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Abstract

We consider a model of external financing under ex ante asymmet-

ric information and profit manipulation (non verifiability). Contrary

to conventional wisdom, the optimal contract is not standard debt,

and it is not monotonic. Instead, it resembles a contingent convert-

ible (CoCo) bond. In particular: (i) if the profit manipulation and/or

adverse selection are not severe, there exists a unique separating equi-

librium in CoCos; (ii) in the intermediate region, if the distribution of

earnings is unbounded above there exists a unique pooling equilibrium

in CoCos, otherwise debt might be issued but it is never the unique

equilibrium; (iii) finally, if profit manipulation is severe, there is no

financing.

These findings suggest that the standard monotonicity constraint

exogenously imposed in the security design literature must be recon-

sidered. Crucially, profit manipulation is part of the optimal contract,

and non-monotonic, convertible securities mitigate the asymmetric in-

formation problem. We discuss milestone payments in venture capital

as an application.
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1 Introduction

It is by now widely accepted that informational asymmetries are an impor-

tant determinant of asset market prices and allocations. Since Akerlof (1970),

they have been used to explain many empirical patterns in finance. Because

the presence of asymmetric information violates a central underpinning for

the Modigliani and Miller irrelevance argument, it also opened the opportu-

nity for a theory of the firm’s capital structure. Myers and Majluf (1984)

first took the challenge, and argued that the presence of asymmetric infor-

mation in financial markets can justify the existence of a ‘pecking order’ in

firm’s financing, the fact that privately informed borrowers often prefer to

issue debt, then securities with option features (e.g. convertible bonds) and

outside equity only as a last resort. Since then, several papers considered

informational asymmetries as a key explanation for the widespread use of

debt contracts.1

The intuition behind the preference for debt is the following: Suppose that

the quality of borrowers is their private information. If there are no credible

signaling opportunities, there can only exist pooling equilibria - equilibria in

which all types issue the same portfolio of securities. At any (reasonable)

pooling equilibrium, the securities issued will be the ones preferred by higher

quality borrowers. In this context, debt is optimal because: (i) the financier

seizes all assets in case of bankruptcy; (ii) the lower the borrower’s quality,

the more likely is bankruptcy.

Notice the emphasis in the previous paragraph: the above argument is

valid only if credible signaling is not possible. But when is this the case?

The question has remained unanswered. In the literature, the standard as-

sumption that the payoff of admissible securities must be non-decreasing in

the project’s earnings (or monotonic, in their language) precludes signaling2.

However, monotonicity is not an assumption on model primitives: it imposes

an exogenous constraint on the agent’s strategy space. As such, it requires

a justification.

In fact, an established justification for the monotonicity assumption ex-

ists: the borrower (entrepreneur) observes the realized earnings before out-

1See Nachman and Noe, 1994; DeMarzo and Duffie, 1999; DeMarzo et.al., 2005. The

argument is still pervasive in the public debate about capital structure and capital re-

quirements (e.g. Admati et.al. 2010).
2Technically, the monotonicity assumption is sufficient to prevent signaling if the earn-

ings distribution is assumed to satisfy the hazard rate ordering, a stronger property than

first-order stochastic dominance.
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side financiers do, and can manipulate them. If realized earnings are close

to a decreasing segment of the security’s payoff, a borrower has an incentive

to borrow secretly and report higher earnings so that he repays less to the

financiers. The existing literature, without explicitly modelling profit ma-

nipulation, argues that this cannot be an equilibrium phenomenon and rules

it out by exogenously restricting attention to monotonic or ‘manipulation-

proof’ securities.

The argument for monotonicity might seem intuitive, but it has some

subtlety to it. First, it implicitly assumes an ex post verification problem.

If a project’s earnings were verifiable, then secret borrowing would not be a

concern. Second, the effect of ex post manipulation possibilities on the set

of equilibrium contracts is not clear.

In this paper, we explicitly model both ex ante asymmetric information

and profit manipulation.3 The introduction of profit manipulation poses

modelling challenges: (i) it precludes the application of the revelation princi-

ple; (ii) it requires a new definition of limited liability in terms of messages;

(iii) it makes models with a rich type space less tractable. We address these

issues in what follows.

Our baseline framework features two types of entrpeneurs, both endowed

with a project with positive net present value. A type corresponds to a distri-

bution over future earnings, and the two distributions are ordered according

to the monotone likelihood ratio property. Entrepreneurs lack capital to

finance their projects, so they require funding from competitive financiers.

Entrepreneurs know their types, but the financiers only know the proportion

of each entrepreneurial type in the population. Borrowers privately observe

their realized earnings, which are not perfectly verifiable. More specifically,

we allow the borower to report earnings that can differ from realized earnings

up to some maximum amount. This is what we call ‘profit manipulation’.4

Our goal is to derive the optimal contract (or security) in this context. Cru-

cially, because we model profit manipulation explicitly, we do not restrict

exogenously the admissible contracts to be monotonic.

We show that the interaction of ex ante asymmetric information and

profit manipulation gives rise to several novel results:

First, Contingent Convertible Bonds (so-called CoCos) are always op-

3In our model, we take the extent of profit manipulation possibilities as exogenously

given, and we do comparative statics with respect to it. The presence of profit manipu-

lation possibilities may reflect the imperfect quality of the legal system and/or corporate

governance issues (e.g. La Porta et.al., 1997).
4Implicitly, our model allows for hiddeng borrowing or limited siphoning of earnings.
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timal.5 A distinguishing feature of our optimal contracts is that they in-

duce profit manipulation (either output diversion or window dressing) on-

the-equilibrium path. This is fully anticipated by outside financiers and it

is properly priced. Nevertheless CoCos are optimal because they minimize

the mispricing of securities issued by the higher quality borrowers. The intu-

ition is that CoCos impose the maximum expected repayment when realized

earnings are low, hence minimizing it when earnings are high. Because types

of lower quality are more likely to obtain low earnings, CoCos maximize the

cost for them to mimic the high types.

Second, we prove that debt is never optimal when profit manipulation

and/or adverse selection are not severe. When investors are sophisticated,

and the borrower types are sufficiently similar, non-monotonic, convertible

securities are uniquely optimal. Indeed, they may implement separating equi-

libria in which better quality entrepreneurs signal their type by issuing a

CoCo with high downside protection and low upside payoff. Such equilib-

ria are absent in the literature because the monotonicity imposed on the

securities offered prevents capital structure from being used as a signaling

device.

Third, we show that debt is never optimal, regardless of the severity of

profit manipulation and adverse selection, if the distribution of earnings is

unbounded from above. The result implies that debt is never the equilibrium

contract in models assuming (for instance) exponentially or normally dis-

tributed earnings. It also suggests that debt can be optimal only as a corner

solution, when CoCos are ruled out because of binding feasibility constraints.

The latter observation leads us to our final result, which characterizes

the conditions under which debt is optimal, and monotone securities arise in

equilibrium. Such conditions are restrictive, and whenever debt is an optimal

contract, there exists a CoCo that is ex post equivalent to it. That is, debt is

never uniquely optimal. This result contrasts sharply with existing models

according to which debt is the uniquely optimal security.

