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Estimating the Technology Coefficients in 
Linear Programming Models 

·-ABSTRACT 

Linear constraints for mathematical programming models are 

. demonstrated to be random coefficient regression (RCR) models when esti

mating constraint coefficients from samples. Monte·carlo experiments 

show an RCR estimator preferable to least squares although least squares 

is also acceptable. Dependence between output levels and technical 

coefficients can lead to biased estimates. 
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Estimating the Technology Coefficients~ Linear Programminq Models 

Estimation of the coefficients of mathematical programming models 

has received some attention in the past. Sengupta considered the prob

lems of estimating the objective function coefficients and, in passing, 

noted that it might be worthwhile estimating the coefficients of the 

technology matrix in a random coefficient regressiori. (RCR) framework. 

More recently, Ray also address~d the problem of estimating the coef

ficients of a linear technology matrix by RCR but rejected it in favor 

of alternative methods of estimation. A major estimation problem noted 

by R~y is that for most applications it is required that the technology 

coefficients be nonnegative. 

In this paper the problem of estimating the technical coefficients 

is reexamined. We first argue conceptually that random coefficients is 

the only defensible way to specify the coefficients of deterministic 

mathematical programming problems~ We then consider in a Monte Carlo 

context if it is reasonable to expect RCR estimation to yield satisfac

tory estimates of the means of the technology coefficients from a sample 
~-

of N firms. The major problems from an estimation point for RCR are to 

obtain estimates of the covariance matrix associated with the random 

coefficients and to assure that the estimated coefficients are non

negative. We suspect negative estimates are rare for most empirical 

problems and test this hypothesis. The RCR estimates are also compared 

with ordinary least squares (OLS). Finally, as observed by Ray, the 

technical coefficients in mathematical programming models could likely 

be distributed jointly with output levels.· Ramsey's RESET test is pro

posed a~ a means for checking for such dependence and its reliability is 

measured in the Monte Carlo experiments. 
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A Conceptual View of Technoloay Coefficienfs --

Consider a linear technology writtten in canonical form as: 

Ax= b 

where, as in Ray, A is a mxn matrix of known technology coefficients, x 

is a nxl vector of output levels and bis the vector of available 

resources. If it is assumed that each component of xis an output level 

and that the technology is concave in the input space, then each element 

of A must be positive. 

The estimation problem envisaged in this paper, and also for some of 

the estimators in Ray, is that there exists a sample of data from N 

firms, with observations on x and band the object is to estimate the 

unknown elements of A. Making the usual deterministic assumptions for 

the linear programming model, it follows that any·row of Ax= b for any 

of the N firms holds identically as an equation. The implication of 

· this fact is that it is inappropriate to estimate a row of A in the 

usual regression context. For example, Ray suggests three estimators 

that assume an additive error term can be a~pended to the left hand side 

of any of these equations to account for the fact that any given set of 

estimates for A will most likely not satisfy the linear constraints 

exactly for all the N firms. 

However, the resource constraints are, by their very definition, 

identities. That is, each firm uses a given amount of the ith component 

of bin its production activities. If one firm uses more of a resource 

to produce the same vector x of outputs then it must be that its asso

ciated technological coefficient for that output is higher than for 
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oth_er firms. Thus, the_of)ly_5=xpJanatio_n for firms using different 

levels of bi for the same level Xj is that at least some of the coef

ficents of the rows of A vary from firm to firm. Thus to add a 

stochastic error term to each row and estimate the elements in A under 

the assumption that the elements of A are populatio~ constants as recom

mended in the latter part of Ray is to estimate a structure that is not 

the same as the structure generating the observed data. 

This point can be further illustrated by looking at the estimation 

problem by the columns of A instead of the rows of A. If the individual 

farmers know how much of each resource is devoted to each output and 

every farmer produces some of the out~ut then the estimation problem is 

trivial. If y u~its of resource b1 are used to produce x units of acti

vity one then clearly a11 = y/x1. In a sample of N firms, N obser

vations on a11 could be similarly computed. Most likely there will be 

some variation-in the obsefvations for~ given- aij across firms so that 

it is clear·that the elements of A af~ not population constants. Hence 

the proper perspective from v1hich to view e~'"t.imation of the elements of 

A is one of viewing the elements of A as random variables and that the 

objective of estimation is to estimate the means of these elements. 

