%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

VY
WARWICK

ECONOMICS

Warwick Economics Research Paper Series

Fuzzy Differences-in-Differences

Clement de Chaisemartin and Xavier D'Haultfoeuille

October, 2015

Series Number: 1065
ISSN 2059-4283 (online)
ISSN 0083-7350 (print)



Fuzzy Differences-in-Differences”

Clément de Chaisemartint Xavier D’Haultfeeuillet

October 6, 2015

Abstract

In many applications of the differences-in-differences (DID) method, the treatment
increases more in the treatment group, but some units are also treated in the control
group. In such fuzzy designs, a popular estimator of treatment effects is the DID of the
outcome divided by the DID of the treatment, or OLS and 2SLS regressions with time and
group fixed effects estimating weighted averages of this ratio across groups. We start by
showing that when the treatment also increases in the control group, this ratio estimates
a causal effect only if treatment effects are homogenous in the two groups. Even when
the distribution of treatment is stable, it requires that the effect of time be the same on
all counterfactual outcomes. As this assumption is not always applicable, we propose two
alternative estimators. The first estimator relies on a generalization of common trends
assumptions to fuzzy designs, while the second extends the changes-in-changes estimator
of Athey & Imbens (2006). When the distribution of treatment changes in the control
group, treatment effects are partially identified. Finally, we prove that our estimators are

asymptotically normal and use them to revisit applied papers using fuzzy designs.
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1 Introduction

Difference-in-differences (DID) is a popular method to evaluate the effect of a treatment in
the absence of experimental data. In its basic version, a “control group” is untreated at two
dates, whereas a “treatment group” becomes treated at the second date. If the effect of time
is the same in both groups, the so-called common trends assumption, one can measure the
effect of the treatment by comparing the evolution of the outcome in both groups. DID can
be used with panel or repeated cross-section data, when a policy is implemented at a given
date in some groups but not in others. It can also be used when a policy affects individuals

born after a given date. In such instances, birth cohort plays the role of time.

However, in many applications of the DID method, the treatment rate or intensity increases
more in some groups than in others, but there is no group which experiences a sharp change
in treatment, and there is also no group which remains fully untreated. In such fuzzy designs,
a popular estimator of treatment effects is the DID of the outcome divided by the DID of the
treatment, an estimator referred to as the Wald-DID. For instance, Duflo (2001) uses a school
construction program in Indonesia to measure returns to education. The author uses districts
where many schools were constructed as a treatment group, and districts where few schools
were constructed as a control group. Years of schooling for cohorts born after the program
increased more in treatment districts. The author then estimates returns to schooling through
a 2SLS regression in which dummies for cohorts benefiting from the program and for being
born in treatment districts are used as controls, while the instrument is the interaction of these
two dummies. The coefficient for treatment in this regression is the Wald-DID. A number of
papers also estimate 2SLS regressions with time and group fixed effects and with a function
of time and group as the excluded instrument, or OLS regressions at the group x period level
with time and group fixed effects. In our supplementary material, we show that the coefficient
of treatment in these two regressions is a weighted average of Wald-DIDs across groups. Such
estimators have been frequently used by economic researchers. From 2010 to 2012, 10.1% of
all papers published by the American Economic Review estimate either a simple Wald-DID,
or the aforementioned IV or OLS regression. Excluding lab experiments and theory papers,
this proportion raises to 19.7%.% Still, to our knowledge no paper has studied whether these

estimators estimate a causal effect in models with heterogeneous treatment effects.

This papers makes the following contributions. We start by showing that the Wald-DID
estimand is equal to a local average treatment effect (LATE) only if two strong assumptions
are satisfied. First, time should have the same effect on all counterfactual outcomes, thus
implying that the effect of the treatment should not vary over time. This assumption is often
not applicable. For instance, in Duflo (2001) it requires that the wage gap between high school
graduates born in younger and older cohorts should be the same had they not completed high

!Detailed results of our literature review can be found in our supplementary material.



school. If they had not completed high school, graduates of every cohort would have entered
the labor market earlier, and would have had more labor market experience by the time their
wages are observed. As returns to experience tend to be concave (see Mincer & Jovanovic,
1979), the wage gap between graduates born in younger and older cohorts would presumably
have been lower if they had not completed high school. Second, when treatment increases
both in the treatment and in the control group, treatment effects should be homogenous in
the two groups. Indeed, in such instances the Wald-DID is equal to a weighted difference
between the LATE of treatment and control group units switching treatment over time. This
weighted difference can be interpreted as a causal effect only if these two LATEs are equal.
The weights received by each LATE can be estimated. In Duflo (2001), years of education
increased substantially both in treatment and in control districts, so the Wald-DID in this
paper is equal to a weighted difference between returns to schooling in treatment and control
districts, and returns in the control group receive a large negative weight. This weighted
difference estimates a causal effect only if returns to schooling are equal in the two groups of
districts. This might be violated as control districts are more developed and could therefore
have different returns. The IV and OLS regressions we study in our supplementary material
suffer from the same problem. They both estimate a weighted sum of LATEs, with potentially

many negative weights as we illustrate by estimating these weights in two applications.

Second, we propose two alternative estimators for the same LATE when the distribution
of treatment is stable over time in the control group. Our first estimator, which we refer
to as the time-corrected Wald ratio (Wald-TC), is a natural generalization of DID to fuzzy
designs. It relies only on common trends assumptions between the treatment and the control
group, within subgroups of units sharing the same treatment at the first date. Our second
estimator, which we refer to as the changes-in-changes Wald ratio (Wald-CIC), generalizes the
changes-in-changes estimator introduced by Athey & Imbens (2006) to fuzzy designs. It relies
on the assumption that a control and a treatment unit with the same outcome and the same
treatment at the first period will also have the same outcome at the second period.? Hereafter,
we refer to this condition as the common changes assumption. Our Wald-TC and Wald-CIC

estimators both have advantages and drawbacks, which we discuss later in the paper.

Third, we show that under the same common trends and common changes assumptions as
those underlying the Wald-TC and Wald-CIC estimands, the same LATE can be bounded
when the distribution of treatment changes over time in the control group. The smaller this
change, the tighter the bounds. Fourth, we show how these results extend to settings with
many group and periods, and how one can incorporate covariates in the analysis. Fifth, we
consider estimators of the Wald-DID, Wald-TC, and Wald-CIC estimands, both with and

without covariates. We show that they are asymptotically normal and prove the consistency

2Strictly speaking, the model in Athey & Imbens (2006) and our CIC model do not impose this restriction
if one allows the unobserved determinant of the outcome to change over time. We still find this presentation
of the CIC assumptions very helpful for pedagogical purposes.



of the bootstrap in some cases. Importantly, all our estimators allow for continuous covariates,

and for some of them we show how to account for clustering.

Finally, we use our results to revisit findings in Duflo (2001) on returns to education. The dis-
tribution of schooling substantially changed in the control group used by the author, so using
our Wald-CIC or Wald-TC estimators with her groups would only yield wide and uninforma-
tive bounds. Therefore, we use a different control group where the distribution of schooling
did not change. Our Wald-DID estimate with these new groups is more than twice as large
as the author’s. The difference between these two estimates could stem from the fact that
districts where years of schooling increased less also have higher returns to education. This
would bias downward the estimate in Duflo (2001), while our estimator does not rely on any
treatment effect homogeneity assumption. On the other hand, the validity of our Wald-DID
still relies on the assumption that time has the same effect on all potential outcomes, which
is not warranted in this context as we explained above. Because the Wald-TC and Wald-CIC
do not rely on this assumption, we choose them as our favorite estimates. They both lie in
between the two Wald-DIDs.

Overall, our paper shows that to do DID in fuzzy designs, researchers must find a control
group in which treatment is stable over time to point identify treatment effects without having
to assume that treatment effects are homogeneous. In such instances, three estimators are
available: the standard Wald-DID estimator, and our Wald-TC and Wald-CIC estimators.
While the former estimator requires that the effect of time be the same on all potential
outcomes, the latter estimators do not rely on this assumption. In practice, using one or the

other estimator can make a substantial difference, as we show in our application.

Though to our knowledge, we are the first to study fuzzy DID estimators in models with
heterogeneous treatment effects, our paper is related to several other papers in the DID and
panel literature. Blundell et al. (2004) and Abadie (2005) consider a conditional version of the
common trends assumption in sharp DID designs, and adjust for covariates using propensity
score methods. Our Wald-DID estimator with covariates is related to their estimators. Bon-
homme & Sauder (2011) consider a linear model allowing for heterogeneous effects of time,
and show that in sharp designs it can be identified if the idiosyncratic shocks are independent
of the treatment and of the individual effects. Our Wald-CIC estimator builds on Athey &
Imbens (2006) and is also related to the estimator of D’Haultfeeuille et al. (2013), who study
the possibly nonlinear effects of a continuous treatment using repeated cross sections. Finally,
Chernozhukov, Fernandez-Val, Hahn & Newey (2013) consider a location-scale panel data
model. Their idea of using always and never treated units in the panel to recover the location
and scale parameters is related to our idea of using groups where treatment is stable to recover

time effects.> Our paper is also related to several papers in the partial identification literature.

3There are also differences between our approaches (their model assumes time has the same effect on all
potential outcomes, our Wald-TC estimator is not compatible with a location-scale model...) so our estimands



In particular, our bounds are related to those in Manski (1990), Horowitz & Manski (1995),
and Lee (2009).

The remainder of the paper is organized as follows. In Section 2 we introduce our framework.
In Section 3 we present our identification results in a simple setting with two groups, two
periods, a binary treatment, and no covariates. Section 4 considers extensions to settings with
many periods and groups, covariates, or a non-binary treatment. Section 5 considers inference.
In section 6 we revisit results from Duflo (2001). Section 7 concludes. The appendix gathers
the main proofs. Due to a concern for brevity, some further results, our literature review, two
supplementary applications, and additional proofs are deferred to our supplementary material
(see de Chaisemartin & D’Haultfeeuille, 2015).

2 Framework

We are interested in measuring the effect of a treatment D on some outcome. For now, we
assume that treatment is binary. Y (1) and Y (0) denote the two potential outcomes of the same
individual with and without treatment. The observed outcome is Y = DY (1) + (1 — D)Y(0).

We assume that the data at our disposal can be divided into “time periods” represented by
a random variable T'. If the analyst works with panel or repeated cross-sections data, time
periods are dates. But in many DID papers, time periods are cohorts of the same population
born in different years (see, e.g., Duflo, 2001). While with panel or repeated cross-sections
data, each unit is or could be observed at both dates, with cohort data this is not the case. In
what follows, we do not index observations by time, to ensure that our framework can apply
to the three types of data. Referring to the panel data case is sometimes useful to convey the
intuition of our results. However, our analysis is more targeted to the repeated cross-sections

and cohort data cases: observing units at both dates open possibilities we do not explore here.

We also assume that the data can be divided into groups represented by a random variable G.
In this section and in the next, we focus on the simplest possible case where there are only two
groups, a “treatment” and a “control” group, and two periods of time. G is a dummy for units
in the treatment group and 7 is a dummy for the second period. Contrary to the standard
“sharp” DID setting where D = G x T, we consider a “fuzzy” setting where D # G x T. Some
units may be treated in the control group or at period 0, and all units are not necessarily
treated in the treatment group at period 1. However, we assume that the treatment rate

increased more between period 0 and 1 in the treatment than in the control group.

We now introduce notations we use throughout the paper. For any random variable R, let
S(R) denote its support. Let also Rg and Rgg be two other random variables such that
Ry ~ R|G = g, T =t and Ry ~ R|D = d,G = ¢g,T = t, where ~ denotes equality in

are unrelated to theirs.



distribution. Let Fir and Fpjg denote the cumulative distribution function (cdfs) of R and its
cdf conditional on S. For any event A, Fp4 is the cdf of R conditional on A. With a slight
abuse of notation, P(A)Fg4 should be understood as 0 when P(A) = 0.

We consider the following model for the potential outcomes and the treatment:

Y(d) = hd(UdaT)a de {Oa ]-}7 ( )
1

D = 1{V >wver}, vgo = vy does not depend on G.
The model on potential outcomes is very general because at this stage, hyg is left unrestricted.
We also impose a latent index model for the treatment (see, e.g., Vytlacil, 2002), where the
threshold depends both on time and group. In such a model, V may be interpreted as the
propensity to be treated. Because we do not impose any restriction on the distribution of V,

the assumption that vgg does not depend on G is just a normalization.

In addition to this model, we maintain the following assumptions throughout the paper.

Assumption 1 (Time invariance within groups)

Forde §(D), (Ug, V) L T|G.

Assumption 2 (First stage)
E(Dll) > E(Dlo), and E(Dll) — E(Dlo) > E(D()l) — E(DOO).

Assumption 1 requires that the joint distribution of unobserved variables be stable over time in
each group. In other words, the composition of each group should not change over time. This
assumption could be violated if there is endogenous “migration” from one group to another.
However, DID identification strategies always rely on this assumption. Beyond requiring that
the treatment rates do not follow the exact same evolution in the two groups, Assumption 2
is just a way to define the treatment and the control group in our fuzzy setting. First, the
treatment should increase in at least one group. If not, one can redefine the treatment variable

as D =1 — D. Then, the treatment group is the one experiencing the largest increase of its

treatment rate.

Before turning to identification, it is useful to define four subpopulations of interest. The model
1 and Assumption 1 imply that P(Dy = 1) = P(V > vy|G = g). Therefore, Assumption 2
implies v11 < vgo. Let

AT = {V > vgo, G = 1} U {V > maX(Uoo,'U()l),G = 0},

NT = {V <wv1,G = 1} U {V < min(voo,v01),G = 0},

S1 ={V € [v11,v00), G = 1},

So = {V € [min(voo, ’U()l), maX(Uoo, U01)), G = 0}.

AT stands for “always treated”, and refers to units with a taste for treatment above the

threshold at both periods. NT stands for “never treated”, and refers to units with a taste for



treatment below the threshold at both periods. S; stands for “treatment group switchers”,
and refers to treatment group units with a taste for treatment between the second and first
period thresholds. Sy stands for “control group switchers”, and refers to control group units

with a taste for treatment between the two thresholds.

When the treatment rate is stable in the control group, time affects selection into treatment
only in the treatment group. Table 1 below considers an example. At both dates, untreated
units in the control group belong to the NT subgroup, while treated units belong to the AT
subgroup. On the other hand, untreated units in the treatment group in period 0 belong
either to the NT or S subgroup, while in period 1 they only belong to the NT subgroup.
Conversely, treated units in period 0 only belong to the AT subgroup, while in period 1 they
either belong to the NT or S; subgroup.

Period 0 Period 1

Control Group

Always Treated: Y(1)

Always Treated: Y(1)

Never Treated: Y(0)

Never Treated: Y(0)

Treatment Group

Always Treated: Y(1)

Always Treated: Y(1)

Switchers: Y(0)

Switchers: Y(1)

Never Treated: Y(0)

Never Treated: Y(0)

Table 1: Populations of interest when P(Dgg = 0) = P(Dg1 = 0).

On the other hand, when the treatment rate changes in the control group, time affects selection
into treatment in both groups. Table 2 below considers an example where the treatment rate
increases in the control group. Untreated units in the control group in period 0 belong either to
the NT or Sy subgroup, while in period 1 they only belong to the NT' subgroup. Conversely,
treated units in period 0 only belong to the AT subgroup, while in period 1 they either belong
to the NT or Sp subgroup.



Period 0

Period 1

Control Group

Always Treated: Y(1)

Always Treated: Y(1)

Switchers: Y(0)

Switchers: Y(1)

Never Treated: Y(0)

Never Treated: Y(0)

Treatment Group

Always Treated: Y(1)

Always Treated: Y(1)

Switchers: Y(0)

Switchers: Y(1)

Never Treated: Y(0)

Never Treated: Y(0)

Table 2: Populations of interest when P(Dg; = 1) > P(Dgp = 1).

Our identifications results focus on treatment group switchers. Our parameters of interest are
their Local Average Treatment Effect (LATE) and Local Quantile Treatment Effects (LQTE),
which are respectively defined by

A = EMYu(1) - Y (0)|5),
—1 —1
Tqa = FY11(1)|51 (4) = FY11(0)\31(q)’ g €(0,1).

We focus on this subpopulation because our assumptions either lead to point identification of
A and 7,4, or at least to relatively tight bounds. On the other hand, our assumptions most
often lead to wide and uninformative bounds for the average treatment effect and for quantile

treatment effects.

3 Identification

3.1 Identification using a Wald-DID ratio

We first investigate the commonly used strategy of running an IV regression of the outcome
on the treatment with time and group as included instruments, and the interaction of the
two as the excluded instrument. The estimand arising from this regression is the Wald-DID
defined by Wprp = DIDy /DIDp where, for any random variable R, we let

DIDg = E(R11) — E(R10) — (E(Ro1) — E(Roo)) -
We consider a set of assumptions under which this estimand can receive a causal interpretation.

Assumption 3 (Common trends)

E(ho(Up, 1) — ho(Uy,0)|G) does not depend on G.



Assumption 4 (Common average effect of time on both potential outcomes)

E(hl(Ul, 1) — hl(U1,0)|G, |4 Z Uoo) = E(ho(Uo, 1) — ho(U0,0)|G, %4 2 Uoo).

Assumption 3 requires that the mean of Y (0) follow the same evolution over time in the
treatment and control groups. This assumption is not specific to the fuzzy setting we are
considering here: DID in sharp settings also rely on this assumption (see, e.g., Abadie, 2005).
Assumption 4 requires that in both groups, the mean of Y (1) and Y'(0) follow the same
evolution over time among units treated in period 0. This is equivalent to assuming that the
average treatment effect in this population does not change over time. This assumption is

specific to the fuzzy setting.

