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Does Spatial Dependence Depend on Spatial Resolution? — An
Empirical Analysis of Organic Farming in Southern Germany

Ist die raumliche Abhangigkeit von der raumlichen Auflosung
abhangig? Eine empirische Analyse des okologischen Landbaus

in Suddeutschland

Eva Schmidtner, Christian Lippert und Stephan Dabbert
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Abstract

Assuming that agglomeration effects do matter in
organic farming we analyse (a) the difficulties due to
data aggregation arising when trying to statistically
verify neighbourhood effects and (b) whether results
can be confirmed at different spatial resolutions. Ex-
plaining the spatial distribution of organic farming in
southern Germany (2007) we compare results of spa-
tial lag models at two measurement scales. The results
suggest that essential factors determining the decision
to convert from conventional to organic farming are
found at different spatial resolutions. The results at
the lower spatial resolution are not artificially gener-
ated through the aggregation process in this case,
strengthening the relevance of previous studies.
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effects; spatial econometrics

Zusammenfassung

Unter der Annahme, dass Agglomerationseffekte im
okologischen Landbau von Bedeutung sind, untersu-
chen wir (a) die Schwierigkeiten, welche auf die Ag-
gregation von Daten zuriickzufiihren sind und dann
auftreten, wenn Nachbarschaftseffekte statistisch nach-
gewiesen werden sollen und (b) ob Ergebnisse auf
verschiedenen rdumlichen Ebenen bestditigt werden
konnen. Wir erkliren die rdumliche Verteilung des
okologischen Landbaus in Siiddeutschland (2007) und
vergleichen die entsprechenden Ergebnisse erweiter-
ter autoregressiver Modelle auf zwei rdumlichen Ebe-
nen. Die Ergebnisse deuten darauf hin, dass wesentli-
che Faktoren, die die Umstellungsentscheidung von
der konventionellen auf die okologische Wirtschafts-
weise beeinflussen, auf verschiedenen rdumlichen
Ebenen nachgewiesen werden konnen. Die Ergebnisse
fiir die geringere rdumliche Auflosung werden in die-

sem Fall nicht kiinstlich durch den Aggregationspro-
zess erzeugt, was die Aussagekraft vorheriger Studien
stdrkt.

Schliisselworter

Okolandbau; riumliche Verteilung; Agglomerations-
effekte; raumliche Okonometrie

1 Introduction

Earlier research has combined common location fac-
tors, such as climate and soil, with the concept of ag-
glomeration effects and found — based on aggregated
data — that neighbourhood effects may influence the
spatial distribution of organic farming (BICHLER et al.,
2005, SCHMIDTNER et al., 2012). Background to these
finding was economic theory: SCHMIDTNER et al.
(2012) developed a theoretical model linking the deci-
sion to convert from conventional to organic farming
to factors of different spatial characteristics.

BICHLER et al. (2005) and SCHMIDTNER et al.
(2012) both operated at the German county level, an
administrative unit covering different areal sizes,
number of farms and utilized agricultural areas
(UAA). The agricultural decision-making and produc-
tion processes, however, are assumed to operate at the
farm-level. Thus, an analysis at a high spatial resolu-
tion such as the farm-level would be preferable in the
context of analysing potential agglomeration effects in
organic farming. Until now the data availability re-
stricted the spatial analyses to the county level. Im-
proved data availability now allows us to analyse data
at a higher spatial resolution, the community associa-
tion level, and to compare the results to another meas-
urement scale, the county level (based on the same
original data). Thereby, we intend not only to adjust
the analysis but also to critically question the previous
results based on spatial entities as we believe that
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deepening scientific research is only possible while
continuously testing the appropriateness of the basic
scientific approach and data used. We hypothesize
that agglomeration effects become manifest at both
measurement scales and that results at a lower spatial
resolution are not merely artificially generated through
the aggregation process but can be supported by a
comparable analysis at a higher spatial resolution for
the organic farming sector.

In 2007, nearly half of the approximately 375 000
German farms are located in Bavaria and Baden-
Wiirttemberg (the two southern federal states which
are central to this study), managing about 25 per cent
of the 17 million hectares UAA in Germany. With an
average farm size of about 25 ha per farm the southern
farms are relatively small (German average: 48 ha per
farm). The southern farms are characterized by a rela-
tively high grassland share in total UAA; in Baden-
Wiirttemberg, the share of permanent crops (like
wine) in total UAA is above the German average. On
arable land, cereals like wheat and barley are domi-
nant; in Bavaria also fodder crops such as silage

Figure 1.
association level (2007)

maize are important. Regarding animal husbandry,
Bavaria is characterised by a high number of cattle
(especially dairy cows) per UAA. Some regions in
Baden-Wiirttemberg (like the county Schwibisch
Hall) have a high density of pigs, especially breeding
sows (SAEBL, 2010). Organic farming is an interest-
ing case as it is distributed quite unevenly within
Germany and the southern federal states of Bavaria
and Baden-Wiirttemberg (Figure 1). About 56% of all
German organic farms are located in Bavaria and Ba-
den-Wiirttemberg (BLE, 2009). We conduct the em-
pirical analysis for these two federal states in 2007.
Due to data availability, we apply a cross-sectional
approach at the selected measurement scales. Thus,
the empirical model analyses the share of organic
farms in all farms at a given point in time and at two
different spatial resolutions.

Spatial data has special characteristics, such as
the multi-directional relationship of spatial units, so
we account for spatial effects in our analysis. Proba-
bly the most famous definition of spatial effects is
given by the first law of geography in which ‘every

Spatial distribution of organic farming in Bavaria and Baden-Wiirttemberg at the community
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thing is related to everything else, but near things are
more related than distant things’ (TOBLER, 1970:
236). Thus, strong relationships are expected among
variables that are located nearby. ANSELIN (1988)
distinguishes two kinds of spatial effects: spatial het-
erogeneity and spatial dependence. While the term
spatial heterogeneity refers to (explanatory) variables
that differ in space (like soil or climate conditions),
the term spatial dependence specifies a functional
relationship between events at different places in
space (for a more detailed discussion see also LESAGE
and PACE, 2009). Agglomeration effects result in spa-
tial dependence. In the following we suppose positive
spillover effects in space between farms; we expect
these effects to overcompensate possible negative
spillovers like competition for special inputs. These
effects can be direct (e.g., because of direct communi-
cation between farmers) or indirect (e.g., due to local
institutions or markets that are brought about or im-
proved when many neighbouring actors have the same
business). Our hypothesis is that in addition to the
classical factors that determine the location of agricul-
tural production, agglomeration effects also influence
the spatial distribution of agricultural activities like
organic farming. In other words: different incidences
of organic farms in space may be caused by different
natural and other location factors (i.e., spatial hetero-
geneity) and/or by the beneficial (self-enhancing)
effects of higher shares of organic farms (i.e., spatial
dependence).

