
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


GJAE 64 (2015), Number 3 

175 

 

 

 

Eva Schmidtner, Christian Lippert und Stephan Dabbert 

Universität Hohenheim 

 

Abstract  

Assuming that agglomeration effects do matter in 
organic farming we analyse (a) the difficulties due to 
data aggregation arising when trying to statistically 
verify neighbourhood effects and (b) whether results 
can be confirmed at different spatial resolutions. Ex-
plaining the spatial distribution of organic farming in 
southern Germany (2007) we compare results of spa-
tial lag models at two measurement scales. The results 
suggest that essential factors determining the decision 
to convert from conventional to organic farming are 
found at different spatial resolutions. The results at 
the lower spatial resolution are not artificially gener-
ated through the aggregation process in this case, 
strengthening the relevance of previous studies. 

Key Words 
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Zusammenfassung 

Unter der Annahme, dass Agglomerationseffekte im 
ökologischen Landbau von Bedeutung sind, untersu-
chen wir (a) die Schwierigkeiten, welche auf die Ag-
gregation von Daten zurückzuführen sind und dann 
auftreten, wenn Nachbarschaftseffekte statistisch nach-
gewiesen werden sollen und (b) ob Ergebnisse auf 
verschiedenen räumlichen Ebenen bestätigt werden 
können. Wir erklären die räumliche Verteilung des 
ökologischen Landbaus in Süddeutschland (2007) und 
vergleichen die entsprechenden Ergebnisse erweiter-
ter autoregressiver Modelle auf zwei räumlichen Ebe-
nen. Die Ergebnisse deuten darauf hin, dass wesentli-
che Faktoren, die die Umstellungsentscheidung von 
der konventionellen auf die ökologische Wirtschafts-
weise beeinflussen, auf verschiedenen räumlichen 
Ebenen nachgewiesen werden können. Die Ergebnisse 
für die geringere räumliche Auflösung werden in die-

sem Fall nicht künstlich durch den Aggregationspro-
zess erzeugt, was die Aussagekraft vorheriger Studien 
stärkt. 

Schlüsselwörter 

Ökolandbau; räumliche Verteilung; Agglomerations-
effekte; räumliche Ökonometrie 

1  Introduction 

Earlier research has combined common location fac-
tors, such as climate and soil, with the concept of ag-
glomeration effects and found  based on aggregated 
data  that neighbourhood effects may influence the 
spatial distribution of organic farming (BICHLER et al., 
2005, SCHMIDTNER et al., 2012). Background to these 
finding was economic theory: SCHMIDTNER et al. 
(2012) developed a theoretical model linking the deci-
sion to convert from conventional to organic farming 
to factors of different spatial characteristics.  

BICHLER et al. (2005) and SCHMIDTNER et al. 
(2012) both operated at the German county level, an 
administrative unit covering different areal sizes, 
number of farms and utilized agricultural areas 
(UAA). The agricultural decision-making and produc-
tion processes, however, are assumed to operate at the 
farm-level. Thus, an analysis at a high spatial resolu-
tion such as the farm-level would be preferable in the 
context of analysing potential agglomeration effects in 
organic farming. Until now the data availability re-
stricted the spatial analyses to the county level. Im-
proved data availability now allows us to analyse data 
at a higher spatial resolution, the community associa-
tion level, and to compare the results to another meas-
urement scale, the county level (based on the same 
original data). Thereby, we intend not only to adjust 
the analysis but also to critically question the previous 
results based on spatial entities as we believe that 
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deepening scientific research is only possible while 
continuously testing the appropriateness of the basic 
scientific approach and data used. We hypothesize 
that agglomeration effects become manifest at both 
measurement scales and that results at a lower spatial 
resolution are not merely artificially generated through 
the aggregation process but can be supported by a 
comparable analysis at a higher spatial resolution for 
the organic farming sector. 