P(Dy1=1)—P(D1p=1)

Theorem 3.1 Assume that Model (1) and Assumptions 1-4 are satisfied. Let o« = BID, .

1. IfP(DOl = 1) ZP(DOO = 1), a>1 and

Wprp =aE(Y11(1) = Y11(0)[S1) — (@ = 1) E(Yo1(1) — Y01(0)[S0).

2. IfP(D(n:l) <P(D00:1), a <1 and

Wpip =aE(Y11(1) — Y11(0)|S1) + (1 — ) E(Yo0(1) — Y50(0)]So).

When the treatment rate increases in the control group, the Wald-DID is equal to a weighted
difference of two LATEs. This can be seen from Table 2. In both groups, the evolution of
the mean outcome between period 0 and 1 is the sum of three things: the effect of time on
the mean of Y (0) for never treated and switchers; the effect of time on the mean of Y (1) for
always treated; the average effect of the treatment for switchers. Under Assumptions 3 and
4, the effect of time in both groups cancel one another out. The Wald-DID is finally equal to

the weighted difference between treatment and control group switchers’” LATEs.

This weighted difference may not receive a causal interpretation. It might for instance be
negative, while both E(Y11(1) — Y11(0)|S1) and E(Yp1(1) — Y01(0)|So) are positive. If one
is ready to further assume that these two LATEs are equal, the Wald-DID is then equal to
E(Yn(l)—YH(O)\Sl). But E(Yn(l)—YH(O)\Sl) = E(}fol(l)—nl(ONSo) is a strong restriction
on the heterogeneity of the treatment effect. To better understand why it is needed, let us
consider a simple example in which all control group units have a treatment effect equal to
+2, while all treatment group units have a treatment effect equal to +1. Let us also assume
that time has no effect on the outcome, and that the treatment rate increases twice as much
in the treatment than in the control group. Then, Wprp =2/3 x 1 —1/3 x 2 = 0: the lower
increase of the treatment rate in the control group is exactly compensated by the fact that
the treatment effect is higher in this group. The Wald-DID does not estimate the treatment

effect in any of the two groups, or a weighted average of the two.



When the treatment rate diminishes in the control group, the Wald-DID is equal to a weighted
average of LATEs. This quantity is not straightforward to interpret, because it aggregates
the LATE of treatment group switchers in period 1 and the LATE of control group switchers
in period 0. But it satisfies the no sign-reversal property: if the treatment effect is of the
same sign for everybody in the population, the Wald-DID is of that sign. Moreover, under
the assumption that control group switchers’ LATE does not change between period 0 and 1,
this weighted average rewrites as E(Y (1) — Y (0)|S1 U So,T = 1).

Finally, when the treatment rate is stable over time in the control group, the Wald-DID is
equal to the LATE of treatment group switchers. Indeed, in such instances we have o = 1, so

the first statement of the theorem simplifies into Wprp = A.

But even when the treatment rate is stable in the control group, the Wald-DID relies on the
assumption that time has the same effect on both potential outcomes, at least among units
treated in the first period. Under Assumptions 1-3 alone, one can show that Wprp is equal
to the same quantity as in Theorem 3.1, plus a bias term equal to
1
DIDp

where Cy = hq(Ug,1) — hq(Ug,0). Assumption 5 ensures that this bias term is equal to 0.

[E(Cl - C()|V > ’U()(),G = 1)P(D10 = 1) - E(Cl — Co|V > U()(),G = O)P(Do() = 1)] s

Otherwise, it might very well differ from 0.*

To better understand why this restriction is needed, consider a simple example where time
increases Y (1) by 1 unit, while leaving Y (0) unchanged. Assume also that in period 0, treat-
ment had no effect. Finally, assume that the treatment rate went from to 20 to 50% in
the treatment group, while it remained equal to 80% in the control group. Then, DIDy =
0.2x140.3x140.5x0—(0.8x1+40.2x0) = —0.3. The first and third terms respectively come
from the effect of time on always and never treated in the treatment group. Similarly, the
fourth and fifth terms respectively come from the effect of time on always and never treated in
the control group. Finally, the second term comes from the treatment effect among treatment
group switchers. Therefore, Wprp = —1, while every unit in the population has a treatment

effect equal to 1 in period 1, and to 0 in period 0.

The assumption that time has homogeneous effects on both potential outcomes might not
always be plausible. For instance, the relative earnings of college graduates in the US in-
creased dramatically in the 1980s (see Katz et al., 1999), suggesting that time might have had

heterogeneous effects on potential wages with and without a college degree.

3.2 Identification using a time-corrected Wald ratio

In this section, we consider a first set of alternative estimands to Wprp. Instead of relying on

Assumptions 3 and 4, they rely on the following assumption:

*Assuming that E(Co — C1|V < vy, G) does not depend on G is not sufficient to ensure that the bias is
equal to 0, unless P(Dgo = 1) = P(D1o = 1).

10



Assumption 5 (Common trends within treatment status at date 0)

E(ho(Ug,l) — ho(Ug,O)’G,V < 1100) and E(hl(Ul,l) — hl(Ul,O)‘G,V Z ’Uoo) do not depend
on G.

Assumption 5 requires that the mean of Y (0) (resp. Y (1)) follow the same evolution over time

among treatment and control group units that were untreated (resp. treated) at period 0.

Let 04 = E(Yg01) — E(Y400) denote the change in the mean outcome between period 0 and 1

for control group units with treatment status d. Then, let

E(Y11) — E(Yi0+0py,)

Wre = E(D11) — E(Dro)

Wre stands for “time-corrected Wald”.

When the outcome is bounded, let y and y respectively denote the lower and upper bounds of
its support. For any g € S(G), let \yqg = P(Dg1 = d)/P(Dgyo = d) be the ratio of the shares of
people receiving treatment d in period 1 and period 0 in group g. For instance, Agp > 1 when
the share of untreated observations increases in the control group between period 0 and 1. For

any real number x, let My(z) = max(0,x) and m(z) = min(1,x). Let also, for d € {0, 1},

Fio1(y) = Mo [1 = Aoa(l = Fy,g, (y))] = Mo(1 = Aoa)1{y <7},
Fao1(y) = ma [MoaFyy, ()] + (1 —m1(Xoa)) 1{y > y}.

Then define 6; = [ ydF a0 (y) — E(Yaoo) and 6q = [ ydE 40,(y) — E(Yaoo) and let

E(Y11) — EYio+6pyy) + E(Y11) = E(Y10 +dp,,)

Wre = E(Di)—E(Dw) "¢ E(Du) - B(D)

Theorem 3.2 Assume that Model (1) and Assumptions 1-2 and 5 are satisfied.
1. If0 < P(D()l = 1) :P(DOO = 1) <1, Wre = A.

2.If0 < P(Dp = 1) # P(Dyyp = 1) < 1 and P(y < Y(d) < 7) = 1 for d € {0,1},
Wore <A< Wrpelh

Our point identification result extends the DID logic to fuzzy settings. We seek to recover
the mean of, say, Y (1) among switchers in the treatment x period 1 cell. On that purpose,
we start from the mean of Y among all treated observations of this cell. As shown in Table
1, those include both switchers and always treated. Consequently, we must “withdraw” the
mean of Y (1) among always treated. This quantity is not observed. To reconstruct it, we add
to the mean of Y (1) among always treated of the treatment group in period 0 the evolution of
the mean of Y(1) among always treated of the control group between period 0 and 1. We use

similar steps to recover the mean of Y'(0) among switchers in the treatment x period 0 cell.

51t is not difficult to show that these bounds are sharp. We omit the proof due to a concern for brevity.
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Note that

E(Y|G=1,T=1)—E(Y 4 (1 - D)§ + D§;|G=1,T = 0)

Wre = E(D|G=1,T=1)— E(D|G=1,T = 0)

This is almost the Wald ratio with time as the instrument considered first by Heckman &
Robb (1985), except that we have Y + (1 — D)dp + Dd; instead of Y in the second term of
the numerator. This difference arises because time is not a standard instrument: it is directly
included in the outcome equation. When the treatment rate is stable in the control group we
can identify the direct effect of time on Y (0) and Y (1) by looking at how the mean outcome
of untreated and treated units changes over time in this group. Under Assumption 5, this
direct effect is the same in the two groups for units sharing the same treatment status in
the first period. As a result, we can add these changes to the outcome of untreated and
treated units in the treatment group in period 0, to recover the mean outcome we would have
observed in this group in period 1 if time had not affected selection into treatment. This is
what (1 — D)y + Ddy does. Therefore, the numerator of Wpe is equal to the effect of time
on the outcome which only goes through its effect on selection into treatment. Once properly

normalized, this yields the LATE of treatment group switchers.

When the treatment rate changes in the control group, the evolution of the outcome in this
group can stem both from the direct effect of time on the outcome, and from its effect on
selection into treatment. For instance, and as can be seen from Table 2, when the treatment
rate increases in the control group, the difference between F(Yi01) and E(Yjg9) arises both
from the effect of time on Y (1), and from the fact the former expectation is for always treated
and switchers while the later is only for always treated. Therefore, we can no longer identify the
direct effect of time on the outcome. However, when the outcome has bounded support, this
direct effect can be bounded, because we know the percentage of the control group switchers
account for. As a result, the LATE of treatment group switchers can also be bounded. The

smaller the change of the treatment rate over time in the control group, the tighter the bounds.

When the treatment rate does not change much in the control group, the difference between
Wre and A is likely to be small. For instance, when the treatment rate increases in the
control group, it is easy to show that under the Assumptions of Theorem 3.2, Wpeo is equal

to A plus the following bias term:

P(Dio = 0) (1~ HE2=Y) (E(¥or (0)[S0) — E(¥or (0)|NT))
P(Dy1=1)—P(Dyp=1)

P(Dio=1) (1~ Hp2=1 ) (B0 (1]S0) — E(Yor(DIAT))
P(D1 1) — P(Dyo =1) ' @

This term cancels if P(Dg; = 1) = P(Dgy = 1), but also if
U0|S(),G =0~ U0|NT, G =0and U1|S(],G =0~ U1|AT,G =0. (3)
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This assumption is not very appealing, as it requires that control group switchers have the
same distribution of Uy as never treated, and the same distribution of U; as always treated.
But Equations (2) and (3) still show that when the treatment rate does not change much in
the control group, Wr¢ is close to A unless switchers are extremely different from never and

always treated.
Finally, note that when the treatment rate is stable in the control group, we have

EY11) — E(Yi0 + 0pyy)
E(D1n) — E(D1)

Wpip =

When accounting for the effect of time on the outcome, Wprp weights §g and 1 by P(Dgy = 0)
and P(Dgo = 1), while Wrc weights these terms by P(Djgp = 0) and P(D1p = 1). These two
estimands are equal if and only if either o = §; or P(Dgp = 1) = P(D19 = 1). Otherwise,
they differ. The assumptions under which Wprp and Wre rely are non-nested. Wre requires
more common trends assumptions between groups, but it does not require common trends
assumptions between the two potential outcomes within groups. Therefore, testing Wprp =

Wre is a joint test of Assumptions 1 and 3-5.

3.3 Identification using instrumented changes-in-changes

In this section, we consider a second set of alternative estimands for continuous outcomes,
inspired from the CIC model in Athey & Imbens (2006). These estimands crucially rely on a

monotonicity assumption.

Assumption 6 (Monotonicity)
Ug € R and hq(u,t) is strictly increasing in u for all (d,t) € S(D) x S(T).

Assumption 6 requires that at each period, potential outcomes are strictly increasing functions
of a scalar unobserved heterogeneity term. Hereafter, we refer to Assumptions 1-2 and 6
as to the IV-CIC model. The IV-CIC model generalizes the CIC model to fuzzy settings.
Assumption 1 implies Uy IL T'|G and V 1L T'| G, which correspond to the time invariance
assumption in Athey & Imbens (2006). As a result, the IV-CIC model imposes a standard CIC
model both on Y and D. But Assumption 1 also implies Uy 1L T'| G,V in each group, the
distribution of, say, ability among people with a given taste for treatment should not change

over time. Our results rely on this supplementary restriction.

The assumptions of the IV-CIC model have advantages and drawbacks with respect to those
underlying the Wald-DID and Wald-TC estimands. For instance, one implication of As-
sumptions 1 and 5 is that the difference between the mean outcome of always treated in the
treatment and in the control group should remain stable over time. This condition is not
invariant to the scaling of the outcome, but it only restricts its first moment. On the other

hand, the corresponding implication of Assumptions 1 and 6 is that the proportion of units in
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the treatment group among any quantile group of the always treated remains constant over
time. For instance, if, in period 0, 70% of units in the first decile of always treated belonged
to the treatment group, in period 1 there should still be 70% of treatment group units in the
first decile. This condition is invariant to the scaling of the outcome, but it restricts its entire
distribution. When the treatment and the control groups have different outcome distributions
in the first period (see e.g. Baten et al., 2014), the scaling of the outcome might have a large
effect on the results, so using a model invariant to this scaling might be preferable. On the
other hand, when the outcome distributions in the treatment and in the control group are
similar in the first period, using a model that only restricts the first moment of the outcome

might be preferable.

We also impose the assumption below, which is testable in the data.
Assumption 7 (Data restrictions)
1. S(Yagq) = S(Y) = [y, 7] with —oco <y <7 < 400, for (d,g,t) € S(D) x S(G) x S(T).

2. Fy,,, is continuous on R and strictly increasing on S(Y'), for (d,g,t) € S(D) x S(G) x
S(T).

The first condition requires that the outcome have the same support in each of the eight
treatment x group X period cell. This condition does not restrict the support to be bounded:
y and 7 can be equal to — and +o0o. Athey & Imbens (2006) make a similar assumption.
Common support conditions might not be satisfied when outcome distributions differ in the
treatment and in the control group, the very situations where CIC might be more appealing
than DID. Athey & Imbens (2006) show that in such instances, quantile treatment effects are
still point identified over a large set of quantiles, while the average treatment effect can be

bounded. Even though we do not present them here, similar results apply in fuzzy settings.

The second condition is satisfied if the distribution of Y is continuous with positive density in
each of the eight groups x periods x treatment status cells. With a discrete outcome, Athey
& Imbens (2006) show that one can bound treatment effects under their assumptions. Similar
results apply in fuzzy settings, but as CIC bounds for discrete outcomes are often not very

informative, we do not present them here.

Let Qa(y) = Fy,

d
in the control group conditional on D = d. This transform maps y at rank ¢ in period 0

$1 o Fy,,,(y) be the quantile-quantile transform of Y from period 0 to 1

into the corresponding y’ at rank ¢ in period 1. Let also Hyi(q) = Fy,,, © F;d(l)o(q) be the
inverse quantile-quantile transform of Y from the control to the treatment group in period 0
conditional on D = d. This transform maps rank ¢ in the control group into the corresponding
rank ¢’ in the treatment group with the same value of y. Finally, for any increasing function

F on the real line, we denote by F~! its generalized inverse:

F ' (q)=inf{z €eR: F(z) > q}.
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In particular, F)El is the quantile function of X. We adopt the convention that F);l(q) =
inf S(X) for ¢ < 0, and Fi'(q) = sup S(X) for ¢ > 1.

Our identification results rely on the following lemma.
Lemma 3.1 If Assumptions 1-2 and 6-7 hold and if P(Dyy = d) > 0,

By i (y) — D210 = DHa© Qoabyn, ) + (1= doa) Py iso(®) = P(Du1 = d) iy @)
vi()s: () = P(Dyg = d) — P(D11 = d)

This lemma shows that under our IV-CIC assumptions, Fy,,(g)|s, is point identified when the

treatment rate remains constant in the control group, as in this case A\gg = 1. Let

P(DIO = d)Hd o (FYdm (y)) - P(Dll = d)Fde (y)
P(D1o = d) — P(D1, = d)
E(Y11) — E(@py, (Y10))
E(D11) — E(Dho)

Fercaly) =

Were =

When the treatment rate changes in the control group, Fy;, (4)s, is partially identified. Sharp

bounds can be obtained using Lemma 3.1. For any cdf Ty, let

Gd(Td) = )\OdFYdm + (1 — /\Od)Td
P(Dyg = d)Hg0 G4(Ty) — P(D11 = d)Fy,,,

Ca(Ta) = P(Dyg = d) — P(Dy1 = d)

It follows from Lemma 3.1 that Cy(Fy;,(a)|s,) = Fyii(d))s,- Moreover, one can show that
Go(Fyy1(0)50) = Fyoi(0)|v<uveo a0d G1(Fy;,(1)1S0) = F¥o,(1)|V>veo- Therefore, the sharp lower
bound on Fy,,(g)s, is

min Cy(Ty) s.t. (Ty, Ga(Ty), Ca(Ty)) € D3,
TyeD

where D is the set of cdfs on S(Y).

Unfortunately, it is difficult to derive a closed form expression for the solution of this problem,
because it corresponds to an infinite dimensional optimization problem with an infinite number
of inequality constraints. We therefore consider simpler bounds, which are sharp under a

simple testable assumption. Specifically, let My (z) = min(1, max(0,x)), and let

Id _ M01 (AOdFYdm - Hdl()‘ldFde)) : Td _ ]\401 (AOdFYdol - chl(AldFYd11 + (1 - Ald))) ’

Aog — 1 Aog — 1

Feoicaly) = sup Cy (Ty) (v), Forcaly) = inf Cq (Ta) (y),
y'<y y'>y

Weare = /deCIC,1(y) —/deczc,o(y% Were = /decm,l(Z/) —/deCIC,o(y),
——1 . — N — . — _ ——1
7, = max(Feoreq(9),y) — mm(Ec}o,o(Q)a Y), Tq = mln(EC}O,l(Q)a y) — max(For00(9),y)-

Finally, we introduce the two following conditions.
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Assumption 8 (Existence of moments)
[yldFcrca(y) < +o00 and [ |yldEcrcq(y) < +oo for d € {0,1}.

