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Abstract

We model a decision maker who anticipates being affected by temptation
but is also uncertain about what is normatively best. Our model is an extended
version of Gul and Pesendorfer’s (2001) where there are three time periods: in
the ex-ante period the agent chooses a set of menus, in the interim period she
chooses a menu from this set, and in the final period she chooses from the menu.
We posit axioms from the ex-ante perspective. Our main axiom on preference
states that the agent prefers to have the option to commit in the interim period.
Our representation is a generalization of Dekel et al.’s (2009) and identifies
the agent’s multiple normative preferences and multiple temptations. We also
characterize the uncertain normative preference analogue to the representation
in Stovall (2010). Finally, we characterize the special case where normative
preference is not uncertain. This special case allows us to uniquely identify the
representations of Dekel et al. (2009) and Stovall (2010).

1 Introduction

We model a decision maker who anticipates being affected by temptation but is also
uncertain about what is normatively best.

Consider an agent who wants to make a healthy choice for dinner but is afraid she
will be tempted to choose an unhealthy choice. However, she is uncertain about what
is healthiest because of conflicting information from health studies she has read.

Or consider a parent who must make some choices about her young child’s fu-
ture. She wants to provide him with enriching activities that will help develop some
untapped talent (e.g. sports, music lessons, art classes), but she doesn’t know what
he will enjoy or be good at. In addition the parent wants to provide some disci-
pline because she is afraid the child will be tempted to pursue other (less worthwhile)
activities.

∗I thank Peter Hammond, Takashi Hayashi, Jawwad Noor, and seminar participants at the
University of Warwick for comments.
†Email: J.Stovall@warwick.ac.uk
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What behavior would characterize an agent like those described above? In the
standard approach where the agent has a preference over menus (i.e. sets of alterna-
tives), there is some tension between the two phenomena. Uncertainty about future
preferences induces a preference for expanding the menu. However the possibility of
future temptation induces a preference for restricting the menu. Though such pref-
erences are not mutually exclusive in this setting, there are problems identifying the
different normative and temptation preferences. We discuss this in more detail in
Section 2.

In order to separate and identify the effect on preferences of these two phenomena,
we consider the expanded domain of preference over sets of menus, which we call
neighborhoods. We think of a neighborhood as representing a choice problem over
three periods. In the ex-ante period the agent chooses a neighborhood, in the interim
period she chooses a menu from the neighborhood, and in the final period she chooses
from the menu. This domain has been used by Kopylov (2009b) to generalize the
seminal work of Gul and Pesendorfer (2001) and by Kopylov and Noor (2010) to
model self-deception.

Our first main axiom on preference, Option to Commit, states that the agent
prefers to have the option to commit in the interim period. Thus the agent prefers to
defer commitment until just before temptation hits. Our second main axiom, Interim
Negative Set Betweenness, roughly states that if the agent has a strict preference for
the option to commit to a menu, then she thinks the menu is best in some (subjective)
state. We provide representations which are analogues to those in Dekel, Lipman,
and Rustichini (2009) (henceforth DLR) and Stovall (2010), but where the normative
preference is uncertain.

The addition of uncertain normative preference to these models should be impor-
tant to applications. For example, Amador et al. (2006) study a consumption-savings
model where the agent values both commitment and flexibility. One of their mod-
els is in fact an uncertain normative version of Stovall’s representation where the
agent receives a taste shock to his normative preference and is also uncertain about
the strength of temptation to consume rather than save. Thus we provide here an
axiomatic foundation to preferences used in their model.

Additionally, we consider the special case where the normative preference is not
uncertain. This allows us to uniquely identify all components of DLR’s and Stovall’s
original representations, something which is not possible in the standard domain.

Recent work by Ahn and Sarver (2013) suggests an alternative approach to identi-
fying the representations of DLR and Stovall. Ahn and Sarver consider a two-period
model where both ex ante preference over menus and ex post (random) choice from
the menu is observed. They ask what joint conditions on ex ante preference and ex
post choice imply that the anticipated choice from a menu is the same as the actual
choice from the menu. One implication of their result is that with both sets of data
(ex ante preference over menus and ex post choice), one is able to uniquely identify
the agent’s subjective beliefs and state-dependent utilities. Though they do not con-
sider ex ante preferences affected by temptation, Ahn and Sarver’s approach suggests
that ex post choice data may be useful in identifying the representations of DLR and
Stovall. While this may be possible, the present work shows that identification is
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possible using just ex ante preference.
Related to this discussion is recent work by Dekel and Lipman (2012). They dis-

cuss a representation which they call a random Strotz representation. One thing they
show is that every preference which has Stovall’s representation also has a random
Strotz representation. Additionally, they show that these representations imply dif-
ferent choice from a menu. Thus these two representations cannot be differentiated
by ex ante preference but they can be by ex post choice. Similar results would apply
here.

In the next section we discuss the model and the reasons for the expanded domain
in more detail. The main axioms and results are presented in Section 3. Section 4
considers the case where normative preference is constant and the identification of
the representation which it allows. Proofs are collected in the appendix.

2 Model

Let ∆ denote the set of probability distributions over a finite set, and call β ∈ ∆ an
alternative. LetM denote the set of closed, non-empty subsets of ∆, and call x ∈M
a menu. Let N denote the set of closed, non-empty subsets ofM, and call X ∈ N a
neighborhood. Throughout, we will use α, β, . . . to denote elements of ∆, x, y, . . . to
denote elements of M, and X, Y, . . . to denote elements of N .

We think of a neighborhood as representing a choice problem over three time
periods: the ex ante period where she chooses a neighborhood X, the interim period
where she chooses a menu x ∈ X, and the ex post period where she chooses an
alternative β ∈ x.

Our primitive is a binary relation � over N that represents the agent’s ex ante
preferences. We do not model choice in the interim or ex post periods explicitly.
However, the agent’s ex ante preferences will obviously be affected by her (subjective)
expectations of her future preferences and temptations.

The time line we envision is the following: When choosing a neighborhood in
the ex ante period, the agent is in a “cold” state, meaning she is not affected by
temptation. She expects to be in a cold state in the interim as well. But in the ex
post period, she expects to be in a “hot” state. She is also uncertain about what her
normative preferences and temptations will be, but expects that uncertainty to be
resolved in the interim period.

            

  

cold state 

subjective uncertainty 

 

 

hot state 

 

 

cold state 

uncertainty resolved 

 

As most of the literature posits preference over the domain of menus M, we now
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explain why this is not adequate to model our agent. We begin with some definitions.
We say that U :M→ R is a Stovall temptation (TS) representation if

U(x) =
I∑
i=1

qi

{
max
β∈x

[u(β) + vi(β)]−max
β∈x

vi(β)

}
where qi > 0 for all i,

∑
I qi = 1, and u and each vi are expected-utility (EU) functions.

