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Abstract

We study a novel mechanism design model in which agents each
arrive sequentially and choose one action from a set of actions with
unknown rewards. The information revealed by the principal affects
the incentives of the agents to explore and generate new information.
We characterize the optimal disclosure policy of a planner whose goal
is to maximize social welfare. One interpretation of our result is the
implementation of what is known as the "wisdom of the crowd". This
topic has become increasingly relevant with the rapid spread of the

Internet over the past decade.
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1 Introduction

The Internet has proven to be a powerful channel for sharing information
among agents. As such it has become a critical element in implementing
what is known as the "wisdom of the crowd." Hence it is not that surprising
that one of the most important recent trends in the new Internet economy
is the rise of online reputation systems that collect, maintain, and dissemi-
nate reputations. There are now reputation systems for such things as high
schools, restaurants, doctors, travel destinations, and even religious gurus. A
naive view is that perfect-information sharing through the Internet allows for
favorable learning and supports the optimal outcome. We argue that this is
not the case because one of the important characteristics of these new mar-
kets is the feedback effect where users are consumers as well as generators of
information. Information that is revealed today affects the choices of future
agents and as a result affects the new information that will be generated.
A policy that ignores this effect and simply provides the most accurate cur-
rent recommendation will lead in the long run to insufficient exploration and
hence a suboptimal outcome. In this paper, we take a first step toward char-
acterizing an optimal policy of information disclosure when agents behave
strategically and, unlike the planner, are myopic.

To this end, we study a novel mechanism design problem in which agents
arrive sequentially and each in turn chooses one action from a fixed set of
actions with unknown rewards. The agent’s goal is to maximize his ex-
pected rewards given the information he possesses at the time of arrival.
Only the principal, whose interest is to maximize social welfare, observes all
past outcomes and can affect the agent’s choices by revealing some or all
of his information. The principal’s challenge is to choose an optimal disclo-
sure/recommendation policy while taking into account that agents are self-
interested and myopic. Clearly, a policy not to reveal any information would
cause all agents to select the a priori better action, and hence would lead

to an inefficient outcome. Nevertheless, a policy of full transparency is not



optimal either because it does not address the incentives of selfish agents,
and hence does not allow for enough exploration. Information is a public
good and as such one needs to be careful to provide proper incentives to an
agent to explore and produce new information. Note that contrary to what
is commonly assumed, in our setup the principal is the one who possesses
the information, which he reveals optimally through the chosen mechanism.

The new "Internet Economy" provides several related examples for which
our model is relevant, and perhaps the first to come to mind is TripAdvisor.
TripAdvisor operates within the travel industry, one of the world’s largest
industries accounting for 11.7% of world GDP and 8% of employment. As
its name suggests, TripAdvisor is a website that offers travel advice to its
users. It does so by soliciting reviews from users and providing rankings of
hotels and restaurants around the world. The company’s rankings are based
on their own metric called “the Popularity Index,” which is a proprietary
algorithm. Note that while the individual reviews are also available to users,
it is obvious to anyone familiar with TripAdvisor that they are of secondary
importance to the rankings, simply because of the overwhelming numbers of
properties and reviews. A typical user, then, mostly relies on the rankings
and reads only a few reviews to refine his search.

The company is by far the dominant source in the hospitality space,
with more than 75 million reviews generated by some 40 million visitors per
month.! Indeed, the data speaks for itself: the closer a property is to a
number-one ranking in its given market, the more numerous its direct online
bookings. For example, a property ranked #1 sees 11% more booking per

month than the one ranked #2.2 This difference is striking given that in

ISee Jeacle and Carter (2011).

2The information breaks down as follows: Properties ranked #20 in their market see
10% more booking per month than those ranked #40; properties ranked #10 in their
market see 10% more booking per month than those ranked #20; properties ranked #5 in
their market see 9% more booking per month than those ranked #10; properties ranked
#2 in their market see 7% more booking per month than those ranked #5; properties
ranked #1 in their market see 11% more booking per month than those ranked #2 (see



most cases, the difference between similarly ranked hotels is minor.

TripAdvisor’s revenue is generated through advertising, and as a result
the company’s main concern is the volume of visitors to its site. We note,
however, that high volume is achieved when the utility of the average cus-
tomer is maximized. It follows that the company’s goal is akin to that of
a benevolent social planner. TripAdvisor’s Popularity Index is a company
secret, yet it is apparent that its exact strategy differs from just a simple
aggregation. In this paper, we point to one important aspect of optimality
that the company needs to consider.

Another interesting example is a company called Waze-Mobile, which
developed a GPS navigation software based on the wisdom of the crowd.
Waze’s popularity in the West coast is second only to Google Maps, whereas
in developing markets such as Brazil, Uruguay, and Indonesia it has surpassed
Google by far.> Waze is a social mobile application that provides free turn-
by-turn navigation based on real-time traffic conditions as reported users.
The greater the number of drivers who use this software, the more beneficial
it is to its customers. When a customer logs in to Waze with his smartphone,
he continuously sends information to Waze about his speed and location and
this information, together with information sent by others, enables Waze to
recommend to this driver as well as all other drivers an optimal route to their
destination. However, in order to provide good recommendations, Waze must
have drivers on every possible route. Indeed, as Waze’s own president and
cofounder admitted,® Waze sometimes recommends a particular route to a
driver despite (indeed, because of) the absence of information on that route.

The information transmitted by this driver is then used to better serve future

Digital Compass by MICROS eCommerce on April 25, 2013).

A similar study about the Travelocity website illustrates that if a hotel increases its
score by 1 point on a 5-point scale, the hotel can raise its price by 11.2 percent and still
maintain the same occupancy or market share. See Anderson (2012).

3Waze, with a user base above 45 millions, was recently bought by Google for roughly
$1.1 billion.

*http:/ /www.ustream.tv/recorded /21445754



drivers. However, in order not to deter drivers from using the system, Waze
must be very careful about how often they "sacrifice" drivers to improve the
experience of others. Our model sheds some light on exactly this trade-off.

