̃t+1U(st+1(θt−1, θt, θt+1)) + δWt+2(θt−1, θt, θt+1)

]
. (9)

In contrast, given history θt−1, let Vt+1(θt−1, θ̂t) be the expected continuation value from t+ 1

on, normalized by bt
(
θt−1

)
, for a type θt who lies and reports θ̂t 6= θt:

20

Vt+1(θt−1, θ̂t) =
∑

θt+1∈{θL,θH}

p(θt+1|θt)

[
θt+1U(1− st+1(θt−1, θ̂t, θt+1))

+θ̃t+1(U(st+1(θt−1, θ̂t, θt+1)) + δWt+2(θt−1, θ̂t, θt+1)

]
. (10)

Note that in the special case of i.i.d. shocks, expectations over future shocks do not depend

on the current shock θt, implying that Wt+1(θt−1, θ̂t) = Vt+1(θt−1, θ̂t).

Using (7), the incentive compatibility constraint for a government of type θt is

θtU(1− st(θt−1, θt)) + βθ̃tU(st(θ
t−1, θt)) + βδWt+1(θt−1, θt)

≥ θtU(1− st(θt−1, θ̂t)) + βθ̃tU(st(θ
t−1, θ̂t)) + βδVt+1(θt−1, θ̂t) for θ̂t 6= θt and all θt−1. (11)

20Because there are only two types, we only need to define one such expected continuation value.
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Condition (11) says that the government prefers to report its true type θt rather than to lie

and report θ̂t 6= θt. To understand this constraint, note that the government’s true type θt

not only directly affects the government’s immediate payoff by determining the marginal cost

and benefit of current savings, but, if shocks are persistent, it can also affect the government’s

continuation payoff by changing the expectations over the realizations of future types.21

Let ρ =
{{
st(θ

t),Wt+1(θt), Vt+1(θt)
}
θt∈Θt

}∞
t=0

be a stochastic sequence of savings rates and

continuation values. The ex-ante optimal rule solves the following sequence problem:

max
ρ

∑
θ0∈{θL,θH}

p (θ0|θ−1)
[
θ0U(1− s0(θ0)) + θ̃0U(s0(θ0)) + δW1(θ0)

]
(12)

s.t. (9), (10), and (11).

It is clear that the solution to this program is invariant to the initial level of debt b0.

3.2 Sequentially Optimal Rule

The sequentially optimal fiscal rule is the one that results if, at every history, the government

chooses a static mechanism that maximizes social welfare given that future governments will

do the same. That is, given θt−1 and bt, the government chooses a mechanism {gt(θ̂t), bt+1(θ̂t)},
assigning a level of spending and debt conditional on the report θ̂t, which maximizes social

welfare taking the actions of future governments as given. The future government knows the

true value of θt and, given θt and bt+1(θ̂t), it analogously chooses an optimal static mechanism

taking the actions of future governments as given.

The sequentially optimal rule thus solves the following problem:

J(θt−1, bt) = max
{gt(θt),bt+1(θt)}θt∈{θL,θH}

∑
θt∈{θL,θH}

p(θt|θt−1)
(
θtU(gt(θt)) + δJ(θt, bt+1(θt))

)
(13)

s.t.

gt(θt) = τ + bt+1(θt)/(1 + r)− bt and (14)

θtU (gt(θt)) + βδJ(θt, bt+1(θt)) ≥ θtU(gt(θ̂t)) + βδJ(θt, bt+1(θ̂t)) for θ̂t 6= θt. (15)

J(θt−1, bt) is the value at t under the payoff-relevant states θt−1 and bt if the current govern-

ment chooses an optimal static mechanism given that future governments do the same. In a

sense, J(θt−1, bt) thus corresponds to the solution of a two-period mechanism design problem.

In choosing its report θ̂t, the government’s flow welfare is θtU(gt(θ̂t)) and its continuation

welfare is J(θt, bt+1(θ̂t)). Condition (15) is the incentive compatibility constraint, where the

21Because θt follows a first-order Markov process, the single period deviation principle holds.
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government knows that if it lies and reports θ̂t 6= θt, this affects its payoff from tomorrow

onward only through the implied level of debt bt+1(θ̂t), since, given bt+1(θ̂t), the government

which knows the true value of θt will choose an optimal static mechanism going forward. We

interpret the sequentially optimal fiscal rule that emerges from this recursion as a rule that

has a bite in the short term, but can be renegotiated for the future.22

In the recursive program defined above, J (·) may have multiple solutions. We select a

unique solution by considering the limit of a finite horizon economy with end date T as T

approaches infinity. J (θt−1, bt) is thus characterized recursively via backward induction. In

Appendix A, we show that under log utility the solution to (13)–(15) admits a savings rate

st (θt) for each θt that is invariant to the level of debt bt and only depends on the previous

shock θt−1, and, hence, using the welfare representation in (6) and (7) and given θt−1, (13)–(15)

can be rewritten as:

max
{st(θt)}θt∈{θL,θH}

∑
θt∈{θL,θH}

p(θt|θt−1)
(
θtU(1− st(θt)) + θ̃tU(st(θt))

)
(16)

s.t.

θtU(1− st(θt)) + βθ̃tU(st(θt)) ≥ θtU(1− st(θ̂t)) + βθ̃tU(st(θ̂t)) for θ̂t 6= θt. (17)

Clearly, the sequentially optimal rule must satisfy the constraints of the problem defined by

the ex-ante optimal rule in (12). To see this, note that the incentive compatibility constraint

(17) is more strict than the constraint (11), as by definition the solution to (16)–(17) must

admit a sequence of savings rates satisfying Wt+1

(
θt−1, θt

)
≥ Vt+1

(
θt−1, θt

)
. Thus, naturally,

the sequentially optimal rule provides weakly lower welfare than the ex-ante optimal rule.

4 Three-Period Example

To provide intuition for our main results, we start by considering a three-period economy

with t ∈ {0, 1, 2}. The purpose is threefold. First, we show that in contrast with the case

of i.i.d. shocks, when shocks are persistent, the ex-ante optimal rule does not coincide with

the sequentially optimal rule. We discuss how the difference between the two rules depends

on parameters such as the level of persistence and the degree of time inconsistency. Second,

we show that, also unlike under i.i.d shocks, the ex-ante optimal rule under persistent shocks

exhibits history dependence, that is, the mechanism at t = 1 depends on more than the payoff-

relevant variables at t = 1. Finally, we describe properties of the solution that provide some

insight into the dynamics of the infinite horizon economy discussed in Section 5.

22This notion of sequential optimality is related to the notion of reconsideration-proofness in Kocherlakota
(1996) and renegotiation-proofness in Farrell and Maskin (1989) and Strulovici (2011).
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Given log utility and the arguments of Section 3, the problem can be stated as that of

choosing a savings rate s0 (θ−1, θ0) at date 0 and a savings rate s1 (θ−1, θ0, θ1) at date 1.23 We

contrast the date 1 policies in the ex-ante optimal rule and the sequentially optimal rule.

We begin by considering the sequentially optimal rule, which can be solved for by backward

induction. At date 1, the government solves program (16)–(17), where θ̃1 is given by δE [θ2|θ1].

To simplify the analysis, we assume that θL and θH are relatively close to each other:

θH

θL
<

1

β
. (18)

Condition (18) implies that the first-best savings rate at date 1, defined by (8), is not incentive

compatible for the low type, who would want to pretend to be a high type so as to spend and

borrow more. Moreover, this condition implies that the optimal static mechanism at date 1

features pooling: following the realization of θ0, the sequentially optimal rule assigns a fixed

savings rate, independent of the type at date 1.24 This pooled savings rate is chosen optimally

given the probabilities of a high and low type at date 1, so it is given by

E[θ1|θ0 = θi]U ′(1− s1(θ−1, θ
i))− δE[θ2|θ0 = θi]U ′(s1(θ−1, θ

i)) = 0 (19)

for θi ∈ {θL, θH}, where, with some abuse of notation, we have written s1(·) as a function of

θ−1 and θ0 only given that savings at date 1 do not depend on θ1 under pooling.

Consider next the ex-ante optimal rule. Suppose by contradiction that the ex-ante optimum

and the sequential optimum coincide at date 1. We show that it is then possible to perturb

the ex-ante optimal mechanism in a way that reduces welfare from the perspective of date

1 but increases welfare from the perspective of date 0, thus increasing ex-ante welfare and

contradicting the assumption that the two rules coincide at date 1.

Assume that at date 0 the incentive compatibility constraint binds for the low type and

is slack for the high type. This means that the low type is under-saving relative to first best,

and he cannot be induced to save more as he would then want to pretend to be a high type

to save less. Formally, the low type is indifferent between reporting the truth and receiving a

payoff equal to

θLU(1− s0(θ−1, θ
L)) + βδE[θ1 + δθ2|θ0 = θL]U(s0(θ−1, θ

L))

+βδ
(
E[θ1|θ0 = θL]U(1− s1(θ−1, θ

L)) + δE[θ2|θ0 = θL]U(s1(θ−1, θ
L))
)
,

23Note that savings at date 2 are always equal to zero, since this is the final period.
24Intuitively, separation when types are sufficiently close is suboptimal because it would require excessively

low savings by the high type so as to satisfy the incentive compatibility constraint of the low type.
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and lying and receiving a payoff equal to

θLU(1− s0(θ−1, θ
H)) + βδE[θ1 + δθ2|θ0 = θL]U(s0(θ−1, θ

H))

+βδ
(
E[θ1|θ0 = θL]U(1− s1(θ−1, θ

H)) + δE[θ2|θ0 = θL]U(s1(θ−1, θ
H))
)
,

where, by the contradiction assumption that the mechanism is sequentially optimal at date 1,

s1

(
θ−1, θ

i
)

is the pooled savings rate given by (19). Clearly, the low type could be induced to

save more at date 0 if his payoff from pretending to be a high type could be reduced. Note

that this payoff can be reduced by changing either the savings rate that is assigned at date

0 given a high reported type at date 0, or the savings rate that is assigned at date 1 given

a high reported type at date 0. Moreover, the effect on welfare of changing the savings rate

at date 1 depends on the probabilities of a low type and a high type at date 1, which under

persistent shocks depend on the realized type at date 0.

With this observation in mind, consider a perturbation that reduces the savings rate at

date 1 given a high type at date 0, s1

(
θ−1, θ

H
)
, by ε > 0 arbitrarily small. This perturbation

clearly reduces equilibrium welfare from date 1 onward, that is, welfare at date 1 given a

truthful report of θ̂0 = θH at date 0, as it induces overspending at date 1. However, from

the envelope condition in (19), this is a second-order loss, so this effect approaches 0 as ε

approaches 0. In contrast, consider the effect of the perturbation on off-equilibrium welfare

from date 1 onward, that is, welfare at date 1 given a non-truthful report of θ̂0 = θH at date

0. As ε approaches 0, this effect takes the same sign as

E[θ1|θ0 = θL]U ′(1− s1(θ−1, θ
H))− δE[θ2|θ0 = θL]U ′(s1(θ−1, θ

H)). (20)

If shocks are i.i.d., E[θ1|θ0 = θL]/E[θ2|θ0 = θL] = E[θ1|θ0 = θH ]/E[θ2|θ0 = θH ], so, given

(19), (20) must equal zero. This means that the perturbation affects continuation welfare on

and off the equilibrium path equally and hence cannot improve ex-ante welfare. In contrast,

when shocks are persistent, E[θ1|θ0 = θL]/E[θ2|θ0 = θL] < E[θ1|θ0 = θH ]/E[θ2|θ0 = θH ], so

(20) must be negative. Given (19), this means that the perturbation reduces continuation

welfare off the equilibrium path without affecting continuation welfare on path. Therefore,

the low type’s incentive compatibility constraint at date 0 can be relaxed at no social cost,

and ex-ante welfare can be increased.

The intuition behind the perturbation is simple. In every period, the government learns

about its current spending needs. If shocks are persistent, the current shock also informs the

government about its future spending needs. The government has a temptation to overspend

today even if its needs are low, but it maximizes social welfare from tomorrow on. The ex-ante

optimal rule then has the feature that it becomes excessively lax in the future if spending is

12



0.5 0.6 0.7 0.8 0.9 1
0.45

0.49

α

Sa
vi

ng
s 

R
at

e

 

 

s1
H (so)

s1
H (eo)

s1
L (so)

s1
L (eo)

Figure 1: Savings rate at t = 1 in the ex-ante and sequentially optimal rules given θ−1 = θH .

high today. The reason is that the expected cost of lax rules tomorrow is greater if spending

needs are low today, as spending needs are then likely to be low tomorrow. As a result, the

threat of no discipline in the future ironically imposes discipline today.

We illustrate the properties of the ex-ante optimum and the sequential optimum with a

numerical example.25 It can be shown that under (18), the ex-ante optimal rule also features

pooling at date 1; thus, under the two rules, the savings rate at date 1 is independent of the

realized type at date 1. Figure 1 shows this savings rate, s1(θ−1, θ
i), in the ex-ante optimal

(“eo”) and sequentially optimal (“so”) rules for θ0 = θL (“sL1 ”) and θ0 = θH (“sH1 ”), given

θ−1 = θH , as a function of the persistence of types, denoted α ≡ p(θi|θi) in the figure.

Three points are evident in Figure 1. First, consistent with the perturbation just described,

the figure shows that the ex-ante optimal savings rate at date 1 following θ0 = θH is below

the sequentially optimal rate. As explained, inducing overspending ex post is efficient ex

ante because it allows to relax the low type’s incentive compatibility constraint and curb his

spending at date 0. Second, the figure shows that following θ0 = θL, the ex-ante optimal

savings rate at date 1 coincides with the sequentially optimal rate. The logic for this “no

distortion at the top” also stems from the low type’s incentive compatibility constraint at

date 0: to relax this constraint, the ex-ante optimal rule maximizes the continuation welfare

for the low type given a truthful report at date 0, which corresponds to assigning the optimal

static rate at date 1. Finally, the figure shows how the savings rate at date 1 depends on the

25We consider δ = 0.9, β = 0.6, θL = 2, and θH = 3.
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Figure 2: Savings rate at t = 1 under different degrees of time inconsistency (left graph, with
β′′ > β′) and under different histories (right graph).

persistence of types, and in particular that the ex-ante optimal and sequentially optimal rates

coincide if types are i.i.d. (α = 0.5) or fully persistent (α = 1). Intuitively, in these cases,

E[θ1|θ0 = θi] = E[θ2|θ0 = θi], so the marginal benefit of spending at dates 1 and 2 is the same.

