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AN 

ABSTRACT 

OF 

APPROXIMATING A GSD-EFFICIENT SET OF 
MIXTURES OF RISKY ALTERNATIVES FOR 

RISK AVERSE DECISION MAKERS 

Conditions for a restricted version of GSD-efficiency of mixtures of risky 

alternatives are reviewed. These conditions and other characteristics of the 

(restricted) GSD-efficient set form the basis of a tentative procedure for 

approximating this efficient set. Hazell's data are used to illustrate a 

critical aspect of the procedure. 
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APPROXIMATING A GSD-EFFICIENT SET OF 
MIXTURES OF RISKY ALTERNATIVES FOR 

RISK AVERSE DECISION MAKERS 

Stochastic dominance criteria have largely replaced mean-variance and mean

absolute deviations criteria for ranking mutually exclusive alternatives. 

However, stochastic dominance criteria are not as c~mmonly applied to problems 

involving mixtures of risky alternatives. 

In those cases where stochastic dominance criteria have been applied to 

mixture problems, they have been applied to mixtures which have been randomly or 

systematically selected from the set of all feasible mixtures (Anderson). As 

Bawa et al. suggest, this approach can provide a reasonably good approximation 

to stochastic dominance efficient sets. Its major shortcoming is related to the 

fact that, typically, most of the feasible mixtures are not efficient. A 

sampling strategy which exploits the properties of stochastic dominance 

efficient sets would often be less costly. 

Mccarl et al. discuss conditions which can help determine whether there 

exists a mixture of two risky alternatives which dominates the 11 pure 11 strategy 

of specializing in one of the alternatives. It appears that their conditions 

could be extended to help guide the search for stochastic dominance-efficient 

sets. 

An alternative approach is based on ideas presented by Dybvig and Ross. It 

has resulted in a method for identifying the second degree stochastic dominance 

(SSD) efficient set of mixtures of risky alternatives (McCamley and 

Kliebenstein, 1987). Conditions for Meyer's generalized stochastic dominance 

(GSD) efficiency of mixtures of risky alternatives have also been presented but 

only preliminary ideas about identifying GSD-efficient sets have been discussed 

(McCamley and Kliebenstein, 1986). 
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The purpose of this paper is to propose a method for approximating the 

efficient set of mixtures for a restricted version of the GSD criterion. To 

ensure that the reader understands the class of problems being considered and 

the ·conditions for GSD-efficiency, these matters are reviewed in the next two 

sections. Then two sections discuss characteristics of the GSD-efficient set. 

The final sections present a procedure for approximating the GSD-efficient set, 

illustrate one part of this procedure and offer some concluding remarks. 

BASIC ASSUMPTIONS AND NOTATION 

The class of problems considered here is similar to that associated with 

Tauer 1 s version of the Target MOTAD model. The number of states of nature, s, 

is assumed to be finite. A row vector of probabilities, p, is associated with 

these states of nature. The elements of the column vector, y, are the (total) 

net returns associated with the various states of nature. This net returns 

vector is a linear homogeneous function of enterprise activity levels: 

(1) y - Cx = 0. 

In '(1), xis a column vector of n activity levels and C is a matrix of per unit 

net returns associated with the activities and the states of nature. 

Specifically, Cij is the net return per unit of activity j when the ith state of 

nature occurs. 

Activity levels are restricted by resource and/or technical constraints and 

nonnegativity constraints. 

( 2) Ax :£ b 

(3) X ~ 0 

In (2), A is a matrix of resource or technical requirements coefficients and b 

is a column of resource levels. To simplify the discussion in the balance of 

the paper, it is assumed that the set of feasible enterprise levels is bounded. 

An enterprise mixture (activity level vector), x0 , will be regarded as being 
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GSD-efficient if, and only if, the associated net returns vector, y0 , is 

GSD-efficient. 

CONDITIONS FOR GSD-EFFICIENCY 

McCamley and Kliebenstein (1986) derived efficiency conditions for a 

restricted version of Meyer I s GSD criterion. The general version of the GSD 

criterion assumes that the absolute risk aversion coefficient, r(m) = 

-u 11 (m)/u 1 {m), is bounded by two functions, g{m) and h(m), of the income or 

wealth level, m. McCamley and. Kliebenstein assumed that g(m) is nonnegative; it 

will be assumed to be positive in this paper. To be consistent with most 

applications of the GSD criterion and to simplify the notation, it will also be 

assumed here that g and hare constants. 1 

Any given enterprise mixture, x0 , and the associated income distribution 

vector, y0 = Cx0 , are GSD-efficient only if there exist vectors z0 and w0 such 

that 

(4) zo•Yo ~ zo•Y 

for ally vectors which satisfy (1), (2) and (3), 

(5) 

(6) 

z? = p.w? 
l l l 

w? 
l 

exp[-g(y~ - y?)] 
J l 

"f O > 0 l y. = y. 
J l 

and 

When g is positive the foregoing conditions are also sufficient for GSD

efficiency. 

