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Abstract

Catastrophic risk, rare events, and black swans are phenomena that require
special attention in normative decision theory. Several papers by Chichilnisky
integrate them into a single framework with finitely additive subjective prob-
abilities. Some precursors include: (i) following Jones-Lee (1974), undefined
willingness to pay to avoid catastrophic risk; (ii) following Rényi (1955, 1956)
and many successors, rare events whose probability is infinitesimal. Also,
when rationality is bounded, enlivened decision trees can represent a dy-
namic process involving successively unforeseen “true black swan” events.
One conjectures that a different integrated framework could be developed to
include these three phenomena while preserving countably additive proba-
bilities.
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1 Introduction

1.1 Countably Additive Subjective Probability

Savage’s (1954) classic, The Foundations of Statistics, provided an axiom
system sufficient to imply that a decision maker’s preferences could be repre-
sented by the expected value of a von Neumann—Morgenstern utility function,
with personal or subjective probabilities attached to unknown events ranging
over a sample space of states of the world. His axioms, however, implied that
probabilities are only finitely rather than countably additive. Yet countable
additivity is a key measure-theoretic property that probabilitists since the
time of Kolmogorov (1933), at least, are accustomed to using. It allows,
for instance, the probability of an interval of the real line to be found by
integrating a density function over that interval.

1.2 Monotonicity

To bridge this gap between finite and countable additivity, Villegas (1964),
Arrow (1965) and Fishburn (1982) all introduced an additional monotonicity
axiom ensuring that subjective probabilities are countably additive. One
version of the relevant axiom can be derived by combining slightly modified
versions of two axioms set out in Sections 7.2 and 7.3 of Hammond (1998b).

Let (Y, F) denote a measurable space of consequences, and (5,S) a mea-
surable space of states of the world. Following the evocative terminology
introduced by Anscombe and Aumann (1963), let A(Y, F) denote the space
of roulette lotteries in the form of probability measures over (Y, F).

In the special case when S is a finite set, for each £ C S, let Y* denote
the Cartesian product set [[ . Ys, where each Y, is a copy of Y, and let FE
denote the product o-field @), 5 Fs, where each F; is a copy of F. Consider
then the space A(YE FE) of roulette lotteries, in the form of probability
measures over (Y FF) whose random outcomes are horse lotteries y¥ in
the space of measurable mappings from E to (Y, F).

The key reversal of order aziom (RO) due to Anscombe and Aumann
(1963) treats, for any event E C S, any pair \¥, uf € A(YE, FE) as equiv-
alent if and only if their marginal measures A, us € A(Y,F) are equal for
each state s € E. Then each 7% € A(Y? F¥) can be identified with the
list (ms)sep of marginal probability measures 7, € A(Y, F). In particular,



this treats as irrelevant the extent of any correlation between consequences
ys € Y that arise in different states s € E.

Next, we revert to the case of a general measurable space (S,S). Then,
for each measurable event F € S, define the conditional sub-o-field

Sp={GeS|GCE}CS

Obviously, in case ' = S, this definition implies that S|g = S.

In the spirit of the case when S is a finite set, for each measurable event
E € 8, let A(Y? S, F) denote the space of functions 7% : E — A(Y, F)
with the property that, for each K € F, the mapping

E>s— (s, K) R,

is measurable w.r.t. the o-field S|z on £ and the Borel o-field on R.

The other axioms to be discussed here concern:

1. the preference ordering ~* on A(Y,F) having the property that for
each y € Y, in addition to the set {y}, the upper and lower contour
sets

{yeY |, 270} and {y €Y |dy 3" 0,}

are both F-measurable;

2. for each measurable event E € &, the conditional preference ordering

,>\'JE on A(YE,S|E,.F)

Definition 1. Event Dominance (ED)

Suppose that the event E € S, the list of probability measures ©F =
(Ts)ser € A(YE, S, F), and the simple lottery A € A(Y) are all given. Let
A1E denote the particular list \F = (Ns)sep € AYE, S, F) that satisfies
As = A forall s € E. Then:

1. 7, =* X\ (all s € E) implies 78 =F N 1F;
2. s 3* X (all s € E) implies 7% ZF X1F.

In case the set E is finite, condition (ED) is an obvious implication of
Anscombe and Aumann’s extension of Savage’s sure thing principle. The
force of (ED) comes in partially extending this principle to the case when FE
is any measurable subset of S.



Next, given any measurable event E € S satisfying ) # E # S, let
(717, 7 15\F) denote the particular list of probability measures A% = (\,)4cg €
A(YE S, F) whose marginal distribution A\, € A(Y,F) for each s € S is a
roulette lottery that satisfies

N = T ifsekl
|7 ifseS\E

Definition 2. Event Continuity (EC)

Let =% on A(Y, F) and =% on A(Y®, 8%, F) be fized preference orderings.
Suppose that the two measurable events E, E* C S, as well as the sequence
of measurable events Ey (k € N), and the two probability measures m, 7 €

A(Y, F), together satisfy:
1. BiCE,C...CE, CE,1C...CS;
9. B = U2, B
O
4. (m1F 7 1\ET) 5 (r1F 7 15\F),
Then there must exist a finite k such that (w15 7 19\Fk) =5 (7 18 7 19\E).

Equivalently,

(7T 1Ek’7’f.15\Ek) r>\-JS <7T 1E,7~T15\E> (au ke N)
— (r1F7 7 19\F) =5 (1P, 7 15\F)

1.3 Beyond Monotonicity

In several recent papers, Chichilnisky (1996, 2000, 2009, 2010) has explored
a particular weakening of this kind of monotonicity axiom. This weakening
allows a revised decision theory in which rare events, catastrophes, perhaps
even “black swans”, can all be given more prominence. Of course, the weak-
ening comes at the cost of allowing probabilities that are only finitely ad-
ditive. For this reason, ultimately it may be useful to investigate whether
some alternative approach could allow for such phenomena while retaining
probabilities that are countably additive measures.



1.4 Outline of Paper

The rest of this paper considers three different strands of literature. First,
Section 2 considers some background on the use of the word “catastrophe”,
in drama, mathematics, and finally decision theory. It goes on to formalize
a notion of catastrophic risk in decision theory, based on pioneering work on
the value of life due to Dreze (1962), followed by Jones-Lee (1974).

