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Introduction 

A common form of heteroskedasticity occurs when data used to estimate a 

relation are drawn from two or more distinct populations. Formally, suppose 

we have the model 

Y. = X.{3 + el.., 
l. l. 

i = 1 •.. M (1) 

in which Y. and e. are n.-element vectors and X. is a k x n. matrix, all 
l. l. l. l. l. 

pertaining to group i. f3 is a k-element vector of coefficients, invariant 

over groups. a~ is the variance of ei, which in general differs from ai, j f 

i. 

This model is usually termed the grouped heteroskedasticity model. If 

the error variances were known, estimation of f3 would be accomplished by 

straightforward generalized least squares (GLS), i.e., OLS on data weighted by 

In practice, (1) is estimated either by OLS (knowingly or unknowingly 

ignoring the heteroskedasticity) or by an operational version of GLS 

("feasible GLS") in which estimates of the error variances replace the unknown 

values. 

Some aspects of this model have received detailed examination in the 

literature. Taylor (1977, 1978) analyzed the gain of feasible GLS over OLS 

and its loss compared to GLS. He found the former typically large and the 

latter typically small. Swamy and Mehta (1979) examined conditions under 

which feasible GLS is not optimal and developed an alternative estimator. 

However, there is one aspect of the grouped heteroskedasticity model that 

has not been considered. There are two standard approaches to estimating the 

error variances, differing in whether the information about the common f3 

coefficients is imposed. Although different authors make different 

recommendations, there is little if any information available on the 

comparative performance of alternative procedures. The purpose of this paper 
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is to provide such infor~ation. Since any weighting scheme results in 

unbiased estimates, the concern is estimator efficiency and reliability in 

making inferences. The analysis primarily will be based on Monte Carlo 

simulation. Although with this method results can depend on the specific 

nature of the experiment, it is a useful tool for detecting broad differences 

among alternative procedures. We find that, under some conditions, such 

differences exist for the grouped heteroskedasticity model. Since in most 

cases these conditions can be identified, the results of the study are of 

potential practical use. 

Alternative Approaches 

The standard method to estimate (1) is, as suggested above, weighted 

G. A2 . f 2 * A -1 * least squares. iven ai, an estimate o ai, one computes Yi= Yiai and Xi 

A 1 ~ * * -1 * * * * X.a. - and then obtains p = (X 'X) X 'Y, where X and Y contain the data 
1 i 

from individual groups appropriately stacked. The issue here is the 

. . f 2 estimation o a .. 
i 

A common and simple method is to use the unbiased estimate 

from a separate OLS regression on group i, that is, 

A2 
a. 

i 

(Y. - X.b.)'(Y. - X.b.) i i i i i i 
n. - k 

i 
(2) 

where bi = (Xi'Xi)-lXi'Yi. This is the estimator employed by Taylor and by 

Swamy and Mehta. It is probably the estimator most often used in practice, 

since it is readily available from standard computer output. However, most 

authors are doubtful that this is the best procedure. As stated by Judge et. 

al., it makes 

no allowance for the fact that each b. is an estimate of 
i 

the same p. If we incorporate the additional information 
given by this restriction it is likely that the resulting 

~i's will be more efficient, and, although there will be 

no difference asymptotically, this may lead to a~ that is 
more efficient in finite samples. (1985, p. 429) 
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Their suggestion is to obtain a pooled OLS estimate of p, i.e., 

b - (X'X)-lX'Y, and then take 

_2 (Yi - Xib)'(Yi - Xib) 
ai n. - k (3) 

l. 

This is somewhat more troublesome to employ, since it requires the 

partitioning of a residual vector. 

In his 1977 paper, Taylor notes the likely inefficiency of (2) but uses 

it because of its popularity and tractability. In his text, Johnston (1984) 

recommends (3) without discussion, although in a related case, estimating a 

demand system with cross-equation restrictions, he states it is a "moot point" 

whether the first stage residuals for estimating the error structure should be 

based on OLS with or without the constraints. Kmenta (1986) implicitly 

endorses (3), since in his discussion of the cross-sectionally 

heteroskedastistic and timewise autoregressive model he states that first 

stage residuals should be obtained from OLS on all groups simultaneously. 

Pindyck and Rubinfeld (1985) also say that pooled residuals should be used. 

The one exception is the textbook by Fomby, et al., in which only (2) is 

mentioned. 

Since (3) incorporates additional information, it is plausible that it is 

the better estimator. However, this should not be accepted without question. 