By solving either of two linear programming problems, it is possible to 

determine whether conditions (4) through (7) are met. Inasmuch as both of them 

are related to discussion later in this paper, they are stated below.. In each 

formulation, it is assumed that the states of nature have been permuted so that 

the elements of the y0 vector are in ascending order. 
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The dual is 

subje_ct to 

s 0 
(8) minimize b'v - r w.p.y. 

j=l J J J 

(9) A'v - C'z ~ 0 

(10) zj - pjwj = 0 

( 11) ws = 1 

for j=l, 2, ... , s 

(12) wj exp[-g(yj+l-yj)] - wj+l ~ 0 

(13) -wj exp[-h(yj+l-yj)] + wj+l ~ 0 

(14) V ~ 0 

and (7). 

The primal is 

(15) maximize f 

for j=l, 2, 

for j=l, 2, 

... ' 

... ' 

(16) t 1 exp[-g(y~-y1)J - q1 exp[-h(y~-y1)J - P1Y1 ~ -P1Y~ 

(17) tj exp[-g(yj+l-yj)] - qj exp[-h(yj+l-yj)J - tj-l + qj-l 

s-1 

s-1 

0 - pjyj ~ -pjyj for j=2, 3, ... , s-1 

(18) f - p5y5 - ts-l + qs-l ~ -PsY~ 

(19) y - Cx = 0 

(20) Ax~ b 

(21) x, t, q ~ 0 
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The vectors x0 and y0 are GSD-efficient if and only if the optimal value off is 

zero. 

GENERAL NATURE OF THE (RESTRICTED) GSD-EFFICIENT SET 

When g is positive, the (restricted) GSD-efficient set is a subset of the 

SSD-efficient set. It is possible to show that the SSD-efficient set of mix

tures is connected and is the union of a finite number of closed convex subsets. 

A simplified version of Dybvig and Ross's proof of their Theorem 3 (pp.·1538-9) 

. ::,· '. '·:,~: ,: 
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can be used to show that the restricted GSD-efficient set is connected. It 

appears that it is also the union of a finite number of closed convex subsets. 

The most appropriate way to defini GSD-efficient subsets is not yet known. 

In this paper, each of these subsets is defined as the set of mixtures for which 

a specific basis is optimal for the the primal linear programming problem 

reviewed in the previous section. One implication of this approach is that each 

GSD-efficient subset is a subset of an SSD-efficient subset. 

A SIMPLE EXAMPLE 

Some characteristics of the GSD-efficient set can be illustrated by 

considering a simple example. Let 

60 
80 l C = 

100 60 
, 

p = ( • 5 . 5) ' , A = (1 1) , b = 1, g = .02, h = 0 (. 75 .25)' .08, X = 

and y0 = (65 90)'. It is possible to show that the primal linear programming 

problem is solved by f = 0, x = x0 , y = y0 , and t 1, t 2, q1 = 0. The 

solution to the dual linear programming problem is v = 110, z0 = (1 .5)' and w0 

=(21)'. 

Given the connectedness property of the GSD efficient set, one way of 

i denti fyi ng it would be to "start" at the x0 vector considered above and 

determine the range(s) in variation in x0 for which the optimal value off, f*, 

remains equal to zero. For this simple example, it is possible to exploit ~he 

fact that f* will be equal to zero for a set of x0 vectors which is at least as 

large as the set of x0 vectors for which the optimal basis (set of basis 

vectors) is the same as for the x0 vector considered above. 

As x0 is varied, an alternative basis could become optimal when any of the 

following conditions is satisfied: 2 
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1. x~ or x~ equals zero 

2. the sum of x~ and x~ is less than 1.0 

3. y~ = y~ (since the linear programming formulation assumes that 

y~:;; y~) 

4. the 11 reduced cost 11 for t 1 or q1 becomes zero as reflected by the 

status of an inequality in (12) or (13), respectively, changing from a 

strict inequality to an equality. 