Beyond that, ANSELIN and GETIS (2010) note
that spatial effects can also be due to the structure of
spatial measurement units, i.e., the size, shape and
configuration of spatial units may influence the prob-
ability of spatial dependence in nearby units. Most
geographers agree that ‘scale matters’. However, the
conception of geographic scale varies across disci-
plines and research objectives. While using and com-
paring results at different spatial resolutions are com-
mon practices in the geosciences (TAYLOR, 2004), a
comparable systematic approach is hardly to be found
in agricultural economics, particularly for the organic
farming sector. GOODCHILD and PROCTOR (1997)
state that the term scale is often ambiguously used to
refer to two aspects of geographic information: the
level of detail and the extent of geographic coverage.
While GIBSON et al. (2000) generally use the term to
refer to the spatial dimension used to measure any
phenomenon, ATKINSON and TATE (2007) refer to the
scales of spatial variation that are present in data and
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result from measurement. LAM (2004) established a
classification of scale ‘types’ including, for example,
the observational scale (referring to the spatial extent
of a study area), the measurement scale (the resolu-
tion) and the operational scale (referring to the spatial
extent where geographical processes take place). Ac-
cording to SMITH (2004), the scale of spatial units can
be seen as naturally given or as a methodological as-
pect of research. The latter aims at defining the appro-
priate spatial scale for a research problem or compar-
ing results at different spatial resolutions. Another
issue, called the Modifiable Areal Unit Problem
(MAUP), is that results can differ between analyses at
different spatial resolutions (OPENSHAW, 1984; see
also WONG, 2009). Even more, the results may re-
verse in some cases, such as spatial examples of
Simpson’s Paradox (SIMPSON, 1951). Thus, the actual
relevance of results based on aggregated data is argu-
able. In this study, we treat scale as a methodological
aspect of research. To see whether our results still
hold when the data is less aggregated, we will conduct
an empirical analysis at two different measurement
scales using the terminology introduced by LAM
(2004).

Another issue that might affect an empirical
analysis of organic farming is the conceptualization of
the spatial relationships of spatial units through spatial
neighbourhood matrices. According to ANSELIN
(2002), the determination of such matrices is some-
what arbitrary. Recently, there have been various ap-
proaches to specifying the spatial weights matrix (see,
e.g., GETIS and ALDSTADT, 2004; ALDSTADT and
GETIS, 2006; FERNANDEZ-VAZQUEZ and RODRIGUEZ-
VALEZ, 2007; KosTov, 2010). Nevertheless, there is
no formal guidance for selecting the ‘correct’ spatial
neighbourhood matrix (LEE, 2008). As the real spatial
interdependences and interaction structures of organic
farms are not known, we analyse, compare and dis-
cuss different specifications of the spatial neighbour-
hood matrix. These specifications are based on the
data and theoretical considerations regarding the
structure of spatial dependence in the organic sector.

In the remainder of the article, we frame the con-
cept of agglomeration effects in organic farming.
Then, we explain the utilization of different spatial
resolutions and neighbourhood matrices in the context
of our study. After presenting our econometric model
in section 4, we introduce the data used and variables
constructed. Next, we present and discuss the results,
and finally, we draw conclusions.
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2 Concept of Agglomeration
Effects in Organic Farming

In the new economic geography (KRUGMAN, 1996;
FUIITA et al., 1999), factors such as labour pooling,
technology spillovers and backward and forward link-
ages in production may increase external economies
of scale and, thus, favour the concentration of eco-
nomic activity. While some of these factors causing
agglomeration, such as knowledge spillovers or natu-
ral advantages, may take place only at a narrow opera-
tional scale, others, such as input and output linkages,
may operate at a wider spatial extent (GIACINTO and
PAGNINI, 2008). Thus, the adoption of organic farm-
ing practices could be due to different agglomeration
patterns, depending on the operational scale.

We assume that easy interaction with organic
farmers due to local proximity and a strong institu-
tional and market network positively influence the
propensity of conventional farmers to convert to or-
ganic farming. Besides, also negative edge-effect ex-
ternalities like emissions of pesticides or genetically
modified pollen from neighbouring conventional
fields (cf. PARKER and MUNROE, 2007) are likely to
be less frequent in case of a high share of organic
farmers within a certain region which may facilitate
the conversion to organic farming for further farmers.
Such neighbourhood effects (positive agglomeration
effects) may be one reason for organic agglomeration
in space. Generally, the decision to convert to organic
farming can be seen as an investment problem. Be-
yond the expected profit, this decision is influenced
by issues such as the transaction costs of converting
from one farming type to another and possibly by the
additional utilities associated with organic farming
(cf. SCHMIDTNER et al., 2012).

Analysing organic land conversion in Greece,
GENIUS et al. (2006) suggest that the provision of
information has an important positive influence on the
adoption of organic farming. At a high spatial resolu-
tion such as the community level, direct communica-
tion between farmers may be one essential source of
knowledge exchange. The attitudes of farmers to-
wards alternative agriculture and the resulting ac-
ceptance of organic farmers in the social environment
might determine the location of organic production in
space. It is also likely that the common use of ma-
chinery such as combine harvesters' is facilitated if

' Due to the relatively small farm sizes in Germany, ma-

chinery such as combine harvesters are quite often shared

organic farms that want to commonly use machinery
are located nearby. At a lower spatial resolution such
as the county level, other factors might be of im-
portance. Analysing the Danish pig sector, LARUE et
al. (2011) state that spatial technical externalities may
arise from the diffusion of information and knowledge
through, for example, farmers’ associations. Also, the
availability of input and output markets as well as the
associated infrastructure may be relevant to the geo-
graphic concentration of organic farming in Germany
assuming that transportation costs are relevant
(THUNEN, 1826). In addition, extension services of the
German organic farmers’ associations or veterinary
services might work on a large scale. Furthermore,
proximate organic processors, such as organic dairy
enterprises, may facilitate the selling and further pro-
cessing particularly of perishable organic products
like milk (BICHLER, 2006). However, competition in
input and output markets, such as access to agricultur-
al land, could have a dispersal effect on agglomeration
(LARUE et al., 2011).