Although it is obviously consistent, it is biased in small samples. This 

follows from the fact that (2) is unbiased. 

that minimizes (2), (3) is always larger. 

Since b. is the estimate of p 
l. 

It therefore has an upward bias. 

It is reasonable to expect the bias to increase with the difference in error 

variances. This suggests that whether and to what extent (3) is better than 

(2) depends upon the degree of heteroskedasticity. 

So far the discussion has been concerned with initial estimates of the 

af's, which lead to estimates of p. But these estimates can themselves be 
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used to obtain new estimates of the variances, which in turn generate revised 

estimates of p, and so on in an iterative fashion. Based on (3), such a 

method is iterative maximum likelihood under normality (Oberhofer and Kmenta, 

1974), and this provides another approach to estimating p. Since it is a 

maximum likelihood method, it has optimal large sample properties. Whether it 

is an improvement in small samples depends on the performance of the revised 

variance estimates. 

The Monte Carlo Experiment 

The Monte Carlo experiment was conducted using the following model: 

Yi= Po+ P1Xli + P2X2i + P3X3i + ei, i = 1. .. M 

where i refers to group. The core of the analysis was conducted with M-2, the 

case considered by Taylor and by Swamy and Mehta. All P's were set at 1. 

was N(O, a~). with differences in variances as described below. Each 

e. 

1 

experiment was replicated 1000 times. The general procedure was to estimate 

2 
a. in different ways and to use the estimates in weighted least squares. 

1 

2 Three methods of estimating a. were employed: 
1 

WLSl: A2 from formula (2) a. 
1 

WLS2: -2 from formula (3) a. 
1 

WLS3: 2 estimated with (3), using the residuals a. 
1 

is two iterations of MLE estimation. 

from WLS2. · This 

1 

The model was also estimated with OLS and GLS, i.e., using the true variances 

as weights. Experiments were conducted with three sample sizes for each 

group: 10, 20, and 40. 

The X's, which were fixed in each individual experiment but differed 

across experiments, were generated as uniform random variables. Two 

approaches were employed. In the first, the variables for each group were 

µ(10,30) in all experiments. In the second, the variation in the data was 

increased along with that of the error by generating the elements of X. as 
1 



5 

µ(10a.,30a.). We will refer to these as Xl and X2, respectively. With Xl, 
i i 

heteroskedasticity can be thought of as arising simply due to differences in 

the amount of unexplained behavior, whereas with X2 it can be thought of as 

due to size differences, as might occur with data from different countries:1 

Results 

The efficiency of the different weighted least squares estimates of p 

was measured as follows. In each experiment of 1000 replications, the sample 

variance of each of the four coefficients in the model as estimated by the 

different methods was calculated. GLS was used as a benchmark by taking 

ratios of the sample variances of the other estimators to that of GLS. These 

were averaged over the four coefficients. Thus, letting ri be such an 

average, we would expect r. ~ 1, although sampling error can reverse this. If 
i 

ri < rj' this is evidence that method i is more efficient than method j. 

These ratios are presented in table 1 for the three sample sizes. In each 

section, the first line is for the homoskedastic case and movement down the 

columns involves a greater degree of heteroskedasticity, which we define as 

the ratio of the larger variance to the smaller and which will be denoted by 

A. 

Let us first consider the results for OLS. Comparing the columns for OLS 

to the others, we see that at a low level of heteroskedasticity, OLS was 

superior to all. the weighted least squares estimators. However, this 

superiority did not last long. When the variance in one equation was twice 

that in the other, OLS lost its advantage, even at the smallest sample size. 

This agrees with Taylor's (1977) analytic results. It does suggest that 

unless A exceeds two - which it often may not in models of this sort -

ignoring heteroskedasticity may at worst generate only,a negligible loss in 

efficiency. But clearly, the loss can be very large, as occurred with Xl at 

the higher levels of heteroskedasticity examined. The much poorer performance 
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Table 1. Ratio of Sample Variance of Estimators to that of GLS, Two Group 
Case. · 