TripAdvisor and Waze are just two fascinating examples of the rapid
growth in the number of rankings and league tables published in recent years
and they may well be the face of things to come. Internet evaluations of
goods and services are now commonplace. Influential websites provide rat-
ings for activities as diverse as the relative merit of various books and CDs
and the teaching prowess of university professors. As we argue in this paper,
the managers of these Web sites are facing a non-trivial task as there is a
conflict between gathering information from users and making good recom-
mendations to the same users.

Our model also relates to the recent controversy over the health care
report-card system. This system entails a public disclosure of patient health
outcomes at the level of the individual physician. Supporters argue that the
system creates powerful incentives for physicians to improve the quality of
health care and also provides patients with important information. Skeptics
counter that report cards may encourage physicians to “game” the system
by avoiding sick patients, accepting healthy patients, or both. We look at
this problem from a different angle by asking how the information available
can be optimally revealed to maximize social welfare while taking account of
the users’ incentives.?

With no pretensions to providing a comprehensive solution to this prob-
lem, the present paper should be seen as a first small step in this direction.
Indeed, the model presented in Section 2 is the simplest one possible that
allows us to study the interaction between an informed planner and agents,

as described above. In the model the set of actions contains only two de-

5A striking example is the recent Israeli court order that the government reveal the
performance of child liver transplants in public hospitals. Although the evidences was
far from statistically significant, parents overwhelmingly preferred to seek the operation
abroad and the activity in Israel was virtually stopped.



terministic actions with unknown rewards. We first assume that agents are
fully informed about their place in line. For this case the principal’s optimal
policy is characterized in Section 3. In the optimal policy agent one always
chooses the action with the higher mean and we denote his reward by ry. If
r1 € I' then agent t is the first agent to whom the principal recommends
trying the other action, while for all agents ¢’ > ¢ the recommendation is the
better of the two actions. We show that the sets {I'},cr are given by an
increasing sequence of thresholds {i'};c7 where I* = (i*~1 4"), and that the
number of agents who choose a suboptimal action is bounded independently
of T'. Consequently, as the number of agents increases, the social welfare
converges to the first-best welfare in the unconstrained mechanism.

The informational assumption is relaxed in Section 4, where we assume
that agents know only the block to which they belong (say, before, during, or
after rush hour) and show that the optimal policy is also a threshold policy.
The coarser the partition of the blocks is, the closer the outcome is to the
first best, which is obtained in the extreme when all agents belong to the
same block.

It is worth noting that in the blocks model, agents have incentives to
spend resources to obtain information about their location. If this is a rel-
evant concern, a planner may choose to implement the policy that assumes
that agents know their exact location so as to eliminate agents’ incentives
to waste resources on finding their location. Thus, in such a situation one is
led to consider the problem in which the agents know their exact location in
line.

In Section 5, we describe a model where the realized payoff of each action
is stochastic. We show that our mechanism naturally extends to this case
and yields a near optimal performance. Solving for the first-best mechanism
in the stochastic setting is difficult and remains an open problem.

We conclude in Section 6 by arguing that a planner who can use monetary

transfers will make the best use of his resources by spending it all on relaxing



the IC constraint of the second agent so as to keep the mechanism intact for

all other agents.

1.1 Related Literature

The literature on informational cascades that originated with the work of
Bikhchandani, Hirshleifer, and Welch (1992) is probably the closest to the
model presented here. An informational cascade occurs when it is optimal
for an individual who has observed the actions of those ahead of him to
follow their behavior without regard to his own information. Our problem is
different as agents are not endowed with private signals. Instead we examine
a social planner who can control the information received by each individual
while implementing the optimal informational policy.

The agents in the model considered here must choose from a set of two-
armed bandits (see the classical work of Rothschild 1974). But unlike the
vast early work on single-agent decision-making, our work considers strategic
experimentation where several agents are involved, along the lines of more
recent work by Bolton and Harris (1999) and Keller, Rady, and Cripps (2005),
to name just a few. The major departure from the single-agent problem is
that an agent in a multi-agent setting can learn from experimentation by
other agents. Information is therefore a public good, and a free-rider problem
in experimentation naturally arises. It is shown that because of free-riding,
there is typically an inefficiently low level of experimentation in equilibrium
in these models. In contrast, in our model, free-riding is not a problem as
agents have only one chance to act, namely, when it is their turn to move.
Our contribution is in approaching the problem from a normative, mechanism
design point of view.

Another related paper is Manso (2012) which studies an optimal contract
design in a principal-agent setting in which the contract motivates the agent
to choose optimally from a set of two-armed bandits. Yet, while in Manso’s

setup there is one agent who works for two periods, in our setup there are



multiple agents who choose sequentially.

Mechanism design without monetary transfers has been with us from
the early days when the focus of interest was the design of optimal voting
procedures. One such model that shares the sequential feature of our model
is that of Gershkov and Szentes (2009) who analyze a voting model in which
there is no conflict of interest between voters and information acquisition is
costly. In the optimal mechanism the social planner asks voters randomly
and one at a time to invest in information and to report the resulting signal.
In recent years, the interest in this type of exercise has gone far beyond
voting, as for example in the paper of Martimort and Aggey (2006) which
considers the problem of communication between a principal and a privately
informed agent when monetary incentives are not available.

Also relevant and closely related to our work are the papers by Kamenica
and Gentzkow (2011) and Rayo and Segal (2010). These two papers consider
optimal disclosure policies where a principal wishes to influence the choice
of an agent by sending the right message. A version of our model with two
agents only, is very similar to what they consider. Our contribution is in
our consideration of the dynamic aspects of the problem, the real action
beginning from the third agent onward.

