%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Elasticity (economics 1989

Surry, Yves

The ‘constant difference of
elasticies’ (CDE) functional form : a #7617

THE "CONSTANT DIFFERENCE OF ELASTICITIES" (CDE) FUNCTIONAL FORM:
A NEGLECTED ALTERNATIVE.

Contributed Paper presented at the
1989 Meeting of the American Agriculural Economics Association

Baton Rouge, Louisiana, July 30-August 2, 1989

*
Yves Surry

August, 1989

UNIVERSITY OF CALIFORNIA
DAVIS

APR 91990

Agricultural kconomics Library

Yves Surry is an economist with the International Trade Policy Division of
Agriculture Canada in Ottawa, Ontario. The opinions expressed in this paper are solely
those of the author and do not represent the views of Agriculture Canada. The author
acknowledges the helpful comments of S. Blake, S. Cahill, Dr. T. Hertel, Dr. D.
McClatchy and P. Stone.




ABSTRACT

The "Constant Difference of Elasticities" (CDE) Functional Form: A Neglected
Alternative.

Unlike those flexible functional forms which are local approximations, the "Constant
Difference of Elasticities" (CDE) function is globally well-behaved. Due to its
theoretical properties and parsimony in the number of parameters, the CDE functional
form offers many potential applications in production, consumption and trade analysis.




The "Constant Difference Elasticities” Functional Form: A Neglected Alternative

1.0 Introduction:

Since the 1960’s, a large part of microeconomic research has focused on the
development of empirical frameworks capable of describing producer or consumer
behavior in- general and unrestricted terms. Analytical tools known as flexible
functional forms and viewed as second order Tavlor approximations to an optimized
indirect or direct objective function have been instrumental in improving the
estimation and quantification of economic agent responses to market signals. Despite
these qualities, however, flexible functional forms have been criticized on the
grounds that: i) they are not parsimonious in the number of parameters (Pope), ii)
they are only locally valid by satisfying curvature conditions implied by economic
theory at a given approximation point (Simmon and Weiserbs, Caves and Christensen,
White), and iii) they generate unstable elasticity estimates over the estimation
sample range (Diewert and Wales 1987; Guilkey, Lovell and Sickles).

In order to tackle these problems, several solutions have been put forward in
recent years. To begin, the violation of regularity conditions can be overcome by
imposing curvature conditions at every sample data point and then estimating the
parameters of the flexible functional form by constrained mathematical
programming techniques (Ball; Kopp and Hazilla; Talpaz, Alexander and Shumway). An

alternative solution is to find new functional forms which are globally well-behaved

(Diewert and Wales 1987). Building on this latter idea, Diewert and Wales (1988)

specified and estimated a semi-flexible functional form which is both globally valid




and characterized by a reduced number of parameters.

The CRE or CDE1 functions developed by Hanoch (1971, 1975, 1978) also alleviate
the deficiencies associated with the flexible functional forms by being globally
well-behaved and characterized by a reduced number of parameters. To arrive at such
results, an implicitly additive (direct or indirect) structure is imposed to the
analyzed firm’s technology or consumer’s preferences. Taking the example of single
output technology with n inputs, a reduced number of parameters is obtained by
representing all price effects of input demands by n free "substitution" coefficients
instead of the n(n-1)/2 parameters required by most alternative flexible functional
forms.

The objective of this paper is to provide detailed information regarding

the CDE functional form - a form which has rarely been used in applied economicsz.

Specifically, the theoretical and practical strengths and weaknesses of this function
are illustrated in the next two sections of the paper and examples of its potential
use in empirical economics are given in the fourth section. The last section
summarizes the main findings of this research and provides suggestions for further
applications of the CDE function in the fields of applied economics.

