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Abstra.ct 

This paper presents a general theory which reconciles agent 

maximizing behavior with alternative assumptions and provides a 

theoretical basis for X-Efficiency behavior by indicating 

conditions where maximization may not result in an optimal 

solution. A,_.,_ empirical application substantiates the 
• • J: • 

s 13111.J. 1cance 

of considering X-Efficiency behavior and illustrates its 

usefulness in policy analysis. 



Production Decision !>laking in an Adaptive Mode 

The agent maximizing behavioral assumption (I.IBA) is a foundation of 

neoclassical economics. The underlying parauigm is that agents always exhaust 

opportunities for net gain (Rozen). However literature in other disciplines 

h;::.s established that agents do not always ma:dmize (Akerlof and Dickens). 

Neoclassical theory postulates that agents make full use of all 

information regarding a change in resolving the optimization model and 

decisions are made in terms of marginal considerations only (Gilad et al.). 

The essence of maximization focuses neoclassical theory on allocative 

efficiency to the exclusion of other efficiencies that may be Dore 

significant in many instances. Dissatisfaction with this paradigm has led 

economists to investigate a variety of alternative ad hoc assumptions 

regarding agents behavior (Day, 1978; De Alessi). The alternatives, t~rned 

econm:iics of irrational behavior or X-efficiencies, are based on an 

assumption that agents reach a defined standard judged to be within their 

capabilities {Leibenstein, Miiller, Rozen). 

The objective of this paper is to present a general theory which 

reconciles the MBA with alternative assumptions. imA is shown to be a 

particular case in the general theory of agent behavior. The model provides a 

theoretical basis for agents not employing the MBA and indicates conditions 

where the tIBA will not result in an optimal solution. An ei:1pi1·ical 

application substantiates the significance of considering X-efficiency 

behavio= and illustrates its usefulness in policy analysis. 



Theoretical !Iodel 

Dissatisfaction with the neoclassical framewor~ generally began in the late 

1950's when various constraints to caximization were proposed {De Alessi). 

· Tiowever it was not nntil the 1960' s that alternatives to the 1.IBA inclt!ding 

satisficing, multiple goals, organizational slack, and resistance to change 

were suggested. Various attempts toward reconciling these behavioral 

alternatives have occurred over the past three decades including the works of 

Uilliamson and Rozen. A theoretical model supported with an egpirical 

application may be a more efficient procedure however in developing an 

understanding a~ong behavioral alternatives than unrnetrical prose. 

Following the work of Gilad et al., Heiner, Hey, and Shipley, a theory 

of agent behavior may be structured to include complexity, D, of a process 

and an agent's competence or perceptive skills, A. Perceptive skills 

characterize an agent's cor.rpetence in deciphering relations among agent 

behavior and various states of the environment, X. A set U of agent's. 

controls is determined by a control relation o: D-A~U. The consequences 

arising from agent's controls are denoted as a set C and are deten1ined by y: 

U·X7C. Denoting P for agent's preference and~ for the probability 

distribution of X, then an agent's behavior may be characterized by the 

q1.:.adruple {U, (X,~), C, P}. Assuming continuity of preferences and the 

equivalence relation, an expected utility function E{cr[y[o(D,A),X)]} nay be 

employed, where Eis the expectation operator. A positive relation between 

competence, A, and expected utility is assumed, whereas increased complexity, 

D, is expected to reduce utility. Competence and complexity will also 

influence higher moments of expected utility. Greater competence in a process 

is hypothesized to stimulate correct control actions, and thus dampen any 

variation. As complexity increases, directives for controlling stochastic 
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processes become increasingly difficult to achieve, resulting in larger 

variation. 