Overall, our findings have the following important implications: i) they

show that the assumption that the admissible securities are monotonic leads

to sub-optimal securities and must be reconsidered; ii) they present a serious

challenge to the ‘pecking-order’ theory of debt. The argument that the opti-

mality of debt is driven by asymmetric information loses its strength; iii) they

5CoCos are a particular type of convertible bond, in which the possibility of converting

debt into equity is linked to the occurrence of an event. The typical example of such event

is the stock price falling below a certain pre-specified threshold. Innes, 1993, first made the

observation that non-monotonic contracts of this type may be optimal in similar setups.
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provide a rationale for the use of non-monotonic securities in settings where

investors are skilled and profit manipulation is possible, but not severe.

Contingent Convertibles are not as common as debt contracts. How-

ever, they are becoming increasingly popular among investors. According to

Dealogic, a data provider, CoCo issuance by eurozone banks has increased

to $7.8bn (2013) from $3.8bn (2012).6 It can be argued that banks’ recent

interest in CoCos is (at least in part) driven by the possibility of using them

for regulatory purposes.7 Nevertheless, we would like to point out the sim-

ilarity - in terms of cash-flow rights, at least - between these contracts and

the securities commonly used for at least a decade in financing risky projects.

Non-monotonic components of contracts - such as milestone payments - are

widely used in the venture capital and the pharmaceutical industries.8 Our

model can reconcile such payments because: (i) investment in risky projects

is typically plagued by larger information asymmetries; (ii) lenders in these

markets are sophisticated, and so the likelihood of un-detectable profit ma-

nipulation is lower.

Existing models failed to link asymmetric information to non monotonic

securities simply because these contracts were ruled out upfront. However,

the issue has been identified by practicioners. In a 2003 Newsletter of the

MIT Enterprise Forum of Cambridge, Jeffrey L. Quillen, a partner at a VC

firm, writes: “Generally, any significant, objectively verifiable event in the

development of a company can be used as a milestone in a financing con-

tract. This structure significantly reduces risks for the investors and rewards

the company if it is able to meet or exceed its projections. Effectively, the

investors are telling the company prove it or lose it” [emphasis not in the

original]. Mr. Quillen links the use of milestones to asymmetric information

(be it moral hazard or adverse selection), as otherwise what could there be

to ‘prove’? In this respect, we believe that our model might open a new

direction for theoretical work on investment in risky (innovative) sectors.

The paper is structured as follows: Section II briefly reviews the lit-

erature; Section III describes the model; Sections IV and V introduce the

relevant securities, and discuss when and how they induce accounting fraud;

6See the Financial Times article, May 29, 2014. Interestingly, it seems that the incre-

ment is primarily driven by Mediterranean countries banks. Given the current enthusiasm

in the market for CoCos, we hope we will not be blamed for it if a new bubble is created

around them.
7See, for instance, Flannery, 2005; Hart and Zingales, 2011.
8See Gompers and Lerner, 2001, and Kaplan and Stromberg, 2003, for the former;

Higgins, 2007, for the latter.
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Section VI derives the main results; Section VII illustrates how the general

results apply in specific settings; Section VIII discusses extensions including

moral hazard and more than two types; Section IX concludes by revisiting

the paper’s relationship to the literature in light of the results derived.

2 Literature Review

Our paper is closely related to the literature on security design under

asymmetric information. Myers and Majluf (1984) develop the ‘pecking or-

der’ theory of debt optimality under asymmetric information in a setup where

only debt and (inside or outside) equity contracts were allowed. Noe (1988)

showed that the Myers and Majluf theory required somewhat restrictive as-

sumptions on the distributions of earnings. Innes (1993) and Nachman and

Noe (1994) revisited the theoretical argument allowing for a broader set of

contracts than debt and equity. These papers found that to obtain debt as

the optimal security some monotonicity constraint has to be exogenously im-

posed. Such a constraint restricts the feasible contracts to be ‘manipulation

proof’. Since then, the monotonicity constraint has been widely used. Promi-

nent examples include DeMarzo and Duffie (1999); DeMarzo et.al. (2005);

Inderst and Mueller (2006); Axelson (2007), Axelson et.al. (2009); Gorbenko

and Malenko (2011); Philippon and Skreta (2012); Scheuer (2013).9 Our

contribution is that we derive necessary and sufficient conditions for mono-

tonicity to be without loss of generality. Because we show that debt is very

rarely an optimal contract, we believe that further research is needed to con-

sider the effects of allowing for non-monotonic, optimal securities on existing

results.

Our paper is also related to the literature on the use of convertible secu-

rities in venture capital financing. The existing papers link convertible secu-

rities to the optimal allocation of control rights. However, we are not aware

of models focusing on cash-flow rights. More specifically, Casamatta (2003),

Schmidt (2003) and Hellman (2006) derive the optimality of convertible se-

curities in a context where both venture capitalists and entrepreneurs exert

value enhancing effort, and the allocation of control rights matters. Cornelli

9The ‘pecking order’ is not the only economic theory of debt optimality. The main

competing theories are the costly state verification and the trade-off theory. The trade-

off theory pins down the optimal capital structure by balancing the tax benefits of debt

against the dead-weight costs of bankruptcy (Kraus and Litzenberger, 1973). In contrast,

according to the costly state verification theory debt minimizes the ex post verification

costs (Townsend, 1979; Gale and Hellwig, 1985; Krasa and Villamil, 2000).
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and Yosha (2003) study a model of stage financing, where the entrepreneur

can window dress in order to prevent exit from his financier. Convertible

securities prevent window dressing because higher short-term returns would

increase the probability of conversion. In their model, the optimal security

is monotonic and window dressing is prevented. In contrast, in our model

window dressing occurs on-the-equilibrium path and the optimal contract is

non-monotonic.

Finally, our paper is related to Chakraborty and Yilmaz (2011). They

consider a dynamic setting and argue that separation can be achieved if

noisy information about a firm’s type is revealed over time. In contrast, we

consider a static setting without information revelation, and focus on the

signaling properties of capital structure decisions.

3 The Economy

We consider a model where an entrepreneur is endowed with a technology

that generates future stochastic earnings x ∈ X ≡ [0, K], and requires I > 0

units of capital as input. We allow for unbounded future earnings by letting

K go to infinity. To finance his project, the entrepreneur can seek funds

from competitive financiers, each of whom is endowed with equal amount of

capital W . All agents are risk neutral, and we normalize the risk-free rate to

zero.

There are two types of projects (entrepreneurs), t ∈ T ≡ {l, h}. Types

differ according to their distribution of earnings. The cumulative distribution

function (cdf ) over X for a type t project is Ft(x). Project’s type is private

information of the entrepreneur. Outside financiers only know that a fraction

λl ∈ (0, 1) are type l projects, and a fraction λh = (1−λl) are type h projects.

All projects have positive net present value, and the firm’s assets in place are

assumed to be zero.