Considering the various factors potentially caus-
ing agglomeration of organic farming, it is challeng-
ing to assess the importance of particular agglomera-
tion patterns. Neighbourhood effects may not only
differ but also span spatial measurement scales. An
associated problem is the availability of data that is, in
our case, bound to administrative units. Thus, we can
only approximate the situation of single farms by us-
ing available aggregated data at the selected spatial
levels.

One reason of the differing effects of explanatory
factors at varying degrees of data aggregation can be
Simpson’s paradox (cf. the corresponding example
and Figure Al in the Annex). Another didactic exam-
ple to illustrate one challenge arising for spatial anal-
yses is presented in Figure 2 which shows the spatial
distribution of the density of organic farms, i.e., the
number of organic farms per square kilometre for a
constructed region and two measurement scales.

For this example we assume that there are not
any relevant explanatory variables but positive ag-
glomeration effects in the closer vicinity (indicated by
a first order neighbourhood matrix). The underlying
data has been generated and classified into categories
by us. It is further assumed that no significant spatial
concentration of organic farms can be found at the

and used by several farmers. An organic farmer using a
harvester previously used on a conventional field risks
to ‘contaminate’ his crop with pesticide residues as com-
bine harvesters are difficult to clean.
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Figure 2.  Spatial distribution of the density of organic farms at two measurement scales
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Source: authors’ own presentation based on data generated by the authors

lower spatial resolution (county level), but rather, is
found within particular counties (at the higher spatial
resolution, the community level).” Such a spatial pat-
tern could be due to important benefits such as the
common use of machinery or other assets but little or
no beneficial spillover effects at the spatial scale of
the counties. The global Moran’s I (ANSELIN, 1988) is
calculated to determine whether spatial autocorrela-
tion of organic farms exists. As presented in Table 1,
the global Moran’s / test indicates a positive and high-
ly significant spatial autocorrelation only at the com-
munity level. At the county level, no spatial autocorre-
lation is indicated and, thus, no first-order spatial au-
toregressive model could be estimated at this spatial
level. Hence, the uneven spatial concentration of or-
ganic farms in the communities cannot be taken into
account in the analysis at the county level. This points
us to a general problem: while using aggregated data,
information like the spatial distribution of aspects at a
higher spatial resolution is lost.

To conclude, the two examples support the con-
cerns about the relevance of results based on aggre-
gated data. To address that issue, we compare results
at different spatial measurement scales.

? The example could also be translated to other issues

such as the density of residents or firms.

3 Spatial Resolution and
Spatial Neighbourhood Matrix
Determination

There exist studies on the organic sector that use spa-
tial econometrics to analyse the spatial distribution of
organic farming (cf. BICHLER et al., 2005; PARKER
and MUNROE, 2007; SCHMIDTNER et al., 2012). How-
ever, to our best knowledge, there is no study in the
field of spatial econometrics that analyses the spatial
distribution of organic farming at different aggrega-
tion levels. As results might differ between different
spatial resolutions (OPENSHAW, 1984), we aim to
analyse spatial effects at different measurement
scales. The lowest spatial resolution that offers suffi-
cient explanatory variables for the analysis is the
community association level. We additionally account
for a lower spatial resolution (the county level) that
consists of several community associations.” In the
year 2007, Bavaria and Baden-Wiirttemberg were
organized into 1 886 community associations and 140
counties. However, some counties are very small,
covering only the area of a city (Table 2 in section 5).

3 Thus, the dataset is based on NUTS 3 level (county-

level) (NUTS being the Nomenclature of Territorial Units
for Statistics, established by Eurostat).
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Table 1.  Descriptive statistics and diagnostic test for spatial dependence for the number of organic
farms per km’ (spatial weight: first order contiguity matrix W)
N Mean Std Dev Median Min Max Moran'sI  p-value
Community level 625 2.19 1.63 1.80 0.05 9.80 0.37 0.00
County level 25 2.19 0.59 2.18 1.27 2.96 0.00 0.36

*The data relate to the fictitious example presented in Figure 2.

Source: authors’ own calculations based on data generated by the authors

While 24% of all counties are such ‘city counties’,
they only cover 3% of Bavaria’s and Baden-
Wirttemberg’s total land area. In the case of the city
counties, the regional metropolis and its surrounding
districts are separated artificially, while in other re-
gions the regional metropolis is part of the county.
Additionally, the city counties often have only one
neighbour (the surrounding district) and little agricul-
ture. To avoid the problems associated with very
small counties and to obtain more spatially uniform
units, the city counties are integrated into larger neigh-
bouring counties based on a systematic approach de-
veloped by the Federal Agricultural Research Centre
(OSTERBURG, 2005). Thereby, the number of counties
is reduced from 140 (original counties) to 106 (inte-
grated counties, further on just called ‘counties’).

To capture spatial aspects and represent spatial
relationships at the two measurement scales, a spatial
neighbourhood matrix W is used that indicates the
relative position and proximity of spatial units. To
determine the spatial connectivity we draw on two
approaches based on geographical information: conti-
guity (adjacency) and distance-based neighbourhood
matrices (ANSELIN, 1988). The latter includes inverse
distance-based neighbourhood matrices and matrices
identifying the k-nearest neighbours. Because it is
impossible to estimate the spatial neighbourhood ma-
trix W, we take it as exogenously given (cf. ANSELIN,
2002). To examine the stability of the estimation re-
sults we try out different specifications of W.

The spatial neighbourhood matrix is an N x N
matrix with the weights w;. To facilitate the interpre-
tation of the estimated coefficients, the neighbourhood
matrix W is row-standardized (see ANSELIN, 1988) for
all approaches by the following weighting scheme:

adl (1)

wi* =

with

i = aspatial unit,

Jj = another spatial unit,

N = N; = N; = number of spatial units.

Probably the most common approach in spatial
econometrics is to derive a contiguity-based neigh-
bourhood matrix from the administrative units given,
i.e., adjoining spatial units are defined as neighbours.
We determine spatial neighbours according to the
queen criterion. Thus, spatial units that share a com-
mon border or a vertex are treated as neighbours. The
weights of the contiguity-based neighbourhood matrix
are defined as follows:

2

{1, if iand jhave a common border or vertex
wij =

0, otherwise

We consider first and second order neighbours.*
In the case of the first order neighbourhood matrix
W, the weights are assigned according to Condition
(2). For W, the first and second order neighbours of
district i are considered and treated equally. A sche-
matic integration of small city counties into neigh-
bouring counties (integrated counties) results in a
much more uniform neighbourhood matrix than the
matrix for the original counties. This is another reason
to use the integrated counties for the analysis.