The interpretation of this representation is that u is the agent’s normative preference
(it represents her preference over singleton menus, which are commitments), each vi
is a temptation, and qi is the probability the agent assigns to temptation i being
realized later. A version of this representation in which the normative preference
varied across states would capture the idea that the agent is uncertain about her
normative preferences.

We say that U :M→ R is a DLR temptation (TDLR) representation if

U(x) =
I∑
i=1

qi

{
max
β∈x

[
u(β) +

Ji∑
j=1

vij(β)

]
−

Ji∑
j=1

max
β∈x

vij(β)

}

where qi > 0 for all i,
∑

I qi = 1, and u and each vij are EU functions. Here each
state i has multiple temptations which might affect the agent. Note that the TS

representation is a special case of the TDLR representation.
We say that U :M→ R is a finite additive EU representation if

U(x) =
K∑
k=1

max
β∈x

wk(β)−
J∑
j=1

max
β∈x

vj(β) (1)

where each wk and each vj is an EU function.1 Observe that both the TS and TDLR

representations are special cases of (1).
We now show that any finite additive EU representation can be written as an

uncertain normative version of the TS representation. Start with a representation of
the form (1). For every k, choose arbitrary ak1, ak2, . . . , akJ such that akj ≥ 0 for
every j and

∑
J akj = 1. Similarly, for every j, choose arbitrary b1j, b2j, . . . , bKj such

that bkj ≥ 0 for every k and
∑

K bkj = 1. Also, set I ≡ KJ and let ι : K × J → I
be any bijection. Finally, for every i, set ui ≡ akjwk − bkjvj and v̂i ≡ bkjvj where
i = ι(k, j). Then we can rewrite (1) as

U(x) =
I∑
i=1

{
max
β∈x

[ui(β) + v̂i(β)]−max
β∈x

v̂i(β)

}
which is an uncertain normative version of the TS representation with equal proba-
bilities on each state i.

DLR showed a similar result for an uncertain normative version of the TDLR

representation. Hence there is no behavioral distinction (in the domain M) between

1See DLR for a characterization of the finite additive EU representation. Also, Dekel et al. (2001,
2007) study a broader class of preferences of which this finite additive version is a special case.
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an uncertain normative version of the TS representation, an uncertain normative
version of the TDLR representation, and the finite additive EU representation. In
addition, as is evident from the construction above, the ui’s are not identified and
thus cannot be interpreted as representing the agent’s various normative preferences.

As the results in the next section show, we are able to (essentially) uniquely
identify the agent’s various normative preferences and temptations when we expand
the choice domain to N .

3 Main Results

We begin with a set of axioms which are (arguably) independent of the issues of
temptation: versions of Dekel et al.’s (2001) key axioms appropriately modified for
this domain.2

DLR Axioms. � satisfies Order, Continuity, Independence, and Finiteness.

See the appendix for complete definitions for our setting. Our next axiom is a
modification of the monotonicity axiom introduced by Kreps (1979).

Ex-ante Monotonicity. If X ⊂ Y , then Y � X.

When an agent is uncertain what her future preferences will be, then she will desire
flexibility by preferring larger choice sets. However note that Ex-ante Monotonicity
only imposes this preference for flexibility on neighborhoods and not on the menus
which make up the neighborhoods. Thus the agent values flexibility only between the
ex-ante and interim periods. Since in our model the uncertainty is resolved in the
interim period, flexibility per se is not valued after that.

We now introduce our first main axiom concerning temptation. It says that the
agent values commitment between the interim and ex-post period.

Option to Commit. For every x, y, and X, {x, y} ∪X � {x ∪ y} ∪X.

Because of Ex-ante Monotonicity, the agent does not value commitment in the
ex-ante period. However Option to Commit says that she does want to be able to
commit in the interim period. Most importantly, Option to Commit does not put too
much restriction on preferences to preclude uncertainty about normative preference.
Consider the following example:

Example 1 Consider the diet example from the introduction. The agent wants to
choose the healthiest meal to eat. However, even though she is indifferent right now
between committing to steak and committing to pasta (i.e. {{s}} ∼ {{p}}), this
is because she does not know which one will be healthier for her. If low fat diets
are healthier, then she will want to choose pasta. However if high protein diets are
healthier, then she will want to choose steak. In addition, she is afraid that no matter

2Order, Continuity, and Independence are discussed in Dekel et al. (2001) for the domainM, and
in Kopylov (2009b) for the domain N . See Noor and Takeoka (2010, 2011) for arguments against
Independence in a temptation setting. Finiteness is discussed in DLR and Kopylov (2009a).
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which one is healthier, she will be tempted to choose the other. She also knows that
a study will be published tomorrow morning concerning what diet is healthier. Thus
she has the preference {{s}, {p}} � {{s, p}} because the former neighborhood gives
her the option to commit after finding out which diet is healthier but before she enters
the restaurant and is tempted, while the latter neighborhood does not allow her to
commit to the (unknown) healthier option and instead guarantees she will experience
temptation.

Thus Option to Commit is consistent with an agent who thinks that an option
might be normatively best in one state but tempting in another.

Our first representation takes the following form:3

Definition 1 An uncertain normative DLR temptation (UNTDLR) representation of
� is a tuple

〈
I, {〈ui, Ji, {vij}Ji〉}I

〉
where

1. I ∈ N0,

2. for every i = 1, . . . , I, 〈ui, Ji, {vij}Ji〉 is a tuple where

i. ui is an EU function,

ii. Ji ∈ N0, and

iii. for every j = 1, . . . , Ji, vij is an EU function,

such that the function

U(X) =
I∑
i=1

max
x∈X

{
max
β∈x

[
ui(β) +

Ji∑
j=1

vij(β)

]
−

Ji∑
j=1

max
β∈x

vij(β)

}
represents �.

The interpretation of this representation follows that given earlier: There are I
subjective states. In state i, the normative preference is ui while the vij’s are the
temptations. For a fixed menu x ∈ X, the agent chooses the alternative in x which
maximizes ui +

∑
vij but experiences the disutility

∑
Ji

maxβ∈x vij(β), which is the
forgone utility from the most tempting alternatives (in state i). For each state i, she
chooses a possibly different menu from X which maximizes state i’s indirect utility
and sums across all states to get the total utility for X.

Note that the UNTDLR representation is the uncertain normative analogue to the
TDLR representation. One key difference is that the UNTDLR representation does not
have probabilities associated with the states i. This is because such probabilities can
not be identified due to the fact that the normative preferences ui vary across states.
We will see later that such probabilities can be identified when normative utility is
constant across states.

We now state the first representation result. See the appendix for the definition
of a minimal representation.4

3Some notation: N0 denotes the natural numbers with 0. For N ∈ N0, we use {An}N to denote
the finite indexed family {An}n∈{1,...,N}. If N = 0, then {1, . . . , N} is the empty set and statements
like “for n = 1, . . . , N , we have . . . ” are vacuous.