Given (19), this means that the sequentially optimal rate at date 1 is independent of θ0, and

thus any perturbation would affect welfare on and off the equilibrium path equally.

To gain further intuition for the ex-ante optimal rule, the left graph in Figure 2 explores

how the savings rate at date 1 following θ0 = θH depends on the time inconsistency problem.

The graph shows that the difference between the sequentially optimal and ex-ante optimal

rates is smaller the larger is the government’s present bias, i.e. the lower is β.26 The logic is

simple: the less the government at date 0 cares about its welfare at date 1, the less effective is a

distortion in the sequentially optimal rate at date 1 to relax incentive compatibility constraints

at date 0. Since the cost of the distortion at date 1 is independent of the degree of present

bias, it follows that the distortion must be smaller when this bias is larger.

Finally, the right graph in Figure 2 explores whether the ex-ante optimal mechanism ex-

hibits history dependence. The graph shows that, indeed, the ex-ante optimal savings rate

at date 1 following θ0 = θH depends on the history, namely on θ−1.27 Specifically, this rate

is lower and further away from the sequentially optimal rate if θ−1 = θL than if θ−1 = θH ,

26We take β′ = 0.4 and β′′ = 0.6. Note that given other parameters fixed, β must be low enough for
condition (18) to be satisfied. In our numerical example, (18) requires β ≤ 2/3. Note also that the sequentially
optimal savings rate is independent of β.

27The savings rate at date 1 following θ0 = θL is history independent, as it is sequentially optimal.
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so fiscal rules become more excessively lax after a high shock at date 0 if θ−1 = θL. The

intuition is that θ−1 affects the distribution of types at date 0, and thus the benefits and costs

of perturbing the savings rate at date 1. Recall that the benefit of the perturbation is that

it relaxes the low type’s incentive compatibility constraint at date 0 and allows to increase

savings given θ0 = θL; the cost on the other hand is that it induces an ex-post suboptimal

savings rate at date 1 given θ0 = θH . If θ−1 = θL, the probability of θ0 = θL is higher, and

therefore the relative benefits of the perturbation are larger.

5 Optimal Fiscal Rules

This section characterizes the optimal fiscal rules in an infinite horizon economy. Because the

sequentially optimal rule is simple, we first study this rule in Subsection 5.1 and then use it

as a benchmark in describing the ex-ante optimal rule in Subsection 5.2. In Subsection 5.3,

we consider the implications of these rules for the level of debt in the long run.

To simplify the analysis and consistent with the extension to a continuum of types in

Section 6, we assume that types are relatively close to each other:

Assumption 2.

θH

θL
− θ̃

H

θ̃
L
<

1− p(θi|θi)
p(θi|θi)

(
1

β
− 1

)
.

Assumption 2 is implied by condition (18) in the three-period example of Section 4 if the

level of persistence is low enough, i.e. if p(θi|θi) ≥ 1/2 is sufficiently close to 1/2.28 We discuss

the intuition and implications of Assumption 2 in the following subsections.

5.1 Sequentially Optimal Rule

Consider program (16)–(17) defining the sequentially optimal fiscal rule. Given Assumption 2,

it can be shown that this rule features pooling: the savings rate st(θ
t) is independent of the

realization of θt and depends only on θt−1, which is used in predicting the value of θt. This is

stated formally in the proposition below.

Proposition 1 (sequential optimum). For all θt and θk, the sequential optimum features

st(θ
t) = sk(θ

k) if θt−1 = θk−1.

28The strict inequality in Assumption 2 cannot be satisfied under full persistence (p(θi|θi) = 1). However,
our problem in that case is rather trivial as the first-best savings rate is the same for both types. If types are
close enough, the assumption is satisfied for any persistence level, including those arbitrarily close to 1.
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Moreover, st(θ
t) satisfies

E[θt|θt−1]U ′(1− st(θt))− E[θ̃t|θt−1]U ′(st(θ
t)) = 0. (21)

Proof. See Appendix B.

The intuition for this result is analogous to that in the three-period example of Section 4,

where the optimal static mechanism features pooling when types are sufficiently close. Here

the result follows from Assumption 2, which implies that the analog of condition (18) used for

the three-period economy holds in the infinite horizon economy.29

Given the budget constraint (1), Proposition 1 says that the sequentially optimal rule at

date t prescribes a level of debt bt+1(θt) as a function of θt−1 and bt(θ
t−1) only. If θt−1 = θH , the

prescribed level of debt is higher than if θt−1 = θL, as a high shock is then more likely and thus

the sequentially optimal level of deficit-financed spending at date t is higher. Furthermore, if

bt(θ
t−1) is relatively high, then bt+1(θt) must also be relatively high to facilitate the servicing

of the debt while simultaneously providing public goods. A useful implication is that the

sequential optimum can be implemented with a renegotiated debt limit.

Corollary 1. The sequentially optimal rule at any date t can be implemented with a history-

independent debt limit, b(θt−1, bt(θ
t−1)).

It follows from Assumption 2 and equation (21) that under the sequentially optimal rule,

both the low type and the high type would like to borrow and spend more than they are

allowed to. Thus, the sequentially optimal rule takes the form of a renegotiated debt limit

where, given θt−1 and bt(θ
t−1), both types choose the maximum allowable debt. In Section 6,

we show that these results extend to an economy with a continuum of types, although in that

case some types choose to borrow below the debt limit.

5.2 Ex-ante Optimal Rule

We now consider the ex-ante optimal fiscal rule defined in (12). We first develop a recursive

representation of the problem and then characterize the solution.

5.2.1 Recursive Representation

Our recursive representation is similar in spirit to that of Fernandes and Phelan (2000), who

develop a recursive technique to study a principal-agent problem under persistent shocks. The

29Specifically, this condition is
θH/θ̃

H

θL/θ̃
L
<

1

β
.
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idea of this representation is to solve program (12) by choosing st(θ
t) and Vt+1(θt) defined in

(10) sequentially for each history θt−1, where associated with each choice of Vt+1(θt) is some

continuation welfare Wt+1(θt) that is a function of the realized type θt and the chosen Vt+1(θt).

To characterize this value of Wt+1(θt), let W (θi, V ) for θi ∈ {θL, θH} correspond to the solution

to (12) given θ−1 = θi and subject to the following additional constraint:

V =
∑

θ0∈{θL,θH}

p(θ0|θ−1 = θ−i)
[
θ0U(1− s0(θ0)) + θ̃0U(s0(θ0)) + δW1(θ0)

]
. (22)

Constraint (22) is often referred to as a threat-keeping constraint. This constraint says that

if θ−1 is equal to θ−i as opposed to θi, the expected welfare under the savings rate sequence

that solves the program must be equal to V . Using this formulation, we rewrite program (12)

recursively as follows:

W
(
θi, V

)
= max
{sL,sH ,V L,V H}

{
p(θL|θi)

(
θLU(1− sL) + θ̃

L
U(sL) + δW (θL, V L)

)
+p(θH |θi)

(
θHU(1− sH) + θ̃

H
U(sH) + δW (θH , V H)

) } (23)

s.t.

V =

{
p(θL|θ−i)

(
θLU(1− sL) + θ̃

L
U(sL) + δW (θL, V L)

)
+p(θH |θ−i)

(
θHU(1− sH) + θ̃

H
U(sH) + δW (θH , V H)

) } , (24)

θLU(1− sL) + βθ̃
L
U(sL) + βδW (θL, V L) ≥ θLU(1− sH) + βθ̃

L
U(sH) + βδV H , (25)

θHU(1− sH) + βθ̃
H
U(sH) + βδW (θH , V H) ≥ θHU(1− sL) + βθ̃

H
U(sL) + βδV L, (26)

V L ≤ V L ≤ V
L
, and V H ≤ V H ≤ V

H
. (27)

(23)–(27) is a recursive representation of (12) starting from some history θt−1. The pro-

gram selects savings rates si for i ∈ {L,H}—which represent the values of st(θ
t)—and threats

V i for i ∈ {L,H}—which represent the values of Vt+1(θt)—to maximize social welfare, tak-

ing into account that the continuation welfare conditional on θt = θi is equal to W (θi, V i),

and subject to (24)–(27). Constraint (24) is a recursive representation of the threat-keeping

constraint stating that if type θ−i deviates and pretends to be θi in period t− 1, his continu-

ation welfare at t is equal to V . As such, V i, which is chosen in the current period t, is the

continuation welfare at t + 1 to a type θ−i who pretends to be θi at t. Constraints (25)–(26)

are recursive representations of the incentive compatibility constraints in (11), and constraint

(27) guarantees that the values of V i are within a feasible range.

We next characterize W (θi, V ). Clearly, if shocks are i.i.d., it must be that W (θi, V ) = V .

If shocks are persistent, the following lemma holds:
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Lemma 1. If shocks are persistent, W (θi, V ) is strictly increasing, strictly concave, and con-

tinuously differentiable in V over the range (V i, V
i
).

Proof. See Appendix C.

V i and V
i

are respectively the lowest and highest values of Vt+1

(
θt
)

that can be attained

in the solution to (12). V
i

is the value of V that results from the sequence problem (12) given

θ−1 = θi and subject to the threat-keeping constraint (22) when this constraint does not bind,

so that the solution effectively corresponds to the ex-ante optimum. Values of Vt+1

(
θt
)

that

exceed V
i

are never attained along the equilibrium path: such high values of Vt+1

(
θt
)

would

tighten the incentive compatibility constraints (25) and (26) while simultaneously reducing

the continuation welfare below W (θi, V
i
). Hence, only threats such that V i < V

i
are used,

and the optimal level of threats depends on the benefits of relaxing incentive compatibility

constraints relative to the costs of reducing continuation welfare W (θi, V i).

To understand the role of Assumption 2 and the threat-keeping constraint (24), let λ be

the Lagrange multiplier on this constraint. The envelope condition implies WV (θi, V ) = −λ,

so that given the strict concavity of W (·), lower values of V are associated with more negative

values of λ. It follows that solving (23)–(27) is equivalent to solving the following problem:

max
{sL,sH ,V L,V H}

{
(p(θL|θi) + λp(θL|θ−i))(θLU(1− sL) + θ̃

L
U(sL) + δW (θL, V L))

+(p(θH |θi) + λp(θH |θ−i))(θHU(1− sH) + θ̃
H
U(sH) + δW (θH , V H))

}
(28)

s.t. (25)− (27).

Under persistent types, the role of the threat-keeping constraint is to effectively “twist”

the probabilities assigned to each type. If, for example, θi = θH , the objective in (28) under-

weighs welfare conditional on the low type relative to the high type, and this is done more

severely the lower is V . The opposite is true if θi = θL. Hence, to satisfy the threat-keeping

constraint, the program over-weighs (under-weighs) welfare at t conditional on the type that

is less (more) likely to occur from the perspective of a deviating type θ−i at t− 1.

Assumption 2 facilitates the characterization of W (θi, V ) because it guarantees that, along

the equilibrium path, the value of V is never chosen to be so low that the objective in (28)

would assign a negative weight to some type.30 Intuitively, if V is very low, then types are

sufficiently close that any benefits from providing better incentives today are outweighed by

the costs of reduced welfare tomorrow. Note that these relative benefits and costs depend on

the persistence of types; in particular, under a high level of persistence p(θi|θi), the future

30In the case that the objective assigns a negative weight to some type, we have not been able to prove that
W (θi, V ) is concave and differentiable, which prevents us from achieving a characterization of the equilibrium
dynamics.
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welfare costs may be incurred by a type that is unlikely to occur. This explains why the

condition in Assumption 2 depends on p(θi|θi). (See Lemma 7 in Appendix C for details.)

5.2.2 Characterization

We now characterize the ex-ante optimal fiscal rule. Consider first the i.i.d. benchmark.

Proposition 2 (ex-ante optimum under i.i.d. shocks). If shocks are i.i.d., the ex-ante

optimum coincides with the sequential optimum.

Proof. See Appendix C.

When shocks are i.i.d., the ex-ante optimal rule prescribes the sequentially optimal savings

rate in each period, which in this case is constant and which can be implemented with a

renegotiated debt limit. This rule is thus history independent and does not provide dynamic

incentives for truthtelling. The reason why dynamic incentives are inefficient is as discussed

in the three-period example: under i.i.d. shocks, any perturbation in the ex-post optimal

rule affects continuation welfare on the equilibrium path (given a truthful report) and off the

equilibrium path (given a non-truthful report) equally, and therefore cannot increase ex-ante

welfare. This result is analogous to that of Amador, Werning, and Angeletos (2006).

Consider now the case of persistent shocks. Let the solution to (23)–(27) be denoted by

{sL∗(θi, V ), sH∗(θi, V ), V L∗(θi, V ), V H∗(θi, V )}. (29)

Lemma 2. If shocks are persistent, the solution to (23)–(27) has the following properties for

all V ∈ [V i, V
i
]:

(i) (resetting) V L∗(θi, V ) = V
L

for θi ∈ {θL, θH};

(ii) (monotonicity of threats) V H∗(θH , V ) is strictly decreasing in V and V H∗(θi, V )

satisfies V
H
> V H∗(θH , V

H
) > V H∗(θL, V

L
);

(iii) (monotonicity of savings rates) si∗(θH , V ) is strictly increasing in V and si∗(θi, V )

satisfies si∗(θH , V
H

) < si∗(θL, V
L
) for i ∈ {L,H}.

Proof. See Appendix C.

Lemma 2 describes the solution to (23)–(27) given θi and V . The first part of the lemma

states that the equilibrium at t + 1 effectively “resets” if the low type is realized at t. This

result is analogous to the result in the three-period example that the savings rate at date 1

is sequentially optimal if the low type is realized at date 0. As in that example, the intuition

is that setting V L∗(θi, V ) = V
L

maximizes the continuation payoff of the low type given a
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truthful report, and thus maximally relaxes the incentive compatibility constraint of the low

type (25) while maximizing social welfare.