The distance-based approach of defining a spa-
tial neighbourhood matrix includes inverse distance-
based neighbourhood matrices and matrices identify-
ing the k-nearest neighbours. It is assumed that the
strength of the spatial relationship declines as distance
increases between spatial units (GETIS, 2010). Both
approaches share the challenge of determining the
appropriate distance or number of neighbours to en-
sure that every district i # j has at least one neighbour.
Otherwise, the spatial neighbourhood matrix would be
incomplete and information of artificially generated
‘island units’ could not be considered in the analysis.

According to LEE (2008), the critical distance
approach is appropriate when spatial interactions are
expected to decrease with distance until they are ab-

First order neighbours have a common border with the
respective district. Second order neighbours have a
common border with the first order neighbours (except
the respective district itself).

180



GJAE 64 (2015), Number 3

sent beyond a certain critical distance. By defining a
critical distance, an area of influence (‘moving win-
dow’) is imposed.

The distance-based neighbourhood matrix is defined as:

—, if the distance (dist;;)
dist,,

wij =1 between i and j is less (3)

than a critical distance

0, otherwise

The neighbourhood matrix identifying the k-nearest
neighbours is based on the following condition:

1, if j is one of i’s nearest neighbours,

wij=< wherek > 0

“

0, otherwise

We assume that interactions between farmers de-
cline with increasing distance. However, there is no
theoretical evidence for a certain critical distance for
our research problem. NEGREIROS (2009) notes that
the distance-based neighbourhood approach is blind to
obvious natural neighbours and suggests combining it
with the contiguity-based neighbourhood approach to
identify direct neighbours. To tackle that point, we
evaluate the first order contiguity-based neighbour-
hood matrix and use the information gained to estab-
lish a framework determining the distance-based
neighbourhood relationships. The first order contigui-
ty-based neighbourhood matrix of the community
associations shows an average number of links of 5.8;
the most connected region has 24 links. The largest
distance between two adjacent community associa-
tions is 26,320 m. The distances are calculated based
on the geographical centroid of each spatial unit and
measured in meters. We now base the selection of
relevant distances on at least some plausibility: we
draw on the spatial characteristics like connections to
other regions and distance between two adjacent
communities. Thus, we use several matrices at the
community association level: a neighbourhood matrix
identifying the 24 nearest neighbours (W**"), a re-
stricted inverse distance-weighted neighbourhood
matrix (W) considering distances up to 30 km
(rounded up from 26.32 km) and an unrestricted in-
verse distance-weighted neighbourhood matrix
(W) The matrix W™ contains the row-standard-
ized inverse distance of each centroid of district j # i
to the centroid of district i. As the maximum distance
of 26.32 km between two community associations
exists only in one case, a lower critical distance

(W) s also analysed. As presented in Figure A2
(Annex), the definition of different critical distance
bands results in quite different spatial connectivities
of the community associations. For the counties, only
the first order, second order and inverse distance-
weighted neighbourhood matrices are considered.
Using the k-nearest neighbours approach ensures that
every spatial unit has the same number of neighbours,
regardless of the size of the spatial units. However,
the corresponding weighting matrix is asymmetric
(ANSELIN, 2002). That means if j is a neighbour of i, i
does not have to be a neighbour of j depending on the
distances to other neighbouring units. Thus, the k-
nearest neighbour approach would be especially use-
ful to account for specific aspects such as trade rela-
tionships in the organic sector. Even if corresponding
data is not available, we use the k-nearest neighbours
approach as an alternative way of representing spatial
relationships based on distance.

4 Econometric Model

The alternative specifications of the spatial neigh-
bourhood matrix W are implemented in the economet-
ric model we use for our analysis. As also described in
SCHMIDTNER et al. (2012), the general version of our
model is given by the following equations (cf. ANSELIN,
1988; LESAGE, 1999):

y=pWy+XS+u &)
u=AWu+eg (6)
with &~ N(0,06°1,)

and

y = vector containing the share of organic farms

within all farms in the selected administrative
units in Bavaria and Baden-Wiirttemberg;

X = matrix containing the observations for m inde-
pendent variables for every administrative unit;

W = row-standardized spatial weight matrix;

Iy = identity matrix;

u = vector of the spatially correlated residuals;

= vector of normally distributed errors (mean = 0,

variance = ¢°);

[ = vector containing the regression coefficients for
the explanatory variables;

p = spatial lag coefficient reflecting the importance
of spatial dependence;

A = coefficient reflecting the spatial autocorrelation
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As we use row-standardized spatial weighting matri-
ces W the estimated coefficients p and 4 will usually
lie between -1 and 1 (theoretically, the lower bound of
p could be less than 1 also in case of row standardiza-
tion, see ANSELIN, 1999: 7f.). A significant spatial lag
coefficient p indicates the possible existence of ag-
glomeration effects resulting in spatial dependence,
whereas a significant coefficient 4 hints at spatial au-
tocorrelation of the residuals u (spatial heterogeneity).
We do not know from theoretical considerations
which spatial effects influence the spatial distribution
of organic farming in southern Germany. However,
previous studies such as BICHLER et al. (2005) and
SCHMIDTNER et al. (2012) indicated that neighbour-
hood effects are very likely to influence the spatial
distribution of organic farming at the county level in
Germany. Thus, we strongly assume spatial lag effects
to be also relevant in our research setting.

Generally, there are four possibilities (resulting in
different models):
(1) p=4=0(common Ordinary Least Squares (OLS)

model);

(i) p #0, 4 =0 (spatial lag model);
(iii) p =0, 4 # 0 (spatial error model) and
(iv) p #0, 4 # 0 (general spatial model).
Next to the theoretical considerations above we draw
on the (robust) Lagrange Multiplier test for spatial
autocorrelation in the residuals from OLS (ANSELIN et
al., 1996) to identify which of the two effects are rele-
vant in our analysis (cf. ELHORST, 2012).

5 Data and Variable Construction

Previous studies such as BICHLER et al. (2005) and
SCHMIDTNER et al. (2012) draw on agricultural data
from the official farm census, which are partly re-
stricted due to data protection legislation and are only
available at the county level for organic farming. Due
to an improved database, we now have access to in-
formation on all 10 934 certified organic farms and
3104 organic processors in Bavaria and Baden-
Wiirttemberg (BLE, 2009). Unfortunately, the precise
location of the farms and processors is also not avail-
able. However, the provided residential postal code is
used to assign the location of the organic farms and
processors to the community associations (DEUTSCHE
POST DIREKT, 2010).