Denote by Et(x) =
∫∞

0
x dFt(x) the full information expected value of a

type t project. We make the following assumptions:

Assumption 1: W ≥ Et(x) ≥ I > 0 for every t ∈ T . (A1)

A1 says that a financier can fund a project, and all projects have positive

net present value. In addition, we make the following standard assumptions

on the distributions of earnings:

Assumption 2: (A2)

1. The cdfs are mutually absolutely continuous;

2. Securities are risky: Ft(I − ε) > 0 for all t ∈ T , for ε > 0;
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3. Strict Monotone Likelihood Ratio Property (MLRP): ∂/∂x(fl(x)/fh(x)) <

0 for every x ∈ X such that x ∈ [Z, K) for some (Z,K) ∈ X2;

Continuity is assumed for technical reasons. Since our problem is inter-

esting only if investment might be loss making with positive probability (i.e.

it is impossible to issue riskless securities), point (2) of A2 ensures that is

the case. Finally, MLRP ensures that type h project is better than type l

project.

The timing of the game is as follows:

• date 0: The entrepreneur of type t issues publicly a security (financial

contract) denoted by s. Each financier simultaneously quotes a price

P (s) at which he is willing to buy the security. If a contract is signed (a

security is sold), the entrepreneur collects P (s). Subsequent investment

is observable and verifiable;

• date 1: Realized earnings x̂ ∈ X are perfectly but privately observed

by the entrepreneur. He can costlessly manipulate reported earnings

siphoning off the max{x−η, 0} or secretly borrowing up to the min{x+

η,K}. Hence, outsiders can only infer that realized earnings belong to

some interval [max{x− η, 0},min{x+ η,K}];
• date 2: Claims are settled on the basis of the borrower’s self reported

earning and the game ends.

The novel ingredient that differentiates our findings from existing results

is the possibility of ex post profit manipulation. In particular, we allow the

entrepreneur to window dress and claim his earnings are anything between

the true realisation x and (x + η). Moreover, we allow him to divert and

claim his output to be anything between x and (x− η).

The possibility of earnings misreporting means that a security s cannot

be a function of x as in the previous literature. Instead, it will be a function

of reported earnings m(x). Since m : x → [max{x − η, 0}, min{x + η,K}]
for every x ∈ X, a security is a function s(m(x)) : X → R.

The only restriction we impose on the contract space is that each security

must satisfy limited liability, as appropriately redefined in terms of messages:

Assumption 3: The set of admissible securities is given by: (A3)

S ≡ {s(m) | 0 ≤ s(m) ≤ m, ∀m}

If the borrower declares m and cannot repay s(m) to his financier, then the

financier becomes the legitimate owner of borrower’s assets.10

10Since the limited liability constraint must be defined in terms of messages rather than
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It is worth mentioning that:

1. If we were to allow for asymmetric, bounded, window dressing and

diversion, our results would not change qualitatively (as will become

clear).11 However, if one is willing to model unbounded window dressing

and limited diversion, then non-monotonic contracts would never arise

in equilibrium. In such environments, one would recover the results of

Nachman and Noe (1994);

2. An equivalent way of modelling profit manipulation would have been to

allow for secret borrowing from ‘friends’. Our results do not depend on

the reason why imperfect verification comes about, but on its extent;

3. We could have modelled diversion as output destruction, in which case

the entrepreneur could not put the diverted amount in his pocket. How-

ever, in such cases the entrepreneur would be indifferent between di-

verting and not, making such possibilities useless;

4. Finally, we assume η as a constant independent on earnings. Although

this simplifies the analysis, it is not necessarily a desirable assumption.

For instance, one could think that it would depend on earnings, η(x).

We leave such possibilities for future research, but we conjecture that

the bulk of our results would not change.

Finally, denote by Vt(x) the state x profits of an entrepreneur of type t

whose offered security s has been priced at P by the financier, and by Vf (x)

the state x financier’s profits. Then we can write:

Vt = P − I + Et
[
x− s(m(x))

]
(1)

Vf = Eλ(s)

[
s(m(x))

]
− P (s) (2)

The expectation in (2) is given by the sum across types (weighted by the

posterior belief λ(t|s) that type t is issuing the contract s) of the final payoff

realized output, we should consider the case in which the entrepreneur declares earnings

that exceed true earnings, and he does not have the resources to repay the contractual

obligation. In this case, the fraud becomes observable and verifiable, and hence we suppose

that ownership of assets can change. The underlying assumption is that the owner of the

assets can always perfectly discover their value.
11Allowing for unbounded window dressing and diversion would trivially lead to no

financing.
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of the security after manipulation takes place:

Eλ(s)

[
s(m)

]
≡
∑
t∈T

λ(t|s)
[ ∫

x∈X
s(m(x|s))dFt(x)

]
Notice that we can write mt(x|s) = m(x|s) because the cost and benefits

of commiting accounting fraud ex post are not type-dependent.

The equilibrium concept is Perfect Bayesian Equilibrium (PBE):

PBE: A strategy profile
(
s∗(t), m∗(s), P ∗(s)

)
and a common posterior belief

λ∗(t|s) form a PBE of the game if the following conditions are satisfied:

1. For every x ∈ X and for s ∈ S:

m∗(x|s) = arg min
{
s(m)

}
s.t. m ∈ [max{x− η, 0}, min{x+ η,K}]

2. For every t ∈ T , s∗t (m
∗) maximizes Vt(s, P

∗(s),m∗) subject to the lim-

ited liability constraint (s ∈ S);

3. The belief λ∗(t|s) is derived using Bayes’ Rule whenever possible;

4. Competitive Rationality: for s ∈ S, P ∗(s) = Eλ∗(t|s)(s)

Notice first that, because of A3 and the fact that the set of feasible

deviations is closed, for every (s, x) ∈ S × X there exists a finite, optimal

message m∗(x|s). Moreover, in every equilibrium it must be the case that

either P ∗(s) = 0 (no investment), or P ∗(s) ≥ I (investment takes place).

To rule out ‘unreasonable’ equilibria, we refine the off-equilibrium-path

beliefs adopting the Intuitive Criterion by Cho and Kreps (1987). Denote

by Vt(s
∗
t , e

∗) the expected utility of type t entrepreneur issuing s∗t at the

equilibrium e∗, and by Π∗(s|T ) the set of all possible Nash Equilibria of the

pricing game played by financiers given an observed s ∈ S12.

The Intuitive Criterion: A PBE is not reasonable if there exist an

out-of-equilibrium security s′ ∈ S such that only one type may benefit from

deviating to s′:

Vt(s
∗
t , e

∗) ≤ max
P ∗∈Π∗(s′|T )

Vt(s
′, e∗)

V−t(s
∗
t , e

∗) > max
P ∗∈Π∗(s′|T )

V−t(s
′, e∗)

We provided a definition of the Intuitive Criterion for a generic set of

types T because we extend some results to the case of |T | > 2.

The next sections introduce the key properties of the two contracts which

are relevant in this framework: Debt and Contingent Convertibles.

12Each element of the set can be parametrized by a posterior belief λ(s) ∈ ∆T , where

we adopt the convention that bold symbols represent vectors.
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4 Debt Contracts

It is useful to start by defining formally a debt security, and to show the

crucial distinction that arises in this model (unlike the existing literature)

between the promised payoff and the real payoff of a security. The promised

payoff is given by Eλ∗(s)(s(m = x)). In contrast, the real payoff is Eλ∗(s)(s(m
∗)),

where m∗ solves condition (1) of a PBE, i.e. it maximizes the entrepreneur’s

ex post payoff.