It is now posssible to formalize the estimation problem. For each 

firm it is assumed that the elements of A take on some value but for a 

given element ther~ is variation across firms. In addition, every firm 

sati~fies the set of canonical constraint equations with A varying from 

one firm to another. Therefore, from the point of view of the popula

tion, the constraints can be viewed as stochastic identities. That is, 
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each constraint for each firm is the sum of random variables. In such a 

situation the focus of estimation are the means and variances of these 

coefficients although the focus here is primarily on the means. 

In the estimation method proposed below it is ass~med that the indi

vidual firms being sampled do not possess sufficien~ly detailed records 

of production to be able to identify the amount of each resource devoted 

to each activity. If this were the case then estimation would be 

handled as discussed in Ray for this situation. Our conjecture is that 

such problems are ~ery rare, since few farmers record input usage by 

~ach type of output. Hence a random coefficient approach is considered 

for the situation where only observations on the Xj and bi are 

available. These are the same assumptions made by Ray in his develop

ment of the Lp estimators 1-.1hich are constrained to·make all estimates of 

the aij nonnegative. 

Random Coefficient Estimation 

Assume that it is ·desired to estimate tbe ith row of A, i.e. 

Cl) bik = a;1kXlk + ai2kX2k + ··· + ainkXnk k = l, ... ,N 

where it is assumed, letting ai be the ith row of A, that 

(2) E(ai~ = aik 

·(4) E(aikaik') = O; k I k1 , all k,k' .-. 

These are exactly the assumptions of the Hildreth and Houck random coef-

ficients model. It can be shown, as in Judge et al. that estimation of 

ai is essentially a problem of applying generalized least squares (GLS) 
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to a model with heteroscedastic error terms. This latter fact gives 

support to the Ray approach that assumes an additive error term. How

ever, it is a much different justification than suggested by Ray. 

5 

Two problems potentially arise in trying to obtain estimates of ai 

using a random coefficient approach. The first is that the matrix D 

must be estimated since it is not known in any real world application. 

In research to date, the estimation of D has not been· totally satisfac

tory and numerous approaches have been suggested in the literature, see 

Swamy and Methta, Swami and Tinsley·. and Dixon, Batte and Sonka. 

The second problem is keeping the estimates of the means positive. 

Ray suggest various methods that directly constrain the estimates to be 

positive by using a mathematical programming approach. If the matrix 

Dis known then the model in (1) can be transformed to be homoscedastic 

and the methods of Ray could be applied to the transformed data. 

However, it is our contention that negativity problems are likely to 

be rare in practice. -Since all observations on the bi and Xj must be 

nonnegative by definition and the aij are ai~umed nonnegative, it seems 

unlikely that negative estimates would often arise. This hypothesis is 

explored in the empirical section. 

An assumption implicitly made for the estimation of ai in (1) is 

that the distribution of the ai is identical for any level of x. How

ever, in practice ft seems plausible that if activity Xj requires more 

bi for a given firm than most of the other firms in the industry, then 

that firm is more likely to have a lower Xj- Such a functional depen

dence would invalidate the properties of the estimators. To explore the 
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implications of such behavior Monte Carlo experiments are conducted to 

estimate the sampling distribution of the estimators and t6 determine if 

Ramsey's RESET test is robust in identifying this type of misspecifica

tion. It should be pointed out that if the means of the aij are depen

dent on observable exogenous variables, then this information can be 

used to dispense with the dependence problem as discussed in Dixon, 

Batte and Sonka. 

The Random Coefficients Estimator 

Assuming that the matrix D is kn01·m, the GLS estimator of ai is: 

(5) ai = (X'GX)-l(X'GB) 

where G is a diagonal matrix whose ith diagonal element is the recipro

cal of XtDXt where t denotes row t of X, the matrix of observations on 

Xt- Bis a vector of the N observations on bi. 