4Intuitively, a minimal representation is one that has had all possible redundancies removed.
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Theorem 1 � satisfies the DLR axioms, Ex-ante Monotonicity, and Option to Com-
mit if and only if � has a minimal UNTDLR representation.

Moreover, the representation is essentially unique. I.e. if
〈
In,
{〈
uni , J

n
i , {vnij}Jni

〉}
In

〉
,

n = 1, 2, are both minimal UNTDLR representations of �, then:

1. I1 = I2(≡ I);

2. there exist π a permutation on {1, . . . , I} and scalars a > 0 and b1, . . . , bI such
that for every i

(a) J1
i = J2

π(i)(≡ Ji), and

(b) u1
i = au2

π(i) + bi; and

3. for every i, there exists µi a permutation on {1, . . . , Ji} and scalars ci1, . . . , ciJi
such that v1

ij = av2
π(i)µi(j)

+ cij for every j = 1, . . . , Ji.

One problem with the previous representation is that it allows preferences which
are arguably not purely temptation driven. Consider the following example.5

Example 2 Suppose

{{α}} ∼ {{β}} ∼ {{α}, {β}} � {{α, β}}.

Since {{α}} ∼ {{α}, {β}}, this suggests that there is no state in which the agent
thinks β is strictly normatively better than α. Similarly, {{β}} ∼ {{α}, {β}} suggests
that there is no state in which the agent thinks α is strictly normatively better than
β. Hence the agent thinks α and β are normatively the same across all possible
states. However the strict preference for the option to commit {{α}, {β}} � {{α, β}}
suggests that the agent expects one to tempt the other. How can one option tempt the
other if they are normatively the same across all states?

The previous example is consistent with Option to Commit, but not our next
axiom.6,7

Interim Negative Set Betweenness. If {x, x ∪ y} ∪ X � {x ∪ y} ∪ X, then
{x, y} ∪X � {y} ∪X.

Interim Negative Set Betweenness says that if the agent strictly prefers to have
the option to commit to x over x ∪ y, then that must be because she thinks x might
be better than y.

The next representation takes the following form:

5Stovall provides a similar example in the preference-over-menus domain.
6This axiom is based on one introduced by DLR: a preference � on M satisfies Negative Set

Betweenness if x � y implies x ∪ y � y. Negative Set Betweenness can be thought of as one half of
Gul and Pesendorfer’s (2001) Set Betweenness axiom.

7The example is inconsistent with Interim Negative Set Betweenness, Ex-ante Monotonicity, and
Transitivity. Note that Ex-ante Monotonicity implies {{α}, {α, β}} � {{α}}. Transitivity then
implies {{α}, {α, β}} � {{α, β}}. But then Interim Set Betweenness is violated since {{α}, {β}} ∼
{{β}}.
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Definition 2 An uncertain normative Stovall temptation (UNTS) representation of
� is a tuple 〈I, {ui}I , {vi}I〉 where

1. I ∈ N0, and

2. for every i = 1, . . . , I, ui and vi are EU functions,

such that the function

U(X) =
I∑
i=1

max
x∈X

{
max
β∈x

[ui(β) + vi(β)]−max
β∈x

vi(β)

}
represents �.

Note that this is the uncertain normative analogue to the TS representation. Also
note that it is a special case of the UNTDLR representation but with each Ji = 1.

Theorem 2 � satisfies the DLR axioms, Ex-ante Monotonicity, Option to Commit,
and Interim Negative Set Betweenness if and only if � is represented by a minimal
UNTS representation.

Moreover, the representation is essentially unique. I.e. if 〈In, {uni }In , {vni }In〉,
n = 1, 2, are both minimal UNTS representations of �, then:

1. I1 = I2(≡ I); and

2. there exist π a permutation on {1, . . . , I} and scalars a > 0 and b1, . . . , bI , c1, . . . , cI
such that for every i, u1

i = au2
π(i) + bi and v1

i = av2
π(i) + ci.

4 Constant Normative Preference

We now focus on the special case when there is no uncertainty about normative
preference. This will allow us to give alternative characterizations of the TDLR and
TS representations, but in the choice domain N . Since characterizations of these
representations have already been given in the domain M, one may wonder why
this is needed. The reason is that important parts of these representations are not
identified. Specifically, the subjective state space is not identified, which means that
the way the various temptations are assigned to states and the probabilities associated
with each state are not identified either. By expanding preferences to the domain N ,
we are able to (essentially) uniquely identify all parts of these representations.

To see why identification is important, consider the following example.

Example 3 Suppose there are three final outcomes, and let w1 = (2, 2,−4), w2 =
(1, 2,−3), v1 = (−1, 2,−1), and v2 = (−2, 2, 0) be vectors representing EU functions
over ∆. Suppose � is a preference overM and has a finite additive EU representation

U(x) =
2∑

k=1

max
β∈x

wk(β)−
2∑
j=1

max
β∈x

vj(β).
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Then � can be written as two different TS representations:

U(x) =
1

2

{
max
β∈x

[u(β) + v̂1(β)]−max
β∈x

v̂1(β)

}
+

1

2

{
max
β∈x

[u(β) + v̂2(β)]−max
β∈x

v̂2(β)

}
where u = w1 + w2 − v1 − v2 = (6, 0,−6), v̂1 = 2v1, and v̂2 = 2v2; and

U(x) =
1

3

{
max
β∈x

[u(β) + v̄1(β)]−max
β∈x

v̄1(β)

}
+

2

3

{
max
β∈x

[u(β) + v̄2(β)]−max
β∈x

v̄2(β)

}
where u is as above, v̄1 = 3v1, and v̄2 = 3

2
v2.

Recall that for the TS representation, the interpretation is that u+vi represents the
choice preference in state i, and qi represents the probability state i is realized. Hence
the first representation suggests that the maximizer of u+ v̂1 = 2w1 is chosen 1/2 of
the time, while the second representation suggests that the maximizer of u+ v̄2 = 3

2
w1

is chosen 2/3 of the time. But since u + v̂1 and u + v̄2 are cardinally equivalent,
they represent the same preference over ∆. This means that the two representations
suggest different (random) choice from menus even though they represent the same
preference over menus.

So we now consider an axiom which imposes normative preference to be constant
across states. This means that normative utility can be normalized across states, and
thus the subjective probabilities can be identified.

Constant Normative Preference. For every α and β, either {{α}, {β}} ∼ {{α}}
or {{α}, {β}} ∼ {{β}} (or both).

Consider the neighborhood {{α}, {β}}. Since both {α} and {β} are singleton
menus, temptation is not an issue for the agent. (She can commit in the interim
to either α or β.) If the agent was uncertain whether α or β was normatively best,
then both {{α}, {β}} � {{α}} and {{α}, {β}} � {{β}} would be true. Constant
Normative Preference rules out such cases.

