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The dynamic dual approach to characterizing production decision making 

over time maintains that some factors of production cannot instantaneously 

adjust to a long-run optimal level. Many of the actual reasons for 

sluggish adjustment are not directly observable. The adjustment cost 

function is introduced to guarantee the gradual accumulation of capital. 

This function is a 11 black box 11 that intends to su1T111arize all of the forces 

that can lead.to sluggish adjustment. As one may expect, when we go from 

the static to dynamic case the assumptions necessary to guarantee empirical 

tractability can be more difficult to accept, econometric estimation is 

more demanding, and theoretical restrictions are more cumbersome. 

Naive price expectations assumptions are required. In the 

deterministic dynamic dual econometric models current relative prices are 

assumed to persist indefinitely when current period decisions are made. In 

the stochastic case, current relative prices are assumed to be known but 

these prices evolve stochastically. In the case of intertemporal cost 

minimization, the dynamic and variable factor demands are theoretically 

conditioned on the current and future production targets. Econometric 

implementation requires the assumption that current output level along with 

relative input prices will prevail indefinitely. The firm is assumed to 

revise its expectations and production plan as the base period changes and 

new prices and output are observed. 

The use of the derivative property of the value function to obtain 

dynamic and variable factor demands and output supplies follows from the 

assumption that the value function exists and is at least twice 

differentiable. · The value function is a solution to the dynamic 

programming (Hamilton-Jacobi) equation which is a nonlinear partial 
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differential equation or partial differential - difference equation. 

Guaranteeing that the value function exists for all values of prices and 

initial capital stocks at each point in time can be a tough assumption to 

swallow. 

Typical functional specifications focus on the quadratic specification 

of capital with other independent variables which results in a multivariate 

flexible accelerator and (along with aggregation restrictions) a 
' 

normalizing equation that is linear in the parameters. While the third 

order qerivatives are required to fully characterize the deterministic 

value function (and fourth order derivatives are needed in the Brownian 

motion driven process), one only sees specifications which can be viewed as 

second order expansions of the value function. 

As one may expect, when truly dynamic linkages are present the dynamic 

and static restrictions on behavior can be quite different. To illustrate 

this consider the issue of.nonjointness in production. In the static case, 

when relative prices are used, the nonjointness exists between outputs i 

and j if output i is independent of the price of output j which is 

equivalent to 

np.p. = 0 
1 J 

where n() is the static profit function. In the dynamic case the 

discussion of jointness in production is confounded by a) the presence of 

inputs that can and cannot be allocated to the production of a specified 

output, b) the distinction between technological and economic (behavioral) 

sources of jointness, and c) the consideration of "short-run" and "long-



run 11 nonjointness. It turns out that when homogeneity properties of the 

value function are maintained, the nonjointness restriction is 

avi/apj = - K'Vkpipj - (aK/apj)'Vkpi 

rVPiPj = ivzp P + (ai/apj)Vzp 
. i j i 
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for .i ~ j, where Y is output and pis its' price, K is a vector of 

allocatable capital inputs, Z is the nonallocatable capital input, Vis the 

multiple-output value function and the subscripts indicate partial 

differentiation (see Stefanou for more details). In general, these dynamic 

restrictions are quite different from the static case. In a static setting 

Shumway et al. demonstrate that nonseparabilty of the restricted profit 

function can exist in the presence of complete input allocation and 

independent production functions if some inputs are constraining. It is 

demonstrated that this result holds true for the long-run as well. 

Restrictions that can be econometrically implemented are presented. The 

·results indicate ·that one cannot, in general, apply the static theory 

results to the dynamic case (such as setting the cross price derivatives of 

the value function equal to zero and assuming the presence of separability 

in output prices). 

Stochastic Dynamic Dual 

The two cases of the stochastic evolution of the state considered here ·are 

continuous and discrete shocks. While we can integrate the two processes 

into the dynamic programming equation, there is no unified approach 



applicable to both cases. Consider the case of choosing an optimal 

investment plan in the presence of adjustment costs and the stochastic 

evolution of output price. The firm is constrained by the capital 

accumulation equation written in differential form as 

(1) dK = (I - 6K)dt 
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where I is the rate of investment and 6 is the constant rate of 

depre.ciation. The firm's instantaneous cash flow is ,r(W, K, I) - ck where 

,r() is the restricted, single-output short-run profit function and Wis 

the variable factor wage normalized by the output price. 