Finally, two recent papers that examine disclosure of information in a
dynamic setup that is very different from ours are Ely, Frankel, and Kamenica
(2013) and Horner and Skrzypacz (2012). Ely, Frankel, and Kamenica (2013)
consider the entertainment value of information in the media. They examine
how a newspaper may release information so as to maximize the utility that
readers derive from surprises and suspense. Horner and Skrzypacz (2012)

examine a dynamic model in which an agent sells information over time.



2 Model

We consider a binary set of actions A = {a1,as}. The reward R; of ac-
tion a; is deterministic but ex ante unknown. We assume that each R; is
drawn independently from a continuous distribution 7; that has full sup-
port and is common knowledge, and we let m be the joint distribution. Let
w; = ER,~r,[R;] and assume without loss of generality that p; > .

There are T" agents who arrive one by one, choose an action, and realize
their payoff. Agents do not observe prior actions and payoffs. We start
by assuming that agents know their exact place in line. In Section 4 we
show that the main ingredients of the optimal policy remain the same when
this assumption is relaxed and agents receive only a noisy signal about their
position. The planner, on the other hand, observes the entire history, which
consists of his recommendations to the agents as well as their choices and
rewards. Let h' denote a particular history of length ¢ where H' stands for the
set of histories of length t. The planner commits to a message (disclosure)
policy, which in the general setup is a sequence of functions {Mt}tzl,m,T
where M*! : H'=! — M is a mapping from the set of histories H'~* to the set
of possible messages to agent t.% Finally, a strategy for agent ¢ is a function
ol Mt — A.

The goal of agent ¢ is to maximize his expected payoff conditional on his
information, while the goal of the planner is to maximize the expected average
reward, i.e., E[% 3] RY. An alternative objective for the planner would
be to maximize the discounted payoff, £ [Zle 'R, for some discounting
factor v € (0,1). We focus on the average payoff as it is more suitable to
our setup, but a similar result holds if the planner wishes to maximize the

discounted payoff.

6Restricting the planner to pure strategies is done for the sake of simplicity only. It
is easy to see that each of the arguments in the following sections holds true when the
planner is also allowed to use mixed strategies, and that the resulting optimal strategy of
the planner is pure.



Before we proceed to characterize the optimal solution we note that one
can generalize our model so that the distribution of payoffs does not have
full support. The distribution does not even need to be continuous. These
assumptions are made to simplify the exposition. However, it is important
that when p; > p, there be a positive probability that the first action’s payoft
is lower than pu,, that is, that Pr(R; < py) > 0 holds when we assume full
support. If, however, Pr(R; < p,) = 0, then all the agents will choose the
first action regardless of any recommendation policy. This follows as every
agent knows that everyone before him chose the first action simply because
any payoff of the first action exceeds the mean of the second action. In such

a setup a planner will find it impossible to convince agents to explore.

3 The Optimal Mechanism

Let us first give an overview of the mechanism and the proof. We start
by providing a simple example that illustrates the main properties of the
optimal mechanism. Then in Section 3.2 we present some basic properties
of incentive-compatible mechanisms. In particular, we establish a revelation
principle and show that without loss of generality, we can concentrate on rec-
ommendation mechanisms that specify for each agent which action to perform
(Lemma 1). We show that once both actions are sampled, the mechanism
recommends the better action and stays incentive compatible (Lemma 2). In
Section 3.3 we explore the incentive-compatible constraint of the agents.
Section 3.4 develops the optimal mechanism. We first show that initially
the optimal mechanism explores as much as possible (Lemma 4). We then
show that any value of the better a priori action that is lower than the
expectation of the other action causes the second agent to undertake an
exploration (Lemma 5). The main ingredient in our proof is that the lower
realizations are better incetives for exploration than the higher realizations

(Lemma 6). Finally, there is some value of the better action that realizations
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above it deter the principal from undertaking any exploration.

This result implies that the optimal incentive-compatible mechanism is
rather simple. The principal explores as much as he can (given the incentive-
compatible mechanism) up to a certain value (depending on 7") for which he

does not perform any exploration.

3.1 Example

To gain a better intuition of what follows, consider an example in which the
payoff of the first alternative, Ry, is distributed uniformly on [—1,5] while
the payoff of the second alternative, Ry, is distributed uniformly on [—5, 5].
For simplicity, suppose that the principal wishes to explore both alternatives
as soon as possible.”

Consider first what would happen in the case of full transparency. The
first agent will choose the first action. The second agent will choose the
second alternative only if the payoff of the first alternative is negative, R, < 0.
Otherwise, he and all the agents after him will choose the first alternative,
an outcome that is suboptimal.

Now consider a planner who does not disclose 71 but instead recommends
the second alternative to the second agent whenever Ry < 1. The agent will
follow the recommendation because he concludes that the expected value
of the first alternative is zero, which is equal to the expected value of the
second alternative. This implies that the outcome under this policy allows
more exploration as compared to the policy under full transparency. Hence,
we can already conclude that full transparency is suboptimal.

But we can do even better. Consider the more interesting case, the rec-
ommendation for agent three. Suppose that the planner’s policy is such that
he recommends that agent three use the second alternative if one of the fol-

lowing two cases obtains: (/) the second agent has been recommended to

"The decision to explore depends on both the realization of R; and of T. However for
large T the planner would like to explore for almost all values of R;.

11



test the second action (R; < 1) and based on the experience of the second
agent the planner knows that Ry > Ry, or (/1) the third agent is the first to
be recommended to test the second alternative because 1 < R; < 1+ x (to
be derived below). Note that conditional on (I) the agent strictly prefers to
follow the recommendation, while conditional on (/1) he prefers not to, and
the higher z is, the less attractive the recommendation is. In the appendix
we show that for x = 2.23 the agent is just indifferent.

The computation for the fourth agent is similar, and here we get that this
agent will explore (i.e., be the first to test Ry) for the remaining values of
Ry < 5. The better of the two actions is recommended to all the remaining
agents.

The rest of the paper is devoted to showing that this logic can be ex-
tended to form the optimal policy and that the number of exploring agents

is bounded.