2.0 Theoretical Foundations:

Duality theory allows for the representation of the two constrained optimum
choices facing a firm: 1) cost minimization subject to an output constraint or ii)
output maximization for a minimum given cost. This is done by means of optimized
indirect objective functions which, when differentiated with respect to input
prices, vyield theoretically consistent input demand relationships (see Appendix).
Thus, the cost-minimization decision of a firm can be represented by a well-behaved

cost function (Varian, p. 21). Compensated, constant-output input demand functions




are then derived using Shepherd’s lemma. Similarly, the constrained output
maximization problem can be described by an indirect production function whose
arguments are the prices of inputs normalized by total costs (Chambers, 1982).
From this indirect production function, compensated constant-cost input demand
functions are obtained using Roy’s identity. The same mathematical result can be
generated if the output maximization problem is represented by a reciprocal indirect
production function which is positive, continuous, non-decreasing and quasi-concave
in the vector of normalized input prices (Diewert, p. 126). Whether compensated
input demands are specificied in terms of an output maximization or cost
minimization framework does not really matter. Both modelling approaches are
equivalent since they yield optimal input usage at a point where the technical rate
of substitution among pairs of inputs is equal to the ratio of input prices. They
only differ by the fact that the associated compensated input demand functions have
different arguments. Parameterization of output and cost levels however shows both
compensated input demand relationships to be equal (see (A.7) and (A.8) in
Appendix).

The cost function approach has been favored by production economists to analyze
substitution patterns among inputs, technological change and returns to scale. On the
other hand, the indirect production function (or its reciprocal) approach is very
appropriate in the specification of consumer demand functions since the level of
utility (output) is not measurable. The use of the indirect reciprocal production
function and the imposition of an implicitly additive structure form the basis behind
the development of the CDE functional form.

2.1 Indirect Implicit Additivity:

The conventional strategy used to reduce the number of estimable parameters of a




functional form is the imposition of separability restrictions on the structure of the
underlying technology. Among the numerous concepts of separability developed by
economists, a strongly separable or additive structure allows for the greatest
reduction in the number of estimable parameters. In fact, if a direct (indirect)

production function is additive in the levels of inputs (normalized input prices), the

various substitution effects are proportional to the expansion (cost) effects

(Frisch). The (nxn) matrix of Allen elasticities of substitution as defined for n
inputs, can then be recovered from the knowledge of the input cost shares and the
elasticities of inputs with respect to: i) output, in the case of a cost function
approach; and, ii) costs in the case of the indirect production function approach
(Deaton and Muelbauer). Although the use of this strategy to generate input demand is
appropriate when data are scarce, it imposes strong restrictions on the structure of
the underlying technology and the shape of the substitution effects.

Acknowledging these shortcomings, Hanoch suggested an additive structure be
redefined in an implicit fashion. In so doing, it is possible to estimate a smaller
number of estimable parameters, while at the same time computing Allen elasticities of
substitution without imposing stringent conditions on the structure of  the
underlying technology. Following this line of thinking, a direct implicitly-additive
structure can be imposed on the production function which can then be represented by a
constant-ratio-elasticities—of -substitution (CRES) functional form. Similarly, due to
the symmetry between the direct and indirect dual representations of a firm’s
technology, it is possible to define an indirect implicitly-additive reciprocal
production function. In this latter case, it would mean that the isoquant surfaces are
strongly separable or additive to the unit-cost prices.

A reciprocal indirect production function, K(.), is implicitly additive if it can




be expressed in the following manner:

(1) K(y, v) = z1 K (y, v,) = 1

where y is the level of output produced ; Vi is the price of input i (designated by Wi)
normalized by the minimum total cost (designated by C*); and Ki(‘) are n functions of
two variables and have properties similar to the general indirect reciprocal production
function K(.).
Demand functions for inputs are obtained using the modified Roy’s identity:
X, = Ky, v) for i = 1...n, where K =

n n
2.V, Ki(y, vy)
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As formulated, the expression defining the demand for inputs is cumbersome and
difficult to implement econometrically,. However, a simplification of the
mathematical formulation is derived if X is divided by another input, say X

giving:

1
—M for i = 2....n.
Ki(y, v))
The ratio, Xi/xl’ depends upon three variables, two of which are the "own"
normalized prices of inputs i and 1. Consequently, the risk of multicollinearity
relative to other flexible functional forms is minimized when such equations are
estimated econometrically. In addition, despite the simplistic structure of (3), all
the Allen elasticities of substitution, and indirectly the matrix of compensated price

glasticities, can still be computed. To do so, the following formula is used

(Hanoch 1975, p. 4091

(4) Oy = ¢i(y, v, + 0ﬂj(Yr VJ‘) -

where Sy is the input cost share of input k and
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and Kk are the second- and first- order partial derivatives, respectively, of

the function, Kk(') with respect to Vio and

.61j=lifi=jand0ifi¢j.
All the Allen elasticties of substitution depend on the substitution function, a,

which in turn varies with the level of output and the "own" ﬁormalized prices of
inputs Vi Thus, the higher the function a, the higher oij will be. A
complementary relationship can be defined between inputsi and j, if the
substitution functions are small, and if a. + aj <Eaksk.