As described in section 3, the analysis is con-
ducted at two measurement scales: the community
association and county level. Due to the data availa-
bility the spatial level of community associations is

the lowest administrative unit at which our analysis
(using several data sources) can be performed. To test
the robustness of spatial models, different specifica-
tions of the spatial neighbourhood matrix are consid-
ered.

The analysis is conducted for the dependent vari-
able share of organic farms (BLE’) in all farms
(ASE’). We need to rely upon this farm related varia-
ble because we do not know the share of organically
farmed land at the community association level. How-
ever, trying to explain the share of organic farms
makes also sense from a theoretical point of view as
several supposed agglomeration effects result from
interactions (communication) between farmers.” The
share of all certified organic farms as provided by the
Federal Agency for Agriculture and Food (BLE,
2009) is calculated from the total number of agricul-
tural farms reported by the official farm census
(SAEBL, 2010). However, the official farm census has
some data restrictions; for example, it accounts only
for farms with more than 2 ha UAA and a certain
number of animals. Thus, only farms fulfilling these
restrictions are represented in the official farm census,
whereas all organic farms are provided by BLE
(2009). As shown in Table 2, this results in the fact
that the maximum share of organic farms (BLE) in all
farms (ASE) exceeds 100% at the community associa-
tion level. This applies to two community associations
and is a statistical artefact of the database. At the inte-
grated county level, the bias is reduced through aver-
aging across the counties.

To capture the availability of and proximity to
(organic) markets the number of residents per km’, the
average distance to the next three agglomeration cen-
tres® (BBR, 2009) and the number of organic proces-
sors per 10 km? (BLE, 2009) are considered. General-
ly, the location of (potential) consumers might influ-
ence the location of organic producers. It is assumed
that a high population density indicates a high demand
potential for (organic) food that might increase result-

> Data source: Federal Agency for Agriculture and Food

(Bundesanstalt fiir Landwirtschaft und Erndhrung, BLE)
(BLE, 2009).

Data source: official German farm census (Agrarstruktur-
erhebung, ASE) (SAEBL, 2010).

Furthermore, at least at the county level there is a strong
correlation between the share of organic farms in all
farms and the share of organically farmed land in over-
all farmed land.

This variable refers to the average travel time in minutes
by car to the next 3 out of 36 agglomeration centres as
defined by the BBR (2009).
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Table 2.  Descriptive statistics for variables of interest at different measurement scales
Mean Min Max
. Community . | Community . | Community )
Variable Year . Counties e Counties o Counties
associations associations associations
Share of organic farms (BLE) in all farms
(ASE) (in %) 2007 5.63 6.60 0.00 1.19 122.58 42.12
Number of residents per km” 2007 259.01 236.59 0.00 70.68 4,216.20 1,661.29
AN GRERE T (DI e T 2007 107.84 106.66 49.60 58.80 172.80 164.40
centres (in min. by car)
Number of organic processors per 10 km? 2007 0.33 0.31 0.00 0.04 7.54 2.36
Share of UAA in the total area (in %) 2007 4423 43.58 0.00 15.08 158.54 68.48
Number of farms (ASE) per km® 2007 1.74 1.67 0.00 0.77 14.75 3.06
Number of farms (ASE) per km*> UAA 2007 4.23 3.94 0.00 2.33 38.74 8.70
Total annual precipitation (in cm) 1961-1990" 91.80 92.96 57.08 63.00 203.01 173.12
Mean annual temperature (in °C) 1961-1990 7.89 7.83 5.59 6.32 10.37 9.80
Soil-Index 1981, 1986° 47.92 47.73 14.39 27.34 87.00 65.59
Share of water protection areas in the 2007 325 991 0.00 0.65 99 84 36.72
total area (in %)
Share of nature conservation areas in the 2007 1.80 217 0.00 0.03 9932 3482
total area (in %)
Share of votes cast for the Green Party inall | 5505 5090 8.16 9.14 0.00 416 2735 19.86
valid votes cast (in %)
Avera%e size of the community associations 2007 5638 177 339.07
(in km®)
Avera%e size of the integrated counties 2007 1.003.20 323.96 2.071.27
(in km®)
Average size of the original counties (in km?) 2007 759.56 35.45 1,971.48

Community associations: N = 1886

¥ All values refer to the integrated counties (N = 106) with the exception of the variable average size of the original counties (N = 140)

® average of 1961-1990

© soil data for eastern Germany refer to the year 1981, soil data for western Germany to 1986 (further explanations in the text)

9 average of 2005 and 2009
Source:

authors’ own calculations based on BBR (2009), BFEN (2010), BLE (2009), BLSD (2011), BLU (2010), DWD (2007),

FORSCHUNGSZENTRUM JULICH (2009), LUBW (2009), SAEBL (2010) and SLBW (2010). More details are given in the text.

ing prices for organic products. The proximity to ur-
ban regions (associated with good marketing possibili-
ties) is approximated by the distance to the next three
agglomeration centres and may lead to a high share of
organic farms (FREDERIKSEN and LANGER, 2004).
The existence of organic processors may facilitate the
selling and further processing of organic products
(BICHLER, 2006). We assume that organic processors
in the wider vicinity, e.g., in neighbouring community
associations, are important for organic farmers. There-
fore, we also account for spatially lagged variables of
the number of organic processors per 10 km® using
different spatial neighbourhood matrices.

The agricultural structure is approximated by the
variables share of UAA in the total area, number of
farms (ASE) per km* UAA and number of farms (ASE)
per km* (SAEBL, 2010). We assume that a high densi-
ty of farms facilitates knowledge exchange between
farmers. A high number of organic farms in an area
might positively influence the propensity of conven-
tional farmers to convert to organic farming. In Ger-
many, the agricultural farm census is based on the
principle of the farm location (‘Betriebssitzprinzip’),

i.e., all agricultural activities (e.g., UAA, animal hus-
bandry) are attributed to the location of the farm, even
if the activities are located in other administrative
units. This results in the maximum shares of UAA in
the total area being higher than 100% at the communi-
ty association level (Table 2). Unfortunately, this bias
cannot be corrected.