There are a variety of estimators for D. Some of these are given in 

Swamy and Mehta. The procedure used in this study is quite detailed. 

One of the estimators given in Swamy and Tinsley is used with the modi

fications suggested in Havenner and Swamy. Basically an estimator of 

the elements of Dis obtained using the residuals of repeated iterations 

of (1). This estimator is a least squares estimator so that .the 

variances estimated are not necessarily positive. In such cases the 

modification in Haienner and Swamy is used with the values appropriately 

scaled for our particular estimation problem. Readers wishing complete 

detail should contact the senior author. 

The Monte Carlo Experiments 

Thr.ee hypotheses tested in the Monte Carlo experiments are (1) RCR 
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is a more efficient estimator of the ai than OLS, (2) negativity of the 

estimates is a rare occurence if the process generating the data con

forms with the assumptions of RCR models, and (3) dependence of the 

coefficients with the activity levels will result in biased estimates. 

7 

To test the above hypotheses the experiments ar~-structured in the 

following way. First, all of the observations are generated. according 

to a random coefficients model specified as: b1k = a11kXlk + a12kX2k 

\·tbere~Jhe. a13:_ar.e_sa.nd.om .. with.means au and a12, This is in accordance 

with. the argument in the first part of this paper. The degree of cor

relation among the regressors is either zero or .75 in the experiments 

and the correlation of the random coefficients is set at zero or .75 in 

the various expe'riments. The Xi are dra1-m from a multivariate norma 1 

distribution and are constant across experiments and samples except for 

the experiments with dependence between a12 and x2. The values of the 

means of the coefficients (aij) are three standard deviations from zero 

for those generated by a multivariate normal distribution. These are 

experiments El through E8 where E denotes experiment. In thes~ experi

ments a11 has a mean of 9 and a12 a mean of 3. This allows for some 

very nearly zero observations on the aijKwhich should aid in the testing 

of hypothesis (2). Any negative a1rnor a12kare truncated to zero. In 

E9-El2 hypothesis (2) is even more ~efinitively tested by assuming that 

the two random coefficients have a uniform distribution between zero and 

ten for a11 and zero and one for a12-

A total of 24 experiments are conducted. For the first 12 experi-

ments 100 observations (N) are drawn for each sample and 80 samples are 
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drawn. In the second 12 experiments N = 25 and 80 samples are drawn. 

RCR and OLS estimates are obtained for each sample and their means and 

standard deviations are computed. Also, the number of coefficients for 

each method of estimation that is negative is reported. Each sample is 

tested using Ramsey's RESET test with the set of regressors (the second, 

third, and fourth powers of included variables) suggested by Thursby and 

Schmidt. This test was performed on the RCR estimates of the model 

after adjusting for heteroscedasticity. The number of F statictics 

exceeding the critical value for the test at a 95 percent level is also 

reported. 

The number of F's in excess of the critical value is important in 

the experiments where the level of one of the two regressors for an 

observation is dependent on the value of the aij drawn. In E5-E8 and 

Ell and El2 the second regressor is set to zero if the realization on 

a12 is one standard deviation or more above its mean, thu~ establishing 

a dependence between a12k and x2k This is in accordance with the 

earlier. conjecture that firms with 1 arge coefficients would tend to pro-

duce less of the output. 

Res·u1ts and Implications 

The results in Table 1 for N = 100 and Table 2 for N = 25 suggest 

several conclusions regarding the hypotheses. For hypothesis (1) 

dealing with the superiority of RCR estimators over OLS, El-E4 and 

E9-El0 provide the most illuminating evidence. Both estimators are 

unbiased for _both sample sizes in these experiments. For N = 100 ~CR 

appears slightly more efficient for El-E4. The greatest superiority is 
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in E4 with both high regressor and coefficient correlation. With the 

uniform distribution there is no substantial difference in efficiency. 