The second strand discussed in Section 3 concerns the use of infinitesi-
mals to represent the subjective probability of events so rare that they should
not be accorded any positive probability. Third, Section 4 offers a possible
approach to modelling the “true black swans” that Taleb (2007) in partic-
ular regards as beyond any kind of systematic analysis. Finally, Section 5
combines a suggestion for an alternative synthesis of these three strands with
some concluding remarks.

2 Catastrophic Risk

2.1 Etymology

According to http://www.etymonline.com/, the word “catastrophe” en-
tered the English language during the 1530s with the meaning “ ‘reversal of
what is expected’ (especially a fatal turning point in a drama)”. It is derived
from the Greek “katastrophe”, meaning “overturning; a sudden end”, itself
a compound of the prefix “kata” meaning “down” and “strephein” meaning
“turn”.

The extension of the meaning of “catastrophe” to include “sudden disas-
ter” is first recorded in 1748. In medicine, catastrophe is often taken to mean
death related to what should have been routine surgery. In engineering, a
“catastrophic failure” is the complete breakdown of a system from which
recovery is impossible. A celebrated example is the Tay Bridge disaster of
1879 which, thanks to William McGonagall’s (1880) doggerel, has become a
classic of British folklore.

There is a branch of mathematics known as “catastrophe theory” that
concerns the possible instability of the minimum of a non-linear potential
function when that function depends on exogenous parameters which may
be subject to sudden shocks. The monograph by Thom (1972) provided a
systematic classification of different types of catastrophe. Zeeman (1976)
did much to popularize the application of catastrophe theory to the study of
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many different dynamic phenomena where there is a sudden change. These
applications include:

e in animal psychology, aggression in dogs;
e in medicine, the beating heart;
e in structural engineering, beams that first buckle and then collapse;

e in economics and finance, crashes in stock markets, as well as Balasko’s
(1978) description of structural properties of the Walrasian equilibrium
manifold.

2.2 Catastrophic Consequences

Standard decision theory considers acts whose consequences range over a
specified consequence domain in the form of an abstract set Y equipped
with a o-algebra F of measurable sets. In principle, catastrophes can be
described by letting the consequence domain Y be the union of the two
disjoint measurable sets: (i) Yy of non-catastropic consequences; and (ii) Y;
of catastrophic consequences.

Here, however, our concern will be to discuss how catastrophes can be
modeled as events so extreme that a suitable money metric utility function
becomes undefined whenever the probability of a catastrophe is sufficiently
high. Accordingly, consider a consequence domain K x Ry of pairs (k,y)
where:

1. y € R, is income or wealth (depending on context);

2. kK € K = {0,1} is a binary indicator variable indicating whether a
“catastrophe”:

e occurs, iff K = 1;
e or does not occur, iff kK = 0.
Hence Yy = {0} x R, whereas Y; = {1} x R,
Following Dreze (1962), consider too a consumer whose preference or-

dering 77 on the set A(K x Ry) of lotteries over K x R, is represented by
the expected value Eu of each real-valued von Neumann—Morgenstern utility



function (or NMUF) K x Ry — (k,y) — u(k,y) € R in a unique cardi-
nal equivalence class. The literature on decision theory inspired by Dreze
often regards the mapping y — u(k,y) as a state-dependent utility function
of income g, though it can perhaps be more usefully regarded as a state-
independent utility function of the fully specified consequence (k,y).

2.3 Assumptions

Within the framework of Section 2.2, we assume that:

1. for each fixed k € K, each NMUF y — u(k,y) is continuous, strictly
increasing, and bounded above, with upper bound w, := sup u(k, y);

2. for each fixed y € Ry, one has u(0,y) > u(1,y);
3. Up > Uqp.

The second assumption, of course, is that the consumer is worse off with a
catastrophe than without, ceteris paribus. Taking the limit as y — oo implies
that g > uy, obviously, but the third assumption that uy, > u; strengthens
this to a strict inequality. In particular, this third assumption holds if and
only if there is a continuous extended utility function @ : K x (RyU{oco}) - R
for which there exists y* € R such that @(0,y*) = @(1,00) and so @(0,y) >
u(1, 00) whenever y > y*.

2.4 Money Metric Utility

Following Jones-Lee (1974), consider this consumer’s willingness to pay for
a reduction in the probability p of catastrophe. Specifically, consider any
reference or baseline lottery

M= (1- pR)5(o,y§) + PR(S(Ly{?) (1)

which is a mixture of the two degenerate lotteries d(g,r) and (3 ,r) that

attach probability one to the consequences (0, y{t) and (1,yf) respectively.
Thus, the consumer faces the probability pf of a catastrophe, along with
reference income levels y (k € {1,0}) with and without a catastrophe. Let

U™ = (1= p™u(0,y5) + p"u(1,yf") (2)



denote expected utility in the reference situation. One can use these reference
levels and the equation

(1 = p)u(0,m) + pu(l,3,) = U (3)
in an attempt to define implicitly a money metric utility function
Ry x [0,1] 3 (y1;p) = m(y1;p) € Ry (4)

Note that this function will be the same whenever u is replaced by an alter-
native NMUF that is cardinally equivalent.

Definition (4), when valid, implies that m(y;;p) — y& is the consumer’s
willingness to accept the net increase p — p’ in the risk of catastrophe, when
compensation in the event of the catastrophe raises income from yf to y;.
Alternatively, ylt — m(yy;p) is the consumer’s (net) willingness to pay, in
terms of foregone income in the absence of catastrophe, for the decrease in
the probability of catastrophe from p% to p.

2.5 A Critical Probability Level: Catastrophic Risk

The money metric utility function (4) really is defined by equation (3) for
the pair (yi;p) if and only if

(1 - p)u(0,0) + pu(l,y;) < U

Otherwise giving up all income is insufficient to compensate for the increase
in p, which one could then regard as a true catastrophe.