Assumption 9 (Increasing bounds)

For (d,g,t) € S(D) x {0,1}2, Fy,,, is continuously differentiable, with positive derivative on
the interior of S(Y)). Moreover, Ty, Tq,Ga(Ly), Ga(Taq),Ca(Ty) and Cy(Ty4) are increasing on
S(Y).

Theorem 3.3 Assume that Model (1) and Assumptions 1-2 and 6-7 hold.

1. [f() < P(D()l = 1) = P(DO() = 1) < 1, then FCIC’,d(y) = FYll(d)|S1(y> fO’I” d e {0,1},
Were = A and Fgie (@) = Foreo(a) = 74

2. If 0 < P(Do1 = 1) # P(Doo = 1) < 1 and Assumption 8 is satisfied, then Fy, (a)s, (y) €
[Ec]qd(y),FCIC,d(y)] for d € {0,1}, A € Weio, Were] and 74 € (T4 Tql. Moreover,
if Assumption 9 holds, these bounds are sharp.

Our point identification results combine ideas from Imbens & Rubin (1997) and Athey &
Imbens (2006). We seek to recover the distribution of, say, Y (1) among switchers in the
treatment X period 1 cell. On that purpose, we start from the distribution of Y among all
treated observations of this cell. As shown in Table 1, those include both switchers and always
treated. Consequently, we must “withdraw” from this distribution that of Y (1) among always
treated, exactly as in Imbens & Rubin (1997). But this last distribution is not observed.
To reconstruct it, we adapt the ideas in Athey & Imbens (2006) and apply the quantile-
quantile transform from period 0 to 1 among treated observations in the control group to the

distribution of Y(1) among treated units in the treatment group in period 0.

Intuitively, the quantile-quantile transform uses a double-matching to reconstruct the unob-
served distribution. Consider an always treated in the treatment x period 0 cell. She is first
matched to an always treated in the control x period 0 cell with same y. Those two always
treated are observed at the same period of time and are both treated. Therefore, under As-
sumption 6 they must have the same u;. Second, the control x period 0 always treated is
matched to her rank counterpart among always treated of the control x period 1 cell. We
denote y* the outcome of this last observation. Because Uy 1L T|G,V > v, those two ob-
servations must also have the same u;. Consequently, y* = hi(u1, 1), which means that y* is

the outcome that the treatment x period 0 cell unit would have obtained in period 1.
Note that

E(Y|G=1,T=1)- E(1-D)Qu(Y)+DQ:(Y)|G=1,T =0)
E(D|G=1,T=1)— E(D|G=1,T = 0)

Weic =

Here again, Weojc is almost the standard Wald ratio in the treatment group with T as the
instrument, except that we have (1 — D)Qo(Y) + DQ1(Y) instead of Y in the second term
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of the numerator. (1 — D)Qo(Y) + DQ1(Y) accounts for the fact time has a direct effect on
the outcome. When the treatment rate is stable in the control group, we can identify this
direct effect by looking at how the distribution of the outcome evolves in this group. We can
then net out this direct effect in the treatment group. This is what (1 — D)Qo(Y) + DQ1(Y)
does. Both Were and Wy proceed from the same logic, except that Wpeo corrects for
the effect of time through additive shifts, while W does so in a non-linear fashion. If
ha(Ug, T) = aq(Ug) + ba(T) with agq(.) strictly increasing, Assumptions 5 and 6 are both
satisfied. We then have Wgro = Wre.

Our partial identification results are obtained as follows. When 0 < P(Dgy = 1) # P(Dp1 =
1) < 1, the second matching described above collapses, because treated (resp. untreated)
observations in the control group are no longer comparable in period 0 and 1. For instance,
when the treatment rate increases in the control group, treated observations in the control
group include only always treated in period 0. In period 1 they also include switchers, as is
shown in Table 2. Therefore, we cannot match period 0 and period 1 observations on their
rank anymore. However, under Assumption 1 the respective weights of switchers and always
treated in period 1 are known. We can therefore derive best and worst case bounds for the
distribution of the outcome for always treated in period 1, and match period 0 observations

to their best and worst case rank counterparts.

If the support of the outcome is unbounded, F ¢ o and FCIQO are proper cdf when Agg > 1,
but they are defective when A\gg < 1. When Agg < 1, switchers belong to the group of treated
observations in the control x period 1 cell (cf. Table 2). Their Y (0) is not observed in
period 1, so the data does not impose any restriction on Fyy, (g)s,: it could be equal to 0 or
to 1, hence the defective bounds. On the contrary, when Agy > 1, switchers belong to the
group of untreated observations in the control x period 1 cell, and under Assumption 1 we
know that they account for 100(1 — 1/Ago) of this group. Consequently, we can use trimming
bounds for Fy;, (0)s, (see Horowitz & Manski, 1995), hence the non-defective bounds. On the
contrary, Fereq and FC’IO,l are always proper cdf, while we could have expected them to
be defective when Agg > 1. This asymmetry stems from the fact that when Agg > 1, setting
Fy,,(1)150(y) = 0 would yield Fy,,(1ys,(y) > 1 for values of y approaching g, while setting
Fyy, 1)1, (y) = 1 would yield Fy;, (1ys, (y) < 0 for values of y approaching y.

The previous discussion implies that when S(Y") is unbounded and Agg < 1, our bounds on A
are infinite because our bounds for the cdf of Y (0) of switchers are defective. Our bounds on
T4 are also infinite for low and high values of g. On the contrary, when A\g9 > 1 our bounds on
7, are finite for every ¢ € (0,1). Our bounds on A are also finite provided Fr oo and Foreyo

admit an expectation.

Finally, when the treatment rate changes in the control group, one can recover point identifi-

cation if one is ready to impose the same supplementary assumption as in Equation 3.
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3.4 Identification with a fully treated or fully untreated control group

Up to now, we have considered general fuzzy situations where the P(Dgy = d) were restricted
only by Assumption 2. An interesting special case, which is close to the sharp design, is when
P(Dogp =1) = P(Dg1 = 1) = P(Djp = 1) = 0. In such instances, identification of the average
treatment effect on the treated can be obtained under the same assumptions as those of the
standard DID or CIC models.

Theorem 3.4 Suppose that P(Dyog = 1) = P(Dgy = 1) = P(D1p =1) =0 < P(Dy; = 1),
Up IL T|G, and the outcome equation of Model (1) is satisfied.

1. If Assumption 8 holds, then Wprp = Wre = E(Y11(1) — Y11(0)|D = 1).
2. If Assumptions 6 and 7 hold, then Were = E(Y11(1) — Y11(0)|D = 1).

Hence, results of the sharp case extend to this intermediate case. Note that under Model (1)
and Assumption 1, the treated population corresponds to Si,so E(Y11(1)—Y11(0)|D =1) = A

under these additional assumptions.

Another special case of interest is when P(Dg = 0) = P(Dgp1 = 0) € {0,1}. Such situations
arise, for instance when a policy is extended to a previously a group, or when a program or a
technology previously available in some geographic areas is extended to others (see our second
supplementary application in de Chaisemartin & D’Haultfeeuille (2015)). Theorem 3.1 applies
in this special case, but not Theorems 3.2-3.3, as they require that 0 < P(Dgg = 0) = P(Dg; =
0) < 1. In such instances, identification must rely on the assumption that time has the same
effect on both potential outcomes. For instance, if P(Dgy = 1) = P(Dpy = 1) = 1 and
P(Djp = 1) < 1, there are no untreated units in the control group which we can use to infer
trends for untreated units in the treatment group. We must therefore use treated units, under
the assumption that time has the same effect on both potential outcomes. Instead of the Wald-
TC estimand, one could then use Z31=EM1010) “ e cyge P(Dgy =1) = P(Dp1 =1) =1,

E(D11)—E(D1o)
this actually amounts to using Wprp instead of Wpo. We can also adapt our Wald-CIC

estimand by considering the following assumption.

Assumption 10 (Common effect of time on both potential outcomes)

ho(hal(y, 0),1) = hl(hfl(y,O), 1) for every y € S(Y).

Assumption 10 requires that time have the same effect on both potential outcomes: once
combined with Equation (1) and Assumption 6, Assumption 10 implies that a treated and
an untreated unit with the same outcome in period 0 also have the same outcome in period
1. This restriction is not implied by the IV-CIC assumptions we introduced in Section 3.3:
Equation (1) and Assumption 6 alone only imply that two treated (resp. untreated) units

with the same outcome in period 0 also have the same outcome in period 1. An example of
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a structural function satisfying Assumption 10 is hq(Ug, T) = f(9a(Uq),T) with f(.,t) and
g4(.) strictly increasing. This shows that Assumption 10 does not restrict the effects of time
and treatment to be homogeneous. Finally, Assumptions 4 and 10 are related, but they also
differ on some respects. Assumption 4 restricts time to have the same average effect on the
potential outcomes of always treated. Assumption 10 restricts time to have the same effect

on the potential outcomes of units satisfying Y (0) = Y (1) at the first period.

Under assumption 10, if P(Dyy = d) = P(Dg1 = d) = 1 we can use changes in the distribution
of Y(d) in the control group over time to identify the effect of time on Y (1 —d), hence allowing
us to recover both Fy,, ()s; and Fy; (1—q)|s; -

Theorem 3.5 If Assumptions 1-2, 6-7, and 10 hold, and P(Dyy = d) = P(Dg1 =d) =1 for
some d € {0,1},

P(D1o = d)Fg,(vy0)(y) — P(D11 = d) Fy,,, (y)

P(Dlo - d) — P(Dll = d) = FYll(d)|Sl (y)v
P(Dlo =1- d)FQd(Ylidlo)(y) - P(Dll =1 d)FY1,d11 (y) . ( )
P(Dig=1—-d)— P(Dy; =1—d) = Fy, qa-a)s, (9);

E(Y11) — E(Q1-4(Y10))

E(D1) — E(Dy) A

The estimands introduced in this theorem are very similar to those considered in the first point
of Theorem 3.3, except that they apply the same quantile-quantile transform to all treatment

units in period 0, instead of applying different transforms to units with a different treatment.

Finally, when 0 < P(Dyy = 1) = P(Dp1 = 1) < 1, Assumption 10 is testable. If it is satisfied,
the quantile-quantile transforms Q¢ and ()1 must be equal. When this test is not rejected,
applying a weighted average of these two transforms to all treatment group units in period 0

might result in efficiency gains with respect to our Wald-CIC estimator.

3.5 Panel data models

Model (1) is well suited for repeated cross sections or cohort data where we observe units only
once. On the other hand, it implies a strong restriction on selection into treatment when panel
data are available. As V does not depend on time, our selection equation implies that within
each group, time can affect individuals’ treatment decision in only one direction. Actually, all
our results would remain valid if Uz and V' were indexed by time, except that we would have
to rewrite Assumption 1 as follows: for d € S(D), the distribution of (Ug, V;) |G does not
depend on ¢t. Within each group, time could then induce some units to go from non-treatment

to treatment, while having the opposite effect on other units.

We now discuss whether the common trends and monotonicity assumptions we introduced
above are satisfied in standard panel data models. We index random variables by 4, to distin-

guish individual effects from constant terms.
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First, we consider the following model:

Yit = v + i + BiDig + €t (4)
Dy = 1{Vit > vg}, (5)
(ein, Vi, i, Bi)|Gi ~ (gio, Vio, i, Bi) | Gi. (6)

The outcome equation has time and individual effects. It allows for heterogeneous but
time invariant treatment effects which can be arbitrarily correlated with the treatment, the
fixed effects, and the idiosyncratic shocks. Equation (6) requires that the distribution of
(€4t, Vit, a4, Bi)|Gi does not depend on time. On the other hand, it does not restrict the
cross-sectional dependence between g;; and Vj;, nor serial dependence between (g5, Vi) and
(€41, Vi1). This implies in particular that in the first-difference equation, D;; — D;g is endoge-
nous in general. The Wald-DID estimand then amounts to instrument D;; — D;g by G; in this
first-difference equation. It is easy to see that if Equations (4)-(6) hold, then Assumptions
1-5 are satisfied:® the additive time effect and the time invariant treatment effect ensure that
Assumptions 3, 4 and 5 are satisfied. Hence, both the Wald-DID and the Wald-TC estimands

are equal to A.

Second, we consider the following outcome equation instead of Equation (4):
Yie = vt + MDig + o + BiDis + €41 (7)

Under Equation (7), Assumption 4 is no longer satisfied because treatment effects change over
time. On the other hand, the effect of time on both potential outcomes is still additive, so
Equations (7) and (5)-(6) guarantee that Assumptions 1-2 and 5 are satisfied. Hence, the
Wald-TC estimand is equal to A.

Then, we consider the following outcome equation:
Yit = v + MDit + pa(c; + BiDig + €it)- (8)

Under Equation (8), Assumption 4 is no longer satisfied because time has an heterogeneous
effect on the outcome. On the other hand, if Equations (8) and (5)-(6) hold, then Assumptions
1-2 and 6 are satisfied. To see this, define hg(u,t) = v + Md + ppu and Ugyy = oy + Bid + €4

Finally, we consider a last outcome equation:
Yie = vt + MDit + a; + BiDit + pe€i- (9)

All our assumptions fail to hold under this fixed effects model with time-varying effects of

the idiosyncratic shock. As above, Assumption 4 fails because time has heterogeneous effects

504 and V should be indexed by time, and Assumption 1 should be rewritten as follows: for d € S(D), the
distribution of (Ua, V%) |G is independent of ¢.
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on the outcome. Assumption 6 also fails because the outcome can no longer be written as a
function of time and a scalar unobserved term. Bonhomme & Sauder (2011) study a similar
model with fixed effects and non-stationary idiosyncratic shocks. In the sharp case, they
show that average and quantile treatment effects are identified if the idiosyncratic shocks are

independent of treatment and of the fixed effects.

4 Extensions

In this section, we extend our analysis to situations where the data can be divided into several
groups and several periods, where covariates are available, or where the treatment is non-
binary. To generalize our results, we have to modify some of the assumptions we introduced
above. To ease the comparison, we label these assumptions using suffixes. For instance

Assumption 1X is similar to Assumption 1 except that it accounts for covariates X.

4.1 Multiple groups and time periods

Let us consider the case where the data can be divided into more than two groups and
time periods. Let G € {0,1,...,g} be the group a unit belongs to. Let T € {0,1,...,t}
be the period when she is observed. For any (g,t) € S(G) x {1,...,t}, let Sy = {V €

[min(vge—1, vgt), max(vg—1,vg¢)), G = g} be the subset of group g which switches treatment

status between ¢ — 1 and t. Also, let Sy = ngosgt denote the units switching between ¢ — 1
and t. Finally, let S = U,f:1 St be the union of all switchers. At each date, we can partition
the groups into three subsets, depending on whether their treatment rate is stable, increases,

or decreases between ¢t — 1 and t. For every ¢t € {1,...,}, let
Gst = {9 € S(G) : E(Dgt) = E(Dgt—1)}
Git ={9 € S(GQ) : E(Dg)
Gt = {9 € S(G) : E(Dg)
and let G; = 1{G € Gy} — 1{G € Ga}. We introduce the following assumptions, which
generalize Assumptions 3-5 to settings with multiple groups and periods (Assumptions 6 and
7 apply to this case without modifications).
Assumption 3M  (Common trends)

For every t € {1,...,t}, E(ho(Uo,t) — ho(Upy,t — 1)|G) does not depend on G.

Assumption 4M (Common average effect of time on both potential outcomes)

For every t e {1,...,%}, E(hl(Ul,t) — hl(Ul,t — 1)|G,V > ’UG()) = E(h()(Uo,t) — ho(Uo,t —
DG,V > veo).
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Assumption 5M (Common trends within treatment at previous period)

For every t € {1, ...,%}, E(ho(Uo,t) — ho(Uo,t— 1)|G,V < 'Uthl) and E(hl(Ul,t) —hl(Ul,t—
1)|G,V > vgi—1) do not depend on G.

Theorem 4.1 below shows that when there is at least one group in which the treatment rate
is stable between each pair of consecutive dates, combinations of these assumptions allow us
to point identify A,,, a weighted average of LATEs over different periods:

t
P(S{T =1)
t=1 Zt 1 P(S{T =1)

We also consider the following assumption, under which A,, is equal to the LATE among the

BE(Y(1) - Y(0)|S:, T = t).

whole population of switchers S.

Assumption 11 (Stable groups, monotonic evolution of treatment, and homogenous effects

over time)
1. G T.
2. For everyt #t € {1,..,}2 Gy N Gap = 0.

8. For every (t,t') € {1,..,t}%, E(Y(1) = Y(0)|S, T =t') = E(Y(1) = Y(0)|S;, T = 1).

The first point of Assumption 11 requires that the distribution of groups be stable over time.
This will automatically be satisfied if the data is a balanced panel and G is time invariant.
With repeated cross-sections or cohort data, this assumption might fail to hold. However,
large deviations from this stable group assumption indicate that some groups grow much
faster than others, which might anyway call into question the common trends assumptions
underlying DID identification strategies. The second point of Assumption 11 requires that
in every group, the treatment rate follows a monotonic evolution over time. The third point

requires that switchers” LATE be homogeneous over time.