The characteristic feature of debt contracts is the fixed repayment in non-

bankruptcy states: if the face value of debt is D, then whenever m ≥ D, the

debt security specifies s = D. If, instead, m < D, a bankruptcy state, the

debt holder is a senior claimant on the assets, obtaining repayment s(m) = m.

Definition: A security s ∈ S is a debt contract if and only if s = min{m,D}
for some D ∈M .

450

Debt

D

D

x

s(m = x)

Figure 1: The Promised Payoff of a Standard Debt Contract

Like any other security with positive expected value, a debt contract will

provide incentives to divert output for some x ∈ X. Lemma 1 provides a

characterization of the real payoff of a standard debt contract.

Lemma 1 (The Real Payoff of Debt). For every debt security s with fixed

repayment D,

m∗(x|s) =

{
max{x− η, 0} if x < D + η

x otherwise

Proof. Notice first that because a debt contract is monotonic there cannot be

any benefit from overstating earnings. Therefore m∗ ≤ x. As a consequence,

the ex post accounting fraud problem in a generic state x ∈ X can be written

as: minm∈[max{x−η,0},x]

{
s(m)

}
. The Lemma follows trivially.
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The dashed curve in Figure 2 depicts the real payoff of a standard debt

contract.

450

Debt Contract

η D + η

D

x

s(m∗(x))

s(m = x)

Figure 2: The Real Payoff of a Standard Debt Contract

5 Contingent Convertibles (CoCos)

The contract that turns out to be generically optimal takes a contingent

convertible bond form. The payoff of a Contingent Convertible Bond is given

by:

s(m) =

{
m if m < m

D otherwise
(3)

where D ∈
[
0, m

]
reflects limited liability.13 Figure 3 depicts the promised

payoff of contracts as defined in (3) above.

450

CoCo

m

D

m

x

s(m = x)

Figure 3: The Promised Payoff of a Contingent Convertible Bond

13Standard debt contracts are special cases of (3) where D = m. Hence, we always add

‘non-monotonic’ in front of CoCo when our statements do not apply to debt. Sometimes,

the threshold m is called a ‘knock-out clause’ by financial traders.
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We next characterize the optimal ex post accounting fraud under CoCos.

Lemma 2 (The Real Payoff of CoCos). For every CoCo security s with

threshold m and fixed repayment D:

1. If m−D > η, then:

m∗(x|s) =


max{x− η, 0} if x < m− η
m if x ∈ [m− η,m)

x otherwise

2. If m−D ≤ η, then the real payoff of a CoCo is equivalent to that of a

debt contract (see Lemma 1).

Proof. Follows from the payoff of CoCos and the same logic as that in Lemma

1. The only difference occurs for realizations in [m− η,m). Here, a borrower

may benefit by window dressing depending on D.

Figures 4a and 4b depict the real payoff of a CoCo for the cases of two

different levels of profit manipulation. In Figure 4.a, diversion possibilities

are relatively high, and the real payoff is not ex post monotonic. In Figure

4.b, they are lower and the real payoff is ex post equivalent to that of a debt

contract with face value D.

Figure 4, panels (a) and (b): The Real Payoff of a CoCo Bond

450

CoCo

η m

D

m− η
m

x

s(m∗)

Figure 4.a

450

CoCo

η D + η

D

m

x

s(m∗)

Figure 4.b

6 Optimal Security Design

In existing work, A1 was enough to guarantee that all projects would get

financing in equilibrium. However, the possibility of output diversion changes
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this conclusion. It is instructive to begin our analysis by deriving conditions

under which financing occurs. To do so, we only need to study the contract

in which the financier receives all reported earnings: s = m ∀m. If financing

does not take place with such a contract it cannot take place with any other

contract that satisfies A3.14

Suppose first that there is no ex ante asymmetric information. The con-

dition for type t to get financing is Et(x|η) ≥ I. Since El(x|η) < Eh(x|η) we

conclude that whenever the low type (type l) gets financing, the high type

(type h) does as well. Hence, there will be a threshold on the diversion pos-

sibility η̂l such that El(x|η̂l) = I, above which only type h receives financing.

Moreover, there will exist a η̂h such that Eh(x|η̂h) = I, above which no one

will get funding.

If we introduce ex ante asymmetric information, it is clear from our pre-

vious analysis that the boundaries of the region in which financing takes

place will depend on the pooling zero profit condition, and there will be a

η̂p ∈ (η̂l, η̂h) such that:

λlEl(x|η̂p) + (1− λl)Eh(x|η̂p) = I

Then for every η ≤ η̂p there is financing, but for every η > η̂p there is no

financing.

6.1 Separating Equilibria

In this section we characterize the set of Separating Perfect Bayesian Equi-

libria (SPBE). Such equilibria never arise with the exogenous monotonicity

constraint. The intuition behind the SPBE is the following: the most pro-

ductive type will try to distinguish himself from the less productive one by

offering securities with high downside protection for the financier, and a low

upside payoff (such as CoCos). By doing so, high types impose a relatively

higher cost on low types should they try to mimic.

In a SPBE, sl 6= sh. Moreover, given the offered security st, the posterior

belief that it is offered by type t is one, i.e. λ(t|st) = 1 for every t ∈ T . In-

centive compatibility for type h can be written as: Eh(sh)−El(sh) ≤ 0. The

formulation corresponds to the standard incentive compatibility constraints

after: (i) we impose the zero profit condition; (ii) we notice that the inter-

14 Notice that: (i) the s = m ∀m contract may be thought of as a CoCo where m = K;

(ii) a borrower still strictly prefers to offer such a contract than to get no financing, as ex

post he can divert a positive amount of output.

14



esting case is when a low type mimics the high type. The case in which the

high type mimics the low type is considered in Theorem 1.

Suppose that sh has the shape given in (3), and that mh − Dh > η, as

required by Lemma 1. Rewrite the incentive compatibility constraint as:∫ mh−η

η

(
x−η

) [
dFh(x)−dFl(x)

]
+

[
Fl
(
mh−η

)
−Fh

(
mh−η

)]
Dh ≤ 0. (4)

In a SPBE, competitive financing yields P ∗(sh) = Eh(sh) = I. Substituting

this into (4) and integrating by parts yields:∫ mh−η

η

[
Fl(x)

(
1− Fh(mh − η)

)
− Fh(x)

(
1− Fl(mh − η)

)]
dx︸ ︷︷ ︸

>0 by FOSD

+

[
Fl
(
mh − η

)
− Fh

(
mh − η

)]
︸ ︷︷ ︸

>0 by FOSD

[
I −mh + 2η

]
︸ ︷︷ ︸

sign?

≤ 0. (5)

Inequality (5) highlights the key mechanism that underlies separation:

setting a threshold mh high enough to make the last bracket not just negative,

but low enough that the second line counterbalances the first.