In particular, the function (4) is defined iff p < p¢ for the critical proba-
bility level defined by

L UR B U(O, 0) _ (1 - pR)u<07 y[})%> + pRu<1> y{%) B u<07 O) (5)

P = 0@ y1) — u(0,0) u(1,y1) — u(0,0)

Thus, once p has reached pc, no compensation is possible for any further
increase in the probability of catastrophe.

Note that pc, as the ratio of expected utility differences, is not only
preserved under positive affine utility transformations. In addition, as dis-
cussed in Hammond (1998a), the formula (5) that expresses pc as the ratio
of utility differences implies that it must equal the constant marginal rate of
substitution between shifts in probability away from (0, 0), the worst possible
outcome without a catastrophe, toward respectively:
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1. the reference lottery defined by (1);

2. the consequence (1,y;) that represents the occurrence of the catastro-
phe combined with the income level ;.

2.6 Extreme Economic Catastrophes

One can also have an extreme catastrophe where p is large enough to satisfy
(1 - p)u(0,0) + pu, > U*
This, of course, is equivalent to

UR —u(0,0)

& — u(0,0) (6)

p >

Inequality (6) implies that the probability of catastrophe is so high that no
matter how large y; may be, there is no value of m that satisfies (3). In this
sense, compensation is completely impossible.

3 Rare Events

3.1 Standard Decision Theory

Standard decision theory uses the expected utility (EU) criterion. Tradition-
ally, moreover, a distinction is made between objective and subjective EU
theory, depending on whether one faces:

e risk or roulette lotteries described by objective probabilities, as in von
Neumann and Morgenstern (1944) and then Jensen (1967);

e uncertainty or horse lotteries described by subjective probabilities, as
in Savage (1954);

e combinations of roulette and horse lotteries, as in Anscombe and Au-
mann (1963).



3.2 Infinitesimal Probability

Recall that, by definition, an infinitesimal € is some positive entity (not a
real number) that is smaller than any positive real number in the sense that
0 < ne < 1 for all natural numbers n € N. To accommodate rare events,
one can follow the game-theoretic literature emanating from Selten (1975) by
allowing “trembles” whose probability is taken to be some positive multiple
of a particular basic infinitesimal €. See Halpern (2009, 2010) for discussion
of some recent developments.

3.3 Rare Events and Infinitesimal Probabilities
Probabilities must be:

1. added when calculating the probability of the union of two or more
pairwise disjoint events;

2. subtracted when calculating the probability of the set-theoretic differ-
ence of any two events;

3. multiplied when compounding probabilities at successive stages of a
stochastic process;

4. divided when calculating conditional probabilities.

This suggests that Selten’s space of trembles should be enriched so that the
extended probabilities we construct take values in an algebraic field, where
all these four operations are well-defined — except, of course, when trying
to divide by zero. This motivates the following definition:

Definition 3. A polynomial function of € takes the form

P(e) = Zkerkek - ijlp’fjekj (7)

for some finite set K = {ki,kq,...,k;} C Zy, where k; < kjiq for j =
1,2,...,r =1, and pp # 0 for all k € K. The leading non-zero coefficient of
the polynomial (7) is px,. The polynomial (7) is positive just in case py, > 0.

A rational function of € takes the form of a quotient P(e)/Q(€) of two
polynomial functions of €, where the denominator Q(€) is positive. Without
loss of generality, the leading non-zero coefficient of Q(€) can be normalized
to 1.



Following Robinson (1973), define R(€) as the algebraic field whose mem-
bers are rational functions of €, equipped with the standard algebraic binary
operations of addition and multiplication, as well as the additive identity 0
and the multiplicative identity 1. Define the positive cone R, (€) of ratio-
nal functions P(e)/Q(€) as those where P(e) as well as Q(€) is a positive
polynomial.

Following ideas that were surveyed in Hammond (1994), rare events E in a
finite set S of states of the world can be modelled formally as having infinites-
imal probability p(F;¢€) in an extended EU theory with “non-Archimedean”
probabilities in the positive cone R (€) of the field R(e). That is, we must
have p(E;¢) = P(e)/Q(€) where the coefficient of € in the polynomial (7) is
zero. Obviously one requires the probability mapping 2° > E +— p(E;¢) €
R, (€) to satisfy the additivity condition p(E;e) = p(E';€) + p(E"; €) when-
ever E = E'UE" with E' N E" = (), as well as the normalization condition

p(S;e) = 1.

3.4 A Metric Completion

As discussed in Hammond (1999b), following an approach set out in Light-
stone and Robinson (1975), the set R(e) of rational functions can be given
a (real-valued) metric d : R(e) x R(¢) — R;. This metric induces a very
fine topology, according to which a sequence ¥ = (r,),en of real numbers
converges to r* € R if and only if r, is eventually equal to r* — i.e., there
exists n* € N such that n > n* = r, = r*.

Let RY(¢) denote the Cartesian product of countably many copies of the
algebraic field R(e). The elements of RY(e) are infinite sequences ¥ (e) =
(r™(€))nen of rational functions of e. Following standard terminology in met-
ric space theory, say that r¥(e) = (r"(€))nen is a Cauchy sequence if for every
small 0 > 0, there exists ns € N such that whenever n’,n” € N with n’ > ns
and n” > ng, one has d(r™ (¢),7" (¢)) < 4.

Define the binary relation ~ on the space of Cauchy sequences in RY(e)
so that () ~ 7N(e) just in case, for every small § > 0, there exists
ns € N such that whenever n’,n” € N with n’ > ns and n” > ng, one
has d(r™ (¢),7" (¢)) < 4. It is easy to check that the relation ~ is symmet-
ric, reflexive, and transitive — i.e., it is an equivalence relation. Then the
metric space (R(e€),d), like any other, has a metric completion consisting of
equivalence classes of Cauchy sequences. In Hammond (1997) it is shown
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that each member of this metric completion can be expressed uniquely as a
power series Y ., axe” of the basic infinitesimal ¢, for an infinite sequence
aV = (ax)ren € RY of real constants. We denote this metric completion by
(R*°(€), d), where d denotes an obvious extension to the set R>(€) of power
series of the original metric d on the set R(e) of rational functions.