Xl X2 

OLS WLSl WLS2 WLS3 OLS WLSl WLS2 WLS3 

n - 10 1.0 1.000 1.147 1.065 1.134 

1.1 1.004 1.124 1.054 1.117 1.006 1.147 1.068 1.140 

1.5 1.029 1.135 1.055 1.118 1.034 1.127 1.052 1.092 

2.0 1.095 1.145 1.077 1.144 1.010 1.116 1.075 1.109 

3.0 1.249 1.107 1.056 1.075 1.203 1.094 1.077 1.086 

5.0 1.610 1.123 1.140 1.114 1.306 1.139 1.098 1.117 

10.0 2.739 1.069 1.193 1.045 1.612 1.154 1.159 1.145 

15.0 3.172 1.097 1.332 1.106 2.121 1.107 1.218 1.143 

20.0 4. 725 1.094 1.587 1.135 1. 953 1.141 1.168 1.127 

50.0 11.203 1.049 2. 721 1.338 2.347 1.139 1.303 1.203 

n - 20 1.0 1.000 1.052 1.038 1.060 

1.1 .999 1.070 1.053 1.080 1.001 1.065 1.049 1.073 

1.5 1.040 1.060 1.041 1.065 1.049 1.076 1.058 1.080 

2.0 1.120 1.060 1.049 1.063 1.062 1.044 1.033 1.045 

3.0 1.297 1.061 1.056 1.062 1.186 1.047 1.042 1.049 

5.0 1. 758 1.030 1.045 1.028 1.449 1.049 1.065 1.058 

10.0 2.566 1.037 1.080 1.034 1.484 1.020 1.029 1.019 

15.0 3.884 1.013 1.116 1.011 2.015 1.060 1.107 1.071 

20.0 5.103 1.015 1.161 1.011 1.980 1.029 1.055 1.031 

50.0 11.062 1.012 1.419 1.014 1.831 1.055 1.073 1.057 

n = 40 1.0 1.000 1.029 1.025 1.032 

1.1 1.003 1.028 1.025 1.031 1.001 1.034 1.030 1.038 

1.5 1.042 1.026 1.023 1.027 1.036 1.020 1.018 1.021 

2.0 1.128 1.024 1.021 1.026 1.102 1.025 1.025 1.026 

3.0 1.306 1.010 1.009 1.011 1.204 1.019 1.020 1.020 

5.0 1. 772 1.016 1.022 1.015 1.348 1.018 1.016 1.018 

10.0 2.997 1.011 1.033 1.008 1.487 1.026 1.025 1.027 

15.0 3.934 1.007 1.042 1.006 1.673 1.018 1.024 1.018 

20.0 5.458 1.008 1.054 1.006 1.544 1.020 1.024 1.020 

50.0 11.791 1.004 1.091 1.004 1. 962 1.014 1.029 1.015 
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of OLS here than in the X2 case follows since, at any given A, there is much 

less variation in the pooled Xl data. As a result, the OLS estimates are more 

variable. 

The most interesting aspect of the Monte Carlo results involves comparing 

WLSl and WI.S2. It is evident that, as conjectured above, which was the better 

estimator in the two group case depended upon A. If this was low, then the 

use of residuals from a pooled OLS regression on all 2n observations was the 

better procedure. However, with stronger heteroskedasticity (generally, A 

exceeding 3 or 5), the method using residuals from separate regressions became 

superior. This occurred in both cases and for all three sample sizes. For 

n=-40, and with X2 regardless of sample size, this superiority was typically 

not of large consequence. However, for n-10 or 20 and severe 

heteroskedasticity the advantage of WLSl was substantial under data condition 

Xl. 2 

The reason for these results was made evident by examining some 

additional information from the experiments. As expected, the estimates of 

error variance using formula (3) were always biased upward. -However, the bias 

for the smaller variance was always proportionately larger. As a result, A 

was underestimated. This is illustrated by data in table 2, which are· 

estimates of A for WLSl and WI.S2 for the experiments with n=20. It is quite 

clear from these that with strong heteroskedasticity formula (3) can lead to a 

weighting scheme that only partly eliminates the problem, in which case its 

efficiency suffers. This is more serious with the Xl data because of the 

weaker OLS estimates used to generate the pooled residuals. 

Generally, the results for WLSl and WI.S2 display two counteracting 

forces. If A is low, then the loss associated with implicitly assuming the 

error variances are the same is also small and is outweighed by the benefits 

of a larger sample. With large differences in error variances, the relative 
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Table 2. Estimated Degrees of Heteroskedasticity, n - 20. 