Three properties of (5) are useful in the following analysis:

Lemma 3. If the set of mh that satisfies (5) is non-empty, then:

1. There is a unique mh at which the inequality binds. We denote it by

mIC
h ;

2. For every mh < mIC
h the inequality is violated;

3. For every mh ≥ mIC
h the inequality is satisfied.

Proof. From the definition of mIC
h we know that, if mIC

h exists, it must solve:

mIC
h = I+2η+

∫ mIC
h −η

η

Fh(x)dx+

∫
mIC

h −η

η

[
Fl(x)− Fh(x)

](
1− Fh(mIC

h − η)
)[

Fl
(
mIC
h − η

)
− Fh

(
mIC
h − η

)] dx. (6)

To show that the incentive constraint crosses zero from above notice that: (i)

when mh tends to I + 2η, the incentive constraint is strictly positive because

of FOSD; (ii) differentiating the incentive constraint (4) with respect to mh

and evaluating at mIC
h yields:
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[ ∫ mIC
h −η

η

(
Fh(x)− Fl(x)

)
dx

]
︸ ︷︷ ︸

<0 by FOSD

∗

∗
[
fl(m

IC
h − η)

(
1− Fh(mIC

h − η)
)
− fh(mIC

h − η)
(
1− Fl(mIC

h − η)
)]

︸ ︷︷ ︸
> 0 because MLRP⇒HRO

< 0.

An immediate consequence of the inequality is that if the incentive constraint

crosses zero, it must do so only once. Lemma 3 follows.

Notice now that if (5) is satisfied, then a contract is incentive compatible

and leaves the financier at his participation constraint. However, it remains

to guarantee that the underlying contract satisfies limited liability on the

financier’s side, i.e. that Dh ≥ 0. As usual, limited liability constrains the

feasible thresholds that satisfy the zero-profit condition for financiers.

Denote by mmax
h the solution to the zero profit condition in a SPBE for

type h when the face value of debt Dh = 0:∫ mmax
h −η

η

(
x− η

)
fh(x)dx = I. (7)

Notice that in the financing region equation (7) is guaranteed to have a

solution. Also, equation (7) implies that all feasible thresholds are such that

mh ≤ mmax
h . Given that, we can state the following theorem:

Theorem 1. (SPBE) If mIC
h ≤ mmax

h then:

1. There exists a separating equilibrium e∗s in which a type h entrepreneur

issues a contract as in (3) such that the financiers make zero profits,

and m∗h ∈ [mIC
h , mmax

h ];

2. Type l entrepreneurs are indifferent between any contract such that

El(s) = I, as long as it is not a CoCo with D∗l ≤ D∗h;

3. No pooling equilibrium satisfies the Intuitive Criterion.

Proof. Claims 1 and 2: Follow from the previous discussion, and the fact

that if tl issues a CoCo with D∗l ≤ D∗h that breaks even on his type, the good

type would mimic him and he would end up with a rate of repayment higher

than one.

Claim 3: Suppose that all agents are in the pooling equilibrium ê of the

game. Type t = h (the better type) is certainly paying a strictly positive net
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rate of return to the investors. No type other than t = h is in the set Θ for a

security s′ that satisfies (5). Hence, the Intuitive Criterion implies that the

investor must believe that the deviation comes from type h with probability

one. If this is so, the deviation is profitable and the pooling equilibrium does

not satisfy the Intuitive Criterion.

Intuitively, whenmIC
h ≤ mmax

h separation may be achieved because MLRP

implies that the low type (t = l) expects to repay relatively more than the

high type. Thus, by choosing a sufficiently high threshold for the contingent

convertible bond (and a sufficiently low face value of debt) the high type can

make the cost of mimicking for the low type excessively high, and credibly

signal his type to the uninformed financiers.

Now we can proceed to characterize the set of equilibrium outcomes when

Theorem 1 does not apply. We start by clarifying that outside the region

in which Theorem 1 holds, credible signaling cannot occur. Importantly,

this justifies our choice of focusing on CoCos, as they can be used to obtain

necessary and sufficient conditions for separation to occur. To establish this

result, some preliminary steps are required.

Denote the CoCo with mh = mmax
h and Dh = 0 as s∗, and compare it

with another generic security s such that Eh(s∗) = Eh(s) = I. Moreover,

define the following sets:

Π+(s) ≡ {m|s∗(m = x) > s(m = x)}

Π−(s) ≡ {m|s∗(m = x) < s(m = x)}

Lemma 4. For every pair (ml = xl,mh = xh) in X2 such that ml ∈ Π+

and mh ∈ Π− we have mh > ml. Moreover, m∗(xl|s∗) ≥ m∗(xl|s) and

m∗(xh|s∗) ≤ m∗(xh|s).

Proof. First notice that Π+(s) = ∅ if and only if Π−(s) = ∅, because ft(x) > 0

for every x ∈ [0, K], for every t ∈ T . In this case the lemma is not very useful,

but it is still satisfied. Suppose Π+(s) is non-empty. Because of limited

liability, it must be the case that mh > mmax
h − η for every mh ∈ Π−, and

ml < mmax
h − η for every ml ∈ Π+(s). As for the claim about the real payoff,

it follows directly from the shape of s∗.

As a consequence:

Lemma 5. Denote the CoCo with mh = mmax
h and Dh = 0 as s∗. For any

generic security s such that Eh(s∗) = Eh(s) = I, we have that El(s∗) > El(s).
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Proof. The only interesting case is, again, when Π+(s) is non-empty (else the

lemma holds trivially). Suppose so. Furthermore, suppose we move from s∗

toward s through a series of steps such that in each step we create a security

s′ such that Et(s′) = I, but there exists a small interval dxa ∈ Π+(s) such

that s′(m∗(dxa)) < s∗(m∗(dxa)) and this change is compensated by inducing

a change in the real payoff for another small interval dxb ∈ Π−(s) so that

s′(m∗(dxb)) > s∗(m∗(dxb))
15. Then,

El(s∗)− El(s′) = fl(xa)
[
s∗(m∗(dxa))− s′(m∗(dxa))

]
+ fl(xb)

[
s∗(m∗(dxb))− s′(m∗(dxb))

]
=
[
s∗(m∗(dxb))− s′(m∗(dxb))

]︸ ︷︷ ︸
< 0 by construction

(
fl(xb)

fh(xb)
− fl(xa)

fh(xa)

)
︸ ︷︷ ︸

< 0 by MLRP

ft(xb) > 0,

where the second equality comes from Eh(s∗) = Eh(s′). The iteration of this

procedure one step at a time concludes the proof.

The latter result implies immediately that:

Corollary 1. If mIC
h > mmax

h , then any PBE of the game must be pooling.

Proof. Because of Lermma 5 we know that Eh(s∗)− El(s∗) < Eh(s)− El(s),
for every Eh(s∗) = Eh(s) = I. The Corollary follows.

The intuition for this result is as follows. Because a higher threshold for

the CoCo (and a lower face value of debt) increases the cost of mimicking

for the low type, this cost is maximized when Dh = 0 and the threshold is

mmax
h . If the distributions are such that the incentive constraint for the low

type is violated at this contract, then a separating equilibrium cannot exist

and the only possible equilibria are pooling. We characterize such equilibria

next.

6.2 Pooling Equilibria

Since Nachman and Noe’s (1994) seminal paper, the literature has adopted a

stronger refinement than the intuitive criterion to deal with pooling equilib-

ria: the D1 criterion. As is well known, the intuitive criterion does not bind

in the pooling region of such models. The reason is that both types may

15In both cases, construct the interval such that it is of equal length as the pdf centered

at the two points: f(xa), f(xb)
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benefit from any deviation depending on the posterior belief of the financier.