The second part of Lemma 2 concerns the magnitude of V H∗(θi, V ) across different values

of V . Comparing V H∗(θH , V
H

) and V H∗(θL, V
L
), the lemma states that the threat used in

the ex-ante optimum to induce the low type to report truthfully is more severe if θi = θL

than if θi = θH . This result is analogous to the result in the three-period example that the

savings rate at date 1 following θ0 = θH is lower if θ−1 = θL than if θ−1 = θH . The intuition

is also as in that example: when θi = θL, the low shock is more likely, so the benefit of

using a more severe threat—namely, relaxing the low type’s incentive constraint and curbing

his spending—is larger relative to the cost—namely, reducing the high type’s continuation

welfare. The lemma also considers how V H∗(θH , V ) varies with V . As discussed, the lower is

V , the more “twisted” the effective objective function in (28) is in favor of welfare conditional

on a high type, implying that threats are more costly and thus V H∗(θH , V ) is higher.

The third part of Lemma 2 considers how the optimal savings rate depends on V . Com-

paring si∗(θH , V
H

) and si∗(θL, V
L
), the lemma states that the savings rate conditional on the

realization of either type is lower if θi = θH than if θi = θL. The intuition is straightforward.

Because of Assumption 2, the savings rate of the low (high) type is always below (above)

the first-best rate for that type. If θi = θH , the objective function in (28) puts a higher

weight on welfare conditional on a high type, so the optimal savings rate for this type must

be lower and closer to first best. But then for the incentive constraint of the low type (25)

to be satisfied, it must be that the savings rate of the low type is also lower, implying that

si∗(θH , V
H

) < si∗(θL, V
L
) for i ∈ {L,H}. The lemma also compares si∗(θH , V ) across different

values of V . The logic is the same as above: the lower is V , the higher is the weight in (28)

assigned to the high type and, consequently, the lower is si∗(θH , V ).

We now use Lemma 2 to describe the ex-ante optimal fiscal rule under persistent shocks.

Define ηt(θ
t−1) as the number of periods since the last time that θL was realized:31

ηt(θ
t−1) = k if θt−1−k = θL and θt−1−l = θH for all l ∈ {0, . . . , k − 1}.

Proposition 3 (ex-ante optimum under persistent shocks). If shocks are persistent, the

ex-ante optimum has the following features:

(i) For all θt and θk with θt = θk, st(θ
t) = sk(θ

k) if ηt(θ
t−1) = ηk(θ

k−1);

(ii) There exist θt,θk with θt = θk and θt−1 = θk−1 for which st(θ
t) 6= sk(θ

k).

Thus, the ex-ante optimum does not coincide with the sequential optimum, and it exhibits

history dependence.

31Note that this variable is not defined if the low shock has never been realized.
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Proof. See Appendix C.

Unlike the sequentially optimal rule or the optimal rule under i.i.d. shocks, the ex-ante

optimal rule under persistent shocks exhibits history dependence: the mechanism at history

θt depends not only on the payoff-relevant variables, θt−1 and bt(θ
t−1), but also on when the

low shock last occurred, and thus possibly on the entire history of shocks.32 The logic stems

from the fact that the mechanism provides dynamic incentives. Intuitively, because the shock

at date t−2 predicts the realization of the shock at t−1, the shock at t−2 affects the relative

tightness of incentive compatibility constraints at t− 1, which in turn affect the policies that

are chosen at t in providing dynamic incentives at t − 1. The result in Lemma 2 that the

mechanism resets following a low shock implies in fact that the tightness of current incentive

constraints depends on when this resetting began, which explains why prescribed policies

depend on the time that passed since a low shock was realized.

The resetting property of the ex-ante optimal rule is related to the “no distortion at the

top” result of standard adverse selection models, although here dynamic considerations play

an important role.33 To see this, consider an equilibrium starting from date 0, given θ−1 = θH .

If θ0 = θL is realized, the equilibrium transitions to the ex-ante optimum associated with

θ−1 = θL; as explained, this is efficient because it maximally relaxes the incentive compatibility

constraint of the low type at date 0. If instead θ0 = θH is realized, the fiscal rule at date 1 seeks

to punish the low type at date 0 who would have lied, while at the same time not harming the

truthful high type too much. Now note that there are two ways in which this can be done: on

the one hand, spending at date 1 given a low type at date 1 can be made higher and further

away from first best; on the other hand, the expected continuation welfare at date 1 from date

2 onward, given a low type at date 1, can be made lower. Because the low type at date 0 is

more likely to be a low type at date 1, either of these changes hurt the deviating low type at

date 0 more than the truthful high type at date 0. However, while the first option slackens

the low type’s incentive compatibility constraint at date 1, the second option tightens this

constraint. Consequently, it is cheaper from a date 0 perspective to provide incentives to the

low type by increasing spending for a single period following a high shock, while resetting the

equilibrium thereafter given a low shock.

A natural question regards the equilibrium dynamics for a sequence of consecutive high

shocks. These can be described using the second and third parts of Lemma 2, as shown in the

following proposition.

32It is straightforward to show that for histories for which the low shock has never realized, policies are
history dependent in the sense that they are a function of the date t.

33A similar resetting property arises in a different context in Hosseini, Jones, and Shourideh (2012); see in
particular Section 4 of their paper.
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Proposition 4 (dynamics under persistent shocks). There exists V̂ such that for all θt,

if θt−1 = θt = θH , then Vt+1(θt) > (<) V̂ if Vt(θ
t−1) < (>) V̂ . Thus, the ex-ante optimum

features oscillations in savings rates.

Proof. See Appendix C.

Combined with Lemma 2, Proposition 4 states that under a sequence of consecutive high

shocks, the equilibrium oscillates between periods of high spending and periods of low spend-

ing, around some fiscal rule associated with a threat V̂ such that V H∗(θH , V̂ ) = V̂ .34 In all of

these periods, there is a lack of fiscal discipline in that the level of spending exceeds the level

under θi = θH , V = V
H

.

To understand the oscillatory dynamics, consider again the equilibrium starting from date

0, given θ−1 = θH . As explained, if θ0 = θH is realized at date 0, the ex-ante optimal rule

induces high spending at date 1 given a low type at date 1, where this spending is further

away from first best compared to spending at date 0 given a low type at date 0. It follows

that at date 1, the low type’s incentives to lie and pretend to be a high type are relatively

lower, and, in turn, a smaller threat at date 2 following a high type at date 1 is sufficient

to provide incentives at date 1. Yet, note that the equilibrium does not reset to the ex-ante

optimum at date 2; the reason is simply that if spending at date 2 corresponded to the ex-ante

optimal spending level given θ−1 = θH , incentive compatibility constraints at dates 0 and 1

could be relaxed by increasing such spending, implying a first-order gain and causing only a

second-order loss at date 2.

The economics behind the oscillatory dynamics in Proposition 4 emerge from the self-

control nature of the problem. The absence of discipline tomorrow is used to induce discipline

today. In turn, the absence of discipline tomorrow allows to increase discipline the day after

while preserving incentives tomorrow.

In our analysis of the sequentially optimal rule in Subsection 5.1, we showed that such

a rule can be implemented with a history-independent debt limit. That is, in each period,

the government is allowed to borrow any amount up to some threshold, where this threshold

depends only on the accumulated level of debt and the previous period’s shock. A possible

implementation of the ex-ante optimal rule is also with the use of debt limits, although,

importantly, these limits would now depend on the history. In particular, in the ex-ante

optimum, the debt limit up to which the government is allowed to borrow in any period would

depend not only on how much the government borrowed up to that period (i.e., the current

level of debt), but also on how much the government chose to borrow relative to the debt

limits in previous periods.

34These oscillatory dynamics may imply convergence towards the fiscal rule associated with V = V̂ , although
this depends on the slope of the policy function.
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5.3 Implications for Debt in the Long Run

The analysis of the previous sections shows that the savings rates induced by the ex-ante

optimal and the sequentially optimal rule differ when shocks are persistent. What are the

implications for the path of debt? Do these rules imply different levels of debt in the long run?

To characterize the debt dynamics, we consider the case where the market discounts the

future at the same rate as the government (prior to the realization of the shock). This bench-

mark is useful because it highlights the inefficiencies that arise when the government is given

discretion to choose policies. Thus, throughout this subsection, we assume

δ = 1/ (1 + r) . (30)

Consider first the path of debt under the first-best and full-flexibility policies. The stochas-

tic sequence of debt in the first best, bfb ≡ (bfb1 , b
fb
2 , . . .), is induced by a stochastic sequence

of savings rates sfb ≡ (sfb0 , s
fb
1 , . . .) that satisfy sfbt = sfb(θi) if θt = θi, where sfb(θi) is

defined in (8). The full-flexibility sequence of debt, bf ≡ (bf1 , b
f
2 , . . .), results when the govern-

ment chooses its flexible optimum in each period taking into account the behavior of future

governments which also choose policies flexibly. This sequence is induced by savings rates

sf ≡ (sf0 , s
f
1 , . . .) satisfying sft = sf (θi) if θt = θi, where for θi ∈ {θL, θH},35

θiU ′(1− sf (θi)) = βθ̃
i
U ′(sf (θi)). (31)

As might be expected, the debt dynamics under these two policies are starkly different.

Lemma 3. Assume (30) holds. In the long run,

(i) Under first best, assets diverge to infinity: bfbt → −∞ as t→∞;

(ii) Under full flexibility, debt becomes maximal: bft → τ/(1− δ) as t→∞.

Proof. See Appendix D.

The first part of Lemma 3 follows from the self-insurance motive of the government. As

is common across a wide class of self-insurance models (e.g., Chamberlain and Wilson, 2000),

when condition (30) holds, this motive dominates in the long run, and the first-best policy for

the government is to accumulate enough assets to perfectly insure itself with an infinite level

of public spending. The second part of Lemma 3, however, shows that if given the option to

flexibly choose policy, a present-biased government would not engage in such an accumulation

35Multiple equilibria can emerge when the government is given full flexibility in every period. Analogous to
our selection of the sequential optimum, we select a unique solution by considering the limit of a finite horizon
economy with end date T as T approaches infinity.
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of infinite assets. To the contrary, in the long run, the government’s present bias would cause

the economy to accumulate the maximal amount of debt, pushing public spending towards

zero. This stark contrast between the first-best and full-flexibility economies highlights the

importance of fiscal rules to alleviate the government’s time inconsistency problem.

Consider next the path of debt under the sequentially optimal rule. Let bso ≡ (bso1 , b
so
2 , . . .)

be the sequence of debt in the sequential optimum characterized in Proposition 1.

Proposition 5 (long-run debt in sequential optimum). Assume (30) holds. The sequen-

tially optimal sequence of debt bso has the following long-run properties:

(i) Under i.i.d. shocks, the level of debt is constant: bsot = bsot−1 for all t;

(ii) Under persistent shocks, assets diverge to infinity: bsot → −∞ as t→∞.

Proof. See Appendix D.

In the sequential optimum, the government commits at date t− 1 to a savings rate at date

t. If shocks are i.i.d., the savings rate at t is independent of the government’s information at

t − 1, and therefore constant over time. In fact, using condition (21), this rate is equal to

the discount factor δ, and hence, given (30), the level of debt is also constant over time. In

contrast, when shocks are persistent, the savings rate at date t depends on the information

that the government has at t − 1. In particular, if θt−1 = θL is realized, the government

anticipates lower spending needs at t, and thus commits to saving more at t to insure itself for

the future. Analogous to the first-best case above, it is this self-insurance motive, combined

with (30), what makes the government eventually accumulate an infinite amount of assets.

Finally, we consider the path of debt under the ex-ante optimal rule. Let beo ≡ (beo1 , b
eo
2 , . . .)

be the sequence of debt in the ex-ante optimum, induced by a sequence of savings rates

seo ≡ (seo0 , s
eo
1 , . . .) where seot is characterized by Proposition 2 when shocks are i.i.d. and by

Proposition 3 when shocks are persistent. From Proposition 3, the savings rate at date t under

persistent shocks is a function only of the current shock and the number of periods since the

last low shock. Let seo(θi, η) be the savings rate when the current shock is θi and the number

of periods since θL was last realized is η ≥ 0. Clearly, seot = seo(θt, ηt). Define

s̄ =
1

2

[
p(θi|θi) log

(
seo(θL, 0)/δ

)
+ (1− p(θi|θi)) log

(
seo(θH , 0)/δ

)]
+

1

2
(1− p(θi|θi))

∞∑
k=1

p(θi|θi)k−1
[
p(θi|θi) log

(
seo(θH , k)/δ

)
+ (1− p(θi|θi)) log

(
seo(θL, k)/δ

)]
.

s̄ corresponds to the mean of log(st/δ) in the long-run ergodic distribution of savings rates

implied by the ex-ante optimum.36

36See Appendix D for details.
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Proposition 6 (long-run debt in ex-ante optimum). Assume (30) holds. The ex-ante

optimal sequence of debt beo has the following long-run properties:

(i) Under i.i.d. shocks, the level of debt is constant: beot = beot−1 for all t;

(ii) Under persistent shocks, if s̄ > 0, assets diverge to infinity: beot → −∞ as t → ∞. If

s̄ < 0, debt becomes maximal: beot → τ/(1− δ) as t→∞.

Both s̄ > 0 and s̄ < 0 hold for an open set of parameters
{
θL, θH , p(θi|θi), δ, β

}
satisfying

Assumption 2.

Proof. See Appendix D.

If shocks are i.i.d., the ex-ante optimal and sequentially optimal rules coincide, so it follows

from Proposition 5 that debt is constant. If instead shocks are persistent, the long-run path

of debt in the ex-ante optimum may entail accumulating infinite assets or maximal debt,

depending on the long-run mean of log(st/δ). The intuition stems from the interaction of

two countervailing forces. On the one hand, there is an operational precautionary motive

that pushes the government towards the accumulation of assets, just as in the first best and

the sequential optimum. On the other hand, the ex-ante optimum features the provision

of dynamic incentives, whereby phases of non-discipline along the equilibrium path are used

to sustain discipline in earlier periods. These phases of non-discipline push the government

towards the accumulation of debt, and can dominate the self-insurance motive if they involve

sufficiently low savings rates. Therefore, while the ex-ante optimal rule yields higher ex-ante

welfare than the sequentially optimal rule, it can induce the government to become immiserated

in the long run, just as under full flexibility.37

To illustrate, Figure 3 considers two economies with different ex-ante optimal debt dy-

namics. The difference between the two economies is the degree of time inconsistency.38 As

discussed in the three-period example of Section 4, the government’s present bias affects the

extent to which the ex-ante optimal rule provides dynamic incentives: the larger this bias

is, the less effective are threats of future non-discipline to provide incentives in the present,

and thus the lower are the incentives that are optimally given. As a result, the figure shows

that when the government’s present bias is relatively large (that is, β is low), incentives are

37A similar force towards immiseration arises in the principal-agent models of Atkeson and Lucas (1992)
and Thomas and Worrall (1990). As in our model, this force emerges as a consequence of dynamic incentive
provision. However, note that those papers consider i.i.d. shocks, whereas in our self-control setting dynamic
incentives are provided only when shocks are persistent. Moreover, in our model, dynamic incentives need not
always result in immiseration, as the countervailing self-insurance motive pushes towards asset accumulation.