The imA, based on marginal analysis, assumes an agent can distinguish 

all actions available. Thus a partition relation, n: U-+Z, results in a one-

* . to-one correspondence between U and partitions Z, denoted Z . This extreme 

case of perfect perception is assumed under the tffiA. Alternatively, null 

perception is represented by partition zo containing the whole set of 

controls where an agent is unable to perceive different consequences 

resulting from alternative controls. A general representation containing both 

perfect and null perceptions may be denoted by a class of partitions 9 = (Zal 

aea}, where a is a class of sets. An agent may not be able to distinguish all 

actions that are available, and thus U is partitioned into perceptually 

equivalent act ions· Ularschak, Shipley). 

Analogously an agent may only be aware of a certain class N of 

environments, ~ = {Na.I a.ea} where 9 denotes a r.ieasurable partition of :X. The 

two extret1e cases, perfect and null information,· are denoted by N';: and N° 

respectively. Deterministic MBA codels assume perfect information n'~ as well 

as perfect perception z*. Stochastic HEA models relax the assumption of 

perfect information and allow for alternative partitioning of X associated 

:~ 
with Z . MEA models incorporating risk aversion with unknown preferences 

further relax the assumptions on perceptions. A set of risk efficient 

outcomes may be identified indicating the lack of agent's ability to perceive 

significant differences among outcomes within the set. However lack of agent 

perceptions may be associated with behavior other than risk aversion (Musser 

et al.). X-efficiency provides a foundation for investigating these 

alternative behaviors ~hich result in the partition of Za. Thus the structure 
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of the perceived information available to an agent is the pair of partitions 

Definition: A partition Za is defined to be finer than an alternative 

partition z13 , if and only if for every !Ja e Za there exists n13 e z13 such that 

An analogous definition may be stated for partition Na· Increased 

fineness conveys the intuitive idea of being more perceptive or having more 

infor1nation. Thus improved perception and increased information of a process 

results in a finer partition of Za and Na, respectively. The decision problem 

is a situation iu which an agent's knowledge is limited to inadequate 

partitions, Za and No., a payoff relation f.t: Za.• Na~R, and belief about ·t. All 

possible lack of knowledge is considered in this model: imperfect perception 

and inforu1ation; the inability to determine the relation among actions, 

states and outcome; and limited determination of environmental occurrence. 

Such a formulation is termed bounded rationality by Simon (Shipley), and 

characterized by a lack of computational capacity resulting in inadequate 

information. Lack of knowledge concerning the relevant outcone partitions of 

Za and Na limits an agent's ability to behave rationally. This break among 

actions, states, and outcomes may lead to a fundamentally different model of 

behavior than that of the MBA. If Za and. Na are coarse or if assumptions 

concerning the domain of Na are wrong, employing the MBA may not maximize 

behavior. 

Fineness of Z0 and N0 

* -In a temporal context, denote Rt as the maximizing behavioral payoff in time 

t, the discrepancy between Rt* and realized payoff in time t, Rt, is St= Rt* 

- Rt. The MBA suggests that some type cf updating procedure ,d.11 be el:lployed 
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which increases the fineness of partition Za and Na, and thus reduces this 

discrepancy, However, the partition Za or Na nay not become finer if the 

discrepancy is below a certain threshold level K. Akerlof z.nd Yellen 

attribute this behavior to small differences in utility related to St 

whereas Gilad et al. cite cognitive dissonance as a possible explanation, Any 

discrepancy, St, will arouse cognitive dissonance Dt = f(St), where f')O for 

St>K. Cognitive dissonance activates an information filter 

I == ro if 

( 1 if 

If the dissonance is smaller than K, the filter blocks the dissonant 

information from influencing the partitions of Za and Na. An agent avoids or 

discounts unsupportive information regarcing current partitions. The 

partitions Za and Na are a function of K. Agents balance the cost of 

continuing to block dissonant information with e~pected benefits of self-

image or reduced.mental costs. Thus cognitive dissonance blocks out 

information that economists nay consider relevant and distorts perceptions of 

information that is allowed. This results in coarser partitions of Za and Na 

leading to bounded rationalit~ 

Don.ain of Na 

The t.IBA may not be followed even if cognitive dissonance or other forms of 

bounded rationality do not block perfect perception. As stated by Iley, if tne 

assumptions an agent ~akes concerning the domain of a partitioned environment 

Na, do not contain the actual state of the environment, e, then the MDA will 

not lead to a true maximum. In a stochastic setting, an agent typically will 

not know e, nor the dimensionality of X. For the MBA an agent must specify a 

Na which does in fact contain e. The MBA requires that agents know e e Na. 