D1 allow us to refine the equilibrium set and obtain a unique equilibrium

because it is a condition on the range of beliefs for which a deviation is

profitable.

Denote by V ′t the utility of type t entrepreneur at the deviant contract,

and by V ∗t the utility of type t entrepreneur at the equilibrium contract.

Moreover, denote by D(t|s′) the set of responses of the financier that

would deliver strictly higher utility to type t entrepreneurs than the utility

he would obtain at the equilibrium contract. Formally:

D(t|s′) ≡ {P ∗(s′) ≥ I : V ′t > V ∗t }

where by competitive rationality, P ∗(s′) = Eλ∗(s′)(s
′) for all λ∗(s′) ∈ ∆T , as

beliefs off-the-equilibrium path are arbitrary.

Finally, define the indifference set D0(t|s′):

D0(t|s′) ≡ {P ∗(s′) ≥ I : V ′t = V ∗t }.

The D1 restriction can be defined as follows16:

D1: Suppose s′ ∈ S is observed off-the-equilibrium path. Then for all t ∈ T :

λ∗t (s
′) =


0 if ∃ t′ ∈ T s.t. t′ 6= t, and D(t|s′) ∪D0(t|s′) ⊂ D(t′|s′)
1 if D(t′|s′) ∪D0(t′|s′) ⊂ D(t|s′), ∀t′ 6= t ∈ T
1− λt′ 6=t otherwise

The pooling zero profit condition at a contract such that D = 0 is given

by:

λh

[∫ mmax
λ −η

η

(
x−η

)
fh(x)dx

]
+(1−λh)

[∫ mmax
λ −η

η

(
x−η

)
fl(x)dx

]
= I. (8)

Applying D1 yields:

Theorem 2. (PPBE, part (a)) If mIC
h > mmax

h and mmax
λ < K − η, then

there is a unique pooling equilibrium e∗p which satisfies D1. At e∗p, all types

issue a contract as in (3) with D∗p = 0.

16The D1 restriction is stronger than the inutitive criterion, hence Theorem 1 goes

through unchanged if D1 is imposed.
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Proof. Existence: Suppose there exists an mmax
λ that satisfies the pooling

zero profit condition.

Define the security sp so that: Dp = 0 and mp = mmax
λ . Moreover,

suppose that the market posterior is equal to the prior at sp, and it is λh = 0

at any other s′ 6= sp such that s′ ∈ S.

Then, all types issuing sp is an equilibrium. It remains to show that it

satisfies D1. In particular, we need to prove that D(1|s′)∪D0(1|s′) 6⊂ D(2|s′)
for every s′ 6= sp such that s′ ∈ S. T

There are two cases:

1. If El(s′) < El(sp), then D(1|s′) = [I,∞). Hence it must be that

D(2|s′) ⊆ D(1|s′) ∪D0(1|s′);
2. If El(s′) ≥ El(sp), Lermma 5 implies Eh(s′) ≥ Eh(sp) as well. But we

can say more:

Suppose we move from sp to s′ through a series of consecutive steps (i.e.

interim contracts s′′) such that in each step we induce an increase in

the real payoff of sp by raising s′′(mk = xk) for some xk ∈ X. Clearly, it

must be that xk ≥ mp. Notice that because sp is a pooling equilibrium,

it must be that it does not satisfy (5). Hence, because of MLRP, at

xk we must have fl(xk) < fh(xk) - i.e. xk must exceed the (unique)

crossing point of the two densities. Therefore:

El(s′′)− El(sp) = fl(xk)
[
s′′(m∗(xk|s′′))− sp(m∗(xk|sp))

]
= fl(xk)(s

′′(m∗(xk|s′′))
< fh(xk)(s

′′(m∗(xk|s′′))
= Eh(s′′)− Eh(sp).

Iterating the same logic we conclude that Eh(s′) − Eh(sp) > El(s′) −
El(sp). It follows that at e∗p it must be the case that, for all P ∗ ≥ I:(
V ′h − V ∗h

)
−
(
V ′l − V ∗l

)
=
(
El(s′)− El(sp)

)
−
(
Eh(s′)− Eh(sp)

)
< 0,

which implies that D(2|s′) ⊆ D(1|s′) ∪D0(1|s′) again.

Uniqueness: From Corollary 1 we know that there can only exist other

pooling equilibria if the conditions required for Therem 1 to apply do not

hold. We now show that if there exists an mmax
λ ∈ (mmax

h , K−η) such that (8)

is satisfied, then every pooling equilibrium e′ of the game such that e′ 6= e∗p
does not satisfy D1.

Consider a generic e′ 6= e∗p. From the analysis above and Lermma 5, we

know that there exists at least an s′ such that El(s′) ≥ El(sp) but Eh(s′) <
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Eh(sp). Then the logic of the previous proof (point 2 above) is reversed. We

conclude that such a equilibrium does not satisfy D1.

To conclude the characterization, we consider two final cases:

Theorem 3. (PPBE, part (b)) If mIC
h > mmax

h and mmax
λ ≥ K − η, then

either there is a unique pooling equilibrium e∗p that satisfies D1, at which all

types issue a contract as defined in (3) with D∗p > 0; or there is no financing.

Proof. Part (1) can be proved in the same fashion as Theorem 2, with a twist:

now it must be the case that a CoCo with D = 0 cannot satisfy the pooling

zero profit condition. Hence, we start by finding the minimum D > 0 such

that the condition can be satisfied. Then, the result follows from the logic of

the previous proof.

Part (2) follows from the fact that with a contract as in (1) we are hitting

the upper bound of the distribution of earnings. If such a contract does not

exist, then any other security could not break even for the financier.

Corollary 2. Within the first case of Theorem 3, if mp−Dp < η, the optimal

contract is ex post equivalent to a debt contract.

The Corollary follows directly from the definition of a CoCo and the no-

financing condition. It is worth observing that Theorem 3 and its corollary

rely on the distribution of earnings being bounded above. For this reason,

both with exponential and (log)normally distributed earnings they describe

empty sets.

Theorem 4. If the distribution of earnings is unbounded above, i.e. K →∞,

then debt contracts are never issued in equilibrum, regardless of parameter

values.

Proof. When K →∞ there always exists an mmax
h such that the pooling zero

profit condition is satisfied for a face value of debt of Dp = 0.

Moreover, regardless of the extent profit manipulation, as long as it is

bounded, the pooling contract with Dp = 0 has a real payoff which is non-

monotonic. As a result, any contract with a monotonic real payoff cannot be

part of an equilibrium that satisfies D1.

7 Examples

First, we show how our results translate for two families of widely used

distributions that satisfy A2: the exponential and normal families. Table
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Table1: Parameter Assumptions

Family Type I CDF Parameter

Exponential
l 1$ 1− e−(γl)

−1x tl ∈ [1, 4)

h 1$ 1− e−4x th = 4

Truncated Normal
l 1$ 0.5

(
1 + erf

x− γl√
2

)
tl ∈ [1, 4)

h 1$ 0.5

(
1 + erf

x− 4√
2

)
th = 4

Linear
l 1$ Eq. (9) with parameter tl tl ∈ [1, 4)

h 1$ Eq. (9) with parameter th th = 4

1 summarizes the parameter values that we assume for the three examples

solved17. We consider the cases where η ∈ [0, 4].