38We consider θL = 2, θH = 3, p(θi|θi) = 0.55, δ = 0.7, β′ = 0.01, β′′ = 0.4, b0 = 0, τ = 1. Recall that the
sequential optimum is independent of β. For the ex-ante optimum, the comparison across different values of
β takes into account that, given other parameters, β must be low enough for Assumption 2 to be satisfied.
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Figure 3: Path of debt in the ex-ante and sequentially optimal rules with δ = 1
1+r

, β′′ > β′.

low and the self-insurance motive dominates, inducing the government to accumulate infinite

assets over time. Instead, when the government’s present bias is relatively small (that is, β

is high), the ex-ante optimal mechanism provides strong dynamic incentives, so periods of

non-discipline are severe enough that the government becomes immiserated in the long run.

6 Extension to Continuum of Shocks

In this section, we extend our analysis to a setting with a continuum of shocks. We consider

this setting not only to explore the robustness of our main results, but also because economies

with a continuum of shocks are the main focus of the mechanism design literature that studies

the tradeoff between commitment and flexibility.

The main complication that emerges in this extension is that, under multiple shocks,

one must ensure that not only local but also global incentive compatibility constraints are

satisfied. This does not complicate the analysis of the sequential optimum, as under log utility

that problem reduces to a two-period problem. However, this does complicate the analysis of

the ex-ante optimum, as the recursive method described in Subsection 5.2.1 no longer applies.

Nonetheless, we show in this section that the main insights from the economy with two shocks

continue to hold under a continuum of shocks.
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6.1 Environment

Consider the benchmark environment described in Section 2 but with the government’s type,

θt > 0, now being drawn from a continuous support Θ ≡ [θ, θ]. Let p(θt|θt−1) and θ̃t be

as previously defined, and assume that p(θt|θt−1) is strictly positive for all θt and θt−1 and

continuously differentiable with respect to θt and θt−1. Assumption 3 below, which holds in

the two-shock economy, ensures that θt is mean reverting.

Assumption 3. θt/θ̃t is strictly increasing in θt.

We also make a technical assumption regarding the distribution of shocks. Define θp (θt−1) =

max{θ, θ′} where θ′ is the lowest θ ∈ Θ such that for all θ′′ ≥ θ,

θ̃
′′

E[θ̃t|θt ≥ θ′′, θt−1]

E[θt|θt ≥ θ′′, θt−1]

θ′′
≤ 1

β
, (32)

where θ̃
′′

is the value of (4) associated with θt = θ′′. Note that if shocks are i.i.d., θp (θt−1) = θp,

independent of θt−1. Given our assumptions, θp(θt−1) is a continuously differentiable function

of θt−1. Using this definition, we assume:

Assumption 4. For all θt ≤ θp(θt−1),

d log p(θt|θt−1)

d log θt
≥ −2− β

1− β
+

1

1− β
d log θ̃t
d log θt

+
d log(dθ̃t/dθt)

d log θt
. (33)

Assumption 4 is isomorphic to Assumption A in Amador, Werning, and Angeletos (2006)’s

study of an economy with i.i.d. shocks, where the main difference is that our condition

incorporates the persistence of shocks through d log θ̃t/d log θt and d log(dθ̃t/dθt)/d log θt. This

assumption is satisfied if the severity of the time-inconsistency problem is sufficiently low (i.e.,

β is sufficiently high) and the first and second derivatives of the density function p(θt|θt−1)

with respect to both elements are bounded.39

Definitions for the ex-ante optimal and sequentially optimal fiscal rules analogous to those

provided for the two-shock economy apply in this setting. We thus use the analysis of Section 3

to characterize the equilibrium.

6.2 Sequentially Optimal Rule

An analogous program to (16)–(17) defines the sequentially optimal fiscal rule. The incentive

compatibility constraints (17) effectively imply that the problem is static and that global

39This follows from the fact that, given Assumption 3, d log θ̃t/d log θt < 1.
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incentive constraints can be ignored. As such, analogous techniques to those used in the

analysis of the two-period problem of Amador, Werning, and Angeletos (2006) apply here and

can be used to characterize the sequential optimum. Let sf (θt) be the flexible optimum of a

government of type θt that is awarded full discretion as defined in (31).

Proposition 7 (sequential optimum under continuum of shocks). Let s(θt−1) be defined

by s(θt−1) = sf (θp(θt−1)) if θp(θt−1) > θ, and

E[θt|θt−1]U ′(1− s(θt−1))− E[θ̃t|θt−1]U ′(s(θt−1)) = 0 (34)

otherwise. For all θt, the sequential optimum features

st(θ
t) = max{sf (θt), s(θt−1)}.

Proof. See Appendix E.

Corollary 2. The sequentially optimal rule at any date t can be implemented with a history-

independent debt limit, b(θt−1, bt(θ
t−1)).

This proposition and corollary state that if θp(θt−1) > θ, all types θt below θp(θt−1) are

awarded full discretion, so they can choose their flexible optimal savings rate, and all types

above θp(θt−1) are awarded no discretion, so they must choose the same savings rate as type

θp(θt−1). If instead θp(θt−1) = θ, no type is given discretion, and all types are assigned a

savings rate s(θt−1) satisfying (34).

The dependence of the minimum savings rate s(θt−1) on θt−1 captures the fact that the

shock at date t − 1 provides information regarding the tradeoff between commitment and

flexibility at date t. Note that if shocks are i.i.d., s(θt−1) and the associated debt limit

b(θt−1, bt(θ
t−1)) are independent of θt−1. Moreover, note that as β approaches 1, so that the

time-inconsistency problem vanishes, θp(θt−1) approaches θ, and thus the sequentially optimal

rule provides full discretion to all types.

As in the two-type case, the sequentially optimal rule does not provide dynamic incentives.

It therefore takes the form of a set of allowable savings rates, from which the government

chooses the one that is closest to its flexible optimum. To understand why very high types are

given no discretion, note that because of the bounded distribution of shocks, allowing flexibility

for these types has no ex-ante welfare gain—such very high types would be overborrowing

under any realized shock, so there is no tradeoff between commitment and flexibility for them.

θp(θt−1) can be interpreted as the type above which the value of flexibility is exceeded by the

value of commitment.

To understand why all types below the cutoff θp(θt−1) are given full discretion, consider the

alternative of having a mechanism that admits “holes,” namely, where some interior interval
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of savings rates are not allowed. Given such a hole, the types whose flexible optimum is

inside the hole would choose savings rates at the boundaries of the hole. Specifically, those

inside the hole whose type is relatively high would reduce their savings by choosing the lower

boundary—which is socially costly—and those inside the hole whose type is relatively low

would increase their savings by choosing the upper boundary—which is socially beneficial.

The resulting total change in welfare then depends on the slope of the density function; under

Assumption 4, which effectively puts a lower bound on the elasticity of p(θt|θt−1) with respect

to θt, the total welfare change of introducing a hole is always negative.

6.3 Ex-ante Optimal Rule

We next consider the ex-ante optimal fiscal rule. For this analysis, we assume that the mecha-

nism at time t admits savings rates that are piecewise continuously differentiable with respect

to the history θt.40 As in the two-type case, we begin by considering the i.i.d. benchmark.

Proposition 8 (ex-ante optimum under continuum of i.i.d. shocks). Suppose p(θt|θt−1)

is independent of θt−1. Then the ex-ante optimum coincides with the sequential optimum.

Proof. See Appendix E.

The intuition for this result is analogous to that of the two-type case. Under i.i.d. shocks,

any ex-post suboptimality affects welfare on and off the equilibrium path equally, and hence

cannot enhance efficiency. Consequently, dynamic incentives are not provided and the ex-ante

optimum coincides with the sequential optimum. It of course follows that when shocks are

i.i.d., the ex-ante optimum can be implemented with a renegotiated debt limit.41

Consider now the case of persistent shocks, where p(θt|θt−1) depends on θt−1. We define

persistence with the following condition.

Condition 1 (mechanism relevance of past information). There is a positive measure

of types θt−1 and θt such that θp(θt−1) > θ, sf (θt) > sf (θp(θt−1)), and s′(θt) 6= 0.

Condition 1 concerns the sequence of minimum savings policies implied by the sequential

optimum described in Proposition 7. It states that in the sequentially optimal fiscal rule, there

is a positive measure of types θt−1 and θt with the property that, given θt−1, the government

of type θt at date t has full discretion, so it spends above first-best level, and, moreover,

40This assumption is without loss in our setting in the case of i.i.d. shocks, and it is used in other settings
in related work such as Athey, Atkeson, and Kehoe (2005).

41Note that in contrast with the two-type case, Proposition 8 requires Assumption 4 on the distribution
function. The reason is that, if this assumption is not satisfied, the sequential optimum can admit a hole, in
which case dynamic incentives may be provided to those types who bunch at the lower boundary of the hole
to induce them to borrow less.
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such government has information which is locally relevant regarding the sequentially optimal

mechanism at t + 1 (i.e., s′(θt) 6= 0). The analog of Condition 1 is trivially satisfied in a

two-type economy, as the low type always spends above first best in the sequential optimum,

and this type also has information about the future sequentially optimal mechanism. In the

setting with a continuum of types, Condition 1 is always satisfied if s′(θt) 6= 0 for some positive

measure of types θt, so that current information is relevant to future mechanisms, and if β

is sufficiently close to 1, so that such types θt with mechanism-relevant information have full

discretion at t starting from some θt−1.

While an explicit characterization of the ex-ante optimal rule becomes more complicated

under a continuum of persistent shocks, we show that under Condition 1, this rule does not

coincide with the sequentially optimal rule, and it exhibits history dependence.

Proposition 9 (ex-ante optimum under continuum of persistent shocks). Suppose

Condition 1 is satisfied. The ex-ante optimum has the following features:

(i) It does not coincide with the sequential optimum, and

(ii) It exhibits history dependence: there exist θt and θk with θt = θk and θt−1 = θk−1 for

which st(θ
t) 6= sk(θ

k).

Proof. See Appendix E.

The intuition for Proposition 9 is familiar from the two-type economy. For the first part

of the proposition, suppose by contradiction that the ex-ante optimum coincided with the

sequential optimum. We show that ex-ante welfare can then be improved with a perturbation

that induces ex-post suboptimality. For concreteness, suppose that θp(θ−1) > θ for all θ−1

and θ′p(θ−1) > 0, so the sequentially optimal rule at date 0 becomes more relaxed the higher

is the shock θ−1. Consider perturbing the mechanism by assigning at date 1 the fiscal rule

associated with a cutoff θp(θ0 + µ(θ0)), for some µ(θ0) > 0 arbitrarily small. This relaxes

incentive compatibility constraints at date 0, allowing to increase the savings rates assigned to

all types θ0 < θp(θ−1), from sf (θ0) to sf (θ0) + ε(θ0), for some ε(θ0) > 0 that satisfies incentive

compatibility. By envelope arguments analogous to those of Section 4, we can show that ex-

ante welfare increases as a result: the first-order gain of bringing savings closer to first best at

date 0 outweighs the second-order loss of assigning suboptimal rules at date 1. Therefore, as

in the two-type case, the ex-ante optimal mechanism uses a threat of lack of fiscal discipline

in the future to induce discipline today.

The logic for the second part of Proposition 9 is also analogous to that used for the two-

type economy. History dependence arises because the mechanism provides dynamic incentives.

That is, because the shock at date t − 2 predicts the realization of the shock at t − 1, the
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shock at t − 2 affects the relative tightness of incentive compatibility constraints at t − 1,

and therefore it affects the policies that are chosen at t to provide dynamic incentives to the

government at t− 1.

7 Concluding Remarks

This paper has studied the role of persistence in determining the optimal structure of fiscal

rules. We showed that when the shocks to the economy are i.i.d., the ex-ante optimal fiscal rule

coincides with the sequentially optimal rule, taking the simple form of a renegotiated debt limit.

In contrast, when the shocks are persistent, the ex-ante optimal rule is no longer sequentially

optimal; this rule now provides dynamic incentives and exhibits history dependence. The

ex-ante optimal mechanism features rich dynamics, with high shocks leading to an erosion

of future fiscal discipline while low shocks reinstate discipline, and with policy distortions

oscillating over time given a sequence of high shocks. Moreover, while the sequentially optimal

rule leads to the accumulation of infinite assets over time, the ex-ante optimal rule may induce

the government to accumulate maximal debt and become immiserated in the long run.

We believe our paper leaves interesting questions for future research. First, we have consid-

ered an environment in which the government has the ability to commit within the period to

a fiscal rule. A natural question is whether, in the absence of commitment power, such a rule

can be self-enforced. One can show that in our two-type economy, under both the sequentially

optimal and the ex-ante optimal rule, social welfare in each period on the equilibrium path

is strictly higher than welfare under full flexibility. In fact, full flexibility to choose policy is

the worst punishment that can be imposed on the government. It follows from standard folk

theorems then that either of these rules can be self-enforced by the threat of reversion to full

flexibility if society’s discount factor (δ) is high enough. It would be interesting to explore the

additional distortions that emerge when the discount factor is relatively low.

Another possible extension would be to consider more general time-inconsistent preferences

with hyperbolic discounting. The nature of the problem would change compared to our quasi-

hyperbolic setting, as the preferences of the current government regarding future policies would

no longer coincide with those of society. As the government’s bias extends to future periods,

in fact, the problem becomes one of delegation. Finally, our model can be enriched to consider

more general social preferences for public spending, as well as a micro-founded economic

environment taking into account the endogeneity of interest rates and the distortionary effects

of taxation. A natural future direction would be to quantitatively assess the properties of

optimal fiscal rules and how they depend on the economic structure.
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Appendix

A Sequentially Optimal Rule

In this section, we consider the problem defined by (13)–(15) for a finite horizon T -period
economy and show that as T →∞, this program is equivalent to (16)–(17).