This requires that Na have s~fficient domain to guarantee that e e Na is 
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true. Noti::::i.g the m1l~now11 nature of e and :X:, this may :result in No. possessing 

a much larger domain than necessary and having a dimensionality considerably 

greater than X. In this case the MBA may be inefficient in te1.1ns of the large 

information reqnirements for :raodeling agent behavior. 

Alternatively, agents may choose a simpler nethod which Hey terms sub­

optimal behavior. An agent does not consider a large domain for Nu, but 

instead specifies Na sufficiently small to be able to maximize behavior with 

the :MBA if es Na. This behavior is analogous to dynamic optimization 

problems where Na is based on a vector of state variables constrained to 

consider only the major environmental states of the process (Burt). However, 

in the presence of computational cost, the optimal degree of Na is an open 

question. 

An alternative to the MBA is to assuue agents behave reasonably (Hey). 

Agent behavior in many cases is rule governed by intuition, heuristics, or 

other adaptive mechanisms (Day, 1975). As suggested by Iley, adaptive 

mechanism behavior may be preferable because the scope for learning is 

limited, particularly in the presence of computational cost. As a process 

proceeds, agents will expand their information base which reduces 

uncertainty, and thus, the probability of a mistaken response. However, 

agents' behavior will not converge towards MBA behavior as the information 

base increases through time. Instead adaptive mechanism behavior is generated 

in which an agent must ignore actions which are appropriate for only rare or 

unusual situations, excluding actions which may enhance perfor~ance u~der 

certain conditions. This is generally in conflict with assumptions in 

economic theory where it may be expected that as agents' information base 
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increase they move toward tIBA behavior (Pingali and Carlson, Crawford, 

Huffman). 

Application 

Previous pest management research has focused on dete:::mining the econo1aic 

threshold; that level of pest density which warrants a specific control 

action (Headley). Analytical 1aodels of the pest-crop syster.i introduced MBA 

techniques into threshold determination (Hall and Norgaa:n:.i, Shoemake:.:-). These 

cooplex techniques were designed to :replace simpler decision rules developed 

by biological scientists commonly referred to as action thresholds (Moffitt 

et al.). Action thresholds may generally be defined as the minimum pest 

density where it is profitable to apply a fixed recommended dosage rate. In 

practice, the coarseness of Za and Na have prevented complex decision 

techniques from replacing simpler decision rules. Empirical evidence 

suppo1:ting this conclusion is presented by Hail and 1.Ioffitt, who determined 

that relative to a NBA solution little net revenue is lost by employing a 

simpler decision rule. 

Thus for agents concerned 'i/ith managing pests as well as for policy 

considerations, the issue is determining the robustness of action thresholds 

and how they compare with alternative decision rules. Specifically, a rule 

developed through an adaptive mechanism in which a pre-specified control 

action is i~plementcd notwithstanding the contemporaneous state of N. 

Additionally, due possibly to cognitive dissonance, agents filay not strictly 

follow action thresholds but modify threshold recom~endations to include 

their personal perceptions of the production system. 
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:Uoclcling these three alternative hypoti:.eses concerning agent pest 

management behavior: strict action threshold compliance, inertial behavior, 

and adaptive mechanism behavior, requires detailed information on the 

environmental state X. Process models for crop production systems have in the 

last two decades provided expanded information on the environmental state of 

the crop, X. Although these simulation models have generally increased the 

fineness of Na, limited effort has been directed at modeling agent 

perceptions concerning the fineness of Za• 

The Soybean Integrated Crop Management (SICM) simulator (Wilkerson et 

al.) is employed to model the three alternative hypotheses concerning agent 

pest management behavior. Four major components comprise the SICM model. 