3.2 Preliminary

We start the analysis with two simple lemmas that, taken together, establish
that it is possible without loss of generality to restrict attention to a spe-
cial class of mechanisms in which the principal recommends an action to the
agents, and once both actions are sampled, the better of the two is recom-
mended thereafter. The first lemma is a version of the well-known Revelation

Principle.

Definition 1 A recommendation policy is a mechanism in which at time t,
the planner recommends an action a' € A that is incentive compatible. That
is, E[R; — R;|la" = aj] > 0 for each a; € A. We denote by M the set of

recommendation policies.

Note that the above expectation E[R; — R;|a" = a;] implicitly assumes

that the agent knows the mechanism. Hence, from now on, whenever we refer

12



to a mechanism as incentive compatible, we assume that the agent knows the

mechanism and takes it as given.

Lemma 1 For any mechanism M, there exists a recommendation mecha-

nism that yields the same expected average reward.

The above lemma is a special case of Myerson (1988) and consequently
the proof is omitted.

Thus, we can restrict our attention to recommendation policies only. The
next lemma allows us to focus the discussion further by restricting attention
to the set of partition policies. A partition policy has two restrictions. The
first is that the principal recommends action a; to the first agent. This is
an essential condition for the policy to be IC. The second restriction is that

once both actions are sampled, the policy recommends the better one.

Definition 2 A partition policy is a recommendation policy that is described
by a collection of disjoint sets {I, f;;l. Ifry € I fort < T, then agent t is
the first agent for whom a* = ay and for allt' >t we have a' = max{ay,as}.

If ry € ITHL then no agent explores. If I' = (), then agent t never explores.
Lemma 2 The optimal recommendation mechanism, is a partition mechanism.

Proof: Note first that since p; > o, the first agent will always choose
the first action. Also, since the principal wishes to maximize the average
reward, B[+ Y"1 RY], it will always be optimal for him to recommend the
better action once he has sampled both actions. Clearly, recommending the
better of the two actions will only strengthen the IC' of the agent to follow
the recommendation. Hence, for each agent ; > 2 we need to describe the
realizations of Ry that will lead the planner to choose agent j to be the first
agent to try the second action. 0

We next show that the optimal partition is a threshold policy.

13



3.3 Incentive-Compatibility (IC) Constraints

Agent ¢ finds the recommendation a' = ay incentive compatible if and only
if
E(R2 — Rl\at = (1,2) Z 0.

Note that this holds if and only if
PI‘(CLt = CLQ) * E(RQ — Rl‘(lt = (1,2) Z 0.

We use the latter constraint, since it has a nice intuitive interpretation re-

garding the distribution, namely,

/ Ry — Ryldr > 0.

at=as

For a partition policy the above constraint can be written as

/ (R — Rildr + / lty — Raldr > 0. (1)
Ri1€EUr ¢t I™,Ro>Ry Ryelt

The first integral represents exploitation, which is defined as the benefit for
the agent in the event that the principal is informed about both actions, i.e.,
Ry € U, I'. Obviously this integrand is positive. The second integral, the
exploration part, represents the loss in the case where the principal wishes
to explore and agent t is the first agent to try the second action. We show
that in the optimal mechanism this integrand is negative. Alternatively (1)

can be expressed as

/ [RQ — Rl]dﬂ' Z / [Rl — ILLQ]dﬂ' .
R1€EUr <41 ,Ro>Ry Ryiclt
The following lemma shows that it is sufficient to consider the IC of action

Q9.
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Lemma 3 Assume that the recommendation a' = ay to agent t is IC. Then

the recommendation a' = a; is also IC.

Proof: Let K' = {(R1, R2)|a’ = a2} be the event in which the recom-
mendation to agent ¢ is a' = ap. If K' = (), then the lemma follows since
E[R; — R3] > 0. Otherwise K' # () and because the recommendation a’ = ay
is IC we must have E[Rs — R;|K'] > 0. Recall, however, that by assumption
E[Ry — Ry]) <0.

Now, since
E[Ry — Ri] = E[Ry — R1|K"|Pr[K'] + E[Ry — Ri|- K" Pr[-K"'] <0,

it follows that E[Ry — R;|~K"] < 0, which in particular implies that recom-

mending a! = a; is IC in the case of —K". O

3.4 Optimality of the Threshold Policy

Definition 3 A threshold policy is a partition policy in which the sets I' are

ordered intervals. Formally, I? = (—o0,4%], I' = (i*71,4!].

Note that if *=1 = i' then I* = () and agent t never explores.
The following simple claim establishes that in every period, the planner

will undertake as much exploration as the IC condition allows.

Lemma 4 Let M* be an optimal partition policy and assume that in M*
agent t + 1 > 3 explores with some positive probability (i.e., Pr[I'™] > 0).
Then agent t has a tight I1C constraint.

Proof: Assume by way of contradiction that agent ¢ does not have a tight
IC constraint. Then we can “move” part of the exploration of agent ¢ + 1
to agent t, and still satisfy the IC constraint. The average reward will only

increase, since agent t 4 1, rather than exploring in this set of realizations of

15



Ry, will choose the better of the two actions. To be precise, assume that the

IC condition for agent ¢ does not hold with equality. That is,

/ Ry — pldr < / Ry — Rydr @)

Rielt Ri€Ur<tI™,Ra>Ry

Recall that I' consists of those values r; for which agent ¢ is the first to
explore action a; when R; = r;. By assumption we have Pr[I*"!] > 0. Note
that the RHS of (2) does not depend on I*. Therefore, we can find a subset
I C I'*" where Pr[I] > 0 and then replace the set I* with I" = I* U] and
the set I**! with [" = J**1 — ] and still keep the IC' constraint. The only
change is in the expected rewards of agents ¢t and t + 1.