In the following, let R3°(e) denote the subset of power series that are
positive in the sense that the leading non-zero coefficient is positive. We also
introduce the lezicographic strict ordering > on R*(¢), defined so that

00 i 0o b i
ap€e” > E €
Zk—o & L k=0 K

if and only if the leading non-zero coefficient of the difference

&0 . k
Zkzo(ak bk)G

is positive. Let > denote the corresponding weak ordering defined so that

0o ks 0o b i 0o b i } oo i
E Q€ E € <— E € E Qg€
k=0 K =L k=0 K k=0 K L k=0 K

3.5 Extended Probability Measures

In order to treat compound lotteries in decision trees where branches at one
or more successive chance nodes can have infinitesimal probabilities, and also
to have a satisfactory theory of subjective probability, it seems desirable to
allow probabilities to have values in R (€) rather than just in R..

Definition 4. Let (S,S) be any measurable state space S with o-field S. An
extended probability measure on (S,S) is a mapping

o0

S>E~n(Ee) = Z ()€ € R (e)

k=0
that satisfies:
1. w(E;e) € RY(e) for all E € S\ {0};
2. w(S;e)=1;
3. if the countable collection of sets E,, (n € N) is pairwise disjoint, then
T(UnEpse) =Y, m(Ey;€) (countable additivity).
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Let A(S,S;R(€)) denote the family of all extended probability measures on
(5,8).

Note that, apart from having values in the algebraic field R*(¢), such
probabilities are required to be positive for all possible events; a zero proba-
bility is attached only to the empty set.

3.6 Extended Subjective Expected Utility

For the case when S is finite, Hammond (1997) offers axioms which imply
that a preference ordering - over the space A(Y®) of all possible combination
of roulette and horse lotteries can be represented by the lexicographic weak
ordering >, applied to subjectively expected utility, in the form of a power

Zyseys Ay®) ZSESW(S; €)v(ys) € R®(e)

Note in particular that the von Neumann-Morgenstern utility function (or
NMUF) v : Y — R is real valued; there is no need for any form of lexico-
graphic utility, as opposed to lexicographic expected utility. The following is
the main theorem of Hammond (1997):

Theorem 1. Let S denote a finite set of unknown states of the world, and
Y a consequence domain. Suppose that all the seven azioms (0), (I*), (C*),
(RO), (SI), (RC) and (XC) of Hammond (1997) are satisfied throughout the
domain A(Y®; R (€)) of consequence lotteries with non-Archimedean objec-
tive probabilities ranging over RY(e). Unless there is universal indifference
over the whole domain, there exist

e a unique extended subjective probability measure p(-;€) in the space
A(S,S;RY(€)) of mappings S 3 E — p(E;e) € RY(e);
e a unique cardinal equivalence class of real-valued NMUFs v :Y — R

such that the preference ordering ==° on A(Y®;R>(¢)) is represented by the
subjective expected utility function

AS s US(AS) = ZSES p(s;e) Zyey As(y) v(y) € R™(e) (8)

on the domain A(Y®; R (€)) of R (€)-valued lotteries N° € A(YS; R (e))
whose marginal distributions satisfy s € A(Y; R (€)) for all s € S. Specif-

cally,
)\S i:s ’uS — US()\S) ZL US(/LS)
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3.7 Lexicographic Expected Utility

The subjective probability p(s;e) € R3°(€) of every state s € S can be ex-
pressed as the power series Y - pi(s) €*. Thus, the SEU expression (8) can
be re-written as the power series U%(A%) = >~ ) uf (V) ¥ whose coefficients
of successive powers of € are

up(A%) = ZSGS Pi(s) Zyey As()oly) (F=0,1,2,...) (9)

But then A\ =% p5 or equivalently U%(\%) > US(u), if and only if the
two respective associated infinite hierarchies of coefficients (uy (A%))%2,, and
(ug (1°))22, in the power series satisfy

(up (W))iZo 2o (uid (1°))7Z (10)

w.r.t. the usual lexicographic total ordering >; on the space R* of infinite
sequences in R. In this sense, the preference ordering ~° has a lexicographic
expected utility representation.

4 Black Swans

4.1 Background

In 82 AD Juvenal (in Satires, VI, 165) had written “rara avis in terris ni-
groque simillima cygno” (a rare bird upon earth, and exceedingly like a black
swan). That, however, was merely imaginative irony. Real black swans be-
longing to the biological species Cygnus atratus remained unknown to most
of the world before 1697 when Willem de Vlamingh voyaged to what has since
become Western Australia. There he became the first European to record
seeing living black swans in their native habitat, which included the river he
named “Swarte Swaene-Revier” (black swan river). This is now Swan River,
which is the main waterway running through the capital city Perth.
Later John Stuart Mill, paraphrasing David Hume, wrote:

“No amount of observations of white swans can allow the inference
that all swans are white, but the observation of a single black swan
is sufficient to refute that conclusion.”

13



In elementary philosophy, the existence of black swans has become a classical
example of the limits to inferential reasoning.

Taleb’s (2007) book provides many vivid examples of events, often related
to finance or economics, which he sees as meeting his characterisation of a
“Black Swan” event as an “outlier” with “an extreme impact” for which
“human nature makes us concoct explanations after the event”. The book
was written before the recent crisis in global financial markets. Nevertheless,
it does discuss several earlier ones like the stock market crash of October
1987 that are often plausibly blamed on faulty statistical models.

Indeed, at an early stage of his book, Taleb defines a “special case of ‘gray’
swans” which are rare but expected. More precisely, they have probability
distributions described by “Mandelbrotian randomness”, a particular class of
fat-tailed probability distribution following a power law. These distributions
put so much weight on outliers, or extreme values, of a random variable v € R
that, for large enough k € N, the expectation of the kth power of v, otherwise
known as the kth moment of the distribution, becomes infinite. This is in
stark contrast to the normal or Gaussian distribution, for which the tail of
the distribution is so “thin” that all moments exist.

Yet the main issue with the random value of an asset, especially a deriva-
tive security, is typically not whether its distribution has fat or thin tails.
Rather, for such assets there is typically a positive probability of losing ev-
erything. This potential loss cannot be captured by a Gaussian distribution,
or by any “smooth” alternative such as a power law. But there is little
really new here, since statisticians and financial economists, along with de-
cision and game theorists, have long been coming to terms with probability
distributions which do not correspond to a smooth density function.