2.2 CDE Functional Form:

To operationalize this notion of an indirect implicitly- additive production

structure, the function Ki must be approximated by a CDE functional form given by:

(5)  K(y, v) =X B

i

&
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Bi and e, ei are called distribution and expansion parameters, respectively.
This function is globally valid if for Vi >0, Bi and e, arc > 0, bi 1S < 1,

and either bi is<0 or 0< bi < 1. Weaker conditions can be obtained if one bi
is > 1. Note that the above function must only be defined by 3n parameters. This
represents a welcome alternative to other flexible functional forms such as the single
output Translog cost function which needs (n+1)(n+2)/2 coefficients to be defined
(Chambers, 1988).

By applying the modified Roy’s identity and making use of expression (A.6) in the

appendix, linearized CDE demand functions are derived and expressed in a logarithm




ratio form:

(6) log[z—:] A - g, log(y) - « log[ *} + a log[a‘%—] for i= 2..n

Bby| B
where A, = 1ogB—15, g = eb, - eb, and

i i™i I
a, are substitution parameters equal to l—bk. Note that validation conditions are also
satisfied if a, > 0.
Allen partial elasticities of substitution are computed through the use of
expression (4), giving:

_ & o5
(7) o = o + o - ?—“1 s, — 8 5 -

Note that for 1# j # Kk, ojk -0,y = a.i —aj = constant. This latter property of

the CDE shows its exact nature as a functional form with constant two-input one-price
\

elasticities of substitution (TOES). Hence, the CDE can be viewed as a generalization

to n inputs of the CES cost function and some of its hybrid forms developed in the

1960’s. Simple manipulation of parameters, a. and e in (5) or (6) reveals that the

CDE function becomes a CES cost function if 8; =0, or eibi =e bl and a. = .a, =a

1 |

for all i = 1..n. Furthermore, if @ is equal to one, the CDE is a Cobb-Douglas cost
function. Other special and intermediate cases such as homogeneity and explicit
additivity can be derived by imposing specific values to the expansion and
substitution parameters (see Hanoch, 1975 for more details).

The CDE function also offers the advantage of taking into account a wide range of
substitution relationships among factors of production. An analysis of expression
(7) reveals that a high value associated with a, would imply that input i is a

net susbtitute with other inputs. On the other hand, small values of a,

and aj would result into a complementary relationship between inputs i and j as

é . a. .
long as @, + ;< Eaksk




Another interesting feature of the CDE function is that it is general enough in its
formulation that it can also represent non-normal technologies  which are
characterized by the existence of inferior inputs. In fact, the output elasticities
for inputs ( )\i) which are given by

n n n
(8) ;= e + kZﬂeksk (e, - kanskoek] - [eo; - kZ_lskekoq,‘].

are a function of the expansion and substitution parameters and the input cost shares.
Then, depending on the values taken by these parameters, it is conceivable  that
negative values for the various )xi’s could arise.

The last two properties attributed to the CDE show clearly that this functional form
is "flexible" enough to accomodate both very specific and extreme technologies. This is
not the case with the constant ratio of elasticity of substitution (CRES)
function which can only take into account complementary and inferior inputs in very
extreme situations.

Despite all its qualities, the adoption of the CDE functional form has a cost on
the theoretical side. In fact, an indirect implicitly-additive structure is
characterized by isoquant surfaces that are strongly separable with respect to
unit-cost prices (Hanoch 1975). This implies a certain rigidity in the underlying
technology and explains why it is preferable to use this kind of function for broad
categories of inputs.

3.0 Empirical Implementation;

The system of CDE input demand functions has two major deficiencies from an

estimation standpoint. First of all, only the substitution parameters, @,  can be

identified. The distribution and expansion parameters cannot be derived from (6)




since only (n-1) equations are estimated. This means that the output elasticities for
inputs (7\i) cannot be computed. Several avenues can be adopted to get around this
problem. One approach is to add an additional equation to the CDE system so that all
coefficients can be determined. A second approach is to further specialize the CDE and
its underlying production structure by imposing an additional constraint such as
homogeneity or explicit additivity. Adopting an homogenous structure would make all
expansion parameters, e, equal and thus identifiable. In this perspective, it is worth
analyzing the case of a production séctor characterized by constant returns to scale

and perfect competition. Under such circumstances, marginal and average costs are

the same and equal to output price. In addition, the expansion parameters, e are all

equal to one and the CDE input demand functions can be rewritten as follows:

(9) log(%—;) = A - o log[%—i) + @ log[%} for i = 2..n

1

where W and p are the price of input i and output, respectively.