For any random variable R and for any (g,t) € {—1,0,1} x S(T), let Ry, ~ R|G} = g, T =t
and Ry, ~ R|D =d,G} = g, T =t. Forany g # ¢’ € {-1,0, 1}2and t € {1,...,t} let

DID}(g.9',t) = E(Ry,) — E(Ry_y) — (E(Ryy) — E(Ryy_1))
DID5 (g,9',1)
DID3,(g,9¢',t)
_ DID}(1,0,t)P(G € Gu|T = t) + DID}(0, —1,t)P(G € Gy|T = t)
zt L, DID%(1,0,t)P(G € Gu|T =t) + DID}(0,—1,t)P(G € Ggu|T =t)
B DID},(1,0,t)P(G € Gy|T = t)
YOt = DIDE(1,0,6)P(G € G| T = t) + DID%(0,—1,6)P(G € Goy|T = 1)

Whip(g,¢'st) =
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Let also

oat = E(Y0:) — E(Yqo4—1) for d € {0, 1}
B(YViy) — BV, + 0 )

t—1

E(D},) — E(D};y)
E(YZy) = EYZ, 0+ 0D, )

1t—1

E(D*—lt) - E(D*—lt—l)

W;C(L 0, t) =

Wic(—1,0,t) =

Finally, let

Qiuly) = Fyl o Fyy, (v) de{0.1}
BV — E@p: (Vi)

B(D;,) — B(D},_y)

B~ E@pe (Vi)

E(Dy,) - E(D—lt—l)

Weie(1,0,t) =

WE’IC(_L 0, t) =
Theorem 4.1 Assume that Model (1) and Assumption 1 are satisfied. Assume also that for
every t € {1,...,t}, G # 0.
1. If Assumptions SM and 4M are satisfied,
i
Zwt<w10\tWBID(1’07t) + (1 = wio)Wpip(—1,0,7)) =Auy.
t=1
2. If Assumption 5M is satisfied,
i
Zwt(wlo\thtc(l,()’t) + (1 = wiop) Wre(=1,0,1)) =As.
t=1

3. If Assumptions 6 and 7 are satisfied,

t
Z wi(wiopWere(1,0,1) + (1 — wiop) Wepe(=1,0,1)) =Ay.
t=1

4. If either t = 1 or Assumption 11 holds,

Ay = E(Y(1) = Y(0)[S,T > 0).

Let us first consider the simple case with multiple groups and two periods. In such instances,

the first, second, and third results of the theorem can respectively be rewritten as

w101 Wpirp(1,0,1) + (1 = wig)Wpp(=1,0,1) = E(Y(1) = Y(0)[S,T =1),
w101 Wre(1,0,1) + (1 — wion)Wre(=1,0,1) = E(Y(1) -Y(0)[51,T =1),
w101 Were(1,0,1) + (1 —wiop)Wee(=1,0,1) = E(Y (1) = Y(0)[S1, T =1).
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This shows that with multiple groups and two periods of time, treatment effects for switchers
are identified if there is at least one group in which the treatment rate is stable over time.
This holds under each of the three sets of assumptions we considered in the previous section.
The estimands we propose can be computed in four steps. First, we form three “super groups”,
by pooling together the groups where treatment increases (G* = 1), those where it is stable
(G* = 0), and those where it decreases (G* = —1). While in some applications these three
sets of groups are known to the analyst, in other applications they must be estimated. In
our supplementary material, we review results from Gentzkow et al. (2011) where these sets
are known to the analyst. In Section 6 we review results from Duflo (2001) where these sets
are not known to the analyst. We propose an estimation procedure and perform a number of
robustness checks to assess whether results are sensitive to this first step estimation procedure.
Second, we compute the estimand we suggested in the previous section with G* = 1 and G* = 0
as the treatment and control groups. Third, we compute the estimand we suggested in the
previous section with G* = —1 and G* = 0 as the treatment and control groups. Finally, we

compute a weighted average of those two estimands.

In the general case where t > 1, aggregating estimands at different dates proves more diffi-
cult than aggregating estimands from different groups. This is because populations switching
treatment between different dates might overlap. For instance, if a unit goes from non treat-
ment to treatment between period 0 and 1, and from treatment to non treatment between
period 1 and 2, she both belongs to period 1 and period 2 switchers. A weighted average of,
say, our Wald-DID estimands between period 0 and 1 and between period 1 and 2 estimates a
weighted average of the LATESs of two potentially overlapping populations. There is therefore
no natural way to weight these two estimands to recover the LATE of the union of period 1
and 2 switchers. As shown in the fourth point of the theorem, the aggregated estimand we
put forward still satisfies a nice property: it is equal to the LATE of the union of switchers
in the special case where the structure of groups does not change over time and each group
experiences a monotonic evolution of its treatment rate over time. When this is the case, pop-
ulations switching treatment status at different dates cannot overlap, so our weighted average
of switchers” LATE across periods is actually the LATE of all switchers.

Three last comments on Theorem 4.1 are in order. First, it contrasts with the current practice
in empirical work. When many groups and periods are available, applied researchers usually
include group and time fixed effects in their regressions, instead of pooling together groups
into super control and treatment groups as we advocate here. We show in the supplementary
material (see Theorems S1 and S2) that such regressions estimate a weighted average of
switchers LATEs across groups, with potentially many negative weights and without the
aggregation property we obtain here. Second, groups where the treatment rate diminishes can
be used as “treatment” groups, just as those where it increases. Indeed, it is easy to show

that all the results from the previous section still hold if the treatment rate decreases in the
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treatment group and is stable in the control. Finally, when there are more than two groups
where the treatment rate is stable over time, our three sets of assumptions become testable.
Under each set of assumptions, using any subset of Gs as the control group should yield the

same result.

We now turn to partial identification results when the treatment rate changes in every group.
To simplify the exposition, we focus on the case with multiple groups and two periods. Results

can easily be extended to accommodate multiple periods.

When the outcome has bounded support [y, 7], let, for (d,g) € {0,1} x S(G),

Fg1(y) = Mo [1 = Aga(1 = Fy,, (y))] — Mo(1 = A\ga)1{y <7},
Fag1(y) = m1 [AgaFy,,, ()] + (1 —mi(Aga))1{y > y}.

Then define
—_ . —_— + _ .
0y = ggﬁ}é)/ydlrdf’l(y) — E(Yag), 0, = gglgl(%) /ydEdgl(y) — E(Yag0),
E(Yg ) - E(Ygo +51;g0)
E(Dgl) - E(DQO)

B(Yy) — B0 +3b) (o

Vel = D, - B, Vi

Let also F'y,4(y) and Fggq(y) denote the lower and upper bounds on Py, (d)s, one can obtain
using G = g as the treatment group and G = ¢’ as the control group and applying Theorem
3.3. Finally, let

Werelo) = [ max Fao(s) = min o)) do

+ _ I
Were(g) = / <g,g}91?G)F 9g'0(Y) — g,Iélg‘()é)Fgg/l<y)> dy.

Theorem 4.2 Assume that Model (1) and Assumption 1 is satisfied. Assume also that Gs1 =
0.

1. If Assumption 5 is satisfied and P(y <Y (d) <7y) =1 for d € {0, 1},

Wre(9) < E(Ya (1) = Y (0)|Sg) < Wrc(g)-

2. If Assumptions 6 and 7 are satisfied,

Weie(9) < E(Ya(1) = Y (0)[Sy) < Weia(9)-

This theorem shows that with multiple groups, one can construct intersection bounds for
switchers’” LATE when the treatment rate changes in every group over time. This holds under
the two sets of assumptions for which we considered partial identification results in the previous
section. Under Assumption 5, one can bound the LATE among switchers in a given group

by using every other group as a potential control group and applying Theorem 3.2. One can
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then select the control group yielding the highest (resp. smallest) lower (resp. upper) bound.
Under Assumption 6, one can bound the cdf of Y (1) and Y (0) among switchers in a given
group by using every other group as a potential control group and applying Theorem 3.3.
For each value of y, one can then select the control group yielding the highest (resp. lowest)
lower (resp. upper) bound. One can finally bound switchers LATEs by using integration by
parts for Lebesgue-Stieljes integrals. Note that any group can be used to construct bounds
for the LATE of switchers in group g, even groups ¢’ which experienced a larger change of
their treatment rate. Here, we only present partial identification results for treatment effects
among switchers of group ¢g. One can also derive bounds for the entire population of switchers,

by taking a weighted average of these bounds.

4.2 Covariates

We now return to our initial setup with two groups and two periods but consider a framework

incorporating covariates. Let X be a vector of covariates. Assume that
Y(d) = hg(Uyg, T,X), deS(D),
D = 1V >wverx}, veox = voox does not depend on G. 10
Then we replace Assumptions 1-7 by the following conditions.

Assumption 1X (Conditional time invariance within groups)

Forde S(D), (Ug, V) L T|G,X.

Assumption 2X (Conditional first stage)
E(DH’X) > E(Dl()’X), and E(DH’X) — E(Dlo‘X) > E(DOl‘X) — E(DO()‘X)

Assumption 3X (Conditional common trends)

E(ho(Uy, 1,X) — ho(Uy, 0, X)|G, X) does not depend on G.
Assumption 4X (Conditional common effect of time on both potential outcomes)
E(h1<U17 17 X)_hl(Ul) 07 X)|G7 |4 Z V00X, X) - E(hO(U07 ]-7 X)_hO(U07 07 X)|G7 Vv 2 V00X » X)

Assumption 5X (Conditional common trends within treatment status)

E(ho(Uo, 1, X) — ho(Up, 0, X)|G,V < weox,X) and E(hi(Ur,1,X) — hy(U1,0,X)|G,V >
voox, X ) do not depend on G.

Assumption 6X (Monotonicity)

Uy € R and hg(u,t,z) is strictly increasing in u for all (d,t,z) € S(D) x S(T) x S(X).
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Assumption 7X (Data restrictions)

1. SYau|X = z) = S(Y) = [y,7] with —o0o <y <y < 400, for (d,g,t,x) € S(D) x
S(G) x S(T) x §(X).

2. Fy, ,|x=q 18 strictly increasing on R and continuous on S(Y), for (d,g,t,x) € S(D) x
S(G) xS(T) x S(X).

3. S(Xg) =S(X) for (g,t) € S(G) x S(T).

For any random variable R, let DIDp(X) = E(R11|X)—E(R10|X)— (E(Ro1|X) — E(Roo| X)).
We also let 04(z) = E(Yg01|X = z) — E(Yaoo| X = ), Qax(y) = F;diﬂX:v o FYdoo\X=x(y)> and

Wprp(X) = m
_ B(ulX) = B(Yi +8p,,(X)|X)
Wre(X) = I}E(DH|X) _10E(D10|X)
Were(x) = 20X = B@bix Vo)l X)

E(D111X) — E(D1o|X)
Finally, let S7 = {V S [UllXaUOOX]aG = 1} and A(X) = E(Yll(l) — Yil(O)‘Sl,X)
Theorem 4.3 Assume that Model (10) and Assumptions 1X-2X hold, and that for every
de S8(D), 0< P(Dgyg=d|X)= P(Dg1 =d|X) almost surely. Then

1. If Assumptions 3X-4X are satisfied, Wprp(X) = A(X) and

E[DIDy(X)|G=1,T = 1]
E[DIDp(X)|G =1,T = 1]

2. If Assumption 5X is satisfied, Wrc(X) = A(X) and

WX, = E(Yil) — E[E(Ylo + D1061(X) + (1 — D10)50(X)‘X)|G =1,T= 1] A
re= E(Dy1) — E(E(D1o|X)|G =1,T =1) o

3. If Assumptions 6X-7X are satisfied, Weoro(X) = A(X) and

E(Y11) — E[E(D10Q1,x (Y10) + (1 — D19)Qo,x (Y10)|X)|G = 1,T = 1]

E(D11) — E(E(Dyo|X)|G =1,T =1) = A.

X _
Were =

Incorporating covariates into the analysis has two advantages. First, it allows us to weaken
our identifying assumptions. For instance, when the distribution of some X evolves over time
in the control or in the treatment group, Assumption 1X is more plausible than Assumption
1: if the distribution of X is not stable over time and X is correlated with (Ug, V'), then the
distribution of (Uy, V') is also not stable. Second, there might be instances where P(Dgy =
d) # P(Dp1 = d) but P(Dyy = d|X) = P(Dg1 = d|X) > 0 almost surely, meaning that in
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the control group, the evolution of the treatment rate is entirely driven by a change in the
distribution of X. If that is the case, one can use the previous theorem to point identify
treatment effects among switchers, while our theorems without covariates only yield bounds.
When P(Dgyy = d|X) # P(Dg1 = d|X), one can derive bounds for A(X) and then for A.
These bounds could be tighter than the unconditional ones if changes in the distribution of

X drive most of the evolution of the treatment rate in the control group.

4.3 Non-binary, ordered treatment

Finally, we consider the case where the treatment is not binary but takes a finite number of
values: D € {0,1,...,d} and is ordered. One prominent example is education, considered in

the application below. We extend our model to this case as follows:

Y(d) = hd(Ud,T>, dG{O,...,E},
(11)

= _
D = Yo H{V>uvl}, —oco=0v) <vl.< vgj'l = 400 ((g,t) € {0,1}?).

Assumption 40 (Common average effect of time on all potential outcomes)

For d € {0, ...,d},

E(hg(Ug, 1) — ha(Ug, 0)|G,V € [vdg, v&ih)) = E(ho(Uo, 1) — ho(Up, 0)|G, V € [viy, vEEh).

Assumption 50 (Common trends within treatment status at date 0)

For every d € S(D), E(hq(Ug,1) — hq(Ug,0)|G,V € [véo,vgorl)) does not depend on G.

Model (11) and Assumptions 40-50 generalize respectively Model (1) and Assumptions 4-5 to
situations where the treatment is non-binary and ordered . Let 2 denote stochastic dominance

between two random variables, while ~ denotes equality in distribution.

Theorem 4.4 Assume that Equation (11) and Assumptions 1-2 are satisfied, that Dy ~ Doy,

and that Dy 2, Dig. Let wy = "G =g s,

1. If Assumptions 8 and 4O are satisfied,
d
Wpip = ZE(Yn(d) — Y (d = 1)|V € [ofy, vip))wa.

d=1

2. If Assumption 50 is satisfied,

d
Wre :ZE(YH(d) -Yu(d-1)|Ve [”flvvilo))wd'
d=1
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3. If Assumptions 6 and 7 are satisfied,
d
Weore =Y, EVii(d) = Yii(d — 1)|V € [vfy, vfy))wa.
d=1
Theorem 4.4 shows that with an ordered treatment, the estimands we considered in the previ-
ous sections are equal to the average causal response (ACR) parameter considered in Angrist
& Imbens (1995). This parameter is a weighted average, over all values of d, of the effect
of increasing treatment from d — 1 to d among switchers whose treatment status goes from

strictly below to above d over time.

For this theorem to hold, a number of conditions must be satisfied. First, the distribution
of treatment must be stable over time in the control group. When it is not, one can derive
bounds for the same causal parameter. Second, in the treatment group the distribution of
treatment in period 1 must stochastically dominate the corresponding distribution in period
0. If that is not the case, some of the weights wy are negative. Angrist & Imbens (1995) also
require that the distribution of treatment conditional on Z = 1 dominate that conditional on
Z = 0.

Theorem 4.4 could easily be extended to continuous treatments. Our three estimators would
then estimate a weighted average derivative similar to that studied in Angrist et al. (2000).
However, estimation of the Wald-TC and Wald-CIC might be more challenging. One would
have to estimate the functions d — J4 and d — Qg in a first step. This could be done
parametrically, at the expense of imposing some assumptions on the shape of these functions.
Non-parametric estimation would be feasible for the Wald-TC estimator, but would be more
challenging for the Wald-CIC estimator.

5 Inference

In this section, we study the asymptotic properties of the estimators corresponding to the
estimands introduced in the previous sections. We focus on the point identified case. Es-
timators of the bounds on average and quantile treatment effects in the partially identified
case are considered in the supplementary material. We restrict ourselves to repeated cross

sections. For now, we suppose that we have an i.i.d. sample with the same distribution as
(Y,D,G,T,X).

Assumption 12 (Independent and identically distributed observations)

(Y:, D;, G, T;, Xi)i=1,....n are i.i.d.

Even if we do not observe the same unit twice, independence may be a strong assumption
in some applications: clustering at the group level can induce both cross-sectional and serial

correlation within clusters. However, we can extend some of our results to allow for clustering,

as we discuss below.
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5.1 Inference without covariates

Let Zyy = {i : G; = g,T; = t} (vesp. Iy = {i : D; = d,G; = ¢,T; = t}) and ng (resp.
nagt) denote the size of Zy; (vesp. Zyg) for all (d, g,t) € {0,1}3. The Wald-DID and Wald-TC
estimators are simply defined by
1 1 1 1
niL ZieZn Y — n1o Ziefm Y — no1 ZiEIm Y+ n00 Ziezoo Y
i i 1 1
ot 2iery Di— n10 2ietio Vi — no1 2iety Di+ noo 2ieto Di
1 1 <
W oy 2wieTn Yi T hg Eiezlo [Yl + 5Dz}
TC = 1 1
nL ZieIn D; — nio ZiEIw D;

where 8, (d € {0,1}) is defined by

—ZY——ZY

lGI ZEZdOO

Wpip =

)

)

Let F\ngt denote the empirical cdf of ¥ on the subsample Z;4:

Similarly, we estimate the quantile of order ¢ € (0,1) of Yy, by FY (q) =inf{y: ﬁydgt( ) >
q}. The estimator of the quantile-quantile transform is Qd = ;d L © FYd(JO Then, the Wald-
CIC estimator is defined by

1 1 A
n11 ZiEIn Y — nio ZiEIIO QDi (Yl)

A” cIiC =
1 1 .
ni1 €11 D; n1o Ziel—w D;

Let P(Dgt = d) be the proportion of subjects with D = d in the sample Zy, let Hy =
FYle o F , and let

ﬁ(Dlﬂ = d)ﬁd o F\Ydm - P(Dll = d)FYdll
P(Dyp=d) — P(D11 =d)

Fyi (a8 =
Our estimator of the LQTE of order ¢ for switchers is

~ 1 H-1

Tq FY11(1)|51 (a) FY11(0)\51 ().
We derive the asymptotic behavior of our CIC estimators under the following assumption,
which is similar to the one made by Athey & Imbens (2006) for the CIC estimators in sharp
settings.