4.2 Black Swan Events

Much more challenging than Taleb’s “gray swans”, however, are the true
Black Swans which effectively break our existing scientific models. Indeed,
the indisputable existence of the (black) swan species now called Cygnus atra-
tus broke all previous biological models of the genus Cygnus. While Taleb
does recognise that such events could occur, he regards them as “totally in-
tractable” | scientifically speaking. Nevertheless, biologists have formulated
statistical models intended to forecast probabilistically the likely number of
new species that one might expect to find in a poorly explored habitat. And
of course economists have developed many models of economic growth with
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technical progress, which may be approximately treated as the accumula-
tion of many small but typically favourable surprises. A notable example is
Schumpeter’s (1911, 1934) The Theory of Economic Development which sets
out the view that, as entrepreneurs innovate, a capitalist market economy is
subjected to repeated shocks that cannot be modelled in advance.

More generally, any practical model, especially in the social sciences, must
have bounded scope and so must ignore some possibilities. As the statistician
George Box wrote: “Essentially, all models are wrong, but some are useful.”
Should any unmodelled possibility such as a bank run or bank failure occur
and have a noticeable impact, it will have to be recognised as an “aberrant”
event which, by definition, lies outside the current model.

This is not to deny that any aberrant event could have appeared in an
enriched version of the agent’s model, if it had been imagined soon enough
and then deemed worth modelling. But it was not. Instead, its occurrence
demonstrates that the original model is broken and needs modifying accord-
ingly. Such aberrant events lying outside the current model should be dis-
tinguished from events within the model which, like Taleb’s “gray swans”,
have extremely low or even zero probability. By contrast, black swan events,
unlike those described in Taleb’s book, may not even be imagined ex ante.
Thus, aberrance may be due to a failure of the imagination in constructing
a decision model. This may be related to Shackle’s (1953) concept of “sur-
prise” — see also Hammond (2007). Indeed, there may be more phenomena
in economics that can be explained by “asymmetric imagination” than by the
widely used notion of asymmetric information. And not only in economics,
but in culture, business, etc.

To summarize, sometimes models may change as their originators antici-
pate events that had to be excluded originally. To adapt the widely quoted
saying by the statistician George Box: “Essentially, all useful models are
incompletely specified.” The excluded events would become aberrant if they
were to occur before they could be included in a more accurate statistical
model. Even so, their possible effects on the consequences of modelled cur-
rent decisions can be allowed for, at least in principle, within a suitable EU
decision model allowing an “enlivened” version of the usual decision tree.
This is our next topic.
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4.3 An Initial Simple Tree

Let Y be a fixed consequence domain. Consider a decision maker whose
objective is to maximize the expected value of a von Neumann—Morgenstern
utility function (NMUF) v : Y — R.

Consider an initial (dead) decision tree T

e with an initial (decision) node ny,

e at which the agent chooses a chance node n; in the set Ny := Nyq(ng)
of all nodes that immediately succeed ny,

e at each of which chance determines an immediately succeeding termi-
nal node ny in the set Ny(ny) := Nyq(ng) of all nodes that immedi-
ately succeed nq, using known transition probabilities m(ng|ny) satisfy-
ing 7(+|n1) € A(Na(na)),

e cach of which has a known final consequence vy(ny) €Y.

4.4 Initial Evaluation

In this initial simple tree there is a known consequence y(n2) € Y, of reaching
any terminal node ny. The initial evaluation of reaching this node is evidently
wa(n2) = v(7y(n2)).

Working backwards, as usual in dynamic programming, the conditional
expected utility of reaching any chance node n; € Ny is

wi(n1) = Elwa(n2)|n] = Zn2€N2(m) T(na|n1) wa(n2) (11)
Then an optimal decision n} € Nj is any that maximizes wy (n,) with respect
to nq, subject to ny € Ny.

The above simple argument is a trivial application to an orthodox “un-
enlivened” decision model of the optimality principle of stochastic dynamic
programming. That is, any current decision should be given a continuation
value equal to the highest possible expected utility resulting from an ap-
propriate plan for all subsequent decisions. Optimality requires the current
decision to maximize the expectation of this continuation value.
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4.5 Enriched Subtrees

One possible enrichment of the agent’s decision model involves a new NMUF
vt YT — R defined on an enriched model consequence domain Y+ D Y.
But many other enrichments are also possible.

Before we discuss these, note first that the agent can hardly make an
unmodelled decision. Accordingly, assume that a necessary and sufficient
condition for being able to choose any n; € N; is that node n; is included
in the model. Hence the set N,i(ng) remains fixed. So we assume that any
enrichment of the tree takes place only after a particular chosen decision
node n} € N,;(ng) has already been reached.

What matters, however, is not just how the continuation subtree T'(n)
after this particular node is enriched. Also relevant are the potential enrich-
ments of the continuation subtrees T'(n;) at all the other nodes ny € N1\ {n}},
since all these possible enrichments ultimately affect the relative expected
values of moving to different nodes n; € NVy.

Now, starting at each n; € Ny, the original continuation subtree T'(n1)
had nodes ny € Nia(ny). Instead there is now an enriched continuation
subtree T (n;) with:

e an ezpanded set N (n1) = N5 (n1) 2 Na(nq) of immediately succeed-
ing terminal nodes;

e revised transition probabilities 77 (ng [n;) for all ng € N (ny);

e revised consequences Y (ng) € YT for all nj € Ny (n;) with utilities
wy (ng) = v*(v*(ng)).

Instead of (11), the revised expected utility of any decision at node ng to
move to any node n; € Ny = N4i(ng) is therefore

wh(ny) = E*[wg (n)|m] = Y

nfeNt, (n1) 7T+(n;’nl) w;(n;) (12)
2 +1

4.6 Retrospective Evaluation in the Enlivened Tree

In this simple two-stage model, the enriched tree T is the extension of T
obtained by replacing each continuation subtree T'(ny) (ny € Ni) with its
enrichment 7" (n;). We define the enlivened tree as the pair (T, 7). Unlike
botanical tree rings, this includes a complete record of how the tree has grown
between:
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1. the first period, when it was T,
2. the second period, when it has become T,

It is also a mathematical rather than a botanical growth process! For one
thing, botanical trees may lose branches in windy conditions, whereas en-
livened trees can only expand with time.