Constant Normative Preference is obviously necessary for the following represen-
tations:

Definition 3 A constant normative DLR temptation (CNTDLR) representation of
� is a tuple

〈
I, u, {qi}I , {〈Ji, {vij}Ji〉}I

〉
where

1. I ∈ N0,

2. u is an EU function,

3. qi > 0 for every i = 1, . . . , I and
∑

I qi = 1,

4. for every i = 1, . . . , I, 〈Ji, {vij}Ji〉 is a tuple where

(a) Ji ∈ N0, and

(b) for every j = 1, . . . , Ji, vij is an EU function,

9



such that the function

U(X) =
I∑
i=1

qi max
x∈X

{
max
β∈x

[
u(β) +

Ji∑
j=1

vij(β)

]
−

Ji∑
j=1

max
β∈x

vij(β)

}
represents �.

Definition 4 A constant normative Stovall temptation (CNTS) representation of �
is a tuple 〈I, u, {qi}I , {vi}I〉 where

1. I ∈ N0,

2. u is an EU function,

3. qi > 0 for every i = 1, . . . , I and
∑
qi = 1, and

4. for every i = 1, . . . , I, vi is an EU function,

such that the function

U(X) =
I∑
i=1

qi max
x∈X

{
max
β∈x

[u(β) + vi(β)]−max
β∈x

vi(β)

}
represents �.

With our other axioms, Constant Normative Preference is also sufficient for a
CNTS representation.

Theorem 3 � satisfies the DLR axioms, Ex-ante Monotonicity, Option to Commit,
Interim Negative Set Betweenness, and Constant Normative Preference if and only if
� is represented by a minimal CNTS representation.

Moreover, the representation is essentially unique. I.e. if 〈In, un, {qni }In , {vni }In〉,
n = 1, 2, are both minimal CNTS representations of �, then:

1. I1 = I2(≡ I);

2. there exists scalars a > 0 and b such that u1 = au2 + b; and

3. there exists π a permutation on {1, . . . , I} and scalars c1, . . . , cI such that for
every i, q1

i = q2
π(i) and v1

i = av2
π(i) + ci.

However, adding Constant Normative Preference to the list of axioms in Theorem
1 is not sufficient to obtain a CNTDLR representation. To see this, note that the
representation

U(X) =
Î∑
i=1

qi max
x∈X

{
max
β∈x

[
u(β) +

Ji∑
j=1

vij(β)

]
−

Ji∑
j=1

max
β∈x

vij(β)

}

+
I∑

i=Î+1

max
x∈X

{
max
β∈x

[
Ji∑
j=1

vij(β)

]
−

Ji∑
j=1

max
β∈x

vij(β)

}
(2)
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would satisfy Constant Normative Preference but it does not in general have a
CNTDLR representation.8

So consider the following strengthening of Constant Normative Preference.

Monotonicity of Commitments. If {{α}} ∪ X � X and {{β}} � {{α}}, then
{{β}, {α}} ∪X � {{α}} ∪X.

Consider the statement {{α}} ∪X � X. Since {{α}} represents commitment to
the alternative α, this is saying that commitment to α improves the neighborhood
X. If commitment to α improves the neighborhood X, then any commitment strictly
better than α must improve the neighborhood {{α}} ∪X. This is the content of the
axiom.

It is not hard to show that Monotonicity of Commitments implies Constant Nor-
mative Preference.

Lemma 1 If � satisfies Monotonicity of Commitments and Continuity, then � sat-
isfies Constant Normative Preference.

Proof. Suppose {{β}} � {{α}}. Then if we also had {{α}, {β}} � {{β}}, Mono-
tonicity of Commitments would imply {{α}, {β}} � {{α}, {β}} (taking X = {{β}}),
a contradiction. Hence if {{β}} � {{α}}, then we must have {{α}, {β}} ∼ {{β}}.
Similarly, if {{α}} � {{β}}, then we must have {{α}, {β}} ∼ {{α}}. Continuity
guarantees that if {{α}} ∼ {{β}}, then we must have {{α}, {β}} ∼ {{α}} ∼ {{β}}.
Hence, no matter how {{α}} and {{β}} are ranked, Constant Normative Preference
holds.

Returning to the representation in equation (2), note that if Î = 0, then such a
representation would trivially satisfy Monotonicity of Commitments as the commit-
ment preference would be constant. One could write this representation as a CNTDLR

representation by simply defining u to be the constant function 0, but then the prob-
abilities qi would not be identified. To rule out such a case, we include the following
non-triviality axiom.

Conditional Non-triviality. If there exist X and Y such that X � Y , then there
exist α and β such that {{α}} � {{β}}.

Note that we would not want to impose Conditional Non-triviality in the case of
uncertain normative preference. Returning to Example 1, we had {{s}} ∼ {{p}} yet
{{s}, {p}} � {{s, p}} as the agent was uncertain which dish would be healthiest and
which would tempt.

Theorem 4 � satisfies the DLR axioms, Ex-ante Monotonicity, Option to Commit,
Monotonicity of Commitments, and Conditional Non-triviality if and only if � is
represented by a minimal CNTDLR representation with a non-constant commitment
preference.

8Indeed this set of axioms characterizes this representation. (This result follows directly from
Lemma 6.) Note also that this representation is the analogue to what DLR call a weak temptation
representation.
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Moreover, the representation is essentially unique. I.e. if
〈
In, un, {qni }In ,

{〈
Jni , {vnij}Jni

〉}
In

〉
,

n = 1, 2, are both minimal CNTDLR representations with a non-constant commitment
preference and both represent �, then:

1. I1 = I2(≡ I);

2. there exist scalars a > 0 and b such that u1 = au2 + b;

3. there exists π a permutation on {1, . . . , I} such that q1
i = q2

π(i) and J1
i = J2

π(i)(≡
Ji) for every i; and

4. for every i, there exist µi a permutation on {1, . . . , Ji} and scalars ci1, . . . , ciJi
such that v1

ij = av2
π(i)µi(j)

+ cij for every j = 1, . . . , Ji.

One interesting aspect of this last theorem is that we are able to obtain DLR’s
representation without a technical axiom like their Approximate Improvements Are
Chosen (AIC). The intuition behind AIC is complicated and relies on considering
the closure of the set of improvements of a menu. (An improvement of a menu is
simply an alternative that, when added to the menu, improves that menu.) Though
our domain is certainly more complicated than the one used by DLR, the axioms
imposed are much more intuitive than AIC.
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Appendix

A Preliminaries

In what follows, we will abuse some notation: We use the cardinality of a set to also
denote the set itself. Thus we will write i ∈ I instead of i ∈ {1, . . . , I}, etc. We will
identify an EU function with its corresponding vector in Euclidean space consisting
of utilities of pure outcomes, e.g. u(β) = u · β. We will identify a finite additive EU
representation U of the form given in equation (1) with the tuple 〈K, J, {wk}K , {vj}J〉,
where K and J are finite, and each wk and vj is an EU function. If such is the case
then we will alternatively write U = 〈K, J, {wk}K , {vj}J〉.