Before the change, the expected sum of rewards of agents ¢ and t + 1,
conditional on Ry € I, was E [R1|R; € I ]+ 115, while the new sum of expected
rewards (again conditional on Ry € I, ) is jio+ E[max{ Ry, Ry}| Ry € I], which
is strictly larger (since the prior is continuous). The IC' constraint of agent
t holds by construction of the set I , while the constraint for agent ¢ + 1
holds because his payoffs from following the recommendation increased since
we removed only exploration. None of the other agents is affected by this
modification. Therefore, we have reached a contradiction to the claim that

the policy is optimal. O

Lemma 5 In the optimal partition policy, agent 2 explores for all values
r1 < py. Formally
22 {ry i < ).

Proof: Assume that policy M’ is a partition policy and let B include the

values of the first action that are below the expectation of the second action,

and are not in 12, i.e.,?

B={ri:r <py r &I}

8Recall that we assume that Pr[R; < o] > 0.

16



If Pr[B] > 0 then a policy M”, which is similar to M’ except that now ['* =
BUI? and I'* = I' — B for t > 3, is a recommendation policy with a higher
expected average reward. Consider the policy M and let B' = BNI* for t >
3. Because M’ is a recommendation policy, agent ¢ finds it optimal to follow
the recommendations and in particular to use action ay when recommended.
Next consider the policy M"” and observe that the incentives of agent t to
follow the recommendation to use action as are stronger now because for
Ry € B! his payoff in M’ is Ry while in M” it is max{R;, Ry}. The agents
t between 3 and T have a stronger incentive to follow the recommendation,
since now in the event of R; € B! we recommend the better of the two
actions rather than a;. Because R; < p, it is immediate that expected
average rewards in M” are higher than in M’. For agent 2 we have only
increased the IC, since E[Ry — R1|R;, € B] > 0. O

The discussion so far allows us to restrict attention to partition policies
in which: (i) once both R; and R, are observed, the policy recommends
the better action, (ii) the IC' constraint is always tight, and (iii) the set
I? D> (—o0, piy]. Next, we argue that we should also require the policy to be
a threshold policy. Note that if a partition policy {17 }]T:Jrzl is not a threshold
policy (up to measure zero events) then there exist indexes t* > ¢! and sets
B! C I""and B? C I'2 such that: sup B? < inf B! and Pr[B'], Pr[B?] > 0.

A useful tool in our proof is an operation we call swap, which changes a

policy M’ to a policy M".

Definition 4 A swap operation is a modification of a partition policy. Given
two agents t; and ty > t, and subsets B! C I, B2 C I where sup B? <
inf BY, swap constructs a new partition policy such that I'"* = I U B2 — B!
and I'* = I"> U B' — B2, while other sets are unchanged, i.e., I" = I* for

t & {t1,ta}.
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Definition 5 We say that a swap is proper if °

/ [ty — Ryldm = / [ty — Ryldm.

R1€B! R1€B2
Lemma 6 The optimal recommendation policy is a threshold policy.

Proof: Let M be a recommendation policy that is not a threshold policy.
Following the discussion above one can construct a proper swap. Let M’ be
the resulting recommendation policy. Consider a proper swap operation.
First we show that the swap does not change the expected reward of agent t;
conditional on a recommendation to choose action as. From the perspective of
agent t;, the change is that in the case where r, € B! the action recommended
to him at M’ is a; rather than the action a, recommended to him at M, and
in the case where r; € B? it is ay (at M’) rather than a; (at M). Since the

swap operation is proper, his IC constraint at M’ can be written as

/ Ry — Ryldr + / g — Ryldr (3)

Ri€Ur<t I7,Ro>Rq Rielta

o [ -Rilar— [y Ridn
R,€B2 R,eB!

= / [RQ — Rl]d’ﬂ' + / [,UQ — Rl]d’ﬂ' Z 0.
R1€Ur<t1[T,R2>R1 Rielt1

Therefore the swap does not change the expected reward of agent t; and M’
satisfies IC for this agent.

Next consider all agents except agents t5 and t;. Observe first that all
agents t < t; and ¢t > t5 do not observe any change in their incentives (and
rewards) and we are left with agents ¢ where t; < t < t;. The expected

rewards of these agents can only increase because the effect of the swap is

9A proper swap always exists when a swap operation exists due to our assumption on
no mass points.
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only on the first integral / [Ry — Ry]dm of the IC constraint (see
Rl €U7—<t17—,R2 >R1
(3)) which increases as a result of the swap because instead of the set U, ;1"

we now have U, ™ U B? — B! and sup B? < inf B

Thus, it is left for us to analyze the incentives and rewards of agent ¢5 (and
only when t, < T) to follow the recommendation to choose action ay. First
observe that if r; € B! U B? then M and M’ are identical, and hence the
only case to consider is when r; € B! U B2?. The expected reward under M

conditional on r; € B' U B? is

m / [Ry — Rydm + / 1ty — Ry]dr |

R1€BY,Ry>R; R1€B?

and the expected reward under M’ is

1
Pr[Bl U BQ] / [RQ - Rl]dﬂ- + / [:u2 - Rl]dﬂ- ;
R1€B2 Roy>R; RieB!

We would like to show that
/ (Ro— Ryldr+ / - Ridr < / [Ro— Ry dr+ / y—Ri]dr.
R1€BY,Ry>Ry R1€B? R1€B2 Ry>Ry Ri1eB!
which is equivalent to showing that (recall that the swap is proper)
/ / [RQ — Rl]dﬂ' < / / [RQ — Rl]dﬂ'.
R1€B! Ro>Ry R1€B2 Ro>Ry

Since (—o0, 5] C I? and inf B! > sup B? we conclude that Pr[B?| > Pr[B'], which
implies the last inequality. This again implies that the /C constraint is sat-

isfied for this agent and that the swap operation increases his rewards.