Analysed ex post, the appropriate decision at initial node ng would have
been to maximize w; (n!) with respect to i € I. But ez ante, only the details
of the original model can be used, by definition. What the agent can still do
ex ante, however, is to recognize that the original evaluation function w;(n})
may be revised to an as yet unknown and uncertain retrospective evaluation
function w; (n?) that ranges over a function space of possible evaluation
functions. This is similar in spirit to the work of Koopmans (1964) and
Kreps (1992) that allows uncertainty about future preferences — see also
Dekel et al. (2001, 2007).

In other words, somewhat like Hansen and Sargent (2008, 2011), we can
apply a robust decision analysis and choose the initial decision ¢ € I in order
to maximize Ew (ni) after allowing for uncertainty about the appropriate

form of the function i — wi (n}).

4.7 Cardinally Equivalent Evaluation Functions

Two evaluation functions wq,w; : Ny — R are cardinally equivalent, with
wy ~ Wi, just in case there exist:

e an additive constant a € R
e a positive multiplicative constant p € R,

such that @ (n}) = a + pw(nl).
The value state space () is defined as the set

e of all non-constant functions ny — w(ny) normalized to satisfy

i =0 d =1
min w(ny) and  max w(ny)

e together with the normalized constant function satisfying w(n;) = 0
for all ny € Ny1(ng), which represents complete indifference.
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4.8 Uncertain Retrospective Evaluation

Enlivenment replaces the original evaluation function wy in T by an uncertain
retrospective evaluation function w; derived in the tree 7", which cannot
even be modelled ex ante. Because the set Ny is assumed to be finite, the
function w; : N; — R ranges over the space Q C [0,1]M ¢ RM —ie., Qs
a subset of the unit hypercube in Euclidean space.

4.9 State-Dependent Consequence Domains

In this setting, applying standard subjective probability theory faces an ob-
stacle. The relevant consequences are pairs (ny,w) € Ny x Q. So the conse-
quence domain Ny X {w} depends on the state w € 2. This rules out Savage’s
constant acts a : Q@ — Ny with a(w) = a for all w € Q.

In normative decision theory, Hammond (1998b, 1999) suggests a remedy
for this kind of state-dependent consequence domain. It is to postulate the
existence of an extended NMUF U : N; x 2 — R whose expected value
represents preferences 2Z on A(N; x ), when one can choose, in addition to
different nodes ny; € N, the probabilities of different states w € €.

Given any fixed state w € €, the expected values w.r.t. any v € A(Ny)
of the two functions ny — U(ny,w) and n; — w(ny) should represent pref-
erences over corresponding lotteries v € A(N;) and v x §,. So the two
functions n; — U(ny,w) and ny +— w(n;) must be cardinally equivalent,
for each fixed w. That is, there must exist mappings w — a(w) € R and
w i p(w) € Ry such that U(ny,w) = a(w) + p(w) w(ng).

4.10 Subjective Expected Evaluation

The agent’s subjective expected utility objective in the enlivened tree (T, T7)
can (and should) use a subjective probability measure P over the Borel subsets
of . Then preferences over objective “roulette” lotteries v € A(N;) are
ultimately represented by the objectively expected value E,V of the subjective
expectation function Ny 3 ny +— V(ny) defined by

V(ng) := /QU(nl,w)P(dw) = /Q[Oz(w) + p(w) w(ny)] P(dw) (13)

There is an obvious analogy here with Aumann and Anscombe (1963), who
allow combinations of roulette and horse lotteries. An axiomatic justification,
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however, has yet to be developed, though it should be possible by combining
the ideas of Myerson (1979), Fishburn (1982), and Hammond (1998b, 1999).

4.11 Hubris versus Enlivenment

Tractable models are necessarily bounded in scope. Actions may have con-
sequences that are not only unintended, but quite possibly unimagined, and
certainly not included in whatever bounded model was used to analyse the
agent’s decision.

An agent’s decision model, like any competent engineer’s plan, will typi-
cally need to change as and when surprise events outside the model compel
attention. Orthodox decision models ignore completely any possibility of
model revision. In this sense, they are inherently hubristic.

4.12 Could There Be a Metamodel?

A decision model in discrete time amounts to a controlled stochastic process,
or equivalently a decision tree that combines chance nodes with decision
nodes where the decision is controlled by the decision-maker. Recognizing
that the appropriate decision model is itself subject to uncertainty, is it
possible, or even desirable, to construct a “metamodel” that embraces all
possible decision models?

We will actually consider a simpler question: whether one can or should
construct a metamodel in the form of a stochastic “metaprocess” defined on
the space of all possible stochastic process models? The result would be a
sequence of stochastic processes in which the state space is continually being
enriched unpredictably.

Now, recall that the stochastic process model is based on Kolmogorov’s
extension theorem in probability theory. This result states that any “consis-
tent” family of probability laws on finite Cartesian subproducts of an ar-
bitrary collection of component measurable spaces can be extended to a
probability law on the whole Cartesian product. The theorem, however,
depends on significant topological assumptions such as the existence in each
component measurable space of a compact class C of measurable sets — i.e.,
every sequence of sets in C whose finite intersections are non-empty has a
non-empty infinite intersection — such that the probability of any measur-
able set must equal the supremum of the probabilities of all its subsets that
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lie in C.!' It seems difficult to find a suitable topology on the class of all
potentially relevant sequences of stochastic process models which allows an
interesting probability measure to exist.

4.13 Should We Look for a Meta Stochastic Process?

El Aleph is a short story published by the distinguished Argentinian author
Jorge Luis Borges in 1945. It begins with a quotation from Shakespeare’s
Hamlet Act 11, Scene 2

O God! T could be bounded in a nutshell,
and count myself a King of infinite space ...

This could be regarded as Shakespeare’s poetic description of a key require-
ment for a metamodel. Eventually we move to the heart of Borges” wonderful
story:?

He explained that an Aleph is one of the points in space that
contains all other points. ... The Aleph’s diameter was probably
little more than an inch, but all space was there, actual and
undiminished. Each thing (a mirror’s face, let us say) was infinite
things, since I distinctly saw it from every angle of the universe.