Xl X2 

Actual WLSl I WLS2 WLSl I WLS2 

1.0 .99 .98 
1.1 1.09 1.08 1.05 1.03 
1.5 1.44 1.38 1.50 1. 39 
2.0 1. 99 1.85 1. 98 1. 78 
3.0 2.96 2.63 2.90 2.59 
5.0 4.98 4.00 5.04 4.18 

10.0 10.13 6.73 10.06 8.35 
15.0 15.29 8.73 14.57 11.04 
20.0 20.29 9.83 19.85 15.38 
50.0 48.58 13.06 47.53 38.87 
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importance of these two effects reverses. As a result, in the first case WLS2 

is more efficient while WLSl is in the second. 3 

WLS3 is a second iteration of WLS2 and as such represents the first two 

iterations of maximum likelihood estimation. The results in table 1 indicate 

that with severe heteroskedasticity this method substantially improved on 

WLS2. But even at the largest sample size considered, unless A exceeded three 

there was no gain - indeed a slight loss - associated with a second iteration 

of WLS2. Furthermore, the experimental results suggest that if A is large the 

iterative method is at best only marginally better than the conventional 

procedure using separate OLS residuals. Although additional iterations might 

bring additional gains, a brief analysis described below suggests this is 

likely to be important in few cases. Furthermore, for the two-group case 

there does not seem to be much room for improvement if sample size is 

reasonably adequate. 

From these results it is fairly evident that no one estimation method 

dominates the others and no method is dominated by the others. Each was best 

in several individual experiments. If we categorize the degree of 

heteroskedasticity as "low," "medium," or "high," with the specific 

definitions depending upon sample size, the corresponding optimal technique 

would seem to be OLS, WLS2, and either WLSl or WLS3. 

How, then,· should one proceed? In a world of total ignorance of A, WLSl 

appears to be the minimax approach. In the experiments, it often outperformed 

the others and was measurably less efficient only with small A and a small 

sample (when OLS was best). It is also easy to implement. However, one need 

not proceed in complete ignorance. Information about A is readily available 

from estimates of regression variance for the individual groups. If this 

suggests A is quite large, then one would not be inclined to employ WLS2 

except possibly as the first step in an iterative process. This is 
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particularly true if the_explanatory variables have the characteristics of our 

Xl data, which is also easily ascertained. If A is small, then the logical 

choice would seem to be between OLS and WLS2. 

Additional Experiments 

The two-group results show that use of pooled residuals in the first 

stage of estimation leads to a gain due to the larger sample size and a loss 

due to ignoring the heteroskedasticity. Thus, the relative performance of 

WLS2 should improve with more groups, since the number of observations in the 

first stage of WLSl remains constant. To investigate this, a set of 

experiments with more groups was conducted. The error variances were chosen 

in an attempt to get a reasonable coverage of the possibilities. The results 

are presented in table 3, and they have the same interpretation as before. 

Here we have confined attention to the smaller sample sizes. The 

2 heteroskedasticity is characterized by spelling out the variances, with a1 

always being one. 

The relative performance of WLS2 indeed improved. This is especially 

apparent with n - 10. At low levels of heteroskedasticity, it clearly 

outperformed WLSl regardless of the nature of the explanatory variables, and 

with X2 data it did so with virtually all levels of heteroskedasticity. It 

thus appears that with several groups and a quite small sample (with n 10 

there were six degrees of freedom for each group), WLS2 will often be 

preferred to WLSl, more so than in the two group case. As before, however 

WLSl appears much more efficient with Xl data and large differences in error 

variance. 4 Indeed, the largest advantage of WLSl over WLS2 in the study 

occurred in this group of experiments, suggesting that the correct choice 

requires particular attention to the data under these conditions. 
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Table 3. Ratio of Sample Variances of Estimators to That of GLS, Various 

Three and Four Group Cases, 2 
al= 1. 

Xl X2 
2 2 2 OLS WLSl WLS2 WLS3 I OLS WLSl WLS2 WLS3 (12 a3 a4 

n = 10 

1 1 1.000 1.195 1.088 1.163 
1 3 1.258 1.220 1.102 1.155 1.263 1.235 1.125 1.163 
2 3 1.230 1.232 1.120 1.177 1.149 1.181 1.081 1.125 

3 3 1.240 1.198 1.139 1.181 1.135 1.188 1.098 1.139 
1 5 1.670 1.204 1.121 1.144 1.451 1.168 1.135 1.132 
5 5 1.645 1.192 1.193 1.172 1.184 1.176 1.060 1.103 

1 10 2.732 1.203 1.158 1.101 2.066 1.163 1.122 1.111 
10 10 2.192 1.196 1.252 1.145 1.305 1.182 1.102 1.139 