19



We now show that the proper swap operation increases the expected

payoft. First consider agent ¢;. His net change in expected payoff is

/ Ry — Rildr + / Ry — Roldr = 0,

R1€B2 RieB!

where the equality follows since it is a proper swap. Next consider agents ¢

where t; < t < t5. The net change in expected payoft of agent t is

/ /maX{Rg,Rl}—RldW — / /maX{Rg,Rl}—RldW =

Rie€B2 Ry R1eB! Rs

/ Ry — Ryl dr — / Ry — Ryldr > 0.

R1€B2,Ry>R: R1€B2,Ry>R

The last inequality, similar to (3), follows from the fact that Pr(B?) > Pr(B!)
and that sup(R;|R; € B?) < inf(R;|R; € B') .
Finally, we consider agent t5, where the net change in expected payoffs

is,

/ /max{Rg,Rl}—RQdﬂ — / /max{RQ,Rl}—Rgdw =

R1€B? Ro R1€B! R2
/ / max{ Ry, R1} — Rydn — / / max{ Ry, R1} — Ridn =
R1€B? R3 R1€B! R>
/ Ry — Ry dr — / Ry — Rildr > 0.
R1€B2,Ro>Ry R1€B2, Ry>R;

where the first equality follows from the fact that it is a proper swap, and
the inequality follows as in (3). O

Lemma 6 implies that an optimal policy must be a threshold policy. That
is, the sets {I'},cr are restricted to being sets of intervals. Moreover, the

IC constraint is tight for any agent ¢ < T provided that there is a positive
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probability that agent ¢ + 1 will be asked to explore.
Note that with a finite number of agents there always exist high enough
realizations of R; after which exploration is suboptimal. The next section

solves for the optimal policy that accounts for this effect.

3.5 The Optimal Threshold Policy

Consider first the case where T is infinite. In this case exploration is max-
imized as the planner wishes to explore for any realized value of the first
action, ;. The optimal policy is defined by an increasing sequence of thresh-

olds %% < i3> where for t = 2,

i2,oo

/ [R1 — pyldm = 0.

Ri=—0o0
For t > 2, as long as i < oo, we have

it = sup { i / [Ry — Ry)dm > / [Ry — podm

R1<i*,Ry>R; Ry=it:o0

If i%** = 0o then we define 7¥°>® = oo for all ¢ > t. Note that if 71> < oo

then the above supremum can be replaced with the following equality:

it+1,oo
/ Ry — Raldr — / Ry — pydr. @)
ngit,R2>R1 Ry=it:o®

Consider the case where T is finite. As we shall see, the planner will ask fewer
agents to explore. Consider the ¢t-th agent. The RHS is the expected loss
due to exploration by the current agent. The expected gain in exploitation,
if we explore, is (T'—t) E[max{Ry —r1,0}]. We set the threshold 6, for agent
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t to be the maximum r; for which it is beneficial to explore. Let ; be the
solution to
(T —t)Elmax{Rs — 0;,0}] = 6, — .

When considering agent ¢ there are T'—t+1 agents left; then 0, is the highest
value for which it is still optimal to explore. Note that 6, is increasing in .

Our main result is:

Theorem 7 The optimal policy, M, is defined by the sequence of thresh-
olds

T = min{i">*, 0.}

where T 1s the minimal index for which i > 0,.

Next we argue that even when T is arbitrarily high, exploration is limited
to a bounded number of agents where the bound doesn’t depend on either
the number of agents or the realizations of R; and R,. This implies that the
memory required by the planner to implement the optimal policy is bounded

by a constant.

Theorem 8 Let t* = min{t|i' = oo}; then t* < F1=F2 where

o = / [RQ — Rl]d’ﬂ'
R1<i2,Ro>R;

> Pr[Ry > pi] - Pr[Ry < o] - (E[Ra| Ry = piy] — E[Ri| Ry < pug)) -
Since t* is finite, the principal is able to explore both actions after t* agents.

The proof appears in the appendix but we can provide the intuition here.
Consider (4): the LHS represents the gain agent t expects to receive by
following the recommendation of the principal who has already tested both
alternatives. It is an increasing sequence as the planner becomes better

informed as ¢ increases. This implies that these terms can be bounded from
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below when we consider agent ¢ = 2. The RHS represents the expected loss
the agent expects to experience when he is the first agent to try the second
alternative. The sum of the RHS over all ¢ is py — 5. The proof is based on
these two observations when we sum the LHS and the RHS.

The above theorem has important implications. Consider the first-best
outcome in which the principal can force agents to choose an action. The
above theorem implies that for any 7" the aggregate loss of the optimal mecha-
nism as compared to the first-best outcome is bounded by W As a result

we conclude that:

Corollary 9 AsT goes to infinity the average loss per agent as compared to
the first-best outcome converges to zero at a rate of 1/T. Apart from a finite
number of agents, t*, all other agents are guaranteed to follow the optimal

action.

4 Imperfect Information about Location

In this section we relax the assumption that agents are perfectly informed
about their location in line and study the consequences of this uncertainty.
Indeed, if agents have no information about their location and assign equal
probability to every possible position, then it is easy to see that the planner
can implement the first-best outcome. This is simply because there is no con-
flict of interests between the agent and the planner who wishes to maximize
the utility of the average agent. In what follows we examine an intermedi-
ate case in which agents do not know their exact location but know to which
group of agents they belong location-wise. For example, in the context of the
real-time navigation problem, it is reasonable to assume that while drivers
are not perfectly aware of their exact place in order, they do know whether
it is before, during, or after the rush hour.

Thus, consider a sequence of integers 1 = 7! < 72 < ..7%F = T + 1 such

that if 77 <t < 777! — 1, then agent t believes that his location is uniformly
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distributed between 77and 77! — 1. To simplify the exposition we assume
that the first agent knows his location (i.e., 79 = 2) and therefore always
chooses action one. We assume that this sequence is commonly known and
refer to the set of agents 77 <t < 771 — 1 as block j. Note that when the
number of blocks is 7" we are in the model of Section 2 while when there is
only one block the agents are uninformed and the first best is implementable.