The policy environment in which organic farmers
operate is described by the share of water protection
areas in the total area (BLU, 2010; LUBW, 2009), the
share of nature conservation areas in the total area
(BEN, 2010) and the share of votes cast for the Green
Party in all valid votes cast (BLSD, 2011; SLBW,
2010). For the latter, the mean values of the German
Bundestag elections in 2005 and 2009 are calculated.
The restrictions on management in water protection
areas and nature conservation areas may favour less-
intensive forms of agriculture like organic farming. As
agricultural activities are not allowed in the central
catchment area of water protection areas, we only
account for the wider catchment area (zone 3) of wa-
ter protection areas. To consider the different political
frameworks for organic farmers in the two federal

183



GJAE 64 (2015), Number 3

Figure 3.
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Source: authors’ own calculations based on BKG (2010), BLE (2009) and SAEBL (2010)

states, such as the designation of and regulations on
water protection areas, we also generate a regional
dummy variable Bavaria.

The total annual precipitation and mean annual
temperature are used as natural production factors.
These data are generated based on data from Germa-
ny’s National Meteorological Service for the time
period 1961-1990 (DWD, 2007), using an inverse
distance-weighted interpolation with the power of one
and including the five nearest locations when assign-
ing a value to a specific point in space. The resulting
grid is used to calculate zonal statistics and assign
corresponding mean values to the spatial units. Addi-
tionally, the German soil-index (‘Bodenzahl’)’ is con-
sidered as a measure of the productivity of agricultural
land (FORSCHUNGSZENTRUM JULICH, 2009).

The estimations are done using the programs
GeoDa, R and STATA along with additional routines

?  The index ranges from 7 (lowest yield potential) to 100

(best yield potential) and is generated based on the ob-
served grain structure of the soil material, geological
development and the state of development of the parent
material of the soils (cf. SCHACHTSCHABEL et al., 1984).

provided by KEITT et al. (2010), HOTHORN et al.
(2010), JEANTY (2010a, b, ¢, d), PEBESMA and
BIVAND (2011), BIVAND (2011) and PISATI (n.a.). The
spatial models according to the equations (5) and (6) are
estimated using the maximum likelihood method.

6 Results and Discussion

To determine if spatial autocorrelation of the depend-
ent variable exists, the local and global Moran’s I of
the variable share of organic farms (BLE) in all farms
(ASE) are calculated (cf. ANSELIN, 1988: 102). The
global Moran’s [ tests indicate a positive and highly
significant spatial autocorrelation for the dependent
variable at all measurement scales. The Moran’s [/
varies between 0.306 (W) and 0.041 (W) (both
community associations) and is highly significant
regardless of the specification of the spatial neigh-
bourhood matrix.

The local Moran’s [ is calculated to identify po-
tential hot spots of organic farming or regions with a
relatively low share of organic farms. Figure 3 shows
the local indicators of spatial association (LISA) of

184



GJAE 64 (2015), Number 3

organic farms for the first order neighbourhood matrix
of the community associations at a significance level
of p < 0.05. Regions with the attributes ‘High-High’
and ‘Low-Low’ indicate clustering of similar high /
low shares of organic farms in neighbouring commu-
nity associations. Striped units show regions with
the attributes ‘High-Low’ or ‘Low-High’ indicating
clustering of dissimilar shares of organic farms in
neighbouring community associations. Large areas in
the southern and north-eastern parts of Baden-
Wiirttemberg are characterized by clusters with a very
high share of organic farms, whereas regions in north-
ern Bavaria and north-western Baden-Wiirttemberg
indicate the converse situation. For the counties, the
local Moran’s [ highlights clusters with high shares of
organic farms in southern Baden-Wiirttemberg and
clusters with low shares in northern and central Bavar-
ia (see Figure 4).

First, all explanatory variables and the regional
dummy variable are taken into account and analysed
for the community associations. The final models are
obtained by a step-wise selection procedure applied to
the spatial models. Those variables lacking significant
influence are step-by-step taken out of the spatial
models (identified by the Lagrange Multiplier test,

Figure 4.

respectively). At the same time, the Morans’s [ of the
residuals of each model is calculated to determine
whether spatial autocorrelation is of relevance. The
natural production factors total annual precipitation
and the soil-index, the political proxy variables share
of water protection areas and share of nature conser-
vation areas as well as the variables share of UAA in
the total area and number of farms per km> UAA are
removed from the analysis. Also, the dummy variable
Bavaria and the spatially lagged variables for the
number of organic processors per 10 km* do not show
significant influence on the models.

In a further analysis, we ignore the results of the
community associations and merely consider the spa-
tial distribution of organic farms at the county level.
Again, the number of variables is reduced stepwise
until only significant explanatory variables remain in
the models. The aim of this procedure is to analyse
whether similar results can be found at the county
level using the same database as for the community
associations.

For the retained models, the (robust) Lagrange
Multiplier test (ANSELIN et al., 1996) suggests esti-
mating general spatial models or spatial lag models
for nearly all model alternatives, respectively (Table 3).

LISA cluster map for the share of organic farms at the county level
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Table 3.  Diagnostic tests for spatial dependence
Community associations Counties
W(l) W{Z} W(24)m) W{idwl5) W{idw.?ﬂ) W(idw) W(l) W(Z) W(idw)

LR 255.30 280.80 * 267.94 318.65 405.68 ##+ 159.81 #+ 7.30 0.97 n.s. 1.72n.s.
(spatial error)
robust LM 122ns. 14.99 #5 21,18 3.77% 45.77 % 40.44 w5 0.01n.s. 0.86n.s. 1.19nss.
(spatial error)
L 270.35 # 290.52 ## 27244 wx 341.06 * 390.12 ## 139.62 ##* .74 ok 4.00 %% 5.50 **
(spatial lag)
robust LM B . « B B

X 16.27 # 2470 # 25.67 *+ 26.18 30.21 20.25 # 242n.s. 4.18 %% 4.97 %%
(spatial lag)
LELA] (ot 271.57 *x 305.51 *+ 293.61 ##* 344,83 *x 435.90 ##* 180.06 ##* .74 #x 5.15% 6.69 *#*
error and lag)

* *% and *** indicate statistical significance at the 10, 5 and 1 per cent significance level, respectively; n.s. indicates not significant
W = first order neighbourhood matrix; W** = second order neighbourhood matrix; W**"” = neighbourhood matrix identifying the 24 nearest neighbours;
W3 and W% = inverse distance weighted neighbourhood matrices considering distances up to 15 km and 30 km, respectively

W = inverse distance weighted neighbourhood matrix
LM = Lagrange Multiplier test

The test results refer to the models of which the regression coefficients are given in Table 4.