Throughout, we use 0 and 1 to represent the vectors of 0’s and 1’s respectively.
Note that if the vector w satisfies w ·1 = 0 and if β is in the interior of ∆, then β+εw
is also a lottery for small enough ε.

We use the usual metric over ∆. We endow M with the Hausdorff topology and
define the mixture of two menus x, y ∈M as

λx+ (1− λ)y ≡ {λβ + (1− λ)β′ : β ∈ x, β′ ∈ y}

for λ ∈ [0, 1].
Similarly, we endow N with the Hausdorff topology and define the mixture of two

neighborhoods X, Y ∈ N as

λX + (1− λ)Y ≡ {λx+ (1− λ)y : x ∈ X, y ∈ Y }

for λ ∈ [0, 1].
The following are the standard von Neumann–Morgenstern axioms modified for

this domain.

Order. � is complete and transitive.

Continuity. The sets {X : X � Y } and {X : Y � X} are closed.

Independence. If X � Y , then for Z ∈ N and λ ∈ (0, 1],

λX + (1− λ)Z � λY + (1− λ)Z.

Now we introduce our finiteness axiom. Before we state the axiom, we need some
definitions.

Definition 5 Y ⊂ X is critical for X if if for all Y ′ where Y ⊂ Y ′ ⊂ X, we have
Y ′ ∼ X.

Note that every neighborhood is critical for itself.

Definition 6 y is critical for x ∈ X if for all y′ where y ⊂ y′ ⊂ x, we have (X \
{x}) ∪ {y′} ∼ X.

13



Note that every menu is critical for itself in any neighborhood.

Finiteness. There exists N ∈ N such that for every neighborhood X: (i) there exists
Y critical for X where |Y | < N , and (ii) for every menu x ∈ X, there exists y critical
for x ∈ X where |y| < N .

Lemma 2 Finiteness implies Kopylov’s (2009a) Finiteness.

Proof. By way of contradiction, suppose not. Then there exists X1, . . . , XN such
that

⋃
n∈N Xn ≡ Xσ 6∼ X−m ≡

⋃
n∈N\{m}Xn for every m ∈ N . By Finiteness, there

exists Y critical for Xσ such that |Y | < N . But this implies that there exists m∗ such
that Y ⊂ X−m∗ . (If not, then |Y | ≥ N .) But since Y is critical for Xσ and since
X−m∗ ⊂ Xσ, we have X−m∗ ∼ Xσ, a contradiction.

The following representation will serve as a foundation for all subsequent repre-
sentations. Let U : N → R take the form

U(X) =
I∑
i=1

max
x∈X

Ui(x), (3)

where each Ui is a finite additive EU representation. Identify this representation
with the tuple 〈I, {Ui}I〉, where I is finite and Ui = 〈Ki, Ji, {wik}K , {vij}J〉 is a finite
additive EU representation for each i.

Before characterizing this representation, the following definitions will be useful for
the uniqueness results. Let L be the set of all continuous linear functions f : L→ R,
where L is a linear space. By the Mixture Space Theorem (Herstein and Milnor,
1953), f, g ∈ L represent the same ordering over L if and only if there exists a > 0
and b ∈ R such that f = ag + b. We say an indexed family of linear functions {fi}I
is redundant if there exists a constant function in this set, or if there exist i, j ∈ I
where i 6= j such that fi and fj represent the same ordering over L. For any f, g ∈ L
and a > 0, we write f ./a g if there exists b ∈ R such that f = ag+ b. More generally,
for any two indexed families of linear functions with the same index set {fi}I , {gi}I ,
and for any a > 0, we write (abusing notation)

{fi}I ./a {gi}I

if there exists a permutation π over I such that fi ./a gπ(i) for every i.
We say a finite additive EU representation 〈K, J, {wk}K , {vj}J〉 is minimal if

{wk}K ∪ {vj}J is not redundant.
The uniqueness result from Kopylov (2009a, Theorem 2.1) implies that two min-

imal finite additive EU representations Un =
〈
Kn, Jn, {wnk}Kn , {vnj }Jn

〉
, n = 1, 2,

represent the same preference overM if and only if K1 = K2, J1 = J2, and there ex-
ists a > 0 such that {w1

k}K1 ./a {w2
k}K2 and {v1

j}J1 ./a {v2
j}J2 . Thus these conditions

hold if and only if U1 ./a U
2.

We can now state the definition of a minimal representation that we use in all of
our theorems.

14



Definition 7 We say that a representation taking the form of (3) is minimal if {Ui}I
is not redundant and each Ui is minimal.

Theorem 5 � satisfies Order, Continuity, Independence, Finiteness, and Ex-ante
Monotonicity if and only if � has a representation in the form of (3) that is minimal.

Moreover, the representation is essentially unique. I.e. if 〈In, {Un
i }In〉, n = 1, 2

are both minimal and represent �, then:

1. I1 = I2; and

2. there exists a > 0 such that {U1
i }I1 ./a {U2

i }I2.

Proof. Showing the axioms are necessary is a straightforward exercise. So turn to
sufficiency. By Lemma 2, we apply the result from Kopylov (2009a, Theorem 2.1) to
obtain the representation of �:

U(X) =
I∑
i=1

max
x∈X

Ui(x)−
M∑
m=1

max
x∈X

Vm(x)

where I,M ≥ 0, each Ui and Vm is a continuous linear function fromM to R, and the
set {U1, . . . , UI , V1, . . . , VM} is not redundant. Furthermore, since � satisfies Ex-ante
Monotonicity, the same result from Kopylov implies that M = 0.

For every i ∈ I, let �i by the binary relation over M implied by Ui. Since
Ui :M→ R is a continuous linear function for every i, then �i satisfies the analogues
to Order, Continuity, and Independence.