We first argue that our main result of Section 3 also holds in this model
and the planner’s optimal strategy is a recommendation-based threshold pol-
icy. Indeed, the steps leading to the conclusion that the optimal policy is a
partition policy are ezactly the same as in Section 3. Therefore, it suffices
to show that the swap operation, which is the key step in our proof of the
optimality of a threshold policy, is still valid.

Assume that the planner follows a partition policy. Given the information

agents have about their position, their /C' constraint now becomes:

1 It 1
m Zt:ﬂ / [RQ — Rl]d’ﬂ' + / [,u2 — Rl]d’ﬂ' Z 0.

1€Ur<tI™,Ro> Ry Ri€It
(5)

As before, consider a non-threshold partition policy and recall that if a parti-
tion policy { I’ }?:21 is not a threshold policy then there exist indexes t* > ¢!

and sets B! C I**and B? C I* such that

sup B? < inf B' and Pr[B'],Pr[B? >0

| we-ridr = [ - Ridn

R1eB! R1€B?

and

and we can construct a new partition policy M’ such that Ih=1hyp2—pB!
and I™2 = I™2 U B! — B2, while the other sets are unchanged, i.e., I = I*
for t ¢ {t1,t3}. Recall from the proof in Section 3.4 that following a proper
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swap, the terms

/ [Ry — Ry]dr + / 1y — Ridm

Ri€Ur<tI™,Ra>Ry Ryelt

weakly increase for all agents t. This implies that also the term

1 it
pur thq / [Ry — Ry|dm + / 1y — Rydm

1€Ur <t I, Ro>Ry Ryclt

weakly increases. We conclude that the IC constraint remains the same for
some agents and becomes stronger for others and that, following a proper
swap, the sum of agents’ payoffs strictly increases. We thereby conclude that
the optimal policy is a threshold policy, that is, a policy in which the sets I
are ordered intervals I = (i*7!,i']. Next we argue that in a given block only

the first agent explores.

Lemma 10 In the optimal policy, for every block j =1, ..., k, we have I =
(71,07 and I' = & for 79 <t < 191,

Proof: Consider an arbitrary threshold policy and a specific block j.
Suppose we ask only the first agent in the block to explore, and only when
roe (7T

inal policy. Then the aggregate loss from exploration in the IC constraint

, i.e., whenever someone in the block explores in the orig-

(see (5)) remains the same for everyone in the block. However, we improve
the expected payoff from exploitation for all agents. Hence, the IC' becomes
stronger and the expected welfare higher. 0

Note that in the above lemma we may have slack in the IC constraint
and the planner can even induce more exploration from the first agent in the
block. Specifically, we can calculate the optimal threshold i by replacing
(4) with
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/ [Ry — Ry]dm + (777 — 77 — 1) / [Ry — Rydr

R1<i™ ™' Ry>Ry R1<i™ Ry>Ry
L
A

= [ R

Ry=im ™1

The next theorem summarizes the discussion above.

Theorem 11 The optimal policy in the blocks model is given by a sequence
of thresholds {6;} such that only the first agent in block j explores when
1 € (0;-1,0;]. That is action as is recommended to all the other agents only
when it 1s known that Ry > R;.

Finally, we argue that as the information that agents have about their
location becomes coarser, the policy that the planner can implement is closer
to the first best. We define a block structure to be coarser if it is constructed
by joining adjacent blocks. As in the proof of the lemma above, in the optimal
policy only the first agent in this new block explores and he explores for a

bigger set of realizations. Clearly, this results in a more efficient outcome.

Theorem 12 If block structure By is coarser than block structure Bs, then

the optimal policy in By is more efficient.

5 The Stochastic Case

Our main goal in this section is to show that we can essentially extend the
optimal mechanism in the deterministic case to the stochastic model, and
achieve a near optimal expected average reward. The optimal stochastic
mechanism will have thresholds like the optimal deterministic mechanism,

and at the high level we keep the same structure.
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5.1 Model

The stochastic model, like the deterministic model, has a binary set of actions
A = {ay,a3}. There is a prior distribution 7; over all possible distributions
of payoffs for action a;, which is common knowledge. From 7; a distribution
D; is drawn before the process starts, and is unknown. The reward R; of
action a; is drawn independently from the distribution D; for each agent, and
we denote by R! the reward of action a; to agent . The a priori expected

reward of action a; is
My = Eﬂi(ED¢ [RZ])v

and as before we assume w.l.o.g. that p; > p, and that Pr[E[R] < uy] > 0;
otherwise exploration is impossible. For simplicity, we assume that the range
of any realized R; is [0,1]. (However, the result can be extended to many

other settings.)

Note that in the stochastic model there are two sources of uncertainty.
One is the distribution D; that is selected from the prior m;. The second is due
to the variance in the realizations of R! that are drawn from the distribution
D;.

5.2 Threshold Algorithm for the Sstochastic Model

We define a mechanism S for the planner that guarantees near optimal
performance. The parameter of mechanism S is a sequence of thresholds
(01,05, ...). We partition the agents to T'/m blocks of m agents each, where
the i-th block includes agents (i — 1)m + 1 until im. All the agents in each
block will receive an identical recommendation.

To the agents in block 1, the first m agents, S recommends action a;.

Given the realizations, it computes
o= 2SR
1= - 1

27



Note that i, is fixed, and never changes and does not necessarily reflect all
the information that is available to the planner.

For blocks ¢ > 2, mechanism S does the following:

1. If i, € (0;-1,0;], then S recommends action a;. The agents in block

1 will be the first to explore action as. Given the realizations of the
rewards, we set [i, = % Ziz(iq)m 41 R and define apesy = aq if fiy > fiq
and otherwise apes; = ao.