These include a soybean crop growth model with a soil water balance routine; 

insect population growth and crop damage models including the velvetbenn 

caterpillar, a defoliating pest potentially damaging to soybeans in the 

Southeast during August and September; the southern green stinkbug, a late 

season pod and seed feederj and the corn earworm, a pod or seed feeder 

depending on timing of adult inflnxj a pesticide tactics component; and an 

economic component which provides for net returns above variable costs as a 

measure ot success of agent behavior, 

Three pest control strategies ~ere modeled, corresponding to an adaptive 

mechanism, strict action threshold compliance, and deviation from strict 

compliance, the three behavioral hypotheses. The adaptive mechanism behavior 

relies on an application of permethrin on August 15th regardless of pest 

populations in the field. In addition, a later season control of methyl 

parathion to combat stinkbugs, is applied on Septe~ber 10th. Strict 

compliance behavior represents an insecticide rppiication on the day 
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following an extension :recommendation to treat. A control action is initiated 

when daily updated insect populations and/or defoliation levels reach action 

threshold levels and are observed during the course of a once weekly scouting 

interval. Deviation from strict corapliance, inertial behavior, is modeled 

after the results of a study by Hatcher et al., which found that soybean 

producers tend to follow pest management extension recoc~endations only 

sporadically through a season and may delay a chemical control up to a week 

after a recommendation to treat. Specifically, producers adhered to extension 

guidelines 69 percent of the time an action threshold was reached. When a 

recotnruendation was followed, a treatment was applied within a three day 

window of econonic advantage 41 percent of the time. In the remaining 

instances, a control was applied after this period, up to seven day:; post 

threshold. When extension guidelines were ignored, producers applied an 

insecticide according to adaptive mechanism behavior, the pre-specified 

calendar date control. 

The SICM model was modified to incorporate Georgia Coastal Plain soil 

conditions and simulated yields were validated (Hood et al.). Fifteen insect 

infestation and influx timing patterns as well as probability of occurrence 

were identified from data collected at the Coastal Plains Experiment Station, 

Tifton, Georgia for the years 1972 through 1984. The model was run for each 

of nine wea th.er years (197{-1983) under every insect influx and timing 

scenario for both the strict compliance and adaptive aechanism strategies. 

Thirty iterations of each insect scenario for all weather years were run to 

model inertial behavior, incorporating a random number generator to initially 

model compliance and then timeliness of threshold adherence. The 15 influx 

patterns for each type of behavior were aggregated into three infestation 

levels, light, moderate, and heavy, based on their probability of occurrence. 
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Finally, the three aggregated infestation levels were combined, again based 

on probability of occurrence, to derive overall =esults for the different 

behaviors. 

Results 

Expected net returns per acre, variance, and stochastic dominance results for 

the three alternative behaviors under light, moderate, heavy, and overall 

infestation levels are provided in table 1. Adaptive mechanism behavior 

provides for higher expected returns under both light and noderate 

infestations. However, strict compliance behavior under heavy infestations is 

both expected value and EV dominant. These results underscore the virtue of 

extension guideline recommendations under heavy pest infestations. A 

relatively early season heavy influx of insects initiates an early control, 

which, given the residual action of the pesticide used in this study, 

provides protection for generally the remainder of the crop's pcricd of 

susceptibility. Modifying guidelines (inertial behavior) under conditions in 

which extension recommendations were developed to provide optimal outcomes, 

results in diminished returns. Inertial behavior only dominates strict 

compliance behavior, in terms of expected value, for a light infestation. 

This reflects more the success of following adaptive mechanism behavior in 

those instances when guidelines were completely disregarded, than the 

desirability of a delayed compliance regime under light infestations. Based 

upon these results, delaying a cont=ol, if in fact a producer has decided to 

follow an extension control call, is a poor producer decision. 