Shortly thereafter the story takes a rather disturbing turn:

I saw the Aleph from every point and angle, and in the earth the
Aleph, and in the Aleph the earth; I saw my own face and my
own bowels; 1 saw your face; and I felt dizzy and wept, for my
eyes had seen that secret and conjectured object whose name is
common to all men but which no man has looked upon — the
unimaginable universe.

I felt infinite wonder, infinite pity.

But eventually something like normality returns:

1See Neveu’s (1965, p. 82) significant generalization of Kolmogorov’s extension theorem,
as described in Aliprantis and Border (1999, Section 14.6).

2The following brief extracts from http://www.phinnweb.org/links/literature/
borges/aleph.html, which reproduces the English translation on which Norman Thomas
Di Giovanni collaborated with Borges himself.
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Out on the street, going down the stairways inside Consti-
tution Station, riding the subway, every one of the faces seemed
familiar to me. I was afraid that not a single thing on earth would
ever again surprise me; [ was afraid I would never again be free of
all I had seen. Happily, after a few sleepless nights, I was visited
once more by oblivion.

A later postscript includes some explanation for Borges’ choice of title:

As is well known, the Aleph is the first letter of the Hebrew
alphabet. Its use for the strange sphere in my story may not be
accidental. For the Kabbala, the letter stands for the En Soph,
the pure and boundless godhead; it is also said that it takes the
shape of a man pointing to both heaven and earth, in order to
show that the lower world is the map and mirror of the higher; for
Cantor’s Mengenlehre [set theory], it is the symbol of transfinite
numbers, of which any part is as great as the whole.

Perhaps the moral of Borges’ story is that in the end we should be re-
lieved about how mathematically and conceptually intractible the problem
of finding a stochastic metaprocess appears to be.

5 Concluding Remarks

A descriptive decision theory stands or falls by its capacity to explain what
we observe. A prescriptive decision theory, on the other hand, stands or falls
by its capacity to offer a normatively appealing approach to decision making.
This work has set out alternative departures from standard prescriptive deci-
sion theory. These departures have been designed to deal separately with the
three key phenomena of catastrophic risk, rare events, and true black swan
events that transcend whatever decision model we may currently be using.

The work by Chichilnisky (1996, 2000, 2009, 2010) has set out heroically
to deal with all these three phenomena within one integrated framework. In
doing so, however, she follows Savage (1954) in relaxing the usual countable
additivity property of probability measures, thus allowing probabilities that
are only finitely additive. A conjecture to be settled by future research is
that the same three phenomena could be accommodated within a different
integrated framework which retains a countably additive probability measure.
This framework would allow:
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1. the kind of distinction between catastrophic and non-catastrophic con-
sequences that was introduced in Section 2;

2. for rare events, non-Archimedean probabilities of the kind discussed
in Section 3, but extended from a finite sample space S to a general
measurable space (5,S);

3. for true black swan events, enlivened trees of the kind sketched briefly
in Section 4, with preferences represented by subjective expected utility
based on extended probability measures over states of the world that
correspond to possible retrospective evaluation functions defined for
every modelled decision.

Note finally that rationality within bounded decision trees allows a re-
stricted revealed preference hypothesis, applying only to options that receive
serious consideration. But decision trees almost inevitably become enlivened
in case the decision maker is forced to recognize the possibility of events
which were excluded from earlier decision models. These unmodelled events
are truly unknown “black swans”, like the species cygnus atratus was to Fu-
ropeans before Dutch explorers reached Western Australia. Such unmodelled
events are completely different from the “highly improbable” but modelled
events referred to as “grey swans” in Taleb (2007). Indeed, Taleb dismisses
true black swans as completely intractable.

References

[1] Aliprantis, C.D. and K.C. Border (1994, 2nd. edn. 1999) Infinite Di-
mensional Analysis: A Hitchhiker’s Guide (Berlin: Springer).

[2] Anscombe, F. and R.J. Aumann (1963) “A Definition of Subjective
Probability” Annals of Mathematical Statistics 34: 199-205.

[3] Arrow, K.J. (1965) Aspects of the Theory of Risk-Bearing (Helsinki:
Yrj6 Jahnssonin S&&tio).

[4] Balasko, Y. (1978) “Economic Equilibrium and Catastrophe Theory:
An Introduction” Econometrica 46: 557-569.

23



[5]

Chichilnisky, G. (1996) “Updating von Neumann Morgenstern Axioms
for Choice under Uncertainty” In: Proceedings of a Conference on Catas-
trophic Risks (Toronto: The Fields Institute for Mathematical Sciences).

Chichilnisky, G. (2000) “An Axiomatic Approach to Choice under Un-
certainty with Catastrophic Risks” Resource and Energy Economics 22:
221-231.

Chichilnisky, G. (2009). “The Topology of Fear” Journal of Mathemat-
1cal Economics 45: 807-816.

Chichilnisky, G. (2010) “The Foundations of Statistics with Black
Swans” Mathematical Social Sciences 59: 184-192.

Dekel, E., B.L. Lipman, and A. Rustichini (2001) “Representing Pref-
erences with a Unique Subjective State Space,” Econometrica 69: 891—
934.

[10] — with T. Sarver (2007) “— : Corrigendum” Econometrica 75: 591-

[11]

[12]

[13]

[14]

[15]

600.

Dreze, J.H. (1962) “L’utilité sociale d'une vie humaine” Revue Francaise
de Recherche Opérationnelle, 23: 93-118.

Fishburn, P.C. (1982) The Foundations of Expected Utility (Dordrecht:
D. Reidel).

Halpern, J.Y. (2009) “A Nonstandard Characterization of Sequential
Equilibrium, Perfect Equilibrium, and Proper Equilibrium” Interna-
tional Journal of Game Theory 38: 37-49.

Halpern, J.Y. (2010) “Lexicographic Probability, Conditional Probabil-
ity, and Nonstandard Probability” Games and Economic Behavior 68:
155-179.