Define
JTT (θT−1, bT ) =

∑
θT∈{θL,θH}

p (θT |θT−1) θTU(τ − bT ) (A.1)

as the expected social welfare at date T conditional on θT−1 and bT , given the budget constraint
(1) and given the end date T . Using JTT (θT−1, bT ), define the sequential optimum recursively
as a solution to:

JTt (θt−1, bt) = max
{gt(θt),bt+1(θt)}θt∈{θL,θH}

∑
θt∈{θL,θH}

p (θt|θt−1)
(
θtU (gt (θt)) + δJTt+1(θt, bt+1 (θt))

)
(A.2)

s.t.

gt (θt) = τ + bt+1 (θt) / (1 + r)− bt and (A.3)

θtU (gt (θt)) + βδJTt+1(θt, bt+1 (θt)) ≥ θtU(gt(θ̂t)) + βδJTt+1(θt, bt+1(θ̂t)) for θ̂t 6= θt. (A.4)

The only difference between (13)–(15) and (A.2)–(A.4) is that the latter takes into account
the finite horizon, with JTt (θt−1, bt) being welfare at t conditional on the end date T .

For t < T , define θ̃
T

t analogously to (4):

θ̃
T

t =
T−t∑
k=1

δkE [θt+k|θt] ,

where it is clear that limT→∞ θ̃
T

t = θ̃t, for θ̃t defined in (4).
With some abuse of notation, define the finite horizon savings rate analogously to (5):

gt(θt) = (1− st(θt))(τ((1 + r)T−t+1 − 1)/(r (1 + r)T−t)− bt).

We now show that, given T , the program defined in (A.2)–(A.4) for any t is equivalent to

max
{st(θt)}θt∈{θL,θH}

∑
θt∈{θL,θH}

p(θt|θt−1)
(
θtU (1− st(θt)) + θ̃

T

t U(st(θt))
)

(A.5)

s.t.

θtU (1− st (θt)) + βθ̃
T

t U (st (θt)) ≥ θtU(1− st(θ̂t)) + βθ̃
T

t U(st(θ̂t)) for θ̂t 6= θt. (A.6)

We show this by induction. First note that (A.2)–(A.4) is equivalent to (A.5)–(A.6) for
t = T − 1. This follows from the fact that JTT (θT−1, bT ) satisfies

δJTT (θT−1, bT ) = θ̃
T

T−1U(sT−1(θT−1)) + χTT−1(bT−1), (A.7)
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for some constant χTT−1(bT−1) which depends only on bT−1. Substitution of (A.7) into the
program (A.2)–(A.4) at t = T − 1 implies that (A.2)–(A.4) is equivalent to (A.5)–(A.6) at
t = T − 1. Moreover, it also implies that

δJTT−1 (θT−2, bT−1) = θ̃
T

T−2U(sT−2(θT−2)) + χTT−2(bT−2) (A.8)

for some constant χTT−2(bT−2) which depends only on bT−2. Taking (A.8) into account, forward
iteration of this reasoning implies that (A.2)–(A.4) is equivalent to (A.5)–(A.6) for all t. Taking
T →∞, it is clear that (A.5)–(A.6) converges to (16)–(17), completing the argument.

B Proofs for Subsection 5.1

B.1 Proofs of Proposition 1 and Corollary 1

Consider the problem defined by (16)–(17). We first show that Assumption 2 implies that the
solution to this problem admits pooling. We use the definition of the first-best benchmark given
in (8) and we define the full flexibility benchmark as a sequence of savings rates sf ≡ (sf0 , s

f
1 , . . .)

satisfying sft = sf (θi) if θt = θi, where for θi ∈ {θL, θH},

θiU ′(1− sf (θi)) = βθ̃
i
U ′(sf (θi)). (B.1)

Assumption 2 together with the concavity of U(·) imply

sf (θH) < sf (θL) < sfb(θH) < sfb(θL). (B.2)

Hence, (17) must bind for some type in the solution to (16)–(17); otherwise, the solution would
satisfy (8), but given (B.2) and the strict concavity of U(·), (17) would then be violated.

Note furthermore that the solution must admit st(θ
H) ≤ st(θ

L). This follows since pooling
both types to the same savings rate must weakly lower welfare. Specifically, a perturbation
which assigns the low type’s savings rate to the high type must weakly lower welfare:

θH

θ̃
H

(U(1− st(θH))− U(1− st(θL))) + (U(st(θ
H))− U(st(θ

L))) ≥ 0. (B.3)

Analogously, a perturbation which assigns the high type’s savings rate to the low type must
weakly lower welfare:

θL

θ̃
L

(U(1− st(θL))− U(1− st(θH))) + (U(st(θ
L))− U(st(θ

H))) ≥ 0. (B.4)

Adding (B.3) and (B.4) gives(
θH

θ̃
H
− θL

θ̃
L

)
(U(1− st(θH))− U(1− st(θL))) ≥ 0,

which requires that st(θ
H) ≤ st(θ

L).
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Finally, note that it must be that (17) is an equality for θt = θL. Suppose instead that it
were a strict inequality. Then given the above argument, (17) must be an equality for θt = θH .
Substitution of (17) into the left hand side of (B.3) then implies

(1− β) [U(st(θ
H))− U(st(θ

L))] ≥ 0, (B.5)

which implies st(θ
H) ≥ st(θ

L). Given that st(θ
H) ≤ st(θ

L), this means that st(θ
H) = st(θ

L),
and thus (17) is an equality for θt = θL.

To establish that there is pooling, suppose that there is separation so that (17) is ignored
for the high type, and consider the first order conditions to (16)–(17). Let φ correspond to
the Lagrange multiplier on (17) for the low type. First order conditions yield:

1 +
φ

p(θL|θt−1)

1 + β
φ

p(θL|θt−1)

=
θ̃
L
U ′(st(θ

L))

θLU ′(1− st(θL))
, (B.6)

1− θL

θH
φ

p(θH |θt−1)

1− β θ̃
L

θ̃
H

φ

p(θH |θt−1)

=
θ̃
H
U ′(st(θ

H))

θHU ′(1− st(θH))
. (B.7)

Equation (B.6) implies st(θ
L) < sfb(θL). Moreover, note that Assumption 2 implies

θL

θ̃
L
> β

θH

θ̃
H

, (B.8)

and thus (B.7) implies st(θ
H) > sfb(θH). Therefore, from (B.2), this means that sf (θL) <

st(θ
H) < st(θ

L), but this violates (17) since the low type can make itself strictly better off by
claiming to be a high type. Therefore, (17) must hold with equality for both types and the
mechanism features pooling.

Since the equilibrium features pooling, it follows that the optimal pooling level necessarily
satisfies first order condition (21) where the pooling level depends only on θt−1. Since the
solution to (21) admits a savings rate between sfb(θH) and sfb(θL), and since this savings rate
is then above both sf (θH) and sf (θL), it follows that the equilibrium can be implemented with
a required minimum savings rate that solves (21), which both types would choose. From (1),
it is clear that requiring such a minimum savings rate is equivalent to imposing a maximum
debt limit, which proves the corollary.�

C Proofs for Subsection 5.2

C.1 Proof of Lemma 1

In order to prove this result, we begin by considering a relaxed program which effectively lets
(1) be a weak inequality so as to allow for money burning:
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Q
(
θi, Z

)
= max
{uL,yL,uH ,yH ,ZL,ZH}

{
p(θL|θi)(θLuL + θ̃

L
yL + δQ(θL, ZL))

+p(θH |θi)(θHuH + θ̃
H
yH + δQ(θH , ZH))

}
(C.1)

s.t.

U−1(uL) + U−1(yL) ≤ 1, (C.2)

U−1(uH) + U−1(yH) ≤ 1, (C.3)

Z =

{
p(θL|θ−i)(θLuL + θ̃

L
yL + δQ(θL, ZL))

+p(θH |θ−i)(θHuH + θ̃
H
yH + δQ(θH , ZH))

}
, (C.4)

θLuL + βθ̃
L
yL + βδQ(θL, ZL) ≥ θLuH + βθ̃

L
yH + βδZH , (C.5)

θHuH + βθ̃
H
yH + βδQ(θH , ZH) ≥ θHuL + βθ̃

H
yL + βδZL, (C.6)

ZL ≤ ZL ≤ Z
L
, and ZH ≤ ZH ≤ Z

H
. (C.7)

(C.1)–(C.7) is identical to (23)–(27) if (C.2) and (C.3) hold with equality, in which case
ui = U(1 − si) and yi = U(si). We will eventually establish that in the solution, (C.2) and
(C.3) hold with equality, and thus (C.1)–(C.7) is identical to (23)–(27). Note that, in this

program, Zi and Z
i

are respectively the lowest and highest values of Z given θi for which a
solution to the program exists. We establish some preliminary lemmas regarding the solution
to the relaxed program.

Lemma 4. Q(θi, Z) is weakly concave in Z ∈ [Zi, Z
i
].

Proof. Consider the sequence problem defined by (C.1)–(C.7), and let

γ∗(θi, Z) =
{{
u(θt), y(θt)

}
θt∈Θt

}∞
t=0

correspond to the stochastic sequence of u’s and y’s defined by forward iteration which solves

(C.1)–(C.7) for some given θ−1 = θi and Z0 = Z. Suppose that Z ′ ∈ [Zi, Z
i
] and Z ′′ ∈ [Zi, Z

i
]

with Z ′′ > Z ′, and consider the solution to the sequence problem for Z = κZ ′+(1−κ)Z ′′ ≡ Zκ.
Define a potential solution

γκ = κγ∗(θi, Z ′) + (1− κ)γ∗(θi, Z ′′).

γκ is a convex combination of the stochastic u and y sequences under Z ′ and Z ′′. Because the
set of u and y sequences that satisfy the sequence analogue of the constraint set in (C.2)–(C.7)
is convex, it follows that γκ satisfies the constraints of the problem for Z = Zκ. Therefore,
the value of Q(θi, Zκ) must be weakly greater than the welfare under γκ; that is:

Q(θi, Zκ) ≥ κQ(θi, Z ′) + (1− κ)Q(θi, Z ′′). (C.8)

It follows from (C.8) that Q(θi, Z) is weakly concave.

Define Zi
max = arg max

Z∈[Zi,Z
i
]
Q(θi, Z). We now use Lemma 4 to characterize Zi

max and

Q(θi, Zi
max).
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Lemma 5. The solution to (C.1)–(C.7) for Z = Zi
max has the following properties:

(i) (C.5) holds with equality and (C.6) holds as a strict inequality,

(ii) (C.2) and (C.3) both hold with equality.

Proof. Proof of part (i). We establish this result in three steps. We take into account that
the solution to (C.1)–(C.7) for Zi = Zi

max is equivalent to the solution to (C.1)–(C.7) ignoring
(C.4).

Step 1. Either (C.5) or (C.6) hold with equality. Suppose by contradiction that this is
not the case. Then (C.5) and (C.6) can be ignored, and the solution admits the first-best
allocation defined by (8) and Zi = Zi

max for i = {L,H}, as this maximizes welfare. This
implies that the infinite repetition of the first best allocation is incentive compatible, which
means that in fact Q(θi, Zi) = Z−i for i = {L,H}. But the same arguments as in the proof of
Proposition 1 then imply that (C.5) is violated, leading to a contradiction.

Step 2. Suppose that in the solution, (C.6) holds with equality. Then there is bunching,
with uL = uH and yH = yL, and (C.2) and (C.3) both hold with equality. To see why, note first
that the solution admits uH ≥ uL and yL ≥ yH . This follows from the fact that a perturbation
that changes the high type’s allocation to the low type’s (so that there is bunching) and sets
Zi = Zi

max for i = {L,H} must weakly lower welfare:

θH(uH − uL) + θ̃
H

(yH − yL) ≥ 0. (C.9)

It can be verified that this perturbation satisfies (C.2)–(C.3) and (C.5)–(C.7). Analogously,
a perturbation that changes the low type’s allocation to the high type’s must weakly lower
welfare:

θL(uL − uH) + θ̃
L
(yL − yH) ≥ 0. (C.10)

Adding (C.9) and (C.10) gives(
θH

θ̃
H
− θL

θ̃
L

)
(uH − uL) ≥ 0 and

(
θ̃
L

θL
− θ̃

H

θH

)(
yL − yH

)
≥ 0,

which requires uH ≥ uL and yL ≥ yH .
Next, note that a perturbation that changes the high type’s allocation and continuation

allocation to be the same as the low type’s must also weakly lower welfare:

θH(uH − uL) + θ̃
H

(yH − yL) + δ(Q(θH , ZH)− ZL) ≥ 0.

Substitution of (C.6) holding with equality into the above condition gives(
1− 1

β

)
θH(uH − uL) ≥ 0,

which means that uH ≤ uL. Combined with the result above, this implies uH = uL.
Finally, note that conditional on uH = uL, setting yH = yL, so that (C.2) and (C.3) hold

with equality and Zi = Zi
max for i = {L,H}, yields the highest feasible welfare. Moreover,
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such a solution satisfies (C.5) and (C.6), so it is incentive compatible. Therefore, there is
bunching and the resource constraints hold with equality.

Step 3. A solution where (C.6) holds with equality is suboptimal. From Step 2, such a
solution admits bunching, implying that Q(θH , ZH

max) = ZL
max. By construction, it must also

be that Q(θL, ZL
max) = ZH

max. Thus, the solution admits the same repeated level of bunching
which is independent of the previous period’s shock. However, this level of bunching yields
a welfare strictly below that achieved in the sequential optimum described in Proposition 1,
where the level of bunching depends on the previous period’s shock. Therefore, (C.6) holds as
a strict inequality in the solution, and by Step 1, (C.5) holds with equality.

Proof of part (ii). By the previous steps, the solution is such that (C.5) holds as an
equality and (C.6) as an inequality. We now show that (C.2) and (C.3) hold with equality.
Suppose first that (C.2) is a strict inequality. Consider a perturbation that decreases uL and

increases yL while holding θLuL+βθ̃
L
yL constant. This perturbation clearly increases welfare.

Moreover, this perturbation leaves (C.5) unaffected, and for a small enough perturbation, (C.6)
continues to hold. Therefore, this perturbation is incentive compatible and strictly increases
welfare. Suppose next that (C.3) is an inequality. Consider a perturbation that decreases uH

and increases yH while holding θLuH + βθ̃
L
yH constant. It follows from Assumption 2, which

implies (B.8), that this perturbation increases welfare. Moreover, this perturbation leaves
(C.5) unaffected, and for a small enough perturbation, (C.6) continues to hold. Therefore,
this perturbation is incentive compatible and strictly increases welfare.