If the CDE functional form is explicitly additive, the product of parameters eibi
is equal to g for all i. As a result, the output variable is not an argument in thé CDE
input cost share ratio specification and the identification of the expansion
parameters, e, is not an empirical issue anymore.

At first glance, the expression defining the CDE input demand function (equation
(6)) may look simple and amenable to estimation. But this is not the case. In addition
to a simultaneity problem (presence of total cost, C*, as one right hand side
endogenous variable), any system of CDE input demand equations can generate n
different estimates for every parameter appearing in the behavioral equations,
depending on which input serves as a common denominator in all factor demand functions.

This difficulty of obtaining n different estimable CDE input demand specifications 1s

partly overcome by expressing the input ratio 1n (6) in terms of input cost shares .




The end result of this operation is to develop a system of input cost share ratio

equations which can be rewritten as

s, W,
(10) 1og(—s—ﬂ = A; + glog(y) + bilog(——i] - bllog[ci) for i = 2..n

This new estimable version of the CDE input demand function is very attractive for
the simple reason that expression (10) is similar in its formulation, but with a

different specification, to the linearized multinomial logit model developed by Theil.

This result implies that the CDE can be viewed as an exact and global validation
of Theil’s model in which the regularity conditions are satisfied everywhere in the
input price space. In contrast, the other linearized versions of the multinomial logit
model which have been applied so far to the estimation of input demand equations are
local approximations with regularity conditions only fulfilled at a specific point
(Considine and Mount).

Expressed in its shares form and appended with random terms, the system of CDE
input demand functions is now a typical example of "seemingly unrelated” regression
equations whose estimation by Full Information Maximum Likelihood (FIML) techniques is

invariant relative to the dropped input cost share (Barten). As a result, n unique

price or "substitution" parameters, bi or a;, can be determined regardless of the

input cost share ratio specifications which are adopted. On the other hand, with this
alternative representation of the CDE input demand functions, the identification
of the expansion and distribution parameters (ei and Bi) is still an unresolved
issue.

4.0 Empirical Applications of the CDE Functional Form:

This section discusses two empirical applications of the CDE functional form which

relate to the analysis of input demand functions. The first case illustrates the




conditions under which CDE input demand functions can be estimated econometrically
and with satisfactory results. The second application illustrates how a matrix of
compensated price eclasticities can be obtained with only a priori knowledge of its
direct and diagonal elements. The suggested approach exploits some of the properties of
the Allen elasticities of substitution associated with the CDE functional form.

4.1 Econometric Estimation of Demand for Feed Ingredients in the European Community:

As the CDE functional form permits the estimation of input demand functions with a
reduced number of parameters, it is ideally suited to model production sectors
characterized by a large number of inputs and limi‘ted data availability. In such
circumstances, the rapid exhaustion of degrees of freedom and potential
multicollinearity problems among explanatory variables prevent the application of
flexible functional forms such as the translog or the normalized quadratic. An example
is the feed concentrate market in the European Community (EC). Here, high support
prices for cereals have induced many EC farmers to substitute grains for other
cheaper feeds, thus leading to a demand for a large variety of feed ingredients . This

section describes a successful application of the CDE functional form to estimate

aggregate demand for feed ingredients in Denmark, United Kingdom and Irelands.

In this econometric exercise, it has been assumed that feed/livestock production
processes in the above-mentioned EC countries can be represented by an aggregate
single output CDE technology which possesses the following characteristics: i) six
ingredients are used to feed livestock, including three grains (wheat, corn and other
coarse grains), one cereal substitute (brans) and two high protein feeds (soymeal and
other high protein feeds), ii) the ouput variable is a quantity aggregator of
cattle and hog inventories and "feather" products expressed in a common livestock unit,

and finally, iii) a time trend is incorporated into the CDE function in order to




capture the effect of technological change in livestock feeding. Taking into
account all these factors allows us to represent this feed technology by the

following modified CDE function:

SUTARRS (T .
(11) K(LIV,, w,, C, T) = Bi(LIVt] “(C‘}] ‘exp"” 2 1 for i =1 ..6
i t

where LIVt designates total livestock production in period t, Wit is the pri‘ce of feed
ingredient i, Ct is the total feed cost, T is a time trend which takes values 0 in
1960, 1 in 1961 and so on, EXP denotes the exponential function, and the subscript 1
takes the follwing values: 1 for wheat, 2 for corn, 3 for other coarse grains, 4 for
brans, 5 for other high protein feeds and 6 for soymeal.