Source: authors’ own calculations based on BBR (2009), BLE (2009), BLSD (2011), DWD (2007), SAEBL (2010) and SLBW (2010)

A spatial error model is suggested for only two speci-
fications of the inverse distance-weighted neighbour-
hood matrices at the community association level
(WHidw30) i)y

Based on our hypothesis that there are agglomer-
ation effects in the organic sector and to allow for
comparability with previous results, we draw on the
spatial lag model (suggested in most Lagrange Mu-
liplier tests) in further analyses. The Morans’s [ of the
corresponding residuals indicate that spatial autocor-
relation is of relevance (e.g., for the community asso-
ciations and the first order contiguity matrix W'
1=0.2417, p=0.00).

Table 4 presents the results of the spatial lag
models for the community associations and the coun-
ties. The spatial lag coefficient p shows a significant
influence on the models regardless of the neighbour-
hood specification and measurement scale. For
the first order neighbourhood matrix of the communi-
ty associations (p = 0.439), this implies that ceteris
paribus, if the share of organic farms in the neigh-
bouring regions increases by one percentage point,
then the estimated share of organic farms in the region
will rise by 0.439 percentage points in the first step,
i.e. without taking further feedback loops into ac-
count. If one considers potential feedback loops, the
average direct impact of p (0.457) is slightly higher
(LESAGE and PACE, 2009). Thus, spatial dependence
seems to influence the spatial distribution of organic
farms in the southern federal states of Germany. The
agglomeration effects are weaker at the lower spatial
resolution than at the community association level. As
positive agglomeration effects result from interaction
between farmers this finding makes sense intuitively.

The explanatory variables exhibit significant in-
fluence on the share of organic farms with consistent
directional influence for all model alternatives. One
variable that is not significant in every case is the
variable number of organic processors per 10 km’.
For the counties, the mean annual temperature does
not have a significant impact, too. The fewer number
of variables remaining in the model at the lower spa-
tial resolution might be due to lower variability at the
county level (Table 2).

A larger distance to agglomeration centres influ-
ences the share of organic farms positively. This could
be due to the low availability of agricultural land near
agglomeration centres. A low number of residents per
km® also positively influences the share of organic
farms maybe due to the importance of other factors
for the distribution channels of organic products. For
example, direct marketing has been very important in
organic farming, requiring a spatial proximity of pro-
ducers and consumers. Now, supra-regional organic
discounters become more important and the spatial
location of production and consumption of organic
products is increasingly separated.

A high density of farms influences the share of
organic farms negatively. We assumed that a high
density of farms facilitates knowledge exchange be-
tween farmers; a high number of organic farms in an
area then positively influences the propensity of con-
ventional farmers to convert to organic farming.

However, other factors like the support of con-
sultants of organic farmers’ associations in the conver-
sion process or the agricultural farm structures might
also be important now. The average size of organic
farms in Bavaria and Baden-Wiirttemberg (approx.
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Table 4.

Results of the retained spatial lag models at different spatial levels

Community associations Counties

w w2 Wznm) Widvis) Widv30) wiaw) w w2 Widw)
Number of residents per km? -0.0017  ** -0.0017  ** -0.0017  ** -0.0015  ** -0.0017  ** -0.0022  ** -0.0059 ** -0.0063  ** -0.0062  **
Average distance to the next 3 agglomeration centres (in min. by car) 0.0242  ** 0.0236  ** 0.0244  ** 0.0215 ** 0.0223  ** 0.0328  ##* 0.0728  *** 0.0852 0.0876  ***
Number of organic processors per 10 km? 0.6315 * 0.6110 ns. 0.5929 n.s. 0.5582 n.s. 0.5619 n.s 0.7003  *
Number of farms (ASE) per km? -0.6779 ik -0.7138 -0.7131 -0.6150 ek -0.6407 ik -0.8201 -1.9541  #* 21171 #* -2.0626  **
Mean annual temperature (in °C) -0.7828 -0.7301  ** -0.6223  k* -0.7474  ** -0.6306 ** -0.9789  kx*
Share of votes cast for the Green Party in all valid votes cast (in %) 0.7050  ##* 0.6775  ##* 0.6807 0.6702 ks 0.6350  ##* 0.8860  ##* 1.4300 1.5392 sk 1.5540 %k
Constant 2.3740 ns 17532 ns. 0.6455 n.s. 2.0302 ns 0.7360 n.s -0.9554 ns. -11.9182  x -13.5673 -16.5645
p 0.439 ik 0.538  *#k 0.561 0.529  #k 0.643  *#k 0.959 sk 0.3605 03101 * 0.6875 **
AIC 12888 12942 12958 12870 12919 13044 656 662 661
BIC 12937 12992 13007 12920 12969 13094 674 680 679

* %k and *** indicate statistical significance at the 10, 5 and 1 per cent significance level, respectively; n.s. indicates not significant
W" = first order neighbourhood matrix; W = second order neighbourhood matrix; W**" = neighbourhood matrix identifying the 24 nearest neighbours;
WIS and W39 = inverse distance weighted neighbourhood matrices considering distances up to 15 km and 30 km, respectively;

W) = inverse distance weighted neighbourhood matrix

AIC = Akaike information criterion; BIC = Bayesian information criterion

dependent variable: share of organic farms (BLE) in all farms (ASE) (in %)
Source: authors’ own calculations based on BBR (2009), BLE (2009), BLSD (2011), DWD (2007), SAEBL (2010) and SLBW (2010)

Table 5.