Finally, we show that in the solution, uL < uH and yL > yH . From Step 2 in the proof
of part (i), uL ≤ uH and yL ≥ yH . Since (C.2) and (C.3) hold with equality, if it is the case
that uL = uH , then it must be that yL = yH , and vice versa, so that there would be bunching.
However, by Step 3 of the proof of part (i), a solution that admits bunching is suboptimal. It
thus follows that uL < uH and yL > yH .

We now use the fact that Zi
max characterizes the global optimum of Q(θi, Z) to characterize

Q(θi, Z).

Lemma 6. Q(θi, Z) has the following properties.

(i) ∃Zi
min ∈ [Zi, Zi

max) s.t. Q(θi, Z) is continuously differentiable in Z if Z ∈ (Zi
min, Z

i
max],

(ii) If Z ∈ (Zi
min, Z

i
max), Q(θi, Z) is strictly concave in Z.

Proof. We establish these results in four steps.
Step 1. We first establish that Q(θi, Z) is continuously differentiable in Z at Z = Zi

max

with a derivative equal to zero. Consider the solution to (C.1)–(C.7) for Z = Zi
max. Let sL

and sH correspond to the associated savings rates in the solution, where by the proof of part
(ii) of Lemma 5, sH < sL. Define sLε = sL + ε and sHε as the solution to

θL(U(1− sL)− U(1− sH)) + βθ̃
L
(U(sL)− U(sH))

= θL(U(1− sLε )− U(1− sHε )) + βθ̃
L
(U(sLε )− U(sHε )). (C.11)
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Let

Zε = Zi
max +

{
p(θL|θ−i)(θL(U(1− sLε )− U(1− sL)) + θ̃

L
(U(sLε )− U(sL)))

+p(θH |θ−i)(θH(U(1− sHε )− U(1− sH)) + θ̃
H

(U(sHε )− U(sH)))

}
(C.12)

and

Qε = Q(θi, Zi
max) +

{
p(θL|θi)(θL(U(1− sLε )− U(1− sL)) + θ̃

L
(U(sLε )− U(sL)))

+p(θH |θi)(θH(U(1− sHε )− U(1− sH)) + θ̃
H

(U(sHε )− U(sH)))

}
.

(C.13)
From the definition of Zi

max, it must be that the derivative of Qε with respect to ε at ε = 0
is zero, as the objective attains a local maximum, where we have taken into account that the
perturbation continues to satisfy (C.2)–(C.3) and (C.5)–(C.7). Note that it cannot be that
the derivative of Zε with respect to ε at ε = 0 is also zero. Given that p(θL|θ−i) 6= p(θL|θi)
and p(θH |θ−i) 6= p(θH |θi), this could be true if sL and sH are chosen at the first-best level,
but this is also ruled out in Step 1 in the proof of part (i) of Lemma 5. Therefore, it cannot
also be that Zε is at its local maximum. It thus follows that one can use this perturbation to
apply Lemma 1 of Benveniste and Scheinkman (1979) to show that Q(θi, Z) is continuously
differentiable in Z at Z = Zi

max and has a derivative of zero.
Step 2. Define Zi

min as follows. If

lim
ε>0,ε→0

Q(θi, Zi + ε)−Q(θi, Zi)

ε
<

1− p(θi|θi)
p(θi|θi)

,

then Zi
min = Zi. Otherwise, Zi

min is the highest point in [Zi, Z
i
] such that

lim
ε>0,ε→0

Q(θi, Zi
min + ε)−Q(θi, Zi

min)

ε
≤ 1− p(θi|θi)

p(θi|θi)
≤ lim

ε>0,ε→0

Q(θi, Zi
min)−Q(θi, Zi

min − ε)
ε

,

(C.14)
where such a point necessarily exists given Step 1 and the concavity of Q(·). Note further that
(C.1)–(C.7) can be represented by

max
{uL,yL,uH ,yH ,ZL,ZH}

{
(p(θL|θi) + λp(θL|θ−i))(θLuL + θ̃

L
yL + δQ(θL, ZL))

+(p(θH |θi) + λp(θH |θ−i))(θHuH + θ̃
H
yH + δQ(θH , ZH))

}
(C.15)

s.t. (C.2)− (C.3) and (C.5)− (C.7).

(C.15) corresponds (C.1)–(C.7) where λ is the Lagrange multiplier on the threat-keeping con-
straint (C.4). By the envelope condition,

lim
ε>0,ε→0

Q(θi, Z + ε)−Q(θi, Z)

ε
≤ −λ ≤ lim

ε>0,ε→0

Q(θi, Z)−Q(θi, Z − ε)
ε

.

It thus follows from concavity and the definition of Zi
min above that if Z ∈ (Zi

min, Z
i
max], then

p(θL|θi) + λp(θL|θ−i) > 0 and p(θH |θi) + λp(θH |θ−i) > 0, (C.16)
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so that the objective in (C.15) puts positive weight on the realization of both states.
Step 3. Analogous arguments to those used in the proof of Lemma 5 imply that given

(C.16), the solution to (C.15) has the following properties: (C.5) holds with equality and (C.6)
as a strict inequality; (C.2) and (C.3) hold with equality; the solution admits sL > sH . Given
these observations, a perturbation as the one used in Step 1 can be used here, and the same
arguments from Step 1 imply that Q(θi, Z) is continuously differentiable in Z.

Step 4. We now show thatQ(θi, Z) is strictly concave in this range. Consider the argument
of concavity in the proof of Lemma 4. The potential solution yields welfare κQ(θi, Z ′) + (1−
κ)Q(θi, Z ′′), while leaving the resource constraints (C.2) and (C.3) as strict inequalities in the
initial date. Given the arguments in Step 3, welfare can be strictly increased by letting (C.2)
and (C.3) hold as equalities, implying that (C.8) must be a strict inequality. Thus, Q(θi, Z)
is strictly concave.

We now characterize the solution to the program for Z ∈ (Zi
min, Z

i
max), where we denote

by ZL∗(θi, Z) and ZH∗(θi, Z) the optimal values of ZL and ZH respectively given θi and Z.

Lemma 7. If Z ∈ (Zi
min, Z

i
max], the solution to (C.1)–(C.7) has the following properties:

(i) (C.2) and (C.3) hold with equality,

(ii) ZL∗(θi, Z) = ZL
max for θi ∈ {θL, θH},

(iii) ZH∗(θi, Z) < ZH
max for θi ∈ {θL, θH},

(iv) ZH∗(θH , Z) is strictly decreasing in Z, and

(v) ZH∗(θH , ZH
max) > ZH∗(θL, ZL

max) > ZH
min.

Proof. Proof of part (i). This follows from Step 3 in the proof of Lemma 6.
Proof of part (ii). Consider the problem as represented in (C.15). Suppose it were

the case that ZL∗(θi, Z) < ZL
max. Then a perturbation which moves ZL in the direction of

ZL
max strictly increases welfare by increasing Q(θL, ZL). Furthermore, it relaxes (C.5) and,

since (C.6) is a strict inequality in the solution to the program (from Step 3 in the proof of
Lemma 6), (C.6) continues to hold.

Proof of part (iii). Consider the solution to (C.15) given that (C.2) and (C.3) hold
with equality. Let sL and sH correspond to the savings rates in the low and high shocks,
respectively. Let φ be the Lagrange multiplier on (C.5). First order conditions with respect
to sL and sH yield

U ′(1− sL)

U ′(sL)
=

 θ̃LθL
1 + β

φ

p(θL|θi) + λp(θL|θ−i)

1 +
φ

p(θL|θi) + λp(θL|θ−i)

 , (C.17)

U ′(1− sH)

U ′(sH)
=

 θ̃
H
− βθ̃

L φ

p(θH |θi) + λp(θH |θ−i)

θH − θL φ

p(θH |θi) + λp(θH |θ−i)

 . (C.18)
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Note that φ > 0; otherwise, the same arguments as those used in Step 1 in the proof of part
(i) of Lemma 5 would imply that the repeated first-best allocation is incentive compatible,
leading to a contradiction. Finally, first order conditions with respect to ZH yield

lim
ε>0,ε→0

Q(θH , ZH)−Q(θH , ZH − ε)
ε

≥ β
φ

p(θH |θi) + λp(θH |θ−i)
(C.19)

≥ lim
ε>0,ε→0

Q(θH , ZH + ε)−Q(θH , ZH)

ε
,

where we have taken into account that ZH may be below ZH
min, in which case Q(θH , ZH) may

not necessarily be differentiable. Given the definition of ZH
max and the fact that QZ(θH , ZH

max) =
0, it follows from (C.19) that ZH∗(θi, Z) < ZH

max, since φ > 0.
Proof of part (iv). Suppose that θi = θH and consider Z ′ ∈ (ZH

min, Z
H
max] and Z ′′ ∈

(ZH
min, Z

H
max] with Z ′′ > Z ′. Given part (ii) of Lemma 6, it follows that Z ′ is associated with

multiplier λ′ in (C.15) and Z ′′ is associated with multiplier λ′′ in (C.15) where λ′ < λ′′ < 0.
We will establish that ZH∗(θH , Z ′′) < ZH∗(θH , Z ′). Suppose instead that ZH∗(θH , Z ′′) ≥
ZH∗(θH , Z ′). Let φ′ and φ′′ correspond to the Lagrange multipliers on (C.5) for the program
for Z = Z ′ and Z = Z ′′, respectively. From (C.19) together with the concavity of Q(·), it
must be that

φ′

p(θH |θH) + λ′p(θH |θL)
≥ φ′′

p(θH |θH) + λ′′p(θH |θL)
. (C.20)

Substituting into (C.18), taking into account (B.8), this implies that the solution sH∗(·) must
satisfy

sfb(θH) < sH∗(θH , Z ′′) ≤ sH∗(θH , Z ′), (C.21)

where sfb(θH) is defined in (8). Moreover, since p(θH |θH)/p(θH |θL) > p(θL|θH)/p(θL|θL), it
follows that

φ′

p(θL|θH) + λ′p(θL|θL)
>

φ′′

p(θL|θH) + λ′′p(θL|θL)
. (C.22)

Substituting into (C.17) implies that the solution sL∗(·) must satisfy

sL∗(θH , Z ′) < sL∗(θH , Z ′′) < sfb(θL), (C.23)

where sfb(θL) is defined in (8). From Step 3 of the proof of Lemma 6,

sH∗(θH , Z ′) < sL∗(θH , Z ′). (C.24)

Note that θLU(1− s) + βθ̃
L
U(s) is strictly decreasing in s for s ≥ sfb(θH) > sf (θL), where we

have appealed to (B.2). Therefore, conditions (C.21), (C.23), and (C.24) combined together
imply that

θL(U(1− sL∗(θH , Z ′′))− U(1− sH∗(θH , Z ′′))) + βθ̃
L
(U(sL∗(θH , Z ′′))− U(sH∗(θH , Z ′′)))

< θL(U(1− sL∗(θH , Z ′))− U(1− sH∗(θH , Z ′))) + βθ̃
L
(U(sL∗(θH , Z ′))− U(sH∗(θH , Z ′))).
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Given that (C.5) holds with equality and ZL∗(θi, Z) = ZL
max from part (ii), this implies

βδ(ZH∗(θH , Z ′′)−Q(θL, ZL
max)) < βδ(ZH∗(θH , Z ′)−Q(θL, ZL

max)),

which contradicts the fact that ZH∗(θH , Z ′′) ≥ ZH∗(θH , Z ′).
Proof of part (v). First note that ZH∗(θH , ZH

max) > ZH∗(θL, ZL
max) follows from analo-

gous arguments to those used in the proof of part (iv), taking into account that the associated
value of λ is 0 for Z = Zi

max, i = {L,H}. We are then left to show that ZH∗(θL, ZL
max) > ZH

min.
Suppose instead that ZH∗(θL, ZL

max) ≤ ZH
min. By the definition of ZH

min in Lemma 6, using
(C.19) and the fact that λ = 0 for Z = Zi

max, it follows that

φ ≥ 1

β

(1− p(θi|θi))2

p(θi|θi)
. (C.25)

Note that by the arguments in the proof of part (iv), sH∗(θL, ZL
max) < sfb(θL). From (C.18),

taking into account that λ = 0, this means that

θH

θL
− θ̃

H

θ̃
L
> φ

(1− β)

1− p(θi|θi)
. (C.26)

Combining (C.25) with (C.26) implies that

θH

θL
− θ̃

H

θ̃
L
>

1− p(θi|θi)
p(θi|θi)

(
1

β
− 1

)
. (C.27)

But this contradicts Assumption 2, completing the proof.

By Lemma 7, the relaxed program in (C.1)–(C.7) is equivalent to the original program in

(23)–(27) if we define V i = Zi
min and V

i
= Zi

max. This is because (C.2) and (C.3) both hold with
equality, and for Z ∈ (Zi

min, Z
i
max], ZL∗(θi, Z) ∈ (ZL

min, Z
L
max] and ZH∗(θi, Z) ∈ (ZH

min, Z
H
max], so

that V i and V
i

effectively correspond to the minimum and maximum values of V that would
ever be reached given that the equilibrium begins with the ex-ante optimum with Z0 = Zi

max.
It follows then from Lemma 6 that W (θi, V ) is strictly increasing in V , strictly concave, and

continuously differentiable in V over the range (V i, V
i
).�

C.2 Proof of Proposition 2

If shocks are i.i.d., p(θL|θi) = p(θH |θi) = 0.5 and W (θi, V ) = V . Moreover, V
L

= V
H

= V and
V L = V H = V since the value and solution to (23)–(27) is independent of θi. Now consider the
program starting from V = V , which is the solution to the ex-ante optimum. Let us denote
the solution as in (29).

Analogous arguments to those used in the proof of Lemma 5 imply that in the solution,
either (25) and (26) both hold as equalities with sL∗(θi, V ) = sH∗(θi, V ), so that there is
bunching, or alternatively (25) holds as an equality and (26) as a strict inequality. We consider
the latter case first and rule it out. Note that the same arguments as those used in the proof
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of Proposition 1 imply that if there is separation, the solution admits

sfb(θH) < sH∗(θi, V ) < sL∗(θi, V ) < sfb(θL). (C.28)

This means that if the solution admits V L∗(θi, V ) = V H∗(θi, V ) = V , then from (B.2), (25)
would be violated. Therefore, for (25) to hold as an equality and (26) as a strict inequality,
it is necessary that V L∗(θi, V ) < V or V H∗(θi, V ) < V . It is clear that setting V L∗(θi, V ) =
V maximizes social welfare while fully relaxing (25), so the only possibility to consider is
V H∗(θi, V ) < V . Consider an increase in V H and an increase in sH that leaves the following
term unchanged:

θLU(1− sH) + βθ̃
L
U(sH) + βδV H .