The use of expression (10) now yields a system of linearized input cost share
ratios for five of the feed ingredients represented by

Wiy

=} W
(12) log s—” = A, + g, log(LIV,) + b; log ;|- bg log L kK, T
Bt i C, C,

Bb
where A, = log

B;btls" g, = &b - ebg, k= £ - £;.

As shown by (12), each system equation is a function of two feed ingredient
prices (wit and Wét) normalized by total feed cost (C’:},« iivestock output (LIV{) and
the time trend (T). In addition, the soymeal input cost share (variable S6t) is the
common denominator to all other feed ingredients and a common cross-equation
restriction is imposed on the normalized price of soymeal. This constrained system
of five linearized input cost share ratio equations has been estimated by FIML over the
period 1963-1984 (see Table 1)6. In this process, the simultaneity arising from the
presence of total feed cost among the right hand side variables has been overcome by

replacing this latter variable by its predicted values obtained by regressing the




. . . 7
the observed total feed cost against a set of instrumental variables .

From an econometric standpoint, the performance of the CDE input demand system is

quite satisfactory: except for the demand expression for wheat, all of them have high

Rz;

although most of the DW statistics lie in the inconclusive region, a likelihood
ratio test rejects the null hypothesis of first order auto-correlation among the
residuals; finally, 70% of the estimated coefficients are statistically different from
zero at a 5% significance level.

All estimated price parameters (bi) but one are smaller than one. The coefficient
associated with the normalized price of brans is slightly over one, this
indicating that the CDE functional form estimated for the feed concentrate market in
Denmark, United Kingdom and Ireland is only locally valid.

With a direct price elasticity of -1.04, the feed demand for corn exhibits the most
responsive reaction to its own prices among all the feed ingredients. The remaining
feed inputs are price inelastic with direct elasticities ranging from -0.5610 for
soymeal to -0.0036 for brans (see table 2).

An examination of average cross-price elasticities indicates a wide range of both
expected and unexpected results concerning the substitution relationships between feed
ingredients. Among the expected results, the pairwise substitution relationships among
all cereals and between brans and wheat, and brans and corn is noteworthy. Similarly,
the two protein rich ingredients are weak net substitutes. Another expected finding is
the small but positive relationship between soymeal and and .energy-rich ingredients.
This latter result can be justified on the grounds that high support prices for cereals
in the EC induces farmers to purchase cheaper feed ingredients such as soymeal which,
although rich in protein, competes with grains as a source of energy.

Among the unexpected cross-effects is the fact that bran and other coarse grains




are net complements. This result, which seems to have strengthened over time, is quite
sufprising since both ingredients are significant sources of energy and should
substitute for one another. A plausible explanation for this peculiar phenomenon is the
fact that these ingredients are used for different purposes in feeding livestock in the
EC member countries under study. The other unexpected conclusion is that all the
cross-price elastiéities are small, with the exception of corn.

4.2 Computation of Synthetic Compensated Price Elasticities:

From expression (6), it can be seen that CDE-generated Allen elasticities of
substitution and indirectly, compensated price elasticities are a function of all the
input cost shares, Sy and the parametersg akdfor k = 1..n. As a result, if Sy and
the direct Allen elasticities of substitution, okk’ are known a priori, all

coefficients, a, ., are determined by resolving a system of n linear equations with n

unknowns, represented by the following expression:

_ < "
(13) o, = 2¢, - g} s, - 5,

Once the ak’s have been calculated, they are fed into (7) to determine the
remaining off-diagonal elements of the matrix of Allen e‘lasticities of substitution and
indirectly, the compensated cross-price elasticities. In this procedure, an iterative
search consisting of changing at the margin the pre-established values of the direct
Allen elasticities would be needed as long as the implied substitution parameters,
a. violate the validation conditions of the associated CDE function.