5 10 1. 952 1.222 1.188 1.146 1.471 1.200 1.129 1.138 

1 20 4.576 1.199 1.295 1.157 2. 718 1.187 1. 282 1.171 
10 20 3.570 1.129 1.351 1.140 1.622 1.190 1.137 1.157 

1 50 10.712 1.132 1.404 1.126 2.730 1. 200 1.318 1.207 

50 50 10.532 1.048 2.840 1.407 1.637 1.190 1.108 1.108 
1 1 1 1.000 1.277 1.111 1.185 1.000 1.306 1.110 1.194 
3 3 3 1.233 1.290 1.116 1.158 1.138 1.222 1.082 1.126 

2 3 4 1.255 1.268 1.102 1.148 1.209 1. 231 1.103 1.148 
5 10 20 2.623 1.224 1.244 1.127 1.731 1.256 1.159 1.169 

50 50 50 8.640 1.141 2.491 1.324 1.822 1.208 1.105 1.116 

n - 20 

1 1 1.000 1.096 1.072 1.101 
1 3 1.256 1.079 1.055 1.071 1.246 1.060 1.050 1.058 
2 3 1.212 1.067 1.058 1.073 1.125 1.063 1.043 1.061 

3 3 1.305 1.098 1.077 1.086 1.155 1.065 1.046 1.060 
1 5 1. 693 1.067 1.061 1.065 1.514 1.073 1.063 1.070 
5 5 1.653 1.088 1.094 1.075 1.236 1.086 1.062 1.083 

1 10 2.753 1.083 1.086 1.083 1.881 1.073 1.080 1.072 
10 10 2.815 1.035 1.094 1.028 1.365 1.065 1.051 1.062 

5 10 2.201 1.059 1.100 1.057 1.555 1.073 1.058 1.061 

1 20 4.625 1.064 1.068 1.065 2.406 1.071 1.075 1.064 
10 20 3.576 1.036 1.130 1.041 1. 743 1.063 1.058 1.058 

1 50 12.354 1.066 1.166 1.062 2.119 1.088 1.093 1.082 

50 50 10.426 1.027 1.595 1.045 1. 766 , 1.074 1.067 1.077 
1 1 1 1.000 1.085 1.049 1.071 
3 3 3 1.248 1.108 1.082 1.092 1.166 1.082 1.056 1.073 

2 3 4 1.271 1.092 1.064 1.085 1.209 1.095 1.064 1.079 
5 10 20 3.118 1.049 1.111 1.042 1. 952 1.077 1.076 1.064 

50 50 50 8.399 1.026 1.466 1.038 1. 970 1.078 1.067 1.061 
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With n = 20, the pattern of results was similar, but in corresponding 

experiments either the magnitude of the WLS2 advantage over WLSl declined or 

its disadvantage increased. Thus, for example, while in the X2 case WLS2 was 

superior in about the same set of experiments (actually one less), this 

superiority was seldom of any significance and certainly less than before. 

The difference between n=lO and 20 illustrates that increasing sample size is 

a more important consideration when it is small in the first place. In fact, 

with n~20 the results do not greatly differ from the corresponding ones for 

the two-group case. The only change of any importance is the indication that 

with several groups and X2-type data, users of the pooled approach are nearly 

assured of a gain regardless of the extent of heteroskedasticity (assuming it 

exists at all). However, the magnitude of the gain is not likely to warrant 

any additional effort that may be required. 

Now consider WLS3, the iterative approach. With n = 20, its performance 

was similar to that in the two-group case, tending to parallel that of WLSl. 

But with ten observations, in several instances it substantially improved on 

both WLSl and WLS2. These occurred with Xl data, in the middle to upper 

ranges of heteroskedasticity. Still, the fact that in the majority of 

experiments its variance exceeded that of WLSl and/or WLS2 suggests that 

iterative estimation to improve efficiency is at best problematic. 

However, our results involve an estimator with just two iterations. In 

practice, more would typically be used, generally until some convergence 

criterion is met. Although it is beyond the scope of this paper to 

extensively analyze this procedure, a representative group of experiments was 

repeated with more iterations added to WLS3. For all cases in which WLS3 was 

inferior to WLS2 (and several others as well), further iterations made matters 

worse, even with 40 observations per group. Only with strong 

heteroskedasticity was there an improvement. Even then, the efficiency 
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achieved after five iterations was at best only marginally better than that of 

WLSl, the much simpler procedure. This is similar to the result obtained by 

Kmenta and Gilbert (1968) in the case of seemingly unrelated regression. They 

also found that iterations often reduced estimator efficiency. 