We show now that for every i ∈ I, �i satisfies Kopylov’s (2009a) Finiteness for
a preference relation over M. So fix i∗. By way of contradiction, suppose not.
Then there exists x1, . . . , xN such that Ui∗(xσ) 6= Ui∗(x−m) for every m ∈ N (where
xσ ≡ ∪n∈Nxn and x−m ≡ ∪n∈N\{m}xn for every m). By Kopylov (2009a, Lemma
A.1), there exists z1, . . . , zI such that Uj(zj) > Uj(zk) for every j, k ∈ I where j 6= k.
Hence (by continuity) there exists ε > 0 such that

Uj((1− ε)zj + εxσ) > Uj((1− ε)zk + εx) (4)

for every j, k ∈ I where j 6= k, and for every x ∈ {xσ, x−1, . . . , x−N}. Set z̄j ≡
(1 − ε)zj + εxσ for every j ∈ I. Set X ≡ {z̄j}I . By Finiteness, there exists y
critical for z̄i ∈ X such that |y| < N . But then there must exist m∗ ∈ N such that
y ⊂ (1 − ε)zi∗ + εx−m∗ ≡ x̄m∗ . (If not, then |Y | ≥ N .) Note that x̄m∗ ⊂ z̄i∗ since
x−m∗ ⊂ xσ. Since y is critical for z̄i∗ ∈ X, this implies that (X \ {z̄i∗})∪ {x̄m∗} ∼ X.
Equation (4) implies that z̄j = arg maxx∈X∪{x̄m∗} Uj(x) for every j 6= i∗. Hence it
must be that Ui∗(z̄i∗) = Ui∗(x̄m∗). But the linearity of Ui∗ implies

Ui∗(z̄i∗) = Ui∗(x̄m∗)

Ui∗((1− ε)zi∗ + εxσ) = Ui∗((1− ε)zi∗ + εx−m∗)

(1− ε)Ui∗(zi∗) + εUi∗(xσ) = (1− ε)Ui∗(zi∗) + εUi∗(x−m∗)

Ui∗(xσ) = Ui∗(x−m∗).
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But this contradicts Ui∗(xσ) 6= Ui∗(x−m∗).
We apply the result from Kopylov (2009a, Theorem 2.1) to �i to get a finite

additive EU representation for Ui. Moreover, Ui is minimal.
The uniqueness result follows as well from Kopylov (2009a, Theorem 2.1).

Lemma 3 Let {Ui}I be a non-redundant indexed family of minimal finite additive
EU representations, where Ui = 〈Ki, Ji, {wik}Ki , {vij}Ji〉 for every i ∈ I. For i ∈ I
and m ∈ Ki ∪ Ji, let uim = wim if m ∈ Ki and uim = vim if m ∈ Ji. Let uim · 1 = 0
for every i ∈ I and every m ∈ Ki ∪ Ji.

Then there exists x1, ..., xI (in the interior of ∆) such that

1. Ui(xi) > Ui(xj) for every i 6= j, and

2. for any i, for any m,n ∈ Ki∪Ji where m 6= n, arg maxβ∈xi uim(β) is a singleton
and arg maxβ∈xi uim(β) 6= arg maxβ∈xi uin(β).

Proof. Let S denote the set of all wik’s and vij’s normalized to have unit length, i.e.

S ≡
{
s =

uim√
uim · uim

: i ∈ I and m ∈ Ki ∪ Ji
}

.

Obviously S is finite. Also, for every s ∈ S, s · 1 = 0 and there exists m ∈ Ki ∪ Ji
such that uim and s represent the same ordering over ∆. Thus for every i, we can
write

Ui(y) =
∑
s∈S

max
β∈y

biss · β

where bis > 0 if there exists k ∈ Ki such that wik and s represent the same ordering,
bis < 0 if there exists j ∈ Ji such that vjk and s represent the same ordering, and
bis = 0 otherwise. (Since Ui is minimal, exactly one of these holds for every s.)

Let x∗ denote a sphere in the interior of ∆. For every s ∈ S, set βs ≡ arg maxβ∈x∗ s·
β. Note that for s 6= s′, we have βs 6= βs′ . Set x ≡ {βs}S. Hence Ui(x) =

∑
s∈S biss·βs.

For a ∈ RS and ε > 0, set

x̄(ε, a) ≡ {βs + εass}s∈S .

For fixed a, there exists εa small enough such that βs + εaass is in the interior of ∆
and such that βs + εaass = arg maxβ∈x̄(εa,a) s · β. For every i, set

ai ≡

{
bis√∑
s′∈S b

2
is′

}
s∈S

.

Set ε ≡ mini εai . For every i, set xi ≡ x̄(ε, ai). Note that Ui(xi) = Ui(x)+ε
∑

s∈S aisbis.
Hence xi = arg maxi′∈I Ui(xi′) since {Ui}I is not redundant and since ai is the
unique solution to the constrained maximization problem: maxā

∑
s∈S āsbis subject

to
∑

s∈S ā
2
s = 1. This proves the first part.

The second part follows from the fact that each Ui is minimal and that βs+εaiss =
arg maxβ∈xi s · β for every s.
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B Proofs

B.1 Proof for Theorem 1

First we show that Option to Commit is necessary. Let x, y,X be given. Fix
i. Set wi ≡ ui +

∑
j∈Ji vj. Observe that either maxβ∈xwi(β) = maxβ∈x∪y wi(β)

or maxβ∈y wi(β) = maxβ∈x∪y wi(β). Note also that for every j ∈ Ji, we have
maxβ∈x vj(β) ≤ maxβ∈x∪y vj(β) and maxβ∈y vj(β) ≤ maxβ∈x∪y vj(β). Hence either

max
β∈x

wi(β)−
∑
j∈Ji

max
β∈x

vj(β) ≥ max
β∈x∪y

wi(β)−
∑
j∈Ji

max
β∈x∪y

vj(β).

or
max
β∈y

wi(β)−
∑
j∈Ji

max
β∈y

vj(β) ≥ max
β∈x∪y

wi(β)−
∑
j∈Ji

max
β∈x∪y

vj(β).

Thus for every i,

max
x′∈{x,y}∪X

{max
β∈x′

[ui(β) +
∑
j∈Ji

vj(β)]−
∑
j∈Ji

max
β∈x′

vj(β)}

≥ max
x′∈{x∪y}∪X

{max
β∈x′

[ui(β) +
∑
j∈Ji

vj(β)]−
∑
j∈Ji

max
β∈x′

vj(β)}.

Now we show that the axioms are sufficient. We will need the following lemma.

Lemma 4 Let � have a representation in the form of (3) that is minimal. If � also
satisfies Option to Commit, then |Ki| ≤ 1 for every i.

Proof. Since {Ui}I is not redundant, take x1, ..., xI from Lemma 3 and set X ≡
{x1, ..., xI}. According to the uniqueness result of Theorem 5, we can assume without
loss of generality that wik · 1 = 0 for every i and every k ∈ Ki. Fix i∗ and by way
of contradiction suppose |Ki∗| > 1. For any k ∈ Ki∗ , set αk ≡ arg maxβ∈xi∗ wi∗k(β).
(Lemma 3 guarantees this max is a singleton.) For any ε > 0, set xεk ≡ xi∗ ∪ {αk +
εwi∗k}. Take k, k′ ∈ Ki∗ such that k 6= k′. By Lemma 3, Ui(xi) > Ui(xi∗) for every
i 6= i∗ and maxβ∈xi∗ vi∗j(β) > max{vi∗j(αk), vi∗j(αk′)} for every j ∈ Ji∗ . Hence, there
exists ε > 0 such that the following hold for every i 6= i∗ and j ∈ Ji∗ :

Ui(xi) > max{Ui(xεk ∪ xεk′), Ui(xεk), Ui(xεk′)}

and
max
β∈xi∗

vi∗j(β) = max
β∈xεk

vi∗j(β) = max
β∈xε

k′
vi∗j(β).