The above technique of computing synthetic price elasticities can also facilitate
the econometric estimation of CDE input demand functions when few data points are
available and a large number of | inbuts are under consideration. In such
circumstances, the known coefficients (bi or ai) are incorporated into the estimable

CDE input demand specification, Then, the remaining parameters (intercepts and




coefficients associated with the other exogenous variables) which are not linked by any
cross-equation restriction at all can be estimated by restricted two-stage least
squares techniques applied to each equation.

To illustrate the advantage of the above modeling approach, it has been applied to
the Italian feed concentrate market which was represented by a conceptual CDE model
similar to the one developed for the aggregate Danish, British and Irish feed sector.
This time, the total number of data points for the six feed ingredients under study was

limited (ten observations from 1976 to 1984), precluding a full estimation of the

associated CDE input demand functions.

The assumed values for the direct Allen elasticities of substitution have been
selected on the basis of previous work undertaken on the EC feed concentrate markets
(Hillberg; McKenzie, Paarlberg and Huerta; Surry and Moschini) and the importance of
each feed ingredient in feeding livestock in Italy (See Table 3). Based on these
considerations, the estimated cross-price elasticities conform to a—priofi
expectations. The only unexpected finding is that soymeal and other high protein
feeds are net complements. However, we should not attach too much importance to this
result because of the very small value of the associated cross-price elasticities.

5.0 Concluding Remarks:

This paper has brought to the fore the principal theoretical and empirical features
of the CDE function when applied to production analysis. This functional form, which
has been largely neglected by the economics profession, possesses a certain number of
attractive properties that are worth considering. It is a globally well-behaved and
can accomodate extreme and specific technologies . What makes this model specification - -
very appealing is the fact that a reduced number of parameters are needed to estimate

input demand relationships, thus avoiding potential multicollinearity problems among




explanatory variables. However, the gains made on the empirical side are offset by the
imposition of an implicitly additive structure on the underlying technology.

Despite this weakness, the CDE is very helpful in estimating input demand
relationships  in situations characterized by a large number of inputs and a limited

data sample. An econometric application to the EC feed concentrate market supports this

point and show clearly that reliable elasticities estimates can be generated with this

functional form. Another feature of this function is that it can generate a complete
matrix of theoretically consistent price elasticities using only estimated values of
the diagonal elements as a starting point (i.e. own-price elasticities or direct Allen
elasticities of substitution).

Although the CDE function has been developed in the context of a single-output firm

.z, it can be equally applied not only to other production problems

but also to the analysis of consumer demand and international trade. Thus, in the
context of a multi-output technology in which inputs are non-specific, compensated
supply functions can be estimated if the revenue function of a firm is represented by a
CDE. Similarly, compensated cross-price elasticities of supply can be derived
synthetically in the same fashion as in the case of of the input cost minimization
problem analyzed in the previous» section. The approach of determining synthetic price
elasticities can be extended to the computation of uncompensated price elasticities in
the consumer and producer cases. The only additional requirements are that
elasticities defining the expansion or income effects be known . With regard to trade
analysis, the CDE function can be used to specify import demand or export supply
relationships which are differentiated by place of origin or destimation, and thus can

be viewed as a generalization of the Armington model.




A final area where the CDE function could be very useful concerns the modelling of

producer and consumer sectors in computable general equilibrium (CGE) models. In fact,

since this function is globally well-behaved and characterized by a reduced number of
parameters, it would allow expansion of the general capabilities of these CGE models
which have been specified on the basis of simple functions such as the Cobb-Douglas or
the CES function . In this process, however, a certain number of problems such as

calibration and algorithm resolution would have to be solved.




FOOTNOTES

The acronym CRE stands for "constant ratio of elasticities" and indicates the fact
that this function generates elasticities of substitution whose ratios are constant. In
the case of the CDE, the difference of elasticities of substitution is constant.
2 To the author’s knowledge, only three econometric studies have used the CDE
functional form and have been published in academic journals (Daf and Dasgupta,
Hawkins, and Merrilees). Although the number of empirical applications is also limited,
the CRES function is more widely known since Dixon and al. adopted in the ORANI model
to represent the aggregate technology of theAustralian agricultural sector.
3 The exact mathematical form of the CDE function is obtained by solving the following
differential equation:
@, = ~V,Ki (v, Y) /K (v, Y) -

The solution to this differential equation is

1-¢¢.