2. If iy < 6;_1 then S recommends action apes;.

3. If i; > 0; then S recommends action a;.

5.3 Setting the Thresholds

As before, the planner needs to balance exploration and exploitation to guar-
antee the IC constraint. First, we set 05, for block 7 = 2, as the solution to

the following equality:
0= E[R: — Rilily < 0],

Then, consider the expected loss, assuming that block ¢ > 3 was the first to

explore action a,.
LOSS(QZ‘,l, (9@) = E[Rl - Rg‘ﬂl € (‘92‘,1, 92]] Pr[ﬂl € (‘91',1, (9@]]

Next we consider the expected gain, assuming that action a, was already

sampled and that apes = ao.

Gain(0;,—1) = E[Ry — Riljty < 0i_1, Gpest = a2] Pr[fiy < 01, apest = as).
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We set 0, , inductively. After we set 0, for j < i, we set 0; o, such that
Gain(0;-1.00) = L0ss(0;-1.000:.0). Let ¢; be the solution to

(T — mi)Ep,[max{E[Ry] — ¢;,0}] = (¢; — puy)m.

We set the threshold to be ; = min{/;,0; ~ }.

5.4 Analysis

The following theorem establishes that as the number of agents 7" increases,
the average loss per agent goes to zero, as compared to the case where the
planner knows the distributions of payoffs. Note that this represents a better
performance than that of a planner who is not subject to the IC constraint
as there is no need for explorations. The following theorem establishes the

near optimal performance of S.

Theorem 13 The mechanism S is IC and, when we set m = T?3InT, it

has an average expected reward of at least

InT

EDl’DZ [maX{ERlNDl [Rl]’ ER2~D2 [32]}] - Oma

where the constant C' depends only on w1 and 5.

The theorem follows from the observation that, by the Hoeffding inequal-
ity, |f1; — E[R;]| > A with probability at most § < 2e~2’™, For A\ = T—1/3,
since m = T?/3InT, we have § < 27~2. This implies that we have three
sources of loss as compared with always playing the better actiom. The first
source of loss is due to the exploration, which spans a constant number of
[ blocks, and depend only on the priors. Since each block is of size m this
contributes at most Sm/T to the average loss. The second source of loss
is the fact that E[R;] is only approximated; this loss is at most A = T —1/3
per agent. Finally, there is a small probability ¢ < 27-2 that our estimates
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are incorrect which contributes at most 7! to the expected loss per agent.
Summing the three sources of loss yields the above theorem. A formal proof
is available in the working paper version that can be found on our personal

websites.

6 Concluding Remarks: Monetary Transfers

We have focused on mechanisms in which the planner is not allowed to use
monetary transfers. An interesting extension is to consider the case where
the planner can use cash to provide incentives to agents to explore. It is
straightforward that in our setup the planner will exercise this option only
with the second agent and leave the mechanism intact for all other agents.
Thus, if the planner has a large enough budget, then he can obtain the
first-best by convincing the second agent (or even the first agent) to explore
whenever this is required by the first-best. Otherwise, then all the planner’s
resources should be used to increase the set I? in which agent 2 explores.
This also holds in the more realistic case where the budget is raised through

taxation and taxation distorts efficiency.
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A Appendix

Detailed calculation of the example: When calculating the benefit from
choosing the second alternative, agent three considers two cases:

I: Ry < 1,Ry > Ry : In this case the third agent is certain that the
second alternative has already been tested by the second agent and was found
to be optimal; this implies that Ry > —1. When computing the expected
gain conditional on this event, one can divide it into two sub-cases: [, :
Ry > 1,1, : Ry € [—1,1]. The probability of these two events (conditional on

case [) are

PI‘(RQ > 1,R1 < 1,R2 > Rl)
PI‘(RQ > 1,R1 < 1,R2 > Rl) + PI‘(RQ € [—1, 1],R1 < 1,R2 > Rl)
0.4%1/3

0.4%1/3+02%1/3%1/2

Pr(L|I) =

Pr(I,|I) = 1 — Pr(L|I) = 0.2.

The gain conditional on (I,) is: F(R2 — Ri|l,) = E(Rz]Ry > 1) —
E(R1|R; < 1) =3 —0 = 3. The gain conditional on I, is E(Ry — Ry|I},) =
E(Ry — Ry1|R1, Re € [-1,1], Ry > R;) = 2/3. Hence, the gain conditional on
I is given by:

0.8%3+02x2/3 38
0.840.2 15

E(R2 - Rl‘I) -

The relative gain from following the recommendation when we multiply
by the probability of I is

2 38

IT:1 < R; <1+z: Conditional on this case our agent is the first to test
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the second alternative. The expected loss conditional on this event is

L+ (1+a) 2+

When we multiply this by the probability of this event we get

€T *2+:L°_:c
24 2 2

Pr(I1) * E(Ry — Ry |I1) =

Equating the gain and the loss yields x = 2.23. This implies that if the
second action is recommended to agent ¢ = 3 when I : Ry < 1 and the planner
has learned that the second action is optimal or when /7 : 1 < Ry < 3.23,
then agent ¢ = 3 will follow the recommendation.

Proof of Theorem 8: Given our characterization it is sufficient to focus

on the case where 7' = co. Consider the summation of the RHS in (4):

141,00 it,00
Z / [Ry — po)dm = hm / [Ry — ps)d
Rl—'lt oo Rl =12,00

Z'2,oo
Since [ [Ri — py)dm = 0 and since [ [Ry — p,]dr is increasing in x
Ri=—0o0 Ri<x
we conclude that

Zt+1 oo
Z / [Ry — poldm < zhm [Ry — poldm = py — pus.
t= 2R1 =it,00 Ri<zx

Looking at the summation of the LHS
Z / [Ry — Ry)dr
=2 Ry <iv Ra> Ry

we note that / [Ry — Ry]dm is increasing in x. The fact that i; is
Ri<z,Re>R;
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increasing in ¢ implies that if we let

Q
Il

/ Ry — Ryldr

R1<i2,Ro >Ry

we then have

o< / Ry — Ryldr.

Ry <it,Ro>Ra

Hence, this sum can be bounded from below by ¢*«, which implies the claim.
O
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