This implies
Ui∗(x

ε
k ∪ xεk′) > Ui∗(x

ε
k), Ui∗(x

ε
k′) > Ui∗(xi∗).

Hence U({xεk ∪ xεk′} ∪X) > U({xεk, xεk′} ∪X), violating Option to Commit.
So by Theorem 5, � has a representation U in the form of (3) which is minimal,

and by Lemma 4 |Ki| ≤ 1 for every i. The UNTDLR representation follows by setting
ui = wi −

∑
Ji
vj for every i, where wi = wk for k ∈ Ki if |Ki| = 1 and wi = 0 if

|Ki| = 0. The uniqueness result follows from Theorem 5.
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B.2 Proof for Theorem 2

First we show that Interim Negative Set Betweenness is necessary. So let x, y,X
satisfy {x, x ∪ y} ∪X � {x ∪ y} ∪X. Then there exists i ∈ I such that

max
β∈x

[ui(β) + vi(β)]−max
β∈x

vi(β) > max
β∈z

[ui(β) + vi(β)]−max
β∈z

vi(β)

for every z ∈ {x ∪ y} ∪X. Specifically, this holds when z = x ∪ y. This implies

max
β∈x

vi(β) < max
β∈x∪y

vi(β) = max
β∈y

vi(β).

Since
max
β∈x∪y

[ui(β) + vi(β)] ≥ max
β∈y

[ui(β) + vi(β)]

we have

max
β∈x∪y

[ui(β) + vi(β)]− max
β∈x∪y

vi(β) ≥ max
β∈y

[ui(β) + vi(β)]−max
β∈y

vi(β).

Hence

max
β∈x

[ui(β) + vi(β)]−max
β∈x

vi(β) > max
β∈z

[ui(β) + vi(β)]−max
β∈z

vi(β)

for every z ∈ {y} ∪X, which implies that {x, y} ∪X � {y} ∪X.

Now we show the axioms are sufficient. We will need the following lemma.

Lemma 5 Let � have a representation in the form of (3) that is minimal. If �
satisfies Interim Negative Set Betweenness, then |Ji| ≤ 1 for every i.

Proof. Since {Ui}I is not redundant, take x1, ..., xI from Lemma 3. According to the
uniqueness result of Theorem 5, we can assume without loss of generality that vij ·1 =
0 for every i and every j ∈ Ji. Fix i∗ and by way of contradiction suppose |Ji∗| > 1.
For any j ∈ Ji∗ , set αj ≡ arg maxβ∈xi∗ vi∗j(β). (Lemma 3 guarantees this max is a
singleton.) For any ε > 0, set xεj ≡ xi∗ ∪ {αj + εvi∗j}. Set X−i∗ ≡ {x1, ..., xI} \ {xi∗}.
Take j, j′ ∈ Ji∗ such that j 6= j′. By Lemma 3, Ui(xi) > Ui(xi∗) and Ui∗(xi∗) > Ui∗(xi)
for every i 6= i∗, maxβ∈xi∗ wi∗k(β) > wi∗k(αj) for every k ∈ Ki∗ , vi∗j′(αj′) > vi∗j′(αj),
and vi∗j(αj) > vi∗j(αj′). Hence, there exists ε > 0 such that the following hold for
every i 6= i∗ and k ∈ Ki∗ :

Ui(xi) > max{Ui(xεj ∪ xεj′), Ui(xεj), Ui(xεj′)},

Ui∗(x
ε
j ∪ xεj′) > Ui∗(xi),

max
β∈xi∗

wi∗k(β) = max
β∈xεj

wi∗k(β) = max
β∈xε

j′
wi∗k(β),

vi∗j′(αj′) > vi∗j′(αj + εvi∗j),
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and
vi∗j(αj) > vi∗j(αj′ + εvi∗j′).

Hence Ui∗(x
ε
j) > Ui∗(x

ε
j ∪ xεj′) and Ui∗(x

ε
j′) > Ui∗(x

ε
j ∪ xεj′). Without loss of generality,

assume Ui∗(x
ε
j) ≥ Ui∗(x

ε
j′). It is easy to verify then that U({xεj′ , xεj ∪ xεj′} ∪ X−i∗) >

U({xεj ∪ xεj′} ∪ X−i∗) and U({xεj, xεj′} ∪ X−i∗) = U({xεj} ∪ X−i∗), violating Interim
Negative Set Betweenness.

So by Theorem 5, � has a representation U in the form of (3) which is minimal,
and by Lemmas 4 and 5, |Ki| ≤ 1 and |Ji| ≤ 1 for every i. For every i where |Ki| = 1
set wi = wk where k ∈ Ki, otherwise set wi = 0. Similarly, if |Ji| = 1 then set
vi = vj for j ∈ Ji, otherwise set vi = 0. The UNTS representation follows by setting
ui ≡ wi − vi. The uniqueness result follows from Theorem 5.

B.3 Proof for Theorem 3

The necessity of Constant Normative Preference is obvious. The sufficiency part relies
on the following lemma.

Lemma 6 Let � have a representation in the form of (3) that is minimal. If �
satisfies Constant Normative Preference, then there exists an EU function u such
that for every i ∈ I, either ui ≡

∑
Ki
wk−

∑
Ji
vj and u represent the same preference

over ∆ or ui is constant.

Proof. The proof is trivial if |I| = 0 or 1. So assume |I| ≥ 2 and that there exist
i, i′ ∈ I such that ui and ui′ are both non-constant and represent different preferences
over ∆. Then there exist α and α′ such that ui(α) > ui(α

′) and ui′(α
′) > ui′(α).

But this implies {{α}, {α′}} � {{α}} and {{α}, {α′}} � {{α′}}, violating Constant
Normative Preference.

So let � satisfy the stated axioms. By Theorem 2, � has a minimal UNTS

representation

U(X) =
∑
i∈I

max
x∈X

{
max
β∈x

[ui(β) + vi(β)]−max
β∈x

vi(β)

}
.

By Lemma 6, there exists u such that for every i, ui = qiu + bi for some qi ≥ 0 and
bi ∈ R. By the previous uniqueness results, we can assume without loss of generality
that

∑
I qi = 1 and that bi = 0 for every i. Also, the minimality of U implies

that qi > 0 for every i. Thus for every i, set v̂i ≡ vi/qi. This gives us the CNTS

representation

U(X) =
∑
i∈I

qi max
x∈X

{
max
β∈x

[u(β) + v̂i(β)]−max
β∈x

v̂i(β)

}
.