Assumption 13 (regularity conditions for the CIC estimators)
S(Y) is a bounded interval [y,y]. Moreover, for all (d,g,t) € {0,1}3, Fy, , and Fy,, (4s, are

continuously differentiable with strictly positive derivatives on [y,7].
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Theorem 5.1 below shows that both A and 7,4 are root-n consistent and asymptotically normal.
We also derive the influence functions of our estimators. However, because these influence
functions take complicated expressions, using the bootstrap might be convenient for inference.
For any statistic T, we let T* denote its bootstrap counterpart. For any root-n consistent
statistic 6 estimating consistently 6, we say that the bootstrap is consistent if with probability
one and conditional on the sample, \/ﬁ(g* — 5) converges to the same distribution as the
limit distribution of \/ﬁ(§ —6).7 Theorem 5.1 shows that bootstrap confidence intervals are

asymptotically valid for all our estimators.

Theorem 5.1 Suppose that Assumptions 1-2, 12 hold and 0 < P(Dgy =0) = P(Dg1 = 1) <
1. Then

1. If E(Y?) < 0o and Assumptions 3-4 also hold,
vn (WDID - A) L N(0.V ($prp)) s

where Yprp is defined in Equation (48) in the appendiz. Moreover, the bootstrap is
consistent for WDID.

2. If BE(Y?) < oo and Assumption 5 also holds,
vn (/WTC - A) L5 N0,V (¥7c))

where Yo is defined in Equation (49) in the appendiz. Moreover, the bootstrap is

consistent for Wre.

3. If Assumptions 6, 7 and 13 also hold,

Vvn (ﬁ/\cm - A) L N0,V ($ere)
Vi (7 = 74) =5 N0,V (¢g.010)),

where Yorc and Ygcrc are defined in Equations (50) and (51) in the appendiz. More-

over, the bootstrap is consistent for both estimators.

The result is straightforward for the Wald-DID and Wald-TC. Regarding the CIC, our proof
differs from the one of Athey & Imbens (2006). It is based on the weak convergence of the
empirical cdfs of the different subgroups, and on a repeated use of the functional delta method.
This approach can be readily applied to other functionals of (Fy,,(0)s,, Fyi;(1)s,). We also
show in the supplementary materials how it can be applied to estimate bounds on average

and quantile treatment effects in the partially identified case.

"See, e.g., van der Vaart (2000), Section 23.2.1, for a formal definition of conditional convergence.
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5.2 Inference with covariates

In this section, we consider estimators of the Wald-DID, Wald-TC, and Wald-CIC estimands
with covariates derived in Subsection 4.4. For the Wald-DID and Wald-TC, our estimators are
entirely non-parametric. For the Wald-CIC, we could define an estimator using a nonparamet-
ric estimator of the conditional quantile-quantile transform Q)¢ x. However, such an estimator
would be cumbersome to compute. Following Melly & Santangelo (2015), we consider instead
an estimator of )4 x based on quantile regressions. This estimator relies on the assumption
that conditional quantiles of the outcome are linear. However, it does not require that the
effect of the treatment be the same for units with different values of their covariates, contrary

to the estimator with covariates suggested in Athey & Imbens (2006).

We first introduce our Wald-DID and Wald-TC estimators with covariates. Let X € R" be
a vector of continuous covariates. Adding discrete covariates is easy by reasoning conditional
on each corresponding cell. For any random variable R, let mfi(z) = E(Ry|X = x) and let

ﬁlﬁ(m) denote its kernel estimator:

_X;
ZiEIgt K (fbhn ) R’
= = ,
ZiGIgt K (xhn )

where K and h,, are respectively a kernel function and a bandwidth satisfying the restrictions
of Assumption 14 below. We define similarly mffgt(m) E(Ragt|X = ) and g, B (x). Then

let us consider

W o %11 €711 [Y mlO(X ) - mg)/l (Xl) + mg)/()(XZ)]
DID — PN PN )
%11 €711 [Dl - mﬁ)(Xl) - m(g)l(Xl) + mODO(Xl)]
= %11 €711 Yi — m}/o(XZ) - m?o(Xz) I(Xz) - (1 — T/flﬁ)(Xl))(S(](Xz)
Wi =
%11 €711 [DZ - mﬁ)(Xl)]

where 84(x) = iy, (x) — My, (x).
We prove the asymptotic normality of our estimators under the two following assumptions.

Assumption 14 (Restrictions on kernel functions and bandwidth) K : R" — R is zero outside
a bounded set, [ K(ui,...,up)duy...du, =1 and [T]_j ul*K(u) =0 for all (a1, ...,0p) € N
such that Y ap < m while [|[[j_; up*K(u)ldu < oo for Yp_jar = m. hy satisfies
n'/2hr /In(n) = oo and n*/?h* — 0.

Assumption 15 (regularity conditions for the conditional Wald-DID and Wald-TC estima-
tors)

1. X € R" has a compact support and admits a density fx that is m times continuously

differentiable, with m > r. Moreover inf,cs(x) fx(z) = ¢ > 0.
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2. E(Y*) < o0 and for any (ag, ag, ar, o) € {0,1}*, inf e g(x) E(D¥G*T*|X =) > 0
and x — E(DYG*T*Y Y| X = x) is m times continuously differentiable on S(X).

We then introduce our Wald-CIC estimator with covariates. Let X € R" denote a vector of

discrete and/or continuous covariates. Suppose that for all (d, g,t,7) € {0,1}3 x (0,1),
1
Fngt\X @ $/ﬁd9t(7>'

Using the fact that F !

we obtain

IX f 1{F, Yd ,x=2(T) < y}dr (see Chernozhukov et al., 2010),

Qa.x(y) = 2'Banr </01 1{2' Baoo(7) < y}d7> )

Besides, some algebra shows that
1 1
EQpp.x (Y10)|X] = mf)o(X)/ Q1,x (X' Br1o(u))du + (1 — m{%(X))/ Qo,x (X' Boro(u))du
0 0

Hence, we estimate ngc by

e e, [V B Jy Qrx (X{Buo(w)du — (1= (X)) Jy Qo,x, (X{Boro(u))du]

Weie = :
%11 i€Z111 [D m%(X )]

where the estimator of the conditional quantile-quantile transform satisfies
~ ~ 1 ~
Qusl) =B [ 100/ Bun(r) < ).
0

and Bdgt(T) is obtained by a quantile regression of ¥ on X on the subsample Zgg:

Bage(7) = argmin > (r = 1{Y; = XjB < 0})(¥i - X[),

iEIdgt

where B denotes a compact subset of R” including By () for all (d, g,t,7) € {0,1}3 x (0,1).
In practice, instead of computing the whole quantile regression process, we can compute
T Edgt(r) on a fine enough grid and replace integrals by corresponding averages. See Melly

& Santangelo (2015) for a detailed discussion on computational issues.

We prove asymptotic normality of our Wald-CIC estimator with covariates under the following

assumption.
Assumption 16 (reqularity conditions for the conditional Wald-CIC estimator)

1. 8(X) is compact and E(XX'") is nonsingular.

2. Forall (d,g,t,z,7) € {0,1}3xS(X)x(0,1), F, Yd o X— x(T) = 2/ Bag(7), with Bag:(T) € B,
a compact subset of R". Moreover, Fy, | x=z ts differentiable, with

(z,y)ES(X)xS(Y) Yagi| X () (1.4)ES(X)xS(Y) Yage| X ()
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Assumption 16 implies that Y has a compact support. If its conditional density is not bounded
away from zero, trimming may be necessary as discussed in Chernozhukov, Fernandez-Val &

Melly (2013) and Melly & Santangelo (2015).

Theorem 5.2 Suppose that Model (10) and Assumptions 1X-2X, 12 and 14-15 hold. Then

1. If Assumptions 8X-4X also hold,
= L
vn (ng - A) S N (0,V(¥dp))
where the variable ¢§1D is defined in Equation (52) in the appendiz.

2. If Assumption 5X also hold,
s L
Vi (Wie = &) 5 N 0,V (3e)),
where the variable 1/1%(0 is defined in Equation (53) in the appendiz.

3. If Assumptions 6X-7X and 16 also hold,
o L
vn <W§10 - A) = N (0,V(¥&ic))
where the variable wé‘(lc is defined in Equation (55) in the appendiz.

We prove the asymptotic normality of the Wald-DID and Wald-TC estimators using repeatedly
results on two-step estimators involving nonparametric first-step estimators, see e.g. Newey
& McFadden (1994). Proving the asymptotic normality of the Wald-CIC estimator is more
challenging. We have to prove the weak convergence of \/n (Bdgt(.) - Bdgt(.)), seen as a
stochastic process, on the whole interval (0,1). To our knowledge, so far this convergence has
been established only on [e,1 — €], for any € > 0 (see, e.g., Angrist et al., 2006). This result
holds here thanks to our assumptions on the conditional distribution of Y. Consistency of the
bootstrap is beyond the scope of the paper but could be established using, e.g., Chen et al.
(2003).

In our supplementary material, we revisit results from Field (2005). We estimate ngc and
quantile treatment effects with the same very rich set of covariates as that originally used by
the author.

5.3 Accounting for clustering

In many applications, the i.i.d. condition in Assumption 12 is too strong, because of cross-
sectional or serial dependence within clusters. However, in such instances one can build upon

our previous results to draw inference on the the Wald-DID and Wald-TC without covariates.

We consider an asymptotic framework where the number of clusters C' tends to infinity while

the sample size within each cluster remains bounded in probability. Let n. = #{i € ¢}, i, =
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I nena=H#licc:Ti=th nay=#{icc:Ty=tD; =d}, Da = £ cop—y D,
Y. = n%t Ziec:Ti:t Y, and Y. = ﬁ ZieC:Ti:LDi:d Y;, with the convention that the sums are
equal to zero if they sum over an empty set. Then we can write the estimators of the Wald-DID
and Wald-TC as simple functions of averages of these variables defined at the cluster level.
Using the same reasoning as in the proof of Theorem 5.1, we can linearize both estimators,

ending up with

c
Ve (WD[D - A) = \1FC Z %%,D}D +op(1),
=1 ¢

c
Ve (WTC - A> = \% Z_; %wc,Tc +op(1),

where Y. prp = %CZZEC Y; prp and similarly for 9. 7c. In other words, to estimate the
asymptotic variance of our estimators accounting for clustering, it suffices to compute the
average over clusters of the influence functions we obtained assuming that observations were

i.i.d, multiply them by %‘;, and then compute the variance of this variable over clusters.

Our other estimators cannot be written as functions of variables aggregated at the cluster
level: they depend on the variables of every unit in each cluster. But as long as they can
still be linearized in the presence of clustering, the same argument as above applies. Such a
linearization can be obtained for the Wald-CIC estimator with clusters of same size, because
weak convergence of the empirical cdfs of the different subgroups still holds in this context.®
We conjecture that it can also be obtained when clusters are of random sizes, or with our
estimators including covariates. Proving this last point would nevertheless require to adapt
results on two-step estimators to such a cluster framework. To the best of our knowledge, no

such results have been established yet.

Deriving inference that accounts for clustering for our estimators with covariates is left for
future work. This would require to adapt results on two-step estimators to such a frame-
work. To the best of our knowledge, no such results have been established yet. However, we

conjecture that the method outlined above also applies to these estimators.

6 Application: returns to education in Indonesia

6.1 Estimation strategy

In 1973-1974, the Indonesian government launched a major primary school construction pro-

gram, the so-called INPRES program. Duflo (2001) uses it to measure returns to education

8To see why, ignore for simplicity the different subgroups by considering the standard empirical process on
Y. Let Y. = (Ya, ....,chc)', where Y.; denotes the outcome variable of individual ¢ in cluster c¢. Because
the (Yec)e=1...c are i.i.d., its multivariate empirical process converges to a multivariate gaussian process. The
standard empirical process on Y can be written as the average over the n. components of this multivariate
process. Therefore, it also converges to a gaussian process.
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among men through a fuzzy DID identification strategy. In her analysis, groups are districts,
the administrative unit at which the program was implemented. This definition of groups could
violate Assumption 1 if the program generated endogenous migration between districts. The
author therefore uses district of birth instead of district of residence. She then constructs two
“super groups” of treatment and control districts, by regressing number of schools constructed
on number of school-age children. Treatment districts are those with a positive residual in
that regression, as they received more schools than what their population predicts. She also
uses the fact that exposure to treatment varied across cohorts. Children born between 1968
and 1972 entered primary school after the program was launched, while children born between
1957 and 1962 had finished primary school by that time.

However, the INPRES program explains a small fraction of the differences in increases in years
of schooling between districts. A district-level regression of the increase in years of schooling
between cohorts on the number of primary schools constructed per school-age children only
has an R-squared of 0.03. The INPRES program was not the only school construction program
taking place at that time: between 1973 and 1983, the number of primary, middle, and high
schools in the country respectively increased by 96, 94, and 139%. Including the change in
the number of middle and high schools in the district-level regression increases its R-squared

to 0.14, but still leaves most of the variation unexplained.

Because of this, the results in Duflo’s paper rely on the assumption that returns to education
are homogeneous between districts. The author first uses a simple Wald-DID with her two
groups of districts and cohorts to estimate returns to education. Under Assumptions 1-3
and 40, one can show that this simple Wald-DID is equal to %ACRl — %ACRQ, where
ACR, and ACRy respectively denote the ACR parameters we introduced in Section 4.3 in
the treatment and in the control group, and where the weights can be computed from Table
3.9 If ACR, # ACRy, this simple Wald-DID could lie far from both ACR; and ACRy. Then,
the author considers richer specifications. All of them include cohort and district of birth
fixed effects. We show in the supplementary material (see Theorem S2) that such regressions
estimate a weighted sum of switchers returns to education across districts, with potentially
many negative weights. We estimate the weights received by each district in her data, and
find that almost half of districts receive a negative weight, with negative weights summing up
to -3.28. Here again, if switchers’ returns are heterogeneous across districts with positive and
negative weights, these regression coefficients could lie very far from returns in any district.
Therefore, these richer specifications also rely on the assumption that returns to education

are homogeneous across districts.

This assumption is not warranted in this context. As one can see in Table 3, educational
attainment in the older cohort is substantially higher in control than in treatment districts,

implying that the supply of skilled labor is higher there. Returns to education could be

9The first point of Theorem 3.1 can easily be generalized to non-binary, ordered treatments.
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lower in control districts if the two groups face the same demand for skilled labor. On the
other hand, this difference in educational attainment might also indicate a higher level of
economic development in control districts, in which case demand for skilled labor and returns

to education could be higher there.

Table 3: Average number of years of education completed

Cohort 0 Cohort 1 Evolution s.e.
Groups in Duflo (2001)

Treatment districts 8.02 8.49 0.47 (0.070)
Control districts 9.40 9.76 0.36 (0.038)
New groups
Treatment districts 8.65 9.64 0.99 (0.082)
Control districts 9.60 9.55 -0.05 (0.097)

Notes. This table reports the evolution of average years of schooling between cohorts 0 and 1 in the treatment
and controls groups used by Duflo (2001) and in our new treatment and control groups. Standard errors are

clustered at the district level.

To avoid this issue, we use a different statistical procedure from that used by Duflo to classify
districts into a treatment and a control group. To ensure that our estimates do not rely on
homogeneity assumptions, this procedure should classify as controls only districts with a stable
distribution of education. Any classification method leads us to make two types of errors:
classify some districts where the distribution of education remained constant as treatments
(type 1 error); and classify some districts where this distribution changed as controls (type 2
error). Type 1 errors are innocuous. For instance, if Assumptions 3 and 4 are satisfied, all
control districts have the same evolution of their expected outcome. Misclassifying some as
treatment districts leaves the Wald-DID estimator unchanged, up to sampling error. On the
other hand, type 2 errors are a more serious concern. They lead us to include districts where
the true distribution of education was not stable in our super control group, thus violating

one of the requirements of Theorem 4.1.

We therefore choose a method based on x? tests with very liberal level. Specifically, we
assign a district to our control group if the p-value of a y? test comparing the distribution of
education between the two cohorts in that district is greater than 0.5. If that p-value is lower
than 0.5 and the average number of years of education increased in that district, we assign it
to our treatment group. We end up with control and treatment groups respectively made up
of 64 and 123 districts. We exclude from the analysis 97 districts with a p-value lower than

0.5 and where years of education decreased. As shown in Section 4.1, we could gather them
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together to form a third super group, and use results from Theorem 4.1 to estimate returns
to education. However, doing this hardly changes our point estimates. We therefore stick to
two super groups, to keep the presentation as simple as possible and to follow Duflo (2001)

who also has two super treatment and control groups.

As shown in Table 3, in treatment districts the younger cohort completed one more year of
education than the older one, while in control districts the two cohorts completed almost
the same number of years of education. Theorem 4.4 requires that in treatment districts,
the distribution of education in the younger cohort stochastically dominate that in the older
cohort. This is close to being satisfied, as one can see from Table 4. The college completion
rate is 2.5 percentage points higher in the older than in the younger cohort, but that difference
is fairly small. Theorem 4.4 also requires that in control districts, the distribution of education
be the same between the two cohorts. Here as well, this requirement is close to being satisfied.
The primary school and college completion rate are respectively 2.6 percentage points higher

and 3.3 percentage points lower in the younger cohort, but these differences are small too.

Table 4: Evolution of the distribution of education

Cohort 0 Cohort 1 Evolution s.e.
Treatment group

Completed primary school — 0.815 0.931 0.116 (0.008)

Completed middle school 0.531 0.676 0.145 (0.011)

Completed high school 0.406 0.491 0.085 (0.013)

Completed undergrad 0.094 0.069 -0.025 (0.006)
N 17471

Control group

Completed primary school — 0.877 0.904 0.026 (0.008)

Completed middle school 0.640 0.656 0.016 (0.012)

Completed high school 0.510 0.489 -0.021 (0.013)

Completed undergrad 0.104  0.071 0.033  (0.006)
N 4868

Notes. This table reports the evolution of schooling between cohorts 0 and 1 by broad categories in our new

treatment and control groups. Standard errors are clustered at the district level.