In more general problems, an alternative basis could become optimal when: 

5. the status of a resource constraint changes from strict inequality to 

equality 

6. the reduced cost for a nonbasic x variable becomes zero as reflected 

by the status of the associated inequality in (9) changing from a 

strict inequality to an equality 

7. a basic v variable becomes zero. 

If condition 1, 2, 3 or 5 is satisfied while varying x0 , it indicates that 

a boundary (or an additional boundary) of the SSD-efficient subset (as well as a 

boundary of the GSD-efficient subset) has been reached. Conditions 4, 6 and 7 

are more relevant for the GSD criterion than for the SSD criterion. Of these, 

only condition 4 is unique to the GSD criterion; the others are shared with -the 

third degree stochastic dominance criterion. 

Condition 4 is easily illustrated with the problem described above. For 

that problem there are three SSD-efficient subsets. Two of them are the 

individual mixtures ( 1 0)' and (1/3 2/3) 1 • The third subset consists of all 

(weakly) convex combinations of these mixtures and is the subset to which the x0 

vector presented above belongs. 3 It is relatively easy to determine the 

GSD-efficient portion of this subset. Condition 4 is satisfied when y~ - y~, or 

equivalently, 40x1 - 20x2 equals either 8.66 or 34.66. The intersection of the 



,., , ... 

7 

third SSD-efficient subset of mixtures and the set for which 8.66 ~ 40x1 - 20x2 

~ 34.66 is the set of all convex combinations of (.48 .52)' and (.91 .09)'. 

It was easy to identify the GSD-efficient set for this simple problem 

because there was only one GSD-efficient subset and the same w0 vector was 

optimal for the whole subset. For most problems, there is more than one GSD

effi ci ent subset and w0 is a nonlinear function of x0 • Moreover, it appears 

that the boundaries of some GSD-efficient subsets may be nonlinear and_ the 

subsets may "overlap". 

In principle, it is possible to determine when condition 4, 6 or 7 is 

satisfied for a given basis. In practice, it may be easier to simply 

approximate the GSD-effi ci ent portion of any given SSD-effi cient subset by 

solving the primal (or dual) linear programming formulation for selected x0 

vectors. 

A TENTATIVE PROCEDURE FOR APPROXIMATING 
THE GSD-EFFICIENT SET 

One procedure for identifying the GSD-efficient set involves four steps: 

1. Identify a mixture which maximizes expected utility for any utility 

function for which g ~ r(m) ~ h. Since g is greater than zero, the y0 

vector associated with this mixture is GSD-efficient and provides a 

starting point for identifying the GSD-efficient set. 

2. Identify an SSD-efficient subset which includes this mixture. 

3. Approximate the GSD-efficient portion of this SSD-efficient subset by 

solving the linear program discussed earlier in this paper for 

appropriately selected mixtures. 

4. Identify another SSD-efficient subset which is adjacent ("connected") 

to the portion of GSD-efficient set which has thus far been 

identified. If none is found, stop; otherwise to go step 3. 
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The major difficulties in implementing this procedure are keeping track of 

the portion of the GSD-efficient set identified at_any stage, determining which 

unexamined SSD-efficient subsets are adjacent to this set (step 4) and 

approximating the GSD-efficient portion of any given subset (step 3). Of these, 

the first two are essentially just messy "record keeping" problems. The next 

section of the paper illustrates one approach to step 3. 

A MORE COMPLEX EXAMPLE 

Data from Hazell are used. For purposes of the illustration, each state of 

nature is assumed to be equally likely. It is also assumed that g = .000025 and 

h = .000065. To simplify the discussion, only the approximation of the 

GSD-efficient portion of one SSD-efficient subset will be considered in detail. 

Assume that the mixture, x0 = (40 40 60 60)', is known to be GSD-efficient 

(i.e., maximizes expected utility for some utility function in the relevant 

class of functions) when r(m) belongs to the risk aversion coefficient interval 

(.000025, .000065). This x0 vector belongs to a two-dimensional SSD-efficient 

subset which lies on the face of the set of feasible mixtures associated with 

the land and rotation constraints. The line segment ad is one edge of the face. 

The line segment which begins at a and extends upward along the vertical axis is 

a second edge. A.nother edge is a line segment which begins at d and passes 

through e and f. The fact that x1 + x3 = 100 and x2 + x4 = 100 on the face 

being considered means that it is only necessary to plot x1 and x2 coordinates 

in figure 1. The SSD-efficient set to which the initial x0 vector belongs is 

bcefgh. 