K (Y, v;) = Bi(y)v; ' for o; # 1,

and K, (y v;)= B;(y)log(v,) for ¢; = 1 where o; = 1 - b..
4 To derive this new estimable version of the CDE, mulitply and divide both sides of

* *
(6) by wi/C and WI/C , respectively.

> The specification and estimation of the CDE demand for feed ingredients is part of’ a
larger and disaggregated econometric model of the EC feed/livestock model capable of
capturing all the substitution relationships among feed ingredients and of simulating
some alternative programs to the existing EC cereal policy regime (Surry). To limit the
size of this model, the EC feed concentrate market has been broken down into four
homogenous regions including i)France, ii) Italy, iii)a group of countries composed of
Netherlands, Belgium and Germany and iv) and a last group formed by the three

above-mentioned countries who joined the EC in 1973.




6 Lack of space prevented us from providing a detailed account on the definition and

quality of the data used in this econometric exercise. For more information on data
issues, see Surry (1988).

In order to avoid multicollinearity problems, total feed cost has been regressed
against five principal components extracted from a matrix of exogenous variables
composed of prices of feed ingredients, livestock output and the time trend. These five
principal components explain 95% of the overall variability of the matrix of exogenous

variables.
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APPENDIX
Alternative and Symetric Representation of the Constrained Optimization Choices
Facing a Firm
1. Cost Function:
(A.1) C(w, V) min, { w/'x : £(x) 2y }
where w and x are price and quantity vectors of n inputs;
and y = f(x) is a production function.

Shepherd’s Lemma:

3C(w, ¥)

3, for 1

(a.2) % = 0w, y) =

II. Indirect Production Function:

(A.3) y G'(v) = max, { £(x) : v’'x

where Vv

Rov’s Identity:

(A.4)

1. Reciprocal Indirect Production Function:

(A.5) K (v) = G,(lv) = min, {

Modified Rov’s Identity:

K" (V)
(A.6) ¥}

1

IV. Relationships between Compensated and Constant Cost Input Demand

Functions:

(A.7) X,

1




Table 1: Maximum Likelihood Estimates of the CDE Input Demand Coefficients for Denmark, United Kingdom and Ireland

Explanatory Variables

Dependent Normalized Price of
Variable Constant Livestock Other Brans Other Soymeal
Coarse High
Grains Protein
Feeds

log(s,/s4) 23.5526 -0.00644 -2.53125 0.09927 0.36027  0.3089
(14.0494) (~0.53352) (-4.21351) (0.17791) (1.61572)

log(s,/sy) ~10.1105 ~0.08122 0.65271 -0.21965 0.36027 0.7702
(-24.4510) (-4.26391) (0.64658) (-0.24260) ' (1.61572)

lOg(S3/SG) -4.0762 ~-0.00850 1.13922 0.67237 0.36027 0.9277
(=3.2021) (-12.801) (3.10040) . (2.40351) (1.61572)

log(s,/s¢) ~2.4542 ~0.06454 1.08194 1.02866 - 0.36027 0.9084
(-1.5969) (-10.455) (2.82177) (4.56958) (1.61572)

log(s,/s ) 24.3442 ~0.01656 -1.91317 0.85367 0.36027  0.9004
(~2.14297) (-~5.27907) (3.77967) (1.61572)

Notes: Dependent variables are the ratios of input cost shares expressed in logarithms. With the exception of the time
trend , all other explanatory variables are also expressed in logarithms. The normalized prices of feed ingredients are
obtained by dividing each feed ingredient price by the total feed cost. Asymptotic t values are reported in parentheses
under the corresponding coefficient estimates.




Table 2: Compensated Price Elasticities for Feed Ingredients
- Denmark, United Kingdom and Ireland
(Average 1963-84)

Wheat Corn Other Brans Soymeal
Coarse
Grains

Input Cost Shares

Quantities

Wheat
Corn

Other Coarse
Grains

Brans

Other High
Prot. Feeds

Soymeal




Table 3: Compensated Price Elasticities for Feed Ingredients

Italy
(Average 1976-84)

Input Cost Shares

Wheat Corn Other Brans
Coarse
Grains

Soymeal

Quantity

Wheat
Corn
Other Coarse Grains

Brans

Other High Pro. Feeds

'Soymeal




	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027