Finally, we consider two placebo experiments to assess the plausibility of the common trends
assumptions underlying our estimators with these super groups. First, following Duflo (2001),

we compare years of schooling and wages for men born between 1957 and 1962 and those
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born between 1951 and 1956 (cohort -1). Then, we compare men born between 1951 and
1956 and those born between 1945 and 1950 (cohort -2). Results lend strong support to our
identification strategy. The difference in average years of education between the two groups
of districts is stable in the three older cohorts, but it is much larger for the younger cohort.
Accordingly, the difference in average wages between the two groups of districts is also very
stable in the three older cohorts, but it is much larger for the younger cohort. This remains
true when instead of comparing average wages we estimate the numerator of the Wald-TC and
of the Wald-CIC. While the placebo estimators are small and insignificant, the true estimators

are large and significant.

Table 5: Placebo tests

Cohort -2 versus -1 Cohort -1 versus 0  Cohort 0 versus 1

DID schooling 0.108 -0.006 1.030
(0.191) (0.160) (0.127)

DID wages 0.050 0.002 0.164
(0.035) (0.026) (0.028)

Numerator Wald-TC 0.024 -0.012 0.103
(0.026) (0.021) (0.028)

Numerator Wald-CIC 0.023 -0.009 0.099
(0.027) (0.021) (0.028)

N 14452 19938 22339

Notes. This table reports placebo and true estimates comparing the evolution of education and wages from
cohort -2 to 1 in our two groups of districts. Standard errors are clustered at the district level. For the

numerator of the Wald-CIC, clustered standard errors are obtained by block bootstrap.

6.2 Results

First, we compare the weighted average of Wald-DIDs in Duflo (2001) to a simple Wald-DID
with our control groups. In Table 6, we estimate the same 2SLS regression as that reported
in the first column and third line of Table 7 in Duflo (2001), and we obtain returns of 7.3%
per year of schooling.'® Then, we estimate the Wald-DID with our groups and find returns
of 15.9% per year of schooling. This coefficient is significantly different from the previous
one (t-stat=-2.15), and it is also more precisely estimated: its standard error is 37% smaller,

presumably because it relies on a much larger first stage. While the estimator in Duflo

00ur coefficient differs very slightly from that of the author because we were not able to obtain exactly her

sample of 31061 observations.
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(2001) is only significant at the 10% level (t-stat=1.68),'" our Wald-DID is significant at any
conventional level. Note that the difference between these two estimators does not come from
the fact they are estimated on different samples. Estimating Duflo’s regression on our sample
of 22,339 observations actually yields a smaller coefficient than her original estimate, which is
still significantly different from ours. The difference between these two estimates could stem
from the fact that districts where years of schooling increased less also have higher returns
to education. This would bias downward the estimate in Duflo (2001), while our Wald-DID

estimator does not rely on any treatment effect homogeneity assumption.

On the other hand, the validity of our Wald-DID still relies on Assumption 4, which might
not be plausible in this context. For instance, under Assumption 4 the wage gap between
high-school graduates in cohort 0 and 1 should remain the same if they had only completed
primary school. Had they only completed primary school, high school graduates of both
cohorts would have joined the labor market earlier, and would have had more labor market
experience at the time we compare their wages. The wage gap between the two cohorts might
then have been lower, because returns to experience tend to be decreasing (see e.g. Mincer
& Jovanovic, 1979).'2 The data lends some support to this hypothesis. In the control group,
while high-school graduates in cohort 1 earn 54% less than their cohort 0 counterpart, the gap
is only 20% for non-graduates, and the difference is significant (t-stat=-7.64). This difference
could partly arise from selection effects: non-graduates differ from high school graduates, so
the cohort gap among non-graduates might not be equal to the cohort gap we would have
observed among graduates had they not graduated. Still, it seems unlikely that selection can

fully account for this almost threefold difference.

Our Wald-TC and Wald-CIC estimators do not rely on Assumption 4. They lie in-between
the estimate in Duflo (2001) and our Wald-DID. They do not differ significantly from the
coefficient in Duflo (2001), but this is partly because this coefficient is imprecisely estimated.
Using the Wald-TC estimator, one can for instance reject that returns to education are lower
than 6% at the 5% level. On the other hand, the Wald-TC and Wald-CIC significantly differ
from the Wald-DID, with t-stats respectively equal to -3.52 and -3.66. The Wald-DID and
Wald-TC rely on different “common trends” assumptions between districts (Assumptions 3 and
5). But challenging one while defending the other seems difficult as these two assumptions are
substantively very close. On the other hand, the Wald-TC and Wald-CIC do not require that
the wage gap between cohorts be constant across potential levels of education (Assumption

4). As discussed in the previous paragraph, this assumption is not warranted in this context.

"'This point estimate was significant at the 5% level in the original paper. But once clustering standard
errors at the district level, which has become standard practice in DID papers since Bertrand et al. (2004), it

loses some statistical significance.
12We follow Mincer & Jovanovic (1979) and estimate a mincerian regression of wages on education, education

squared, age, and age squared in our data. We also find a significantly negative coefficient of age squared.
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We therefore choose the Wald-TC and Wald-CIC as our preferred estimators.!?

Table 6: Returns to education

Duflo (2001) Wpip Wre Were OLS

Returns to education 0.073 0.159 0.104 0.100 0.077
(0.043) (0.028) (0.027) (0.027) (0.001)
N 30828 22339 22339 22339 30828

Notes. This table reports estimates of returns to schooling. Standard errors are clustered at the district level.
For the Wald-TC and Wald-CIC, clustered standard errors are obtained by block bootstrap.

As shown in Theorem 4.4, the parameter we estimate is a weighted average of the effect of
increasing years of education from d — 1 to d, over all possible values of d. The weights wy
can be estimated. They are shown in Figure 1. Our parameter puts the most weight on the

last years of primary school, on middle-school years, and on high-school years.

0.2

0.15

0.1r

0.05r

Weights
— — —95% confidence intervals

_0.1 L L L L L L L
0 2 4 6 8 10 12 14 16

Years of education

Figure 1: Weight received by each year of education.

13To estimate the numerator of the Wald-CIC, we do not estimate Qg for each year of schooling. Instead,
we group schooling into 5 categories (did not complete primary school, completed primary school, completed
middle school, completed high school, completed college). Thus, we avoid estimating quantile-quantile trans-
forms on a very small number of units. To be consistent, we use this definition to estimate the numerator of
the Wald-TC. Using years of schooling hardly changes our Wald-TC estimator.
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6.3 Robustness checks

As a first robustness check, we investigate whether misclassifications of treatment districts as
controls can bias our results. To do so, we construct our groups again using a more liberal
criterion. Specifically, we assign a district to the control group if the p-value of the x? test is
greater than 0.6. If that p-value is lower than 0.6 and the average number of years of education
increased in that district, we assign it to the treatment group. The control group we obtain this
way is 30% smaller than the previous one. It also has a more stable distribution of education:
a x2 test does not reject the assumption that this distribution is the same between the two
cohorts. On the other hand, using this new control group leaves our estimates essentially
unchanged: the Wald-DID, Wald-TC, and Wald-CIC are now respectively equal to 15.8, 9.8,
and 9.6%. This suggests that the small changes in the distribution of education in our control

group shown in Table 4 do not drive our results.

As a second robustness check, we investigate whether the statistical procedure we use to form
our groups biases our estimates. Our method uses the same data twice, to form groups and
to estimate returns to education. It therefore shares some similarities with the endogenous
stratification methods studied in Abadie et al. (2013), which can produce finite sample biases.
We conduct a simulation study to investigate the determinants of the bias. We find that finite
sample bias is increasing with the correlation between the treatment and the unobserved
determinants of the outcome,'* decreasing with the size of the groups where the first stage x>
tests are conducted, and decreasing with the change of treatment intensity in the population.
To detect potential biases, Abadie et al. (2013) suggest comparing the baseline estimator to
a split-sample estimator where half of the sample is used to construct groups, while the other
half is used to compute the estimator. Our simulations also suggest this is a good way to
assess the seriousness of the problem. With DGPs for which our procedure generates little or
no bias, the split-sample and baseline estimators are very close from each other; on the other
hand, with DGPs for which our procedure generates more bias, the split-sample and baseline
estimators are far away. Therefore, we re-estimate 100 times our Wald-DID and Wald-TC
estimators using a split-sample procedure. The average of the split-sample estimators are
respectively 17.7% and 8.5%. Both are not significantly different and less than 20% away
from the original estimators. Overall, endogenous stratification does not seem to be a strong

concern in this application.

As a last robustness check, we investigate whether accounting for the sampling variance in-
duced by our classification procedure would greatly affect our conclusions. Doing so is not

straightforward. A natural idea is to use a two-step bootstrap where in a first step we boot-

' An important difference with the methods studied in Abadie et al. (2013) is that our method does not
use the outcome but the treatment to construct groups. Therefore, our method produces biased estimates
only if the treatment is strongly correlated with the unobserved determinants of the outcome. If treatment is

exogenous or only weakly endogenous, it does not produce biases.
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strap individuals within each cohort of each district and run our procedure to form our control
and treatment groups, while in a second step we bootstrap districts and estimate the Wald-
DID, the Wald-TC, and the Wald-CIC. In practice, this procedure does not work well. Under
the null that the distribution of education did not change over time, one can show that the
bootstrap statistics we use in our x? tests do not have an approximate x? distribution, but

15 We therefore clas-

are approximately distributed as sums of squares of N(0,2) variables.
sify much fewer districts as controls than in the original sample. Dividing the bootstrap test
statistics by two does not solve the problem, because the modified statistic then has a different
distribution from that of the original statistic under the alternative hypothesis. Instead, we
opt for a modified version of the two-step bootstrap: as in the original sample we classify 23%
of districts as controls, in each bootstrap replication we classify the 23% of districts with the
lowest x? statistic as controls. The standard errors of our three estimators are now respec-
tively equal to 0.044, 0.045, and 0.045. Thus, accounting for the sampling variance in our
first step procedure seems to increase notably the standard errors of our estimators, but also
leaves our main conclusions unchanged. For instance, our Wald-DID estimator would still
be significantly different from the Wald-TC and Wald-CIC with these larger standard errors.
However, proving that this procedure indeed reproduces well the distribution of our estimators

goes beyond the scope of this paper and is left for future work.

This application differs from other applications of the fuzzy DID method in two important
ways. First, it makes use of individual-level data. Many applications of the fuzzy DID method
we found in our literature review directly use aggregate data at the county x year or state x
year level. Second, the set of districts where education did not change between the two cohorts
is not known to the analyst and needs to be estimated. In many applications of the fuzzy DID
method the set of groups where treatment is stable is known to the analyst (examples include
Draca et al., 2011, Field, 2007, or Gentzkow et al., 2011). In our supplementary material,
we revisit Gentzkow et al. (2011) who use aggregate data and where the set of groups where
treatment is stable is known. We show that the methods we propose in this paper can also be
applied to this type of application, and that they can lead to substantially different conclusions

from those reached by the authors using existing methods.

7 Conclusion

This paper studies treatment effects estimation in fuzzy DID designs. It makes the following
contributions. First, we show that the Wald-DID is equal to a local average treatment effect
(LATE) only if two strong assumptions are satisfied: time should have the same effect on all
potential outcomes; and when treatment increases both in the treatment and in the control

group, the Wald-DID is equal to a LATE only if treatment effects are homogeneous in the

15Because districts are of finite size, the distribution of the test statistic is not exactly equal to its asymptotic
distribution.
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two groups. Second, we propose two alternative estimators for the same LATE when the
distribution of treatment is stable over time in the control group. Our first estimator is a
natural generalization of DID to the fuzzy case. Our second estimator generalizes the changes-
in-changes estimator introduced by Athey & Imbens (2006). Our estimators do not require
that time have the same effect on all potential outcomes. Third, we show that under the same
assumptions as those underlying our estimators, the same LATE can be bounded when the

distribution of treatment changes over time in the control group.

When using the DID method with fuzzy groups, it is crucial to find a control group where
treatment is stable over time to achieve point identification without imposing treatment effect
homogeneity assumptions. In such instances, three estimators are available: the Wald-DID
and our two alternative estimators. Using one or the other estimator can make a substantial

difference, as we show in our application.
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A Main proofs

The lemmas prefixed by S are stated and proven in our supplementary material (see de Chaise-

martin & D’Haultfeeuille (2015)). For any © C R¥, let © denote its interior and let C°(©) and
C'(O) respectively denote the set of continuous functions and the set of continuously differen-
tiable functions with strictly positive derivative on ©. We most often use these notations with
O = S(Y). In such instances, we leave S(Y) implicit, so C° and C' should respectively be un-
derstood as the set of continuous functions and the set of continuously differentiable functions
with strictly positive derivative on S(Y'). Finally, for any (d, g,t) € S(D) x S(G) x S(T), let
pgt = P(G =9, T =1), page = P(D=d,G =g, T =1), Pdjgt = P(Dy = d), and Fyg = Fngt'

Theorem 3.1

Proof of 1

Assume pqjg1 > pijpo- By assumption 2, pyj1; > pqjio- Therefore, the threshold model on D
and Assumption 1 imply that

vg1 < woo, for g € {0,1}. (12)
Then, it follows from Model (1) and Assumption 1 that

Pigt —P1go = PV Zva|T =1,G=g)— P(V >vp|T =0,G = g)

= P(V € [vg1,v00)|G = g). (13)
For any g € {0, 1},
E(Yg1) — E(Yg0)
= E(hp(Up,1)|G =9, T =1) - E(hp(Up,0)|G =g,T = 0)
= Eh(U1,1)|G =g,V >v5)PV > v41|G = g)+ E(ho(Up,1)|G =g,V <vg1)P(V < v41|G = g)
— E(hi(U1,0)|G =g,V > v0)P(V > vpo|G = g) — E(ho(Up,0)|G = g,V < v99)P(V < vo|G = g)
= E(h(U1,1) = ho(Uo,1)|G = g,V € [vg1,v00)) P(V € [vg1,v00)|G = g)
+ E(h1(U1,1) — h(U1,0)|G =g,V > v90)P(V > voo|G = g)
+  E(ho(Uo, 1) — ho(Up, 0)|G = g,V < vgo) P(V < vgo|G = g)
= EYu(1) = Yu(0)|V € [vg1,v00)) P(V € [vg1,v00)|G = 9)
+ E(hi(Ui,1) — hi(U1,0)|G = g,V > voo) P(V > vp9|G = g)
+ E(ho(Uoy, 1) — ho(Up,0)|G = g,V < v90)P(V < vpo|G = g)
= E(¥qu(1) = Yu(0)[V € [vg1,v00)) P(V € [vg1,v00)|G = g)
+  E(ho(Uo, 1) — ho(Up, 0)|G = g).
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The first, second, third, fourth, and fifth equalities respectively follow from Model (1), Model
(1) and Assumption 1, Equation (12), Model (1) and Assumption 1, and Assumption 4.

Combining Equation (14) and Assumption 3 imply that
DIDy =E(Y11(1) — Y11(0)|S1)P(S1|G = 1)
—E(Y01(1) — Y51(0)]S0) P(Sp|G = 0).
Dividing each side by DIDp and using Equation (13) proves the first point of the Theorem.
Proof of 2

Equation (14) still holds for g = 1, but not for g = 0 because vgg < vp;. On the other hand,

a reasoning similar to that we used to derive Equations (13) and (14) yields

p1joo — P11 = P(So|G =0) (15)
and
E(Yo1) — E(Yoo) = —E(Yoo(1) — Y00(0)|S0) P(So|G = 0)
b B(ho(Up,1) — ho(Uo, 0)[G = 0). (16)

Taking the difference between Equation (14) with ¢ = 1 and Equation (16) yields
DIDy =E(Y11(1) — Y11(0)|S1)P(S1|G = 1)
+E(Yoo(1) — Y00(0)|50) P(So|G = 0).

Dividing each side of the previous display by DIDp and using Equations (13) and (15) proves

the second point of the Theorem.

Theorem 3.2
Proof of 1
Following the same steps as those used to reach the last but one equality in Equation (14),
we obtain
E(Y11) — E(Y0)

= E(nu(1) - Yu(0)[S1)P(51[G =1)

+ E(hl(Ul, 1) — hl(Ul,O)‘G = 1, %4 Z ’U()())P(V Z Uoo‘G = 1)

+ E(ho(U(), 1) — ho(Uo,O)‘G =1,V< vgo)P(V < ’U()()‘G = 1). (17)
Then,

61 = E(Yin)— E(Yio0)
= E(hl(Ul, 1)|G = 0, |4 > Uoo) — E(hl(U1,0)|G = O,V > ’U(n)
= E(hl(Ul,l)—hl(Ul,O)‘G:O,VZ’UQo). (18)
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The second equality follows from Model (1) and Assumption 1. The third one follows from
the fact that pijg; = pijgo combined with Assumption 1 implies that {G = 0,V < vo1} =
{G=0,V <wg}.

Similarly,

do = E(ho(Uo, 1) — ho(Uo,0)|G =0,V < vno). (19)
Finally, the result follows combining Equations (17), (18), (19), and Assumption 5, once noted
that pyj10 = P(V > voo|G = 1) and P(S1|G = 1) = pyj11 — P1j1o-
Proof of 2

We only prove that W is a lower bound when Agp > 1. The proofs for the upper bound

and when Agp < 1 are symmetric.