The uniqueness follows from the previous results.
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B.4 Proof for Theorem 4

First we show the necessity of the axioms. So let � have the CNTDLR representation

U(X) =
∑
i∈I

qi max
x∈X

{
max
β∈x

[
u(β) +

∑
j∈Ji

vij(β)

]
−
∑
j∈Ji

max
β∈x

vij(β)

}

where u is non-constant.
For Conditional Non-triviality, if X � Y , then that implies that I > 0. Since u is

non-constant, then there exists α and β such that u(α) > u(β). But since I > 0, this
implies U({{α}}) > U({{β}}).

For Monotonicity of Commitments, suppose {{α}}∪X � X and {{β}} � {{α}}.
Since {{α}} ∪X � X, it must be that there exists i such that

u(α) > max
x∈X

{
max
β∈x

[
u(β) +

∑
j∈Ji

vij(β)

]
−
∑
j∈Ji

max
β∈x

vij(β)

}
.

Since {{β}} � {{α}}, we have u(β) > u(α). But then we must have

u(β) > max
x∈{{α}}∪X

{
max
β∈x

[
u(β) +

∑
j∈Ji

vij(β)

]
−
∑
j∈Ji

max
β∈x

vij(β)

}
.

Hence {{β}, {α}} ∪X � {{α}} ∪X.

Now we show the axioms are sufficient. By Theorem 1, � has a minimal UNTDLR

representation

U(X) =
∑
i∈I

max
x∈X

{
max
β∈x

[
ui(β) +

∑
j∈Ji

vij(β)

]
−
∑
j∈Ji

max
β∈x

vij(β)

}

For every i, set

Vi(x) ≡ max
β∈x

[
ui(β) +

∑
j∈Ji

vij(β)

]
−
∑
j∈Ji

max
β∈x

vij(β)

If � is constant, then minimality implies I = 0 and there is nothing to prove. So
assume � is not constant. Then by Conditional Non-triviality, there exists α′ and α′′′

such that {{α′}} � {{α′′′}}. By Continuity, we can assume there exists α′′ such that
{{α′}} � {{α′′}} � {{α′′′}} and that all are in the interior of ∆.

By Lemma 1, � satisfies Constant Normative Preference. So by Lemma 6, there
exists u such that for every i, we have ui = qiu+bi for some qi ≥ 0 and bi ∈ R. By the
previous uniqueness results, we can assume without loss of generality that u(α′) = 0,∑

I qi = 1, bi = 0 for every i, and vij · 1 = 0 for every i and for every j ∈ Ji. Thus for
any β, we have U({{β}}) = u(β), which implies u is not constant.
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We now show that for every i, qi > 0. Set I+ ≡ {i ∈ I : qi > 0} and I0 ≡ {i ∈
I : qi = 0}. Fix ε ∈ (0,−u(α′′)). Set J ≡ maxi∈I Ji, v̄ ≡ maxi∈I,j∈⋃i′∈I Ji′ √vij · vij,
and a ≡ ε

v̄J
. Let x∗ denote the sphere centered around α′ with radius a. (If x∗ is not

in the interior of ∆, then choose a smaller a.) Thus any β ∈ x∗ can be written as
β = α′ + as where s is a vector such that s · 1 = 0 and s · s = 1.

Since U is minimal, apply Lemma 3 to get x1, . . . , xI . As is evident from the
construction of x1, . . . , xI in Lemma 3, we can assume α′ ∈ xi ⊂ x∗ for every i. Hence
for every i and for every j ∈ Ji, we have

max
β∈xi

vij(β) ≤ max
β∈x∗

vij(β)

= vij ·
(
α′ + a

vij√
vij · vij

)
= vij · α′ + a

vij · vij√
vij · vij

= vij(α
′) + a

√
vij · vij.

This implies for every i∑
j∈Ji

max
β∈xi

vij(β) ≤
∑
j∈Ji

(
vij(α

′) + a
√
vij · vij

)
=
∑
j∈Ji

vij(α
′) + a

∑
j∈Ji

√
vij · vij

≤
∑
j∈Ji

vij(α
′) + a

∑
j∈Ji

v̄

≤
∑
j∈Ji

vij(α
′) + av̄J

=
∑
j∈Ji

vij(α
′) + ε.

Since α′ ∈ xi, we have for every i,

Vi(xi) = max
β∈xi

[
qiu(β) +

∑
j∈Ji

vij(β)

]
−
∑
j∈Ji

max
β∈xi

vij · β

≥

[
qiu(α′) +

∑
j∈Ji

vij(α
′)

]
−
∑
j∈Ji

max
β∈xi

vij · β

≥ qiu(α′) +
∑
j∈Ji

vij(α
′)−

∑
j∈Ji

vij(α
′)− ε

= −ε
> u(α′′).

Note that for every i ∈ I0, we must have Ji ≥ 2 (otherwise U would not be minimal).
Recall by Lemma 3, arg maxβ∈xi vij(β) 6= arg maxβ∈xi vij′(β) for every j, j′ ∈ Ji where

21



j 6= j′. Hence for every i ∈ I0, we have

Vi(xi) = max
β∈xi

[∑
j∈Ji

vij · β

]
−
∑
j∈Ji

max
β∈xi

vij · β < 0

Note that for every i, we have Vi({β}) = qiu(β). Hence for every i ∈ I+ we have

Vi(xi) > u(α′′) ≥ qiu(α′′) = Vi({α′′})

and
Vi(xi) > u(α′′′) ≥ qiu(α′′′) = Vi({α′′′}),

while for every i ∈ I0 we have

Vi(xi) < 0 = Vi({α′′}) = Vi({α′′′}).

Let X = {x1, . . . , xI}. Hence if I0 is not empty, we must have {{α′′′}} ∪X � X
(since Vi({α′′′}) > maxx∈X Vi(x) for every i ∈ I0) and {{α′′, α′′′}}∪X ∼ {{α′′′}}∪X
(since Vi({α′′}) ≤ maxx∈X∪{{α′′′}} Vi(x) for every i). Yet {{α′′}} � {{α′′′}}, which
violates Monotonicity of Commitments. Hence I0 is empty, so qi > 0 for every i.

For every i and for every j ∈ Ji, set v̂ij ≡ vij/qi. Thus we can write U as

U(X) =
∑
i∈I

qi max
x∈X

{
max
β∈x

[
u(β) +

∑
j∈Ji

v̂ij(β)

]
−
∑
j∈Ji

max
β∈x

v̂ij(β)

}
,

which is a CNTDLR representation where u is not constant. The uniqueness result
follows from the previous results.
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