Spatial lag coefficient resulting from different spatial analyses of organic farming in Germany (SCHMIDTNER et al. (2012) vs. current analysis)

Community associations Counties Schmidtner et al. (2012)
w w2 widw) wi w2 Wiidw) w w2 Wtiaw)

y y y y ys ysl ys ysl ys ysl
Number of residents per km® X X X X
Average distance to the next 3 agglomeration centers X X X X X X n.s. n.s. n.s. n.s. n.s. X
Number of organic processors per 10 km? X n.s X
Number of farms (ASE) per km> X X X X X X
Mean annual temperature X X X
Share of votes cast for the Green Party in all valid votes cast X X X X X X n.s. X n.s. X n.s. X
Density of organic food stores X X X X X X
Auvailable household income n.s X n.s X n.s X
Soil climate index X X X X X X
Density of livestock units X X X X X X
Total annual precipitation X X X X X X
Share of nature conservation areas X X X X X X
Dummy north-western Germany (=1) n.s. X n.s n.s. X X
Constant n.s. n.s. n.s. X X X X X X X n.s. n.s.
p 0.439 #kk (538 kkk 0.959 ik 0.360 *** 0310 * 0.688 ** | 0.442 0.356  *** 0.594 ik 0.585 ##** 0.854  #* 0.808 ik

x indicates statistically significant explanatory variables; *, ** and *** indicate statistical significance of p at the 10, 5 and 1 per cent significance level, respectively; n.s. indicates not significant
y = dependent variable: share of organic farms (BLE) in all farms (ASE); ys = dependent variable share of organic agricultural area in total UAA; ysl = logit transformation of ys: ysl = In(ys/(1-ys))
W = first order neighbourhood matrix; W = second order neighbourhood matrix; W" = inverse distance weighted neighbourhood matrix

Source: authors’ own presentation based on BBR (2009), BLE (2009), BLSD (2011), DWD (2007), SAEBL (2010), SCHMIDTNER et al. (2012) and SLBW (2010)
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32 ha) is larger than all farms’ average (approx. 26 ha)
(STATISTISCHES BUNDESAMT, 2008). Large organic
farms might tend to be located in regions with lower
farm density. However, the availability of organic
processors like organic dairy enterprises seems to
influence the share of organic farms positively in
some models at the community association level.

The climate variable mean annual temperature
has a highly significant and negative influence at the
community association level. According to our data,
relatively cold regions like the Alpine regions have a
high level of precipitation and a high share of grass-
land. Such grassland areas are often used less inten-
sively for animal husbandry and, thus, facilitate the
conversion to alternative forms of agriculture like
organic farming (DABBERT et al., 2004).

The voters for the Green Party variable shows a
highly significant positive influence on the share of
organic farms. It is assumed that voters for the Green
Party are interested in sustainable resource manage-
ment and non-monetary benefits for farmers, such
as acceptance in the social environment, may favour
the conversion to organic farming (MUSSHOFF and
HIRSCHAUER, 2008).

To identify the models that perform best in our
research approach, we draw on the Akaike infor-
mation criterion (AIC) and Bayesian information cri-
terion (BIC). As a BIC difference of at least 10 pro-
vides strong evidence that one model fits the data
better than another (RAFTERY, 1995), the model using
the inverse distance-weighted neighbourhood matrix
W) is the preferred model at the community asso-
ciation level (the model using the first order neigh-
bourhood matrix W'/ at the county level).

Compared to the results found by SCHMIDTNER
et al. (2012), the models at the county level show
slightly lower spatial lag coefficients (Table 5). This
might be because we do not analyse the spatial distri-
bution of organic farming for all German counties but
just focus on the southern federal states; the differ-
ences between the dependent variables in the two
studies could be another reason.

However, the results indicate that spatial depend-
ence influences the spatial distribution of organic
farms at the county level.

7 Conclusions

Our study suggests that agglomeration effects do play
a role in the organic sector and, hence, supports the
findings by BICHLER et al. (2005) and SCHMIDTNER et
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al. (2012). The analysis yields similar results at two
spatial resolutions, the community association and the
county level. The use of aggregated information does
not distort the results of the spatial analysis; the re-
sults at the lower spatial resolution are not artificially
generated through the aggregation process. Thus, spa-
tial dependence does not depend on spatial resolution
in this case. The study indicates that essential aspects
of the decision to convert from conventional to organic
farming are also relevant at the county level. Beyond
the scientific intention of checking the appropriateness
of former analyses the relevance of the previous stud-
ies are strengthened by the results. To bring the analy-
sis even closer to the real decision processes of farm-
ers, a promising research approach would be to further
increase the spatial resolution and conduct an analysis
at the farm level (given data availability).

The results indicate that certified organic farms
are often located in rural areas with low farm density
and low mean annual temperature. The characteristics
of (climatically) disadvantaged regions seem to facili-
tate the conversion to organic agriculture. This is in
accordance with the literature (e.g., DABBERT et al.,
2004). A favourable social and political environment
like a high share of voters for the Green Party might
also encourage the decision to convert to organic
farming. Institutional, market and communication
networks might additionally support the transmission
of knowledge about organic farming.

Our case study applies for Bavaria and Baden-
Wiirttemberg, where the majority of German organic
farms are located. To generalize the conclusions on
spatial effects at different spatial resolutions, further
analyses have to be conducted.

One issue that could not be considered explicitly
is that the varying size of the spatial units might also
influence the spatial dependence of neighbouring units
(ANSELIN and GETIS, 2010). A promising avenue for
future research might be to use uniform raster cells
and corresponding aggregated measurement scales as
spatial units. At the moment, those data are not avail-
able for all explanatory variables used in this study.
However, this approach could be implemented in a
theoretical study using artificially generated datasets
simulating the spatial distribution of organic farming
and its explanatory variables.

Our study uses different specifications of the spa-
tial relationship of administrative units. Regarding the
determination of the spatial neighbourhood matrix, it
would be interesting to take into account additional
information such as social network structures or the
infrastructure. Generally, the consideration and im-
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plementation of a time series could deepen the analy-
sis and enable discussions of policy implications on
the spatial distribution of organic farming.

To conclude, spatial dependence does not depend
on spatial resolution in the case of organic farming in
southern Germany.
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Annex

Figure A1 shows a constructed example of Simpson’s
paradox similar to the one presented in FOTHERINGHAM
et al. (2002). The relationship of the share of votes
cast for the Green Party in all valid votes cast and the
share of organic farms in all farms is expected to be
positive due to positive agglomeration effects. It is
assumed that voters for the Green Party are generally
interested in alternative forms of environmental re-
source management. A high share of votes cast for the
Green Party may form a positive socio-economic

Figure Al. Spatial example of Simpson’s Paradox

environment that supports alternative methods of agri-
culture such as organic farming (LAKNER, 2010).
However, Figure Al illustrates that results may re-
verse, depending on the measurement scale used.
While in the example the share of organic farms is
positively related to the share of voters for the Green
Party if one considers two locations separately, the
converse situation results for the aggregated data of
both locations, i.e., for aggregated information at a
lower spatial resolution.

a) Spatially aggregated data
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b) Spatially disaggregated data
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Source: authors’ own presentation based on data generated by the authors

Figure A2. Connectivity of community associations at different distance bands
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