Firm conclusions about iterative estimation in the grouped 

heteroskedasticity model will require additional research. However, based on 

our results we can conclude that its routine application is unwise. 

Furthermore, the evidence here is that, unless sample size is quite small, it 

is of limited value. Although a second iteration often significantly improved 

on WLS2, additional iterations seldom did. More typically, efficiency was 

reduced, and in most cases, the simpler approach provided by WLSl was nearly 

as good and in numerous instances better. 

Summary and Concluding Remarks 

In this paper we have examined the estimation of error variances in the 

grouped heteroskedasticity model and the implications for feasible generalized 

least squares estimation of the common coefficient vector. These variances 

are always estimated using residuals from a first stage OLS. This can be 

applied to each group separately or on all groups simultaneously. Since the 

latter incorporates the common coefficient vector_ into the first stage, it is 

widely believed to be a more efficient procedure and thus is most often 

recommended by textbooks. 

The results of this study would not support this recommendation. 

Although using pooled residuals generates a gain due to the larger sample, 

this comes at the cost of biased variance estimates due to ignoring the 

heteroskedasticity in the first stage. The desirability of this approach 

depends upon the relative strength of these two effects. In simulations based 

on two groups, it tended to be demonstrably better only when 

heteroskedasticity was not too serious and the sample size was small. With 
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substantial differences in group variances, residuals from separate 

regressions led to better estimates. In some cases, the differences were 

pronounced. It was found that problems with pooled residuals could largely be 

eliminated by iterating the method once, with further iterations usually 

reducing efficiency. Generally, only limited support for iterative estimation 

was found, since in few cases was it more than negligibly better than using 

separate residuals without iteration. 

With more than two groups, the relative performance of the pooled 

procedure improved. When the groups each had few observations, it was often 

substantially more efficient than the method using separate residuals. 

However, even then it performed rather badly in some of our experiments, and 

users need to be aware of this possibility. For moderate to large samples, 

results of the study suggest that the advantage of pooled OLS in the first 

stage is not likely to be large even with many groups, and there remain cases 

in which it can have a substantial disadvantage. Since in general it is more 

troublesome to employ, we see little recommendation for this method when 

sample size is adequate. 

A conclusion from this study is that none of the methods considered is 

always best, for this depends upon circumstance. Although this may be 

unfortunate, it is perhaps comforting that a second conclusion is that the 

simplest and hence most often used procedure is in many cases probably the 

best procedure. That a method which ignores information about the common 

vector of coefficients can often outperform one which uses it might come as a 

surprise. However, the use of pooled residuals ignores the fact that the 

error variances are not the same, and results here suggest this can be an 

important consideration. Perhaps this should not be surprising. It is, after 

all, the estimation of the error structure that is at issue. 
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Footnotes 

1. However, if size differences primarily affect means, Xl is appropriate. 
It is important to note that some experiments were tried with normal and 
log normal data. Results for these were substantially the same as those 
with uniform data. 

2. Such heteroskedasticity can certainly occur. As Taylor notes, "In 
cross-section studies involving aggregates of vastly different sizes 
(states or countries), it is not unreasonable to expect [the degree of 
heteroskedasticity] to be on the order of 50." (1977, p. 504) 

3. A contributing factor to the bias of WLS2 is the denominator in (3). 
Since ~n. observations were used to estimate k parameters, n. - k 

i i 

understates the degrees of freedom. This is clear in the two group case 

with ai = a~ and ni = n 2 . Then an appropriate divisor for an unbiased 

k estimate would be 1/2(n1 + n 2 -k) = n1 - 2. However, inappropriate 

degrees of freedom is not the only source of bias. Consider, for 

example, the unrealistic case of ai = 0. The estimate of ai from (3) 

would necessarily be non-zero regardless of the denominator. 

Although the entire residual vector used in WLS2 has a sample mean 
of zero, the subvectors used to estimate the group variances do not. 
This prompted us to investigate a version of WLS2 in which the 
partitioned error sum of squares in (3) was corrected for its sample 
mean. This reduces the estimated error variances and hence their bias. 
However, the performance of this estimator was generally inferior to the 
version reported in the text. 

4. With Xl data, the overestimation of small error variances was more 
pronounced when they were outnumbered by large error variances. This 
was less true with X2 data, which explains some of the specific patterns 
in the results. Notice that several of the experiments in the table can 
proxy for the case of two groups each with different sample sizes. 
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