Hammond, P.J. (1994) “Elementary Non-Archimedean Representations
of Probability for Decision Theory and Games” In P. Humphreys (ed.)
Patrick Suppes: Scientific Philosopher, Vol. I: Probability and Proba-
bilistic Causality (Kluwer Academic Publishers, 1994), ch. 2, pp. 25-59.

24



[16]

[17]

[18]

[19]

Hammond, P.J. (1997, 1999) “Non-Archimedean Subjective Probabili-
ties in Decision Theory and Games” Stanford University Dept. of Econ.

Working Paper No. 97-038; abbreviated version in Mathematical Social
Sciences 38: 139-156.

Hammond, P.J. (1998a) “Objective Expected Utility: A Consequential-
ist Perspective” In Barbera, S., Hammond, P.J., and Seidl, C. (eds.)
Handbook of Utility Theory, Vol. 1: Principles (Boston: Kluwer Aca-
demic Publishers) ch. 5, pp. 145-211.

Hammond, P.J. (1998b) “Subjective Expected Utility” In Barbera, S.,
Hammond, P.J., and Seidl, C. (eds.) Handbook of Utility Theory, Vol. 1:
Principles (Boston: Kluwer Academic Publishers) ch. 6, pp. 213-271.

Hammond, P.J. (1999) “Subjectively Expected State-Independent Util-
ity on State-Dependent Consequence Domains” in M.J. Machina and B.

Munier (eds.) Beliefs, Interactions, and Preferences in Decision Making
(Dordrecht: Kluwer Academic), pp. 7-21.

Hammond, P.J. (2007) “Schumpeterian Innovation in Modelling Deci-
sions, Games, and Economic Behaviour” History of Economic Ideas XV:
179-195.

Hammond, P.J. (2009) “Adapting to the entirely unpredictable:
black swans, fat tails, aberrant events, and hubristic models”
http://www2.warwick.ac.uk/fac/soc/economics/research/
centres/eri/bulletin/2009-10-1/hammond/.

Hansen, L.P and T.J. Sargent (2008) Robustness (Princeton University
Press: Princeton, NJ).

Hansen, L.P and T.J. Sargent (2011) “Wanting Robustness in Macroe-
conomics”, in B.M. Friedman and M. Woodford (eds.), Handbook of
Monetary Economics, Volume 3B (Elsevier) ch. 20, pp. 1097-1157.

Jensen, N.E. (1967) “An Introduction to Bernoullian Utility Theory, I:
Utility Functions” Swedish Journal of Economics 69: 163-183.

Jones-Lee, M.W. (1974) “The Value of Changes in the Probability of
Death or Injury” Journal of Political Economy 82: 835-849.

25



[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Kolmogorov, A.N. (1933, 1956) Grundbegriffe der Wahrscheinlichkeit-
srechnung (Berlin: Springer); translated as Foundations of Probability
(New York: Chelsea).

Koopmans, T.C. (1964) “On Flexibility of Future Preference” in M.W.
Shelly and G.L. Bryan (eds.) Human Judgments and Optimality (New
York: John Wiley), ch. 13, pp. 243-254.

Kreps, D.M. (1992) “Static Choice in the Presence of Unforeseen Con-
tingencies,” in P. Dasgupta, D. Gale, O. Hart, and E. Maskin (eds.),
Economic Analysis of Markets and Games: Essays in Honor of Frank
Hahn (Cambridge, Mass.: M.I.T. Press), pp. 258—-28]1.

Lightstone, A.H. and A. Robinson (1975) Nonarchimedean Fields and
Asymptotic Expansions (Amsterdam: North-Holland).

McGonagall, W. (1880) “The Tay Bridge Disaster” http://www.
mcgonagall-online.org.uk/gems/the-tay-bridge-disaster.

Myerson, R.B. (1979) “An Axiomatic Derivation of Subjective Proba-
bility, Utility, and Evaluation Functions” Theory and Decision 11: 339—
352.

Neveu, J. (1965) Mathematical Foundations of the Calculus of Probabil-
ity (San Francisco: Holden-Day)

Rényi, A. (1955) “On a New Axiomatic Theory of Probability” Acta
Mathematica Academiae Scientiarum Hungaricae 6: 285-335.

Rényi, A. (1956) “On Conditional Probability Spaces Generated by a
Dimensionally Ordered Set of Measures” Theory of Probability and its
Applications 1: 61-71.

Robinson, A. (1973) “Function Theory on Some Nonarchimedean
Fields” American Mathematical Monthly: Papers in the Foundations
of Mathematics 80: S87-S1009.

Savage, L.J. (1954, 1972) The Foundations of Statistics (New York:
John Wiley; and New York: Dover Publications).

26



[37]

[38]

[39]

[40]

[41]

[42]

Schumpeter, J.A. (1911; 2nd edn. 1926) Theorie der wirtschaftlichen
Entwicklung, Eine Untersuchung tber Unternehmergewinn, Kapital,
Kredit, Zins und den Konjunkturzyklus (Miinchen und Leipzig: Duncker
und Humblot).

Schumpeter, J.A. (1934, 1961) The Theory of Economic Development:
An Inquiry into Profits, Capital, Credit, Interest, and the Business Cy-
cle. Translated from the German by Redvers Opie; with a new Intro-
duction by John E. Elliott.

Selten, R. (1975) “Re-examination of the Perfectness Concept for Equi-
librium Points of Extensive Games” International Journal of Game The-
ory 4: 25-5H5.

Shackle, G.L.S. (1953) “The Logic of Surprise” Economica, New Series
20: 112-117.

Taleb, N.N. (2007) The Black Swan: The Impact of the Highly Improb-
able (New York: Random House).

Thom, R. (1973) Stabilité Struturelle et Morphogéneése (Paris: In-
teréditions); translated (1976) as Structural Stability and Morphogenesis
(Reading, MA: W.A. Benjamin).

Villegas, C. (1964) “On Qualitative Probability o-Algebras,” Annals of
Mathematical Statistics 35: 1787-1796.

von Neumann, J. and O. Morgenstern (1944; 3rd edn. 1953) Theory
of Games and Economic Behavior (Princeton: Princeton University
Press).

Zeeman, E.C. (1976) “Catastrophe Theory” Scientific American (April),
pp. 65—70 and 75-83.

27