Figures 5 and 6 show the characterization of equilibria for two examples.

The gray region is where a separating equilibrium exists (and it is unique,

in terms of allocations). The black region is where a pooling equilibrium in

CoCos exists, and it is unique. Finally, the white region is where no financing

occurs.

Figures 5 and 6 show that the regions described in Theorems 1 and 2

are non-empty. Because of the un-boundedness of the earnings distributions

support, the pooling region does not admit any monotonic security (including

debt, of course).

Finally, we want to show that the unbounded support is not a necessary

condition for non-monotonic contracts to be the unique equilibrium securi-

ties. To do this, we introduce a family of distribution functions that has

bounded support (i.e. K is finite), and satisfies MLRP. The pdfs for this

family are linear and given by:

ft(x) =
1

K

[
K − 2x

(µt + 1)K
+ 1

]
(9)

with µt=l > 0 and µt=l < µt=h. This family satisfies strict MLRP, because

17The examples include all projects such that $1 = I ≤ El(x) < Eh(x) for a given

Eh(x) = $4.
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Figure 5: The Exponential Case

Figure 6: The Truncated Normal Case

for any (t, t′) ∈ T 2 such that t′ < t we have:

∂

∂x

(
ft(x)

ft′(x)

)
=

2K(1 + µt′)

(K(2 + µt′)− 2x)2(1 + µt)︸ ︷︷ ︸
>0

[µt − µt′ ]

and µt′ < µt whenever t′ < t.
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Table 3 summarizes the parameter values that we assume for this case,

and Figure 7 characterizes the set of equilibria. It should be clear from

our results that the region where the unique euilibrium is separating admits

only non-monotonic securities. However, contrary to the previous examples,

the pooling region may include some monotonic securities, close to the no

financing region18.

Figure 7: The Linear Case

8 Extensions

Our model is deliberately stylised in many respects. We now discuss some

extensions and we show that the main insights of our analysis do not depend

on (i) the type of asymmetric information assumed; (ii) the cardinality of the

type space.

First, suppose that in addition to (or instead of) adverse selection, the

capital market is subject to moral hazard: borrowers can increase the ex-

pected value of their projects by exerting costly (unobservable) effort. As

18The reader may notice two features of this final example: (i) The division between the

separating and the pooling regions seems not to depend on tl. We explore this fact in the

next Section. (ii) The division between the pooling and the no financing regions seems

to depend (very loosely) on tl. This is driven by the zero-profit pooling condition: as we

increase tl the no financing region shrinks, albeit by a very small amount.
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Innes (1990) has shown, as long as the effort decision generates a family

of distributions which satisfy the MLRP ordering, non-monotonic contracts

dominate debt.

Innes assumes that output is perfectly verifiable, hence his conclusions

do not directly apply here. However, it is clear what the driving force of the

result is: by choosing a non-monotonic contract borrowers have incentives

to exert higher effort, because their payoff is zero unless they obtain high

earnings. The optimal contract display a pay-for-performance payoff.

In our setup, where output is only coarsely verifiable, optimal contracts

are constrained by the profit manipulation possibilities, which reduce the

effort exerted by borrowers relative to that in Innes (1990). However, the

results are qualitatively similar.

Second, consider our assumption that there are just two types. The as-

sumption is restrictive, and one wonders how the results depend on it. To

show that their qualitative properties extend to richer type spaces, we char-

acterize the set of separating equilibria for an example that admits a closed

form solution.

In particular, consider again the family of linear density functions de-

scribed by (9). This family has a convenient property: the densities all cross

at the same point. Indeed, it is easy to verify that for any pair of types

(t, t′) ∈ T , ft(x) = ft′(x) if and only if x = K/2, in which case ft(x) = 1/K

for every t.

Consider now the incentive compatibility constraint (5) at the limit CoCo

given by the solution to (7). Differentiating the LHS with respect to the type

t′ yields19:
(µt′ − µt)(2η + 3K − 4mmax

t )(mmax
t − 2η)2

6K(1 + µt′)(1 + µn)
(10)

To achieve separation we must have that mmax
t > 2η, so the expression is

negative if and only if:

mmax
t <

η

2
+

3K

4
(11)

We know that the two inequalities describe a non-empty set of earnings

realizations if K > 2η.

Using (11), we can sign the derivative of the incentive constraint given by

(10) with respect to type t′, which is always negative in the relevant range,

i.e. for every x ≤ K/2.

19Technically, we can take such a derivative only if we assume a continuum type space.

We suppose so, and later we shall draw a finite set of types from such a continuum.
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The result has an immediate economic interpretation. It tells us that if

a type t can separate from a type t′ < t, then it can separate from any other

t′′ ∈ (t′, t).

We can now restate our Theorem 1 for this case:

Theorem 5. Suppose that the pdfs are described by (9) for every t ∈ T ,

and suppose that T = {t1, t2, ..., tN}. If there exists a CoCo with threshold

m2 ≤ mmax
2 that satisfies the incentive constraint for the pair (t2, t1), then:

1. There exists a fully separating equilibrium e∗s in which every t ∈ T \{t1}
issue a contract as in (3) such that the financiers make zero profits. The

contracts are such that Dn < ... < D2;

2. Type t1 is indifferent between any contract such that E1(s) = I. If it is

a CoCo, though, it must be such that D1 > D2;

3. No pooling equilibrium satisfies the Intuitive Criterion.

Proof. From our previous analysis we know that if the incentive constraint

for the pair (t, t1) is satisfied, then the one for any pair (t, t′) such that

t′ ∈ T \ {t1} also holds.

Because of our special distributional assumption, when the condition

holds for th, then it holds for all t ∈ T \ {t1, t2} and a fully separating

equilibrium in which financiers make zero profits exists.

That no pooling equilibrium is reasonable can be proved as in the two-

type case.

Theorem 5 is given for a specific distribution, as the general case is difficult

to analyze20. However, it clearly shows that our main result on the signaling

property of capital structure does not depend on the two-type assumption.

9 Discussion of Related Papers and Conclu-

sion

We already discussed our theoretical contributions to the financial contract-

ing literature in the introduction and literature review. We conclude by

20To prove that the incentive constraints are ordered in the type space one deals with two

countervailing forces: on the one hand, lower quality types have more to gain by mimicking

higher ones. But, on the other hand, they are the ones for whom the costs of mimicking

are the highest. Which of these two forces prevails is clear with the analytically tractable

linear densities, but not for general distributions. One can prove graphically that the order

of incentive constraints holds also for the exponential and truncated normal distributions.

Such results are available from the authors upon request.
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discussing two key examples of their policy implications.

In the aftermath of the 2008 financial crisis, government interventions in

financial markets have been widespread. As Philippon and Skreta (2012) ar-

gue, given a budget to spend, governments can reduce underinvestment and

alleviate the credit crunch. Nevertheless, a question that naturally arises

concerns which instruments are best suited for this objective. Should the

public intervention involve equity or debt contracts? How should it be linked

to a borrower’s future earnings? These are some of the important norma-

tive questions that Philippon and Skreta address. In particular, they derive

the optimal monotonic intervention and show it involves the use of debt con-

tracts. Moreover, they argue that governments can never target the interven-

tion to those borrowers who are underinvesting, and as a result interventions

are particularly costly to implement.