Such a perturbation leaves (25) unchanged, and since (26) was satisfied with strict inequality,
(26) continues to hold for a small enough perturbation. One can show that given (B.8) and
(C.28), the change in welfare from an arbitrarily small perturbation takes the same sign as
θL/β − θH which is positive, so that the perturbation strictly increases welfare.

This implies that the equilibrium admits bunching with sL∗(θi, V ) = sH∗(θi, V ). Condi-
tional on bunching, the optimal mechanism assigns V L∗(θi, V ) = V and V H∗(θi, V ) = V since
(25) and (26) are trivially satisfied without the use of dynamic incentives. Therefore, the
ex-ante optimum corresponds to the sequential optimum and Proposition 1 applies.�

C.3 Proof of Lemma 2

Parts (i) and (ii) follow directly from Lemma 7 in the solution to the relaxed problem. We are
left then to prove part (iii). Let φ correspond to the Lagrange multiplier on (25). First order
conditions with respect to sL, sH , and V H , respectively, yield

U ′(1− sL)

U ′(sL)
=

 θ̃LθL
1 + β

φ

p(θL|θi) + λp(θL|θ−i)

1 +
φ

p(θL|θi) + λp(θL|θ−i)

 , (C.29)

U ′(1− sH)

U ′(sH)
=

 θ̃
H
− βθ̃

L φ

p(θH |θi) + λp(θH |θ−i)

θH − θL φ

p(θH |θi) + λp(θH |θ−i)

 , (C.30)

WV (θi, V H) = β
φ

p(θH |θi) + λp(θH |θ−i)
. (C.31)

Consider first the case with θi = θH . Consider V ′′ > V ′, so that from the envelope condition
and the strict concavity of W (θi, V ), the associated multipliers satisfy λ′ < λ′′ < 0. Since
V H∗(θH , V ) is strictly decreasing in V , this means from (C.31) that

φ′′

p(θH |θi) + λ′′p(θH |θ−i)
>

φ′

p(θH |θi) + λ′p(θH |θ−i)
.

42



Combining this inequality with (C.30) implies that sH∗(θi, V ′′) > sH∗(θi, V ′). From parts (i)
and (ii), we know that V L∗(θi, V ′′) = V L∗(θi, V ′) and V H∗(θi, V ′′) < V H∗(θi, V ′). Since (25)
binds, this implies that

θL
(
U(1− sL∗(θi, V ′′))− U(1− sL∗(θi, V ′))

)
+ βθ̃

L (
U(sL∗(θi, V ′′))− U(sL∗(θi, V ′))

)
= θL

(
U(1− sH∗(θi, V ′′))− U(1− sH∗(θi, V ′))

)
+ βθ̃

L (
U(sH∗(θi, V ′′))− U(sH∗(θi, V ′))

)
+β
(
V H∗(θi, V ′′)− V H∗(θi, V ′)

)
< 0.

In order for this inequality to hold, it must be that sL∗(θi, V ′′) > sL∗(θi, V ′), where we have
used the arguments in the proof of part (iv) of Lemma 7 which require

sfb(θL) > sL∗(θi, V ) > sH∗(θi, V ) > sfb(θH) > sf (θL).

Finally, the claim that si∗(θH , V
H

) < si∗(θL, V
L
) follows from analogous arguments to those

above, taking into account that the associated value of λ is 0 for V = V
i

for i = {L,H}.�

C.4 Proof of Proposition 3

Proof of part (i). From part (i) of Lemma 2, if ηt(θ
t−1) = 0, then st(θ

t−1, θi) = si∗(θL, V
L
) for

i = {L,H}. Moreover, if ηt(θ
t−1) = 1, then st(θ

t−1, θi) = si∗(θH , V H∗(θL, V
L
)) for i = {L,H}.

Forward iteration implies that if ηt(θ
t−1) = k for k > 1, then

st(θ
t−1, θi) = si∗(θH , V H∗k−1

(θH , V H∗(θL, V
L
))),

where with some abuse of notation, V H∗k−1
(·) corresponds to k − 1 iterations of the operator

V H∗(θH , ·). Therefore, ηt(θ
t−1) determines st(θ

t) conditional on θt.
Proof of part (ii). Suppose that θt−1 = θk−1 = θH , and that ηt(θ

t−1) = 1 while
ηk(θ

k−1) = 2. From part (ii) of Lemma 2, it must be that Vt(θ
t−1) < Vk(θ

k−1). From part (iii)
of Lemma 2, this implies that st(θ

t) < sk(θ
k) if θt = θk.�

C.5 Proof of Proposition 4

From part (ii) of Lemma 2, V H∗(θH , V ) is strictly decreasing in V . We can establish that there

exists a unique V̂ with the property that V H∗(θH , V̂ ) = V̂ . Note that V
H
> V H∗(θH , V

H
),

and it can be shown that V H < V H∗(θH , V H). To see why, consider the solution to the
program given V = V H , taking into account that this corresponds to the solution to (28) as λ
approaches −(1− p(θi|θi))/p(θi|θi). The value of the objective for λ = −(1− p(θi|θi))/p(θi|θi)
is weakly exceeded by

θHU(1− sfb(θH)) + θ̃
H
U(sfb(θH)) + δp(θH |θH)W (θH , V

H
),

which is the unconstrained value of the objective function uniquely attained under sH∗(θH , V H) =

sfb(θH) and V H∗(θH , V H) = V
H

. Note that a solution which satisfies the constraints of the
problem and achieves this unconstrained maximum exists. For instance, a potential candidate
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solution assigns sH∗(θH , V H) = sL∗(θH , V H) = sfb(θH) and V H∗(θH , V H) = V L∗(θH , V H) =

V
H

and satisfies all the constraints of the problem. Therefore, V H∗(θH , V H) = V
H
> V H .

Given that V H∗(θH , V ) monotonically declines in V , there thus exists a unique V̂ with the

property that V H∗(θL, V̂ ) = V̂ .

Given that V H∗(θH , V ) is monotonically declining in V , it follows that if V < (>) V̂ , then

V H∗(θH , V ) > (<) V̂ . Therefore, for θt−1 = θt = θH , if Vt(θ
t−1) < (>) V̂ , then Vt+1(θt) =

V H∗(θH , Vt(θ
t−1)) > (<) V̂ .�

D Proofs for Subsection 5.3

D.1 Proof of Lemma 3

Proof of part (i). From (1) and (5), given (30), we have

(τ/(1− δ)− bt+1) = (τ/(1− δ)− bt)(st/δ). (D.1)

Taking the log of both sides of (D.1), taking the sum over t between 0 and T , and dividing by
T yields:

log (τ/(1− δ)− bT+1)

T
=

log(τ/(1− δ)− b0)

T
+

1

T

T∑
t=0

log(st/δ),

so that

lim
T→∞

log (τ/(1− δ)− bT+1)

T
= lim

T→∞

1

T

T∑
t=0

log(st/δ). (D.2)

Now consider the stochastic sequence sfb which satisfies (8). Since this sequence is ergodic,
using the Birkhoff theorem,42 (D.2) reduces to:

lim
T→∞

log(τ/(1− δ)− bfbT+1)

T
=

[
1

2
log

(
1

δ

θ̃
H

θH + θ̃
H

)
+

1

2
log

(
1

δ

θ̃
L

θL + θ̃
L

)]
, (D.3)

where the term on the right hand side corresponds to the mean of log(st/δ) in the long-run
invariant distribution of first-best savings rates, taking into account that the symmetry of
p(θi|θi) implies that θL and θH must occur with equal probability in the long run. Note that

1

2
log

(
1

δ

θ̃
H

θH + θ̃
H

)
+

1

2
log

(
1

δ

θ̃
L

θL + θ̃
L

)
=−

[
1

2
log

(
δ
θH + θ̃

H

θ̃
H

)
+

1

2
log

(
δ
θL + θ̃

L

θ̃
L

)]

>− log

(
1

2
δ
θH + θ̃

H

θ̃
H

+
1

2
δ
θL + θ̃

L

θ̃
L

)

≥− log

(
δ
θH + θ̃

H
+ θL + θ̃

L

θ̃
H

+ θ̃
L

)
= 0, (D.4)

42See Durrett (2004), p. 337.
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where the second inequality follows from Jensen’s inequality and the third inequality follows
from algebraic manipulation taking into account that θH > θL. Combining (D.3) with (D.4),
we obtain limT→∞ log(τ/(1− δ)− bfbT+1) =∞, which implies limT→∞ b

fb
T+1 = −∞.

Proof of part (ii). By analogous reasoning as in the proof of part (i), taking into account
that sf satisfies (31), we have

lim
T→∞

log(τ/(1− δ)− bfT+1)

T
=

[
1

2
log

(
1

δ

βθ̃
H

θH + βθ̃
H

)
+

1

2
log

(
1

δ

βθ̃
L

θL + βθ̃
L

)]
. (D.5)

Note that

1

δ

βθ̃
H

θH + βθH
≤ 1

δ

βθ̃
L

θL + βθ̃
L
<

1

δ

θ̃
H

θH + θ̃
H
< 1, (D.6)

where we have used (B.8) and the fact that θH > θL. Combining (D.5) with (D.6), we obtain
limT→∞ log(τ/(1− δ)− bfT+1) = −∞, which implies limT→∞ b

f
T+1 = τ/(1− δ).�

D.2 Proof of Proposition 5

Proof of part (i). If shocks are i.i.d., then (21) implies that ssot = δ for all t, where ssot is
the savings rate in the sequential optimum. From (D.1), this implies that bsot+1 = bsot for all t.

Proof of part (ii). By analogous reasoning as in the proof of part (i) of Lemma 3, and
taking into account that sso satisfies (21), we have

lim
T→∞

log(τ/(1− δ)− bsoT+1)

T
=


1

2
log

(
1

δ

p(θi|θi)θ̃
H

+ (1− p(θi|θi))θ̃
L

p(θi|θi)(θH + θ̃
H

) + (1− p(θi|θi))(θL + θ̃
L
)

)

+
1

2
log

(
1

δ

(1− p(θi|θi))θ̃
H

+ p(θi|θi)θ̃
L

(1− p(θi|θi))(θH + θ̃
H

) + p(θi|θi)(θL + θ̃
L
)

)
 .

(D.7)
Note that by Jensen’s inequality, the right hand side of (D.7) is strictly larger than

− log


1

2

(
1

δ

p(θi|θi)(θH + θ̃
H

) + (1− p(θi|θi))(θL + θ̃
L
)

p(θi|θi)θ̃
H

+ (1− p(θi|θi))θ̃
L

)

+
1

2

(
1

δ

(1− p(θi|θi))(θH + θ̃
H

) + p(θi|θi)(θL + θ̃
L
)

(1− p(θi|θi))θ̃
H

+ p(θi|θi)θ̃
L

)
 ,

which by algebraic manipulation, taking into account that θH > θL, can be shown to be weakly
larger than

− log

(
δ
θH + θ̃

H
+ θL + θ̃

L

θ̃
H

+ θ̃
L

)
= 0.

Combining this with (D.7), we obtain limT→∞ log(τ/(1 − δ) − bsoT+1) = ∞, which implies
limT→∞ b

so
T+1 = −∞.�
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D.3 Proof of Proposition 6

Proof of part (i). This follows directly from Proposition 2 and Proposition 5.
Proof of part (ii). By analogous reasoning as in the proof of part (i) of Lemma 3, equation

(D.2) applies. The sequence seo described in Proposition 3 is ergodic so that limT→∞
1

T

∑T
t=0 log(st/δ)

is equal to the mean of log(st/δ) in the ergodic distribution of savings rates. Note that given
Lemma 2 and Proposition 3, in such an ergodic distribution,

Pr [ηt = 0] = Pr
[
ηt−1 = 0

]
p(θi|θi) +

∞∑
k=1

Pr
[
ηt−1 = k

]
(1− p(θi|θi)),

Pr [ηt = 1] = Pr
[
ηt−1 = 0

]
(1− p(θi|θi)), and

Pr [ηt = k] = Pr
[
ηt−1 = k − 1

]
p(θi|θi) for k > 1.

Since Pr [ηt = k] = Pr
[
ηt−1 = k

]
for all k ≥ 0 and since

∑∞
k=0 Pr [ηt = k] = 1, it thus follows

by substituting above that Pr [ηt = 0] = 1/2 and Pr
[
ηt−1 = k

]
= (1−p(θi|θi))p(θi|θi)k−1/2 for

k > 0. Moreover, conditional on ηt = 0, the probability of θt = θL is p(θi|θi) and conditional on
ηt > 0, the probability of θt = θH is p(θi|θi). This means that s given in the text corresponds
to the mean of log(st/δ) in the invariant distribution of savings rates. Therefore,

lim
T→∞

log(τ/(1− δ)− beoT+1)

T
= s,

and it follows that if s̄ > 0, then limT→∞ log(τ/(1 − δ) − beoT+1) = ∞, which means that
limT→∞ b

eo
T+1 = −∞. If instead s̄ < 0, then limT→∞ log(τ/(1− δ)− beoT+1) = −∞, which means

that limT→∞ b
eo
T+1 = τ/(1− δ).