We have
E(Y11(1) — Y11(0)[S1)P(S1|G = 1)

= E(Yn) - E(Y)

— E((Un1) = (U1, 0)[G =1,V > ve0) P(V > v00|G = 1)
— B(ho(Us 1) — ho(Uo, 0)|G = 1,V < v00) PV < v00|G = 1)
= E(Yi1) - E(Y1o)

— E(hi(U1,1) = hi(U1,0)|G =0,V > vp0) P(V > vpo|G = 1)
— B(ho(Uo 1) — ho(Uo, 0)|G = 0,V < v90) PV < v00|G = 1)
= E(Y11) — E(Y10)

— (BEYo(1)|V > vo0) — E(Y100))P1j10

— (E(Yor(0)|V < woo) — E(Yooo0))Poj10-

The first, second, and third equalities respectively follow from Equation (17), Assumption 5,
and Model (1) combined with Assumption 1.

It follows from the last display that the proof will be complete if we can show that d; and &g are
respectively upper bounds for E(Yp1(1)|V > voo) — E(Y100) and E(Yp1(0)|V < voo) — E(Yooo)-

When Agg > 1, it follows from Model (1) and Assumption 1 that vgy < vp1. Then, we have

P(VZ’U()1|G:O,T: 1)
P(VZU()0|G:O,T: 1)
P(VZ’U()1|G:0,T: 1)
P(V > vp0|G =0,T =0)
Pijor

PV >v|G=0,T=1,V >vy) =

= o1, (20)
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where the second equality follows from Assumption 1. Therefore,

E(Y01(1)|V 2 ’U()()) = /\01E(Y01(1)|V Z 2)01) + (1 - /\01)E(}/01(1)’V S SO)

MorE(Yio1) + (1 = A1)y = /delm(y)- (21)

IN

This proves that &; is an upper bound for E(Yo1(1)|V > voo) — E(Y100)-

Similarly,
PV <vp|lG=0,T=1,V <wvp1) = 1/,
and
E(Yoor) = 1/A00E(Yo1(0)|V < voo) + (1 — 1/X00) E(Yo1(0)|V € So).
Following Horowitz & Manski (1995), the last display implies that
E(Yo1(0)|[V <wgo) < /deom(y)-
This proves that dg is an upper bound for E(Yp1(0)|V < vgo) — E(Yo00)-

Lemma 3.1

We only prove the formula for d = 0, the reasoning being similar for d = 1.

Using the same steps as those used to prove Equations (20) and (21) , one can show that

P(S1|G=1,T =1,V < vy) Pojio — Poji1
Poj10

and

Poj1o — Poj11 Do|11

FYH(O)W<UOO W) = lp()|1()|FY11(0)|S1 (y) + po:IOF()H(y).

Therefore,

P0110EY4, (0) |V <voo (¥) — Poj11Fo11(y)

Fyy, 0y, () = 0 YOV <voo | . 22
Doj10 — Pol11

Then, we show that for all y € S(Y11(0)|V < vgo),
FY11(0)|V<U00 = F010 ° F(B(l) 0 FY01(0)\V<1)00' (23)
Assumption 1 implies that Uy 1L T|G,V < wvgo. As a result, for all (g,t) € {0,1}2,

By 0)v<uo ) = Plho(Uo,t) <y|G =g, T =1tV <wvy)
= P(Uo < hy'(y,1)|G = g,V < voo)
FU0|G:g,V<v00 (hal(:% t))
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The second point of Assumption 7 combined with Assumptions 1 and 6 implies that Fy|g—g,v<vgo

is strictly increasing. Hence, its inverse exists and for all ¢ € (0, 1),

FYgt(O)IV<'U00 (q) = hO (FUO|G:Q7V<'U0() <q)7t> .

This implies that for all y € S(Y1(0)|V < vgo),

F;;;})(O)W<voo © FYgl(O)\V<voo (y) = hO(hal(ya l)a 0)- (24)
By Assumption 7, we have

S(Yo10) = S(Yo0o)

= S(Y10(0)|V' < woo) = S(Yoo(0)|V < voo)

= S(ho(Up, )|V < 100, G = 1,T = 0) = S(ho(Up, 0)|V < w00, G = 0,T = 0)
= S(UO|V < 100, G = 1) = S(Up|V < 100, G = 0)

— S(ho(Un, DV < 100, G = 1, T = 1) = S(ho(Up, D[V < v00,G = 0,T = 1)
= S(Y11(0)|V < woo) = S(Yo1(0)|V < wgo),

where the third and fourth implications are obtained combining Assumptions 6 and 1. Once
combined with Equation (24), the previous display implies that for all y € S(Y11(0)|V < vgp),

-1 -1
E o)1V <o © FYin V<o () = iy 0)1v <o © F¥o1(0) [V <voo (9)-

This proves Equation (23), because {V < vp9,G =¢,T =0} ={D =0,G = g,T = 0}.

Finally, we show that

g (0)|v <vo0 (¥) = Ao Foo1(y) + (1 = Aoo) Fyg, 0[50 (¥)- (25)

Suppose first that A\gg < 1. Then, vg; < vgg and Sy = {V € [vp1,v00), G = 0}. Moreover,
reasoning as for P(51|G =1,V < vg), we get

PV <vn|G =0)
= — P _
o P(V < v|G = 0) (V <wvo1|lG =0,V < woo)

Fyy, 00V <v00 () = A00F001(y) + (1 = Aoo) Fyg, (0)150 (¥)-

If Ago > 1, vo1 > vgo and Sy = {V € [1}00,’(}01),G = O}. We then have

1/>\00 = P(V < UOO‘G =0,V < ’1)01)
Fo01(y) = 1/ 200 Fyy, (0)|v<voo (¥) + (1 = 1/X00) Fyg, 0)150 (%)

so Equation (25) is also satisfied.

The lemma follows by combining (22), (23) and (25).
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Theorem 3.3

Proof of 1

The proof follows from Lemma 3.1: Agp = Ao1 = 1 when pgjo9 = pgjo1 > 0.
Proof of 2

Construction of the bounds.

We only establish the validity of the bounds for Fy, ()s,(y). The reasoning is similar for
Fy,,(1))s, (y). Bounds for A and 7, directly follow from those for the cdfs.

We start considering the case where Agp < 1. We first show that in such instances, 0 <
Tg, Go(To), Co(To) S 1 if and only if

Ty < Ty < To. (26)

Indeed, Gy(Tp) is included between 0 and 1 if and only if
—XooFoo1 <Ty < 1 — XooFoo1
1-— )\00 1- )\00
while Cy(Tp) is included between 0 and 1 if and only if
Hy ' (MoFo11) — MooFoor < T < Hy ' (AoFor1 + (1 — A1o)) — Moo Foor
1 — Aoo =0= 1— oo '

Since —)\00F001/(1 - )\00) < 0 and (1 — )\00F001)/(1 - )\00) > 1, To, Go(To) and Co(To) are all
included between 0 and 1 if and only if

Mo Hy ' (M0Fo11) — Moo Foor < Ty < my Hy ' (MoFo11 + (1 — A10)) — Moo Foot
1— Xoo - - 1— Xoo '

(27)

Composing each term of these inequalities by M(.) and then by m(.) yields Equation (26),
since M()(To) = ml(Tg) = TO and MO omip =myqo M().

Now, when A\gg < 1, Go(Tp) is increasing in Tp, so Cy(Tp) as well is increasing in Tp. Combining
this with (26) implies that for every v/,

Co(To) (') < Co(To)(y') < Co(To)(y). (28)
Because Cy(Tp)(y) is a cdf,

Co(To)(y) = inf Co(To)(y') < Jnf Co(To)(y') = Fereoy)-

This proves the result for the upper bound. The result for the lower bound follows similarly.

Let us now turn to the case where \gg > 1. Using the same reasoning as above, we get that
Go(Tp) and Cy(Tp) are included between 0 and 1 if and only if

)\og\Fom I 1 <Ty < ;00F0011’

00 — 00 —

Moo Foor — Hy H(MoForr + (1 — A1) < T < oo Foor — Hy ' (A0 For1)
)\00 -1 =70= )\00 -1 '
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The inequalities in the first line are not binding since they are implied by those on the second

line. Thus, we also get (27). Hence, using the same argument as previously,
To < Tp < Tp. (29)

Besides, when Agg > 1, Go(Tp) is decreasing in Tp, so Cy(Tp) is also decreasing in T. Combin-
ing this with Equation (29) implies that for every y, Equation (28) holds as well. This proves
the result.

Sketch of the proof of sharpness.

The full proof is in the supplementary material (see de Chaisemartin & D’Haultfoeuille, 2015).
We only consider the sharpness of Fjcq, the reasoning being similar for the upper bound.
The proof is also similar and actually simpler for d = 1. The corresponding bounds are proper

cdf, so we do not have to consider converging sequences of cdf as we do in case b) below.

a. Ao > 1. We show that if Assumptions 7-9 hold, then F ¢ is sharp. For that purpose,
we construct Eo, (70, V such that:

(i) Y = ho(Up, T) when D = 0 and D = 1{V > vgr};
(i) (T, V) 1L TIG;
(iii) ho(.,t) is strictly increasing for t € {0,1};

() B @, 1)16=0.1=1, 7 efono wor) = Lo-

(i) ensures that Model (1) is satisfied on the observed data. Because we can always define
Y (0) as ho(Up, T) when D = 1 without contradicting the data and the model, (i) is actually
sufficient for Model (1) to hold globally, not only on the observed data. (ii) and (iii) ensure that
Assumptions 1 and 6 hold. Finally, (iv) ensures that the DGP corresponding to (%0, ﬁo,‘N/)

rationalizes the bound.
The construction of %0, [70, and V is long, so its presentation is deferred to our web appendix.

b. Agp < 1. The idea is similar as in the previous case. A difference, however, is that when
Xoo < 1, Ty is not a proper cdf, but a defective one, since lim,_,5 T(y) < 1. As a result,
we cannot define a DGP such that fo = T,, However, by Lemma S2 (see de Chaisemartin
& D’Haultfeeuille, 2015), there exists a sequence (T8)y of cdf such that Th — T, Go(T5) is
an increasing bijection from S(Y) to (0,1) and Co(T%) is increasing and onto (0,1). We can
then construct a sequence of DGP (%'5(, 0),%’5(., 1), ﬁ(’f, VF) such that Points (i) to (iii) listed
above hold for every k, and such that T, éﬂ =T é” . Since IIS (y) converges to Ty(y) for every y in

o

S(Y), we thus define a sequence of DGP such that fé“ can be arbitrarily close to Ty on S(Y)

(o]

for sufficiently large k. Since Cy(.) is continuous, this proves that F /¢ is sharp on S(Y).

This construction is long, so its exposition is deferred to our web appendix.
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Theorem 3.4

Proof of 1

P1joo = P1)10 implies that Wprp = Wre. Therefore, the proof will be complete if we can show
that Wprp = E(Y11(1) — Y11(0)|D = 1). On that purpose, notice that the outcome Equation
of Model (1), Uy 1L T|G, and Assumption 3 imply that

E(Y11(0)) = E(Y10(0)) — (E(Y01(0)) — E(Yo0(0))) = 0. (30)

Then,

= pyuf (Y1) )+ E(Y11(0)) — E(Y10(0)) — (E(Y01(0)) — E(Y00(0)))
= pyuEM(1)

DIDy = E(Y1)— E(Yi)— (E(Yo) — E(Yoo))
( |

( |

The second equality follows from pjjog = p1jo1 = P1j10 = 0, the third from Equation (30). This
completes the proof once noted that DIDp = pyq1.

Proof of 2

As p1j10 = 0, the numerator of Weic is E(Y11) — E(Qo(Y10)). It is easy to see that the proof
will be complete if we can show that E(Qo(Y10)) = E(Y11(0)). As pijgo = p1jo1 = 0, Qo is the
quantile-quantile transform of the outcome in the entire control group, so E(Qo(Y10)) is the
same estimand as that considered in Equation (16) in Athey & Imbens (2006). The outcome
equation of Model (1), Uy 1L T|G, and Assumptions 6 and 7 ensure that the assumptions of
their Theorem 3.1 hold. Therefore, E(Qo(Y10)) = E(Y11(0)) o

Theorem 3.5

Assume that pjg9 = pio1 = 1 (the proof is symmetric when pjgp = pio1 = 0). For
Fy,,(1))s, (), the proof directly follows from Lemma 3.1. For Fy;, (o)s,(y), one can follow
similar steps as those used to establish Equation (24) and show that for all y € S(Y),

—1 —1
FYoo(l)lVZvo(O) o FY01(1)|V2v0(0) (y) = hl(hl (y,1),0). (31)
Equations (24) and (31), Assumption 10, and pjjgo = p1jo1 = 1 imply that for all y € S(Y),

Py ven©®) = Fowoo Figyo Fioi(y)- (32)

Combining Equations (22) and (32) yields the result o
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Theorem 4.1

We start proving the first statement. For every ¢t > 1 and for every g € Gy, E(Dgy) =
E(Dgi—1). Therefore, E(Dg,) = E(Dg,_). Thus,

Whip(1,0,1)

Ly ) = E¥ys) = (BOG) — B(i0) B(Dy)

gt) — E(Dgt—1)
E(Dgt) _E(Dgtfl) E(th)

E(Df;-1)

P(G=g|G e Gy, T=t). (33)

9E€Git B
Under the assumptions of the theorem, Assumptions 1-4 are satisfied for the treatment and
control groups G = g and G* = 0 between dates t — 1 and t. Therefore, it follows from
Theorem 3.1 that

E(Yg) — E(Yg-1) — (E(Yg,) — E(Yg; 1))
E(Dgt) - E(Dgt—l)

= E(Ygt(1) — Yge(0)[Sgt). (34)

Besides, reasoning as in Part 1 of the proof of Theorem 3.1 yields

E(Dgt) - E(Dgt—l)
E(Dyy) — E(DY,_y)

Combining Equations (33), (34), and (35) yields
Whip(1,0,t) = E(Y(1) =Y (0)|S:, G € Git, T = t). (36)

Now, as in (33),

WBID(ilv 07 t)

. E(Ygt) = E(Yge—1) = (E(Yor) = E(Yoi-1)) E(Dgi—1) = E(Dyt)

E(Dgi-1) = E(Dgt) BDry, )~ B(D.) (G =G €ba, T=1). (37)

9E€Gat
A reasoning similar to the one used to prove the first point of Theorem 3.1 yields
E(Yg) — E(Yg1) — (E(Yg) — E(Yg, 1))

E(Dgt—l) - E(Dgt)

= E(Y14(0) — Y1:(1)[Sg¢)- (38)

Besides, as above,

E(Dgt—1) — E(Dyt)
E(D*—lt—l) - E(D*—lt)

P(G=g|G € Ga,T =t) = P(Sy|St, G € Gy, T =) (39)

Combining Equations (37), (38), and (39) yields
Whip(=1,0,t) = E(Y(1) =Y (0)|S;,G € Gg, T = 1). (40)

Moreover,

DID}(1,0,t)P(G € Git|T = t)

= '3 5 = . 41
DID%(1,0,t)P(G € Gut|T = t) + DID}, (0, —1,t)P(G € Gai|T = t) P(G € Gul S, T =1).  (41)

Finally,
DIDL(1,0,t)P(G € Gu|T =t) + DID}H(0,—1,t)P(G € Gi|T =t) = P(S|T =1t). (42)
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The result follows combining Equations (36), (40), (41), and (42).

The proofs of the second and third statements follow from similar arguments. To prove
the fourth statement, it suffices to notice that the first point of Assumption 11 implies that
P(S¢|T = t) = P(S;). Moreover, the second point implies that for every g € {0,1,...,g}
the sequence vy is monotonic in ¢t. Therefore, for every g € S(G) and t # ' € {1,...,1}?,
Sgt N Sgy = (. This in turn implies that S; N Sy = 0. Combining this with the third point of
Assumption 11 yields the result g

Theorem 4.2

The two results are straightforward extensions of the second point of Theorems 3.2 and 3.3,

so their proof is omitted.

Theorem 4.3

We only prove the first result, the second and third results follow from similar arguments.

Wprp(X) = A(X) follows from the same steps as those used to prove the first statement of
Theorem 3.1. Then, ng p = A follows after some algebra, once noted that

B E(D11|X =) — E(D1p|X = z)
lellSl () = E(Dn)11 E(E(D10|X>|C;0: 1,T = 1)fX11(x)
DIDp(x)

= EDIDp(XN)G =17 =1 X @)

The first equality follows from Model (10), Assumption 1X, and Bayes’s law. The second
follows from the fact that E(Dg1|X) — E(Doo|X) = 0 almost surely. o

Proof of Theorem 4.4
We only prove the first statement, the second and third follow from similar arguments.