These results also hold for N = 25. Hence our conclusion is that if the 

process generating the data conforms to the RCR model, then using an RCR 

estimator is to be preferred over OLS but not by a ~reat margin. RCR 

is definitely more efficient in the experiments with regressor and coef

ficient dependence for normally distributed coefficients. The estimates 

of the elements of D vary widely. However: even if they were known with 

certainty so the true variances of the RCR estimates could be computed, 

these variances would be reduced by no more than 15 percent. 

The figures in the columns under NEG COEFF indicate the number of 

estim~tes that were negative. For El-EB for both sample sizes which 

satisfy the RCR assumptions, a negative estimate shows up only 46 times 

out of 5120 possibilities or 1 percent of the time. For the experiments 

with a uniform distribution 10 percent of the estimates are negative and 

with the small sample estimates having more than twice as many negative ~-

estimates as the large sample estimates. Thus, on a relative basis, 

negativity of estimates does not appear to be a serious problem. It is 

not surprising that the uniform distribution experiments show some nega-

tive estimates because both coefficients have zero as a lower boun~. 

For those experiments having a dependence between r~gressors and co-. 

efficients, both the RCR and OLS estimators are biased in every such 

experiment for the second coefficient except El2 for N = 25. The esti

mators are only biased for the first coefficient when the coefficients 

are correlated, i.e. E7 and E3. Not surpisingly, the bias in the first 
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coefficient is positive since it has numerous observations in each such 

sample where xzt = 0 and this leads to biasing upwards because such 

observations are at extreme values of one of the regressors and there

fore convey more information to the estimator. This tends to occur when 

a11 is greater than its average. It is somewhat encouraging to note 

that when there is no coefficient correlation the degree of bias seems 

modest but this, of course, is a function of the degree of dependence 

and would undoubtedly become more severe as the strength of dependence 

increased. The RESET test is not a very promising test, at least for 

the degree of dependence between coefficients and output levels hypothe

sized here. For both sample sizes rejection is more likely in the 

misspecified models where the coefficients have a normal distribution 

but not by a great margin and not nearly as frequently as it should. 

The test seems to indicate better for larger samples but not with any 

great assurance. 

Conclusions ~-

It has been demonstrated for mathematical programming models that 

the OLS assumptions do not conform with those of the programming model. 

However, RCR assumptions do conform. RCR estimation has some superior

ity over OLS but the latter estimator is an acceptable substitute for 

RCR and is not likely to do much worse. Monte Carlo experiments suggest 

that negativity of coefficients is not a frequent occurence. Dependence 

between coefficients and output levels can lead to large biases, par

ticularly when the coefficients are correlated with each other. The 

RESET test is not robust in identifying regressor and coefficient depen

dence in these experiments. 
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Table 1. Random Coefficient Regression and Ordinary Least Squares 
Estimates Resulting from Monte Carlo Simulation, Large Samples (N = 100). 