Finally, to show that s̄ > 0 and s̄ < 0 both hold for an open set of parameters, consider
the values for

{
θL, θH , p(θi|θi), δ, β

}
used in Figure 3 (see fn. 38). It is easy to verify using

computational methods that if β = 0.01, then s̄ > 0; by continuity this is also true for a
neighborhood of parameter vectors. Similarly, one can verify that if β = 0.4, then s̄ < 0, and
again by continuity this is true for a neighborhood of parameters. Note that all these values
satisfy Assumption 2. �

E Proofs for Section 6

E.1 Proofs of Proposition 7 and Corollary 2

In order to prove these results, consider the program isomorphic to (16)–(17) under a contin-

uum of shocks. Define a function f(θt) = θt/θ̃t for θ̃t which depends on θt as defined in (4). Let
ωt = f(θt) ∈ Ω ≡ [ω, ω], where it is clear that from Assumption 3, there is a one to one mapping

from θt to ωt. Let h(ωt|ωt−1) correspond to the value of θ̃tp(θt|θt−1) (f ′(θt))
−1 /E[θ̃tp(θt|θt−1)|θt−1],

so that h(ωt|ωt−1) > 0,

h(ωt|ωt−1)dωt = θ̃tp(θt|θt−1)/E[θ̃tp(θt|θt−1)|θt−1]dθt,
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and
∫ ω
ω
h(ωt|ωt−1)dωt = 1, where we have used the fact that dωt = f ′(θt)dθt. Therefore,

h(ωt|ωt−1) is effectively a density function. Define H(ωt|ωt−1) as the associated c.d.f.
Using this formulation, (16)–(17) can be rewritten as

max
{st(ωt)}ωt∈Ω

∫ ω

ω

h(ωt|ωt−1)
(
ωtU(1− st(ωt)) + U(st(ωt))

)
dωt (E.1)

s.t.

ωtU(1− st(ωt)) + βU(st(ωt)) ≥ ωtU(1− st(ω̂t)) + βU(st(ω̂t)) ∀ωt and ∀ω̂t 6= ωt. (E.2)

(E.1)–(E.2) is identical to (16)–(17), where we have used the one to one mapping from θt
to ωt to write the program as one of choosing a savings rate conditional on the report ω̂t.

Now consider a relaxed version of (E.1)–(E.2) which allows (1) to be an inequality:

max
{ut(ωt),yt(ωt)}ωt∈Ω

∫ ω

ω

h(ωt|ωt−1)
(
ωtut(ωt) + yt(ωt)

)
dωt (E.3)

s.t.

U−1(ut(ωt)) + U−1(yt(ωt)) ≤ 1 ∀ωt (E.4)

ωtut(ωt) + βyt(ωt) ≥ ωtut(ω̂t) + βyt(ω̂t) ∀ωt and ∀ω̂t 6= ωt. (E.5)

(E.3)–(E.5) is identical to (E.1)–(E.2) if the solution admits (E.4) holding with equality ∀ωt.
(E.3)–(E.5) corresponds to the problem analyzed in Section 3.2 of Amador, Werning, and
Angeletos (2006) so that their analysis applies here as well.

The envelope condition which characterizes (E.5) implies that

ωt
β
u(ωt) + y(ωt) =

∫ ωt

ω

1

β
u(ω′)dω′ +

ω

β
u(ω) + y(ω). (E.6)

Standard arguments also require u(ωt) to be a non-decreasing function of ωt. Thus, (E.6) and
monotonicity are necessary for incentive compatibility. Substituting (E.6) into the objective
function and the resource constraint and integrating by parts allows us to rewrite the problem
as:

max
{ut(ωt),y(ω)}

{
ω

β
u(ω) + y(ω) +

1

β

∫ ω

ω

(1−G(ωt|ωt−1))u(ωt)dωt

}
(E.7)

s.t.

U(1− U−1(ut(ωt))) +
ωt
β
u(ωt)−

ω

β
u(ω)− y(ω)− 1

β

∫ ωt

ω

u(ω′)dω′ ≥ 0 (E.8)

and ut(ωt) non-decreasing (E.9)

for
G(ωt|ωt−1) = H(ωt|ωt−1) + ωt(1− β)h(ωt|ωt−1).

The above program can be solved using Lagrangian methods. Following Amador, Werning,
and Angeletos (2006), define ωp(ωt−1) = max{ω, ω′} where ω′ is the lowest ω ∈ Ω such that
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∀ω′′ ≥ ω, ∫ ω

ω′′
(1−G(ω′′′|ωt−1))dω′′′ ≤ 0. (E.10)

Consider the following condition.

Condition 2. ∀ωt−1 and ∀ωt ≤ ωp (ωt−1), G(ωt|ωt−1) is non-decreasing in ωt.

Proposition 2 in Amador, Werning, and Angeletos (2006) states that the solution to (E.7)–
(E.9) admits st(ωt) = st(ωp (ωt−1)) if ωt ≥ ωp (ωt−1). Moreover, Proposition 3 in that paper
states that if Condition 2 holds, then the solution to (E.7)–(E.9) admits (E.8) holding with
equality, so that (E.4) also holds with equality. Furthermore, st(ωt) = sf (ωt) if ωt < ωp (ωt−1),
where with some abuse of notation, sf (ωt) is defined as the flexible optimum given by

ωtU
′(1− sf (ωt)) = βU ′(sf (ωt)).

Let s(ωt−1) be defined by s(ωt−1) = sf (ωp(ωt−1)) if ωp(ωt−1) > ω, and∫ ω

ω

h(ωt|ωt−1)
(
ωtU

′(1− s(ωt−1))− U ′(s(ωt−1))
)
dωt = 0

otherwise. ∀ωt, it follows then that the sequential optimum features

st(ω
t) = max{sf (ωt), s(ωt−1)}.

This therefore means that the sequentially optimal rule at any date t can be implemented with
a debt limit, which depends only on ωt−1 and the current level of debt.

In order to complete the argument, we must verify that θp(θt−1) = f−1(ωp(f(θt−1))) and
that Assumption 4 is identical to Condition 2. To show that θp(θt−1) = f−1(ωp(f(θt−1))), note
that (E.10) can be rewritten as

[1−H(ω′′|ωt−1)]ω′′

 1

β
−

(∫ ω
ω′′
ω′′′h(ω′′′|ωt−1)dω′′′

)
/
(∫ ω

ω′′
h(ω′′′|ωt−1)dω′′′

)
ω′′

 ≥ 0.

Letting θ′′ = f−1(ω′′) and θ′′′ = f−1(ω′′′) with associated values θ̃
′′

and θ̃
′′′

, the above condition
becomes  1

β
−

(∫ θ
θ′′
θ′′′t p(θ

′′′
t |θt−1)dθ′′′

)
/
(∫ θ

θ′′
θ̃
′′′
t p(θ

′′′
t |θt−1)dθ′′′

)
θ′′/θ̃

′′

 ≥ 0,

which becomes (32). This establishes that θp(θt−1) = f−1(ωp(f(θt−1))).
To show that Assumption 4 is identical to Condition 2, note that G(ωt|ωt−1) is continuously

differentiable in ωt and first order conditions imply that Condition 2 reduces to

d log h(ωt|ωt−1)

d logωt
≥ −2− β

1− β
. (E.11)

We can show that (33) implies (E.11). Given the definition of h(·), note that the left hand
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side of (E.11) can be expanded so that (E.11) becomes

d log θ̃t
d log θt

+
d log p(θt|θt−1)

d log θt
−
d log

(
dθ̃t/dθt

)
d log θt

1− d log θ̃t
d log θt

≥ −2− β
1− β

,

which is equivalent to (33).�

E.2 Proof of Proposition 8

Consider the case of i.i.d. shocks, and with some abuse of notation, let Wt(·) correspond to the
continuous type analogue of the continuation value defined in (9) divided by δE[θt], where we
have taken into account that shocks are i.i.d. Let the range [W,W ] correspond to the feasible
range of such continuation values. To write the period zero problem, we pursue an analogous
strategy as in the proof of Proposition 7 by considering the relaxed problem which allows the
resource constraint to hold as an inequality:

max
{ut(ωt),yt(ωt)}ωt∈Ω

∫ ω

ω

h(ωt|ωt−1)
(
ωtut(ωt) + yt(ωt) +Wt(ωt)

)
dωt (E.12)

s.t.

U−1(ut(ωt)) + U−1(yt(ωt)) ≤ 1 ∀ωt, (E.13)

ωtut(ωt) + βyt(ωt) + βWt(ωt) ≥ ωtut(ω̂t) + βyt(ω̂t) + βWt(ω̂t) ∀ωt and ∀ω̂t 6= ωt, (E.14)

and W ≤ Wt(ωt) ≤ W ∀ωt. (E.15)

The same envelope condition in (E.6) applies. Together with the monotonicity of ut(ωt), it
implies incentive compatibility. Substituting (E.6) into (E.12), (E.13), and (E.15), the program
can be rewritten as

max
{ut(ωt),y(ω),W≤W (ω)≤W}

{
ω

β
u(ω) + y(ω) +W (ω) +

1

β

∫ ω

ω

(1−G(ωt|ωt−1))u(ωt)dωt

}
(E.16)

s.t.

U(1− U−1(ut(ωt))) +W +
ωt
β
u(ωt)−

ω

β
u(ω)− y(ω)−W (ω)− 1

β

∫ ω

ω

u(θ′)dθ′ ≥ 0 (E.17)

and ut(ωt) non-decreasing. (E.18)

(E.16)–(E.18) is identical to (E.7)–(E.9) since the term y(ω) in (E.7)–(E.9) is replaced
with y(ω) + W (ω) in (E.16)–(E.18) and the term U(1− U−1(ut(ωt))) is replaced with U(1−
U−1(ut(ωt)))+W . Therefore, the same arguments as those of Amador, Werning, and Angeletos
(2006) imply that the solution to (E.16)–(E.18) admits (E.17) holding with equality, which then
means that (E.13) holds with equality andW (ωt) = W . It thus follows that the solution admits
a static mechanism, and therefore the optimal mechanism is characterized as in Proposition 7.�
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E.3 Proof of Proposition 9

Proof of part (i). Suppose by contradiction that the ex-ante optimum coincides with the
sequential optimum, so the solution is characterized by Proposition 7. With some abuse of
notation, let V θ0(θ̂0) correspond to the expected date 1 welfare in the sequential optimum

to a type θ0 who lies and claims to be a type θ̂0. By lying, this type receives a mechanism
associated with θ̂0, evaluated using probabilities p(θ1|θ0). Given the description of the solution

in Proposition 7, it is straightforward to show that V θ0(θ̂0) is continuously differentiable in θ̂0

with V θ0′(θ̂0) = 0 for θ̂0 = θ0.
We now consider a perturbation that affects types θ0 < θp(θ−1). To facilitate the con-

struction of the perturbation, note first that one implementation of the sequentially optimal
mechanism is as follows. The government can choose any savings rate above sf (θp(θ−1)). If
the chosen savings rate is s0 > sf (θp(θ−1)), then the mechanism at date 1 corresponds to the
sequentially optimal mechanism for type sf

−1
(s0), where sf

−1
(·) is a function that uses (B.1)

to derive the type from the chosen flexible savings rate. If instead the chosen savings rate
is s0 = sf (θp(θ−1)), then the government reports its type θ̂0, and the mechanism at date 1

corresponds to the sequentially optimal mechanism for type θ̂0.
Given this implementation, consider the following perturbation. If the chosen savings rate

is s0 = sf (θp(θ−1)), the mechanism is unchanged. If instead the chosen savings rate is s0 >
sf (θp(θ−1)), the mechanism at date 1 corresponds to the sequentially optimal mechanism for
type sf

−1
(s0)+εµ(sf

−1
(s0)), for ε > 0 arbitrarily small and for some continuously differentiable

function µ(·) satisfying µ(·) > 0, µ′(·) > −1, and limθ0→θp(θ−1) µ(θ0) = 0. Note that if ε = 0,
the original sequentially optimal mechanism is in place. If instead ε > 0, arbitrarily small, then
all types θ0 ≥ θp(θ−1) do not change their behavior, but the chosen savings rate sε0(θ−1, θ0) for
types θ0 < θp(θ−1) must satisfy the following first order condition:

−θ0U
′(1− sε0(θ−1, θ0)) + βθ̃0U

′(sε0(θ−1, θ0)) (E.19)

=−βδV θ0′(sf
−1

(sε0(θ−1, θ0)) + εµ(sf
−1

(sε0(θ−1, θ0))))
d[sf

−1
(sε0(θ−1, θ0)) + εµ(sf

−1
(sε0(θ−1, θ0)))]

dsε0(θ−1, θ0)
.

As ε approaches 0, sε0(θ−1, θ0) approaches sf0(θ0). We can show that it must approach it from
above; that is, for sufficiently small ε > 0, it must be that sε0(θ−1, θ0) ≥ sf0(θ0). If instead
sε0(θ−1, θ0) < sf0(θ0), then type θ0 could make itself strictly better off by increasing its savings
rate to sf0(θ0), as this maximizes its immediate welfare and raises its continuation utility.

Suppose that Condition 1 holds for θ−1 and some θ0. Together with (E.19), this implies
that sε0(θ−1, θ0) > sf0(θ0) for a positive measure of types θ0. Using (E.19), the change in welfare
as ε approaches 0 for any such θ0 has the same sign as

[−θ0U
′(1− sf0(θ0)) + θ̃0U

′(sf0(θ0))]
dsε0(θ−1, θ0)

dε
|ε=0 + δV θ0′(θ0)

1

sf ′(θ0)

dsε0(θ−1, θ0)

dε
|ε=0 > 0,

where we have used (B.1) and the fact that V θ0′(θ0) = 0. Therefore, the perturbation strictly
increases welfare. Note that if Condition 1 does not hold for θ−1, then it necessarily holds
at some θt−1, and the same perturbation can be performed at that date while continuing to
satisfy all incentive compatibility constraints at t− k for k > 1.

Proof of part (ii). Suppose by contradiction that the mechanism does not exhibit history

50



dependence. Let V θ(θ̂) correspond to the continuation value to a type θ who reports θ̂ under

this history-independent mechanism, where by assumption, V θ(θ̂) is piecewise continuously
differentiable. Given that the continuation mechanism is independent of the date, and given
that the ex-ante optimal mechanism is chosen at date 0, it follows that ∀θ−1, the continuation
value at date 0 is V θ(θ) if θ = θ−1, and by optimality, V θ′(θ) = 0. Thus, the first order
conditions which guarantee truthtelling whenever the mechanism is differentiable imply that

[−θtU ′(1− st(θt−1, θt)) + βθ̃tU
′(st(θt−1, θt))]

dst(θt−1, θt)

dθt
= 0. (E.20)

This requires that either st(θt−1, θt) = sf (θt) or dst(θt−1, θt)/dθt = 0. Therefore, (E.20)
effectively corresponds to the first order condition to static incentive compatibility constraints.
As such, the optimal mechanism is not dynamic. The solution to the program subject to
a sequence of static incentive compatibility constraints coincides with the solution to the
sequential optimum described in Proposition 7. However, part (i) shows that this mechanism
is suboptimal.�
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