Dy1 ~ Dgp and Dq1 2 Dy combined with Model (11) and Assumption 1 imply that

vd, = vy, for every d € {1,d} (43)
vl < véy, for every d € {1,d}. (44)

Then, it follows from Model (11), Assumption 1 and Equation (44) that for every d €
{1,2,...,d},

P(D1yy 2 d) — P(Dyo >d) = P(Vzvffl\Tz1,G=g)—P(V2v§o!T=07G’=g)
= P(V € [v];,v5)|G = g). (45)
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Then, for every g € {0,1},

E(Yq1) — E(Yyo)
— E(hp(Up,1)|G =g, T = 1) — E(hp(Un,0)|G = g, T = 0)

E(ha(Ua, 1)|G = g,V € [vgy, vg{ ™)) P(V € [ugy, vgi )G = g)

E(ha(Ua, 0)|G = g,V € [vgo, vgo )PV € [vgo, v 1)IG = g)

E(hd(Udal)_hd—l(Ud—b )|G—g,V€ [ Vgls gO)) (VG [ Ugls gO)|G_g)

1
M~ M~ 2D~ 2D~ B

+ Y E(ha(Ug, 1) = E(ha(Ug,0)|G = g,V € [y, vid NPV € [, vl )G = g)
= Y EYu(d) = Ya(d—1)|V € i, vl)P(V € [vh,vd)|G = g)
d=1
+ E(ho(Uo, 1) — ho(Uo, 0)|G = g). (46)

The first, second, third, and fourth, equalities respectively follow from Model (11), Model (11)
and Assumption 1, Equations (43) and (44), and Model (11) combined with Assumptions 1
and 40.
Combining Equation (46) with Equation (43) and Assumption 3 imply that
d
DIDy =Y E(Yu(d) = Yiu(d = )|V € [of;,050)) P(V € [vfy, 0fp)|G = 1).

d=1

The result follows from Equation (45), after dividing each side of the previous display by
DIDp g

Theorem 5.1

Proof of 1 and 2

Asymptotic normality is obvious by the central limit theorem and the delta method. Con-
sistency of the bootstrap follows by consistency of the bootstrap for sample means (see, e.g.,
van der Vaart, 2000, Theorem 23.4) and the delta method for bootstrap (van der Vaart, 2000,
Theorem 23.5). A convenient way to obtain the asymptotic variance is to use repeatedly the

following argument. If
\/H(E—A) fZal—&—oP ) and f(B B) be +op(l

28



then Lemma S3 ensures that

A A\ 1 &a— (A/B)b
\/ﬁ<§—3>— Z;+0p(1)- (47)

This implies for instance that

(Yi — E(Y11))
P11

vn (E(Yu) — E(Yu)) = \}ﬁ > Gl +op(1),
=1

and similarly for E (D11). Applying repeatedly this argument, we obtain, after some algebra
—~ 1 &
Vvn (WDID - A) =— ) Ypip,;+op(l),

where, omitting the index ¢, ¥ prp is defined by

¢ . 1 |:GT(E — E(é‘n)) _ G(l — T)(E — E(é‘lo)) _ (1 — G)T(E — E(E(n))
PP = DIDp P11 P10 Po1
1=6)1= D)~ Plew))]. .
Poo
and e =Y — AD. Similarly,
NG (/WTC - A) - zn:ichz' +op(1),
vn i=1 7
where ¢ is defined by
" B 1 {GT(€ — E(gll)) B G(l — T)(€ + (51 — 50)D — E(610 + ((51 — 50)D10))
e ~ E(D11) — E(Dyo) P11 P10
- E(Dlo)D(l o G) |:T(Y — E(}/i01)) o (1 — T)(Y B E(Y100)):|
Pio1 P1oo
Proof of 3

We first show that (ﬁY11(0)|Sl7F\Y11(1)‘SI> tends to a continuous gaussian process. Let 0 =

(Fo00, Foots -+ Fi11, M0, A1)- By Lemma S4, 8 = (Fooo, Foou, -+ Fi11, Mo, A1) converges to a

continuous gaussian process. Let

74+ (Fooo, Foot, .-, Fi11, Ao, A1) = (Faio, Faoos Faor, Fais 1, \a),  d € {0,1},

so that (ﬁYu(O)ISwF\Yu(l)ISl) = (Rl omy(0), Ry om(@)), where R; is defined as in Lemma
S5. mg is Hadamard differentiable as a linear continuous map. Because Fyig, Fyoo, Fao1, Fai1

are continuously differentiable with strictly positive derivative by Assumption 13, A4 > 0, and
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A1g # 1 under Assumption 7, R; is also Hadamard differentiable at (Fy10, Fa00, Fao1, Fa1, 1, A1a)
tangentially to (C°)* x R. By the functional delta method (see, e.g., van der Vaart & Wellner,
1996, Lemma 3.9.4), (ﬁY11(0)|517 ﬁY11(1)|51) tends to a continuous gaussian process.

Now, by integration by parts for Lebesgue-Stieljes integrals,

v
A =/ Fy, )15 (W) — Fyiy sy () dy.
Yy

Moreover, the map ¢1 : (Fy, Fy) — fs(y)(Fg (y) — F1(y))dy, defined on the domain of bounded
cadlag functions, is linear. Because S(Y') is bounded by Assumption 13, ¢; is also con-
tinuous with respect to the supremum norm. It is thus Hadamard differentiable. Because
A= V1 <ﬁY11(1)|517F\Y11(0)|31>7 Ais asymptotically normal by the functional delta method.
The asymptotic normality of 7, follows along similar lines. By Assumption 13, Fyi,(a)s:
is differentiable with strictly positive derivative on its support. Thus, the map (F}, Fy) —
F;Yq) — F7 ' (q) is Hadamard differentiable at (Fy11(0)151> Fyvi1(1))s;) tangentially to the set
of functions that are continuous at (Fljli(O)ISl (q)7F1711(1)\Sl(q)) (see Lemma 21.3 in van der
Vaart, 2000). By the functional delta method, 7, is asymptotically normal.

The validity of the bootstrap follows along the same lines. By Lemma S4, the bootstrap is
consistent for §. Because both the LATE and LQTE are Hadamard differentiable functions of
é\, as shown above, the result simply follows by the functional delta method for the bootstrap
(see, e.g., van der Vaart, 2000, Theorem 23.9).

Finally, we compute the asymptotic variance of both estimators. The functional delta method
also implies that both estimators are asymptotically linear. To compute their asymptotic vari-
ance, it suffices to provide their asymptotic linear approximation. For that purpose, let us first
linearize Fy,, (4)5, (v), for all y. It follows from the proof of the first point of Lemma S5 that
the mapping ¢ : (F1, Fy, F3) — Fjo F2_1 o F3 is Hadamard differentiable at (Fg10, Fi00, Fuo1)s
tangentially to (C°)2 . Moreover applying the chain rule, we obtain

dqbl(hl, ho, h3) =hyo Q(;l + Hc/i o Fyp1 X [—hg o Q(;l + hg] .

Applied to (F1, Fa, F3) = (Fy10, Faoo, Fa01), this and the functional delta method once more
imply that
vn (Hd o Fyo1 — Hgo de) = d1(hin, han, han) +op(1),

where the op(1) is uniform over y and hy, = \/ﬁ(ﬁdlo — Fi10). hon and hs, are defined

similarly. Furthermore, applying Lemma S3 yields, uniformly over y,

i=1

Pdio
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A similar expression holds for ho, and hs,. Hence, by continuity of d¢1, we obtain, after some

algebra,
Vn <ﬁd o Fao1(y) — Hyo de(l/))

:\}T—lznjll{Dl — d}{ ( )(H{Qd( ) < y} HdoFdOl( )) 4 (1 _Gi)HéOFdOl(y)
=1

Pdio

_X[ (1 T)(1{Qu(Y}) < v} — Faou(y ))+Ti<n{YiSy}—de(y))”HP(l),

Pdoo Pdo1

which holds uniformly over y. Applying repeatedly Lemma S3, we then obtain, after some
algebra,

\/ﬁ (F\Yu(d)|31( ) FY11(d)‘S1 ) Z \Ild’L + OP )7

where, omitting the index 1,

Uy(y) = % {GT [1{D = &} 1{Y <y} — pag11Far1(y) — Fyyy a5, (v) (1{D = d} — pap1)]
Pdj11 — Pdjio (P11
+ U 144D = 4} (1{Qu(Y) < v} — Hao Faon () + (14D = d} — papso) (Fors s, (v) — Ha © Faor (9)]

P1o
pano(l — GYL{D = d}HY o Faon () [“ -

T)(1{Qa(Y) <y} — Faou(y)) TA{Y <y} — de(y))} } .

Pdoo Pdo1

By the functional delta method, this implies that we can also linearize /Wc 1c and 7,. Moreover,

we obtain by the chain rule the following influence functions:

Yerc = / Uo(y) — Wi(y)dy, (50)
B2 = \IJO -
Theorem 5.2

Proof of 1

For any random variable R, let mﬁ(aj) = E(Rg|X = x). The estimator /WgID can be written

—~v oy Ay ]
as Whip = Nprp/Dprp, with

Njp=E[Yi] - E [ﬁﬁfo(Xll)] ~E [7/7\13)/1()(11)] +E [ﬁ?OYO(Xn)}
D¥p = E D] — E [mby(X11)] — E [m (X11)] + E [ (X11)] -

The true parameter A = N gl n/ Dg ;p can be decomposed similarly. We show below that the
eight terms in the numerator N ]:))(1 p and in the denominator l/ig ;p can be linearized. We can

then use, as in the previous proof, the formula for linearizing ratios.
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Let us first consider E [E(Y10|X)\G =1,T= 1]. Part 2 of Assumption 15 ensures that we
can apply Lemma S8 to [ =G x T, J=Gx (1—-T),U =Y and V = 1. As a result,

\/E(E [E(Y10|X)|G —1,T= 1} — E[mly(X)|G=1,T = 1])

ZG[ (%) — B [y (001G = 1,7 = 1]) + G EEEE (37l x) | + or).

fpn

Applying the same reasoning as above to the two other terms of ]VgID, we obtain
vn (Ngm - Ngm)

ZG TV = mio(Xs) = mey (Xa) +mag(Xi) = Nppp) — GZEEl(g(?)_EZ(j?\QjZ)
(1-G)(1 - T)E(GT|X;)

E1-G)(1-T)X:)

(Y — mip(X)))

\fpn
( - G)T;E(GT|X;)
E((1-G)T|X;)

Similarly, the denominator satisfies

Vn (ng - Dgw)

n

(Y; — mgy (X5)) — (Y; = mgo(X3)) + op(1).

:\/771]911 Z {GiTi(Di —mip(Xi) —mg) (Xi) +mio(X:) — Dyp) — Gig(;;(?)E}j?i))(i) (D; —mip (X))

(1 G)TE(GTIX,)
E(1 - G)T|X)

(1-G;)(1-T)E(GT|X;)
E(1-G)(1-T)X;)

Combining these two results and (47), we finally obtain

vn (WDID A) f Z VDI, i top(l),

where, omitting the index 1, 1/% ;p is defined by

1 € € € G(l — T)E(GT|X) €
10 = e { 66 = mig(X) = iy () + o (00) — | Fr BT e = i)

(1 - GTE(GT|X) . (1-G)(1-T)E(GT|X) .
E(1-G)T|X) (& =mo (X)) - E(1-G)1-1)X) G moo(X))] },

and e =Y — AD. The result follows by the central limit theorem.

Proof of 2

The proof is very similar as above. For any random variable R, Let mgfqt(m) = E(Ryp| X = x).
The estimator satisfies Wi, = ]/\7:,)1(0 / 13:,)«(0, with

~

Nio = E[Yi] - E [m}y(X11)] — E [Moy(X11)] + E [Mio(X11)] — E [y (X11)mlo) (X11)]
~D

+E [mlo(X 1)m100(X11)] +E [mlo(Xll)mom(Xll)] E[ o(X1 )m(i)/oo(Xll)]
ﬁj)gc = E [DH] — E [m{)o(XH)] .

62



The two terms of the denominator and the first four terms of the numerator can be linearized

exactly as above. Regarding the other four terms, remark that for instance

o1 (X11)] — B [mf(X11)mip) (X11)]
= [m?o (X11) (o1 (X11) = mioy (X11))] + E [mgy (X11) (fp(X11) — mip(Xn))]
+ E (Ml (X11) — mih(X11)) (Ml (X11) — mipy(X11))] -

Lemma S7 implies that the last term is an op(1/4/n). As a result,

Nic = E[Yu] - E [)y(X11)] — E [fg (X11)] + E [Mgee(X11)] — E [mfy (X1, (X11)]
— E [mfy(X1)mio (X11)] + E [my(X11)mio (X11)] + E [mfy(Xa1)mfoo(X11)]
+ B [y (X11)mioe(X11)] — E [miy (X)) mioo(X11)] + E [m{p(X11)Migor (X11)]
+ E [mfy(X11)mio (X11)] — E [mfy(X11)mio (X11)] — E [mfy(X11) g (X11)]
— B [Miy(X11)mioo(X11)] + E [mip(X11)moo(X11)] + op(1/v/n).

We then apply Lemma S8 to each of these terms. Note that the corresponding Lipschitz
condition is always satisfied under part 2 of Assumption 15. After some tedious algebra, we

obtain

v (Wi — Wi = szchﬁoza()

where ¢7XC satisfies

Vo 2711))( {GT (U - A(D — mi}(X)) — E [Un1 — A(D11 — miy(X1))])
builipo
G1-T)
+E(GT|X) [V_AE(G(l—TﬂX) (D—mﬁ)(X))H. (53)

and

U=Y —miy(X) — myo (X) + mggo(X) — mip(X) (min(X) — mpo(X) — mgoy (X) +moyoo(X)) )

V= E(g<(11—_ ;F))\X) {=(V = mip(X)) + [migg (X) = migy (X) = mieg (X) + maoy (X)] (D —miy (X))}
T(Y —mly (X)) , (1=T) (Y —mly(X))
+(1-G) {m%(X)D B = DY) T E(D( - G)1 - T)IX)

T(Y — m, (X)) (1= T)(Y — mipo(X))
+1-D)1 = mB0) | e o ey~ E - D~ T

The result follows by the central limit theorem.

Proof of 3
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The estimand is the same as W%(C, except for the second term of the numerator. Therefore,

it suffices to prove that we can linearize this specific term, which is the plug-in estimator of
E[E(DQ:ix(Y)+ (1 -D)Qox(Y)|X,G=1,T=0)|G=1,T =1].

This expectation comprises two terms. As the reasoning is similar for both, let us focus
on the first, 1 = E[E(DQix(Y)|X,G =1,T =0)|G=1,T =1]. Let us define mah(z) =
EQix(Y)|X =2,D=d,G =g, T =t). First, the estimator ; of 6; satisfies
0, —6,=E [ﬁz%(X)ﬁ%lo(XﬂG —1,T= 1] '
= B[y (X)mEy(X)IG = T =1 = E [m(xX)mE(X)IG = 1,7 = 1]

+01 -0+ B (B (X) - mB (X)) (R (0) - mB(0) 16 = 1,7 =1, (54

where 6, = E [ml%(X)ﬁ”L%lO(X)]G =T = 1] As in parts 1 and 2 above, the first two terms

on the right-hand side can be linearized using Lemma S8. We linearize below 6, — 6, and
prove that the last term is an op(1/y/n). As in Lemma S5, let us define

1
Ri(Fx, Qupr. Qi Qapx) = [ mfala) x | @@z Qux(ulo)lalla}dudF (o)

Let us define hereafter Fyyx = Fy, ,x and Fyg), = Fy, ,|x=.. Because

o Fioojz © Fyo1, (w)du,

110z

1
PlonMX=rD=c=1T=0= [ Iy,
0

we have

-1 -1 ~1 1 o -1 p-1 p-l
0 = R4(FX11=F101|X7 F100|X’ F110|X)’ 0 = R4(FX11=F101|X7 F100|X’ F110|X)’

where ﬁXn is the empirical cdf of X7;. By Lemma S9, the process

(,7) = (Fxyy (), Figl (1) Frgto(7)s Frpgo (7)), defined on S(X) x (0,1) and suitably nor-

malized, converges to a continuous gaussian process G. Moreover,

~ 7 1 &
Vi [ Fgga(0) = Fagie (0] = = izlmdgmm +op(1),

where the op(1) is uniform over (z,7) and

Giagra(7) — 1{D; = d}1{G; ngt}]l{Ti = t}a' J. X; (T Y - X Bag () < 0}) .
g

Besides, R4 is Hadamard differentiable at (Flx,,, FthX, Ffoép@ Fﬂé\x) tangentially to C°(S(X))x

C°((0,1) x S(X))3. Therefore, by the functional delta method and because G is continuous,
~ 1 &
Vn(fy —61) = —= > Wy +op(l),
Vi s
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i = pznl [m{%( )mno 91 /mlo {/ Vitots FlOO'”” 110\ (u )>
—1
Flotje

-1
F100|z

"o FlOO\z © F110|x(u)

"o FlOO\z o F11é| (u)

[ — Y1002 <F100|ac o F110|x( )) + 1/%110;;;(“)] du} dFx,, ().

We now prove that the third term in (54) is an op(1/y/n). We have

B [(Ah(x) - mB(x)) (A0 - mEu(X)) 16 = 1,7 =1]|

< Hmlo —mloHoo X Hm%o m?llo
By Lemma S7, Hﬁz%—m%”m = op(n~*). Besides, m%o = Rs( 101\X’F1_00|X’F1_10|X)

where R5(Q1|x, Q2)x, Q3x) = fol Q1|X{Q2_|§([Q3‘X(u|x)\x] |z}du. Part 3 of the proof of Lemma

S5 implies that Ry is Hadamard differentiable at (F1_01|X,F1_00|X,F1_10‘X)

7’7\1%10 - m?lloHoo = Op(n~'/2). Thus, the third term in

Then, by Lemma
S9 and the functional delta method, ‘
(54) is an op(1/y/n).

To conclude, we provide the linearization of Wé(lc. Let us define for that purpose

Vo = (1= mip (X)mey (Xi) - 60} /(1 - miol {/ vioos F000|z 010' . )>

- -1
F001| © Fooola © Foo)s (u)

+
F000|a: © Foooj © F01o| (u)

{ — Yi000x <F000|x ° F010|m( )) + %omx(u)} du} dFx,, (z),

where 6y = F[E((1 - D)Qox(Y)|X,G=1,T =0)|G =1,T = 1]. Using what precedes and

Lemma S8 on the remaining terms, we obtain after some tedious algebra
1 n
X X X
Vn (WCIC - WCIC) = n Z Yere, +op(1),
i=1

where ¢()§ ¢ satisfies

1o = ;X {GT (Y — A(D — m{)(X)) — E [Yi1 — A(D11 — mip(X11))]) — p1r(¥1 + o)
urcrc
ngg'(f)f}ﬁ,}gﬂ (D = mfy(X)) [mGy(X) = m(X) - A } , (55)
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