Continuous Case 

The real wage is assumed to evolve in a stochastic manner and is expressed 

as an Ito equation 

(2) . dW = g(W)dt + a(W)dB 

where B(t) is Brownian motion with E(dB} = 0 and E( (dB)2} = dt •. The 

intertemporal objective is 

CIO ' 

(3) J(w, c, k) = max Et( J e-rs[,r(W, K, I) - ck]ds} 
. I . t 

subject to (1) and (2) with K(t) = k, W(t) =wand Et indicates the 

expectation starting at time t. The stochastic dynamic programming 

equation is 



(4) rJ(w, c, k) = max ,r(w, k, I) - ck + (I - ok)Jk + g(w)Jw + .5a(w)2Jww 
I 

which is a partial differential equation. The first order condition is 
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- 1r1 = Jk. The optimal I depends on Jk which depends on (w, c, k). Thus, 

even though the price evolution functions of g(w) and a(w) do not directly 

influence the first order conditions the fact that g(w) and a(w) do 

influence optimal investment via Jk. Differentiating ~he optimized dynamic 

programming equation leads to variable and dynamic factor demands and 

output supply 

•* -1 [ . 2 
K = Jkc rJc + k - g(w)Jwc - .5a(w) Jwwc] 

x* = (gw(w) - r)Jw + K*Jkw + [g(w} + aw(w}a(w)]Jww + .5a(w}2Jwww 

* •* 2 Y = rJ + ck - K Jk- g(w}Jw - .5a(w} Jww 

While a functional specification to the second order can capture the 

stochastic effect of the price evolution process, a third order expansion 

is preferred to account for the across equation restrictions. As presented 

here the Ito process assumes no serial correlation. To conserve degrees of 
•* * * freedom g(w) and a(w) can enter the K I x and Y equations as fixed by 

estimating a discretized version of (1) first and transforming it to be 

stationary. 

Discrete Case 

Consider the situation of a highly regulated market where the producer 

assumes the output price will either remain unchanged or increase a 



discrete known amount T. If the nominal wage is assumed to be fixed and 

known, the real wage is assumed to evolve according to 

(5) dW = b(W)dt + 8(W)d8 

where 

Pr(dB =TI B(t) = w} = µ(w)dt + o(dt) 

Pr(dB = O I B(t) = w} = 1 - µ(w)dt + o{dt). 
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Using the intertemporal objective in (3) subject to (1) and (5) with K(t) · 

= k and W(t) = w, we can show the stochastic dynamic progranming equation 

is 

(6) rJ(w, c, k) = max n(w, k, I) - ck+ {I - ok)Jk + b{w)Jw 
I 

+ [J(w + b{w}dt + e(w)T, c, k} - J{w, c, k})µ(w) 

which is a partial differential - first-order difference equation. 

Differentiating the optimized dynamic programming equation leads to 

variable and dynamic factor demands and output supply 

* •* x = {bw{w) - µ(w)- r)Jw + K Jkw + gb{w)Jww+ Jw(w + b{w)dt + e(w)T, • )µ(w) 

* * d Y = (r - µ(w))J + wx + ck - K Jk + b{w)Jw + J(w + b{w)dt + e(w)T, • )µ(w) 

In the discrete case a second order specification is sufficient to capture 

the impact of the stochastic evolution of price. As in the continuous 

stochastic drift case, one may resort to estimating the parameters of (5) 



initially and then inserting them as fixed coefficients in the estimation 
•* * * of K, x and Y in order to preserve degrees of freedom. 

Mixed Continuous - Discrete Case 

The amplitude of the discrete jump, 8, may randomly evolve over time 

according to 

(7) de= h(8)dt + a(8)dB 8 
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where E(dB8} = O and E((dB8)2} = dt. This case presents a mixed Brownian 

motion - jump process. Using the intertemporal objective in (3) subject to 

(1), (5) and (7) with K(t) = k, W(t) =wand e(t) = L, the stochastic 

dynamic programming equation is 

rJ = max n(w, k, I) -ck+ KJk + b{w)Jw + h(8)J8 + .5a(e) 2J88 
I 

+ [J(w + b(w)dt + e(w)L, c, k) - J(w, c, k)]µ(w) 

which is a second-order partial differential - first-order difference 

equation. The optimized dynamic progranming equation can be differentiated 

to generate variable and dynamic factor demand and output supply equations 

as above. 

Conclusions 

The dual approach to dynamic modeling has tremendous potential in 

applied work. Using the dynamic progranming equation as the starting 

point, concepts in static production theory such as returns to scale, 

productivity growth and substitution effects can be formally defined for 

the firm not at a steady-state position. The difficulty in econometric 



estimation of dynamic dual equations depends on the naivety of the 

behavioral assumptions concerning expectations one is willing to accept. 

While these assumptions may often be condemned as unrealistic, the 

challenge is to move further into relaxing models of dynamic optimizing 

behavior and not to retrench to the relatively better known domain of 

static behavioral modeling. 
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