Similar results are apparent when stochastic dominance criteria are 

er;1ployed. Adaptive mechanism is either first or second degree stochastic 
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Table 1. Expected Amrnal Net Returns Per Acre and Stochastic Donina:nce 
Results 

Infestation 
Level 

Light 

Uoderatc 

Heavy 

Over-All 

Light 
Strict 
Compliance 

Inertial 

.Moderate 
Strict 
Compliance 

Inertial 

Heavy 
Strict 
Compliance 

Inertial 

Over-All 
Strict 
Conpliance 

Inertial 

Strict 
Cor:rpl iance 

137 .90 
(7445.44)a 

45.07 
(7329.26) 

48. 55 
(7276.83) 

44.91 
(8300.11) 

Variance in the parentheses. 

Behavior 

Inartial 

t61.39 
(8639.84) 

35.85 
(7271. 31) 

27.15 
(8205.15) 

41. 72 
(8715.28) 

1 

-1 

-1 

0 

a 

1 
2 

-1 
-2 

0 

Indicates column dominates row behavior by FSD. 
Indicates column dominates row behavior by SSD. 
Indicates row dominates column behavior by FSD. 
Indicates row dominates column behavior by SSD. 
Indicates neither behavior dominates by SSD. 

Adaptive 
Mechanism 

$72. 02 
(8391.95) 

56.85 
(8215.34) 

45.37 
(9065.50) 

59. 43 
(9333.48) 

1 

1 

2 

1 

-2 

2 

2 
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dominant (FSD or SSD) over the other two behaviors except for strict 

compliance under heavy infestation. 

These results suyport the hypothesized relationships developed by licy 

and Eeiner. Specifically, stzict con1pliuncc ~Nculd enhance returns under.' a 

heavy infestation which would, hovever, necessitate a direct departure from 

rule-governed behavior. Considering the overall probabilities for specific 

insect infestations, adaptive mechanism dominates both strict co~pliance and 

inertial behavior by SSD. The relatively high variance associated with 

adaptive mechanism behavior indicates its failure to mitigate effects cf pest 

densities on returns in high pest density years. However this failure is 

completely compensated by higher returns in other years. The relatively low 

probability, less than ten percent, of heavy simultaneous infestation of all 

three pests in any year results in the overall dominance of adaptive 

mechanism behavior. This result is consistent with Hey's hypothesis. The 

inferiority of the overall result for strict compliance indicates that Na 

employed in the development of these extension recommendations may not.have 

contained e. In fact, this is consistent with the general philosophy of 

extension in providing conservative action thresholds (Adams). Thus these 

recommendations are not considering the full domain of Na. An implication 

substantiated by the relatively poor performance of strict compliance under 

light infestations. 

Implic:ttions 

X-efficiencies suggest alternative policy recommendations in contrast to the 

MBA, and may in comparison be relatively easy to adopt by agents. Instead of 

continuing to develop complex techniques for determining the economic 

threshold based on the tIBA, a more promising avenue of research may be to 
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investigate modifications in adaptive mechanism behavior. Thus, rather than 

suggesting a complete switch froni current practices, an alternative is to 

recommend possible changes to existing adaptive behavior. This approach is 

consistent with evidence by Byerlee and de Polanco that agents will generally 

not adopt a complete package of new technologies but instead adopt in a 

sequential manner. 

For pest management, :MBA would require increased effort in e:i:panding Na 

employed in determining strict compliance for light and moderate 

infestations, followed by a recommendation to agents that requires a complete 

switch from the adaptive mechanism to strict compliance. Alternatively, X­

efflciency techniques would investigate possible n:odifications of appropriate 

adaptive mechanisms. Generally, the mechanism of pre-determined :pesticide 

applications would be recommended. However, when heavy regional infestation 

occurs, a recommendation to closely monitor a crop would be suggested. Then 

if conditions warrant, a modification suggesting a possible change in 

application material and timing in the adaptive mechanism could be 

recommended. This approach does not require a complete switch in tec:hnologies 

as suggested by MBA. Agent's resistance to changing behavior is not as 

formidable compared to the MBA, allowing this X-eff ic iency recommendation a 

greater probability of adoption. 
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