As discussed in Trigilia (2014), once profit manipulation and adverse se-

lection are explicitly modelled, quite different results hold. The optimal

contract is a Contingent Convertible, as derived in this paper, and it may be

that this contract implements a separating equilibrium in which only those

firms who are underinvesting apply to the scheme. In such cases, the govern-

ment’s intervention would be relatively less costly to implement. Strikingly,

the result holds even when the optimal contract in the private market is a

debt contract - contradicting the finding that the government needs to mimic

the prevailing contracts traded in private markets.

A second important policy implication of our results concerns the issue

of regressive taxation. As derived in Scheuer (2013), some non-monotonicity

is necessary to implement efficient investment levels under adverse selection.

However, allowing for optimal contracts in the private sector would actu-

ally rule out the need for corrective taxation in models such as Scheuer’s,

hence raising the problem of finding a different justification for the empirical

phenomenon of countries adopting regressive taxes21.

Overall, the arguments that rely on monotonicity should be reconsidered

in light of the findings of this paper. Market participants have used non-

monotonic securities to mitigate asymmetric information problems since long

ago. It may be worth allowing for them also in our economic models.

21A note on the issue is available from the authors upon request.

27



10 References

ADMATI, Anat R., et al. Fallacies, irrelevant facts, and myths in the

discussion of capital regulation: Why bank equity is not expensive. 2010, 42.

Preprints of the Max Planck Institute for Research on Collective Goods.

AKERLOF, George A. The Market for ‘Lemons’: Quality Uncertainty

and the Market Mechanism. The Quarterly Journal of Economics, 1970,

84.3: 488-500.

AXELSON, Ulf. Security design with investor private information. The

journal of finance, 2007, 62.6: 2587-2632.

AXELSON, Ulf; STROMBERG, Per; WEISBACH, Michael S. Why are

buyouts levered? The financial structure of private equity funds. The Journal

of Finance, 2009, 64.4: 1549-1582.

CASAMATTA, Catherine. Financing and Advising: Optimal Financial

Contracts with Venture Capitalists. The journal of finance, 2003, 58, no. 5.

CHAKRABORTY, Archishman; YILMAZ, Bilge. Adverse Selection and

Convertible Bonds. Review of Economic Studies, 2011, 78 : 148-175.

CHO, In-Koo; KREPS, David M. Signaling games and stable equilibria.

The Quarterly Journal of Economics, 1987, 102.2: 179-221.

CORNELLI, Francesca; YOSHA, Oved. Stage financing and the role of

convertible securities. The Review of Economic Studies, 2003, 70.1: 1-32.

DANG, Tri Vi; GORTON, Gary; HOLMSTROM, Bengt. Opacity and

the optimality of debt for liquidity provision. Manuscript Yale University,

2009.

DEMARZO, Peter; DUFFIE, Darrell. A liquidity-based model of security

design. Econometrica, 1999, 67.1: 65-99.

DEMARZO, Peter M.; KREMER, Ilan; SKRZYPACZ, Andrzej. Bid-

ding with securities: Auctions and security design. The American economic

review, 2005, 95.4: 936-959.

FLANNERY, Mark J. No pain, no gain? Effecting market discipline via

reverse convertible debentures. Capital Adequacy Beyond Basel: Banking,

Securities, and Insurance, HS Scott, ed, 2005: 171-196.

GALE, Douglas; HELLWIG, Martin. incentive-compatible debt con-

tracts: The one-period problem. The Review of Economic Studies, 1985,

52.4: 647-663.

GOMPERS, Paul; LERNER Josh. The venture capital revolution. Jour-

nal of Economic Perspectives, 2001: 145-168.

GORBENKO, Alexander S.; MALENKO, Andrey. Competition among

sellers in securities auctions. The American Economic Review, 2011, 101.5:

28



1806-1841.

HART, Oliver; ZINGALES Luigi. A new capital regulation for large

financial institutions. American Law and Economics Review, 2011, 13.2:

453-490.

HELLMANN, Thomas. IPOs, acquisitions, and the use of convertible

securities in venture capital. Journal of Financial Economics, 2006, 81.3:

649-679.

HIGGINS, Matthew J. The allocation of control rights in pharmaceutical

alliances. Journal of Corporate Finance, 2007, 13.1: 58-75.

INDERST, Roman; MUELLER, Holger M. Informed lending and security

design. The Journal of Finance, 2006, 61.5: 2137-2162.

INNES, Robert D. Limited liability and incentive contracting with ex

ante action choices. Journal of economic theory, 1990, 52.1: 45-67.

INNES, Robert D. Financial contracting under risk neutrality, limited

liability and ex ante asymmetric information. Economica, 1993, 27-40.

KAPLAN, Steven N.; Per STROMBERG. Financial Contracting Theory

Meets the Real World: An Empirical Analysis of Venture Capital Contracts.

The Review of economic studies, 2003, 70, no. 2: 281-315.

KOUFOPOULOS, Kostas; TRIGILIA, Giulio. Adverse selection and re-

gressive profit taxation: a comment. 2014, mimeo.

KRASA, Stefan; VILLAMIL, Anne P. Optimal contracts when enforce-

ment is a decision variable. Econometrica, 2000, 68.1: 119-134.

KRAUS, Alan; LITZENBERGER, Robert H. A state-preference model

of optimal financial leverage. The Journal of Finance, 1973, 28.4: 911-922.

LA PORTA, R., LOPEZ-DE-SILANES, F., SHLEIFER, A., & VISHNY,

R. W. Legal Determinants of External Finance. Journal of Finance, 1997,

52(3): 1131-50.

MYERS, Stewart C.; MAJLUF, Nicholas S. Corporate financing and in-

vestment decisions when firms have information that investors do not have.

Journal of financial economics, 1984, 13.2: 187-221.

NACHMAN, David C.; NOE, Thomas H. Optimal design of securities

under asymmetric information. Review of Financial Studies, 1994, 7.1: 1-44.

NOE, Thomas H. Capital structure and signaling game equilibria. Review

of Financial Studies, 1988, 1.4: 331-355.

PHILIPPON, Thomas; SKRETA, Vasiliki. Optimal Interventions in Mar-

kets with Adverse Selection. American Economic Review, 2012, 102.1.

SCHEUER, Florian. Adverse selection in credit markets and regressive

profit taxation. Journal of Economic Theory, 2013.

29



SCHMIDT, K. M. Convertible Securities and Venture Capital Finance.

The Journal of Finance, 2003, 58.3.

TRIGILIA, G. Optimal Interventions in Markets with Adverse Selection

and Profit Manipulation. 2014, mimeo.

30


	Introduction
	Literature Review
	The Economy
	Debt Contracts
	Contingent Convertibles (CoCos)
	Optimal Security Design
	Separating Equilibria
	Pooling Equilibria

	Examples
	Extensions
	Discussion of Related Papers and Conclusion
	References