Experiment 
ra rx 

El O 0 

RCR 
COEFFS 

an a12 
9.037 2.997 
1.6412 0.5461 

E2 0 .75 9.176 2.924 

E3 • 75 0 

3.0751 1.0532 

8.996 3.049 
2.1591 0.7686 

E4 .75 .75 9.032 2.994 
4.0838 1.3460 

NEG COEFFS 

0 

0 

0 

1 

ES 0 0 8.872 2.766* . 0 
0.6415 0.2599 

E6 0 .75 9.056 2.692* 
o. 7848 0.3011 

E7 .75 0 11.697* 1.621* 
0.6816 0.3435 

EB .75 .75 12.342* 1.386* 
9.6166 0.2792 

E9 0 0 5.251 0.442 
1. 2216 0. 3890 

0 

0 

0 

7 

ElO 0 .75 5.108 0.454 26 

E11 0 

El2 0 

0 

2. 2699 0. 7410 

4.961 0.389* 
0.6270 0.2035 

.75 5.021 0.399* 
0.6501 0.2204 

2 

3 

OLS 
COEFFS NEG COEFFS F 

an a12 
8.933 3.036 
1. 6160 o. 5338 

0 8 

8.977 2;995 
3.4179 1.1659 

9.093 3.025 
1. 9504 0. 7016 

9.186 2.955 
4.4607 1.4625 

8.832* 2.780* 
0.7507 0.2785 

8.976 2.725* 
0.8564 0.3272 

1 

0 

5 

0 

0 

11.198* 1.773* 0 
0.6647 0.2976 

12.019* 1.500* 0 
0.7587 0.3204 

5.258* 0.443 
1.1902 0.3814 
:,-• 

7 

4.969 0.506 25 
2.2743 0.7419 

4.972 0.380* 
0.6245 0.2041 

5.029 0.391* 
0.6738 0.2361 

3 

3 

8 

9 

5 

7 

12 

21 

22 

5 

9 

7 

7 

a. In the RCR and OLS COEFS columns the means of the 80 estimates are 
given and immediately below them are their estimated standard 
devi"ations. 
b. An asterisk denotes the estimator is biased at the 95 percent level. 
The column under ra indicates the degree of correlation of the slope 
coefficients and rx indicates the degree of regressor correlation. The 
columns NEG COEFFS indicate the number of coefficient estimates that 
were negative out of 160 estimat~s. The column Fis the number of RESET 
specification tests that were significant out of a possible 80. 
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Table 2. Random Coefficient Regression and Ordinary Least Squares 
Estimates Resulting from Monte Carlo Simulation, Small Samples (N = 25). 

Experiment 
ra rx 

El O 0 

RCR 
COEFFS 

an 
9.123 
2.5735 

a12 
2.999 
.8998 

E2 0 .75 9.929 2.714 
4. 9187 1. 7015 

E3 . 75 0 9.266 2.901 
3. 2929 1.1109 

NEG COEFFS 

0 

6 

1 

E4 .75 .75 10.098 2.641 12 

E5 0 

E6 0 

0 

6.3753 2.1678 

8.732 2.841* 
1. 5757 . 6090 

.75 8.914 2.806* 
1. 8044 . 6872 

0 

0 

E7 .75 0 11.581* 1.600* 
1. 5407 . 6657 

1 

E8 . 75 . 75 12. 065* 1. 414* .. 0 
1. 1772 . 5724 

E9 0 0 5.414 .361 28 
2.1331 .7112 

ElO 0 .75 5.067 .473 32 
3.3512 1.1300 

Ell 0 0 5.056 .378* 20 
1. 2105 . 4660 

El2 0 .75 4.952 .411 16 
1. 3421 . 4983 

OLS 
COEFFS NEG COEFFS F 

an a12 
8.947 3.051 0 6 
2. 4633 . 8758 

9.764 2;765 
4. 9386 1. 6973 

9,216 2.927 
3.3735 1.1318 

3 

1 

9.878 2.709 15 
6.7122 2.3322 

8.809 2.794* 
1. 7252 . 6372 

8.830 2.826* 
1. 9506 . 7663 

10. 968* 1. 815* 
1. 6503 . 6323 

11. 677* 1. 582* 
1.5074 .6534 

0 

0 

0 

0 

5. 298 . 399 24 
2.1212 .7000 
"'" 
4. 984 . 486 35 
3.8247 1.2970 

5.122 .346* 18 
1.1692 . 4246 

4.827. .478 10 
1. 3095 . 4887 

10 

7 

14 

11 

7 

13 

18 

8· 

11 

9 

11 

a. In the RCR and OLS COEFS columns the means of the 80 estimates are 
given and immediately below them are their estimated standard 
deviations. 
b. An asterisk denotes the estimator is biased ~t the 95 percent level. 
The column under ra indicates the degree of correlation of the slope 
coefficients and rx indicates the degree of regressor correlation. The 
columns NEG COEFFS indicate the number of coefficient estimates that 
were negati~e out of 160 estimates. The column Fis the number of RESET 
specification tests that were significant out of a possible 80. 
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