There are several ways of approximating the GSD-efficient portion of 

bcefgh. A grid approach is adopted here but it differs from that proposed by 

Bawa et al. in several ways. The least significant difference is that a very 

coarse grid is adopted first and then finer grids are used to further refine the 
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approximation. Of greater significance is that for any given grid, only those 

grid points (mixtures) which are 11 adjacent 11 to mixtures known to be GSD

efficient and in the same SSD-efficient subset are considered at any given 

time. 4 A third difference is due to the stochastic dominance test procedure

rather than the grid itself. The linear programming formulations which are used 

here effectively compare a given mixture (x0 vector) with all other feasible 

mixtures. Once a mixture has been tested its efficiency status is known. 

Changing the grid size may refine the approximation of the efficient set but it 

will not provide any additional information about the efficiency status of a 

mixture which has already been tested. By contrast, when the pairwise tests 

assumed (at least implicitly) by Bawa et al. are employed, each grid point 

(mixture) can essentially only be classified as dominated or "not yet" 

dominated. 5 

The initial grid involves ten acre increments. Those mixtures which are 

both on grid points adjacent to the initial mixture and in the same 

SSD-efficient set have x1 , x2 coordinates of (30,30) (30,40), (40,50), (50,50), 

and (50,40). Of these, only (50,40) is GSD-efficient. The untested grid point 

mixtures which are adjacent to (50,40) are (60,40) and (60,50). The mixture 

(60,40) is GSD-efficient but the mixture (60,50) is not. Likewise, the only 

untested grid points adjacent to (60,40) are (70,40) and (70,50); neither of 

these is GSD-efficient. The tested (as well as the initial) grid points are 

represented in figure 1 by large X or square symbols. The squares denote GSD

efficient mixtures; X's represent inefficient mixtures. 

The approximation of the GSD-efficient portion of bcefgh can be improved as 

much as desired by employing successively finer grids. Consider next a grid 

with increments of five acres. The relevant mixtures on this new grid are 

·. 
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represented by smaller symbols. As before, the squares represent GSD-efficient 

mixtures while the x's represent inefficient mixtures. 

Even with the relatively coarse five acre grid, a reasonably accurate 

11 picture" of the GSD-efficient portion of bcefgh emerges. By reducing the grid 

increment to one acre, a better approximation is obtained. It is shown in 

figure 2. In this figure, only the grid points associated with GSD-efficient 

mixtures are represented by symbols. 

The complete GSD-efficient set of mixtures almost certainly includes 

mixtures in other SSD-efficient subsets. The SSD-efficient subset which shares 

11 boundary" bh with bcefgh is an obvious candidate. A less obvious but very 

relevant candidate is the three dimensional SSD-efficient subset of which bcefgh 

is one face. 

CONCLUDING REMARKS 

The partial discussion of the Hazell example suggests that it would not be 

too difficult to approximate the GSD-efficient set of mixtures for problems of 

that size. The Hazell example involves only four enterprises, three resource 

constraints and six states of nature. The number of states of nature for this 

example is not much smaller than the numbers used in some application of MOTAD 

and Target MOTAD. However, most practical problems have larger numbers of 

enterprises and constraints. 

The cost of identifying the GSD-efficient set of mixtures depends, in part, 

upon the size of the risk aversion coefficient interval chosen. With a 

relatively short risk aversion coefficient interval, the restricted 

GSD-efficient set of mixtures may be considerably smaller than the SSD-efficient 

set and relatively easy to approximate. 
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FOOTNOTES 

1rn the balance of the paper, expressions such as g(yj-y~) (or h(yj-y~)) 

mean the product of g (or h) and yj - y~. 

2Note that when any of these conditions occur both the 11 old 11 and 11 new 11 

bases are optimal. 

3si nee the first two subsets are subsets of the third one, it would be 

appropriate, for the purpose of describing the SSD-efficient set, to say that 

there is one SSD-efficient subset. However, for the purpose of approximating 

the efficient sets for the GSD criterion, complete enumeration 0f the collection 

of SSD-efficient subsets can be helpful. 

4The connectedness property of the GSD-efficient motivates this strategy. 

5Even with pairwise tests, the degree of uncertainty about a grid point's 

efficiency status decreases as the grid becomes finer. Another l imitatiGr of 

pairwise tests is that the efficient set may include alternatives (mixtures in 

this paper) which no decision maker in the relevant class would choose. That 

is, they maximize expected utility for no utility function in the relevant 

class. It can be shown that this limitation also becomes less serious as finer 

grids are employed. 
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