In 2007, nearly half of the approximately 375 000 
German farms are located in Bavaria and Baden-
Württemberg (the two southern federal states which 
are central to this study), managing about 25 per cent 
of the 17 million hectares UAA in Germany. With an 
average farm size of about 25 ha per farm the southern 
farms are relatively small (German average: 48 ha per 
farm). The southern farms are characterized by a rela-
tively high grassland share in total UAA; in Baden-
Württemberg, the share of permanent crops (like 
wine) in total UAA is above the German average. On 
arable land, cereals like wheat and barley are domi-
nant; in Bavaria also fodder crops such as silage 

maize are important. Regarding animal husbandry, 
Bavaria is characterised by a high number of cattle 
(especially dairy cows) per UAA. Some regions in 
Baden-Württemberg (like the county Schwäbisch 
Hall) have a high density of pigs, especially breeding 
sows (SAEBL, 2010). Organic farming is an interest-
ing case as it is distributed quite unevenly within 
Germany and the southern federal states of Bavaria 
and Baden-Württemberg (Figure 1). About 56% of all 
German organic farms are located in Bavaria and Ba-
den-Württemberg (BLE, 2009). We conduct the em-
pirical analysis for these two federal states in 2007. 
Due to data availability, we apply a cross-sectional 
approach at the selected measurement scales. Thus, 
the empirical model analyses the share of organic 
farms in all farms at a given point in time and at two 
different spatial resolutions. 

Spatial data has special characteristics, such as 
the multi-directional relationship of spatial units, so 
we account for spatial effects in our analysis. Proba-
bly the most famous definition of spatial effects is 

Figure 1.  Spatial distribution of organic farming in Bavaria and Baden-Württemberg at the community 

association level (2007) 

 

Source: a  ASE according to SAEBL (2010) 
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thing is related to everything else, but near things are 
OBLER, 1970: 

236). Thus, strong relationships are expected among 
variables that are located nearby. ANSELIN (1988) 
distinguishes two kinds of spatial effects: spatial het-
erogeneity and spatial dependence. While the term 
spatial heterogeneity refers to (explanatory) variables 
that differ in space (like soil or climate conditions), 
the term spatial dependence specifies a functional 
relationship between events at different places in 
space (for a more detailed discussion see also LESAGE 
and PACE, 2009). Agglomeration effects result in spa-
tial dependence. In the following we suppose positive 
spillover effects in space between farms; we expect 
these effects to overcompensate possible negative 
spillovers like competition for special inputs. These 
effects can be direct (e.g., because of direct communi-
cation between farmers) or indirect (e.g., due to local 
institutions or markets that are brought about or im-
proved when many neighbouring actors have the same 
business). Our hypothesis is that in addition to the 
classical factors that determine the location of agricul-
tural production, agglomeration effects also influence 
the spatial distribution of agricultural activities like 
organic farming. In other words: different incidences 
of organic farms in space may be caused by different 
natural and other location factors (i.e., spatial hetero-
geneity) and/or by the beneficial (self-enhancing) 
effects of higher shares of organic farms (i.e., spatial 
dependence). 

Beyond that, ANSELIN and GETIS (2010) note 
that spatial effects can also be due to the structure of 
spatial measurement units, i.e., the size, shape and 
configuration of spatial units may influence the prob-
ability of spatial dependence in nearby units. Most 

conception of geographic scale varies across disci-
plines and research objectives. While using and com-
paring results at different spatial resolutions are com-
mon practices in the geosciences (TAYLOR, 2004), a 
comparable systematic approach is hardly to be found 
in agricultural economics, particularly for the organic 
farming sector. GOODCHILD and PROCTOR (1997) 
state that the term scale is often ambiguously used to 
refer to two aspects of geographic information: the 
level of detail and the extent of geographic coverage. 
While GIBSON et al. (2000) generally use the term to 
refer to the spatial dimension used to measure any 
phenomenon, ATKINSON and TATE (2007) refer to the 
scales of spatial variation that are present in data and 

result from measurement. LAM (2004) established a 

the observational scale (referring to the spatial extent 
of a study area), the measurement scale (the resolu-
tion) and the operational scale (referring to the spatial 
extent where geographical processes take place). Ac-
cording to SMITH (2004), the scale of spatial units can 
be seen as naturally given or as a methodological as-
pect of research. The latter aims at defining the appro-
priate spatial scale for a research problem or compar-
ing results at different spatial resolutions. Another 
issue, called the Modifiable Areal Unit Problem 
(MAUP), is that results can differ between analyses at 
different spatial resolutions (OPENSHAW, 1984; see 
also WONG, 2009). Even more, the results may re-
verse in some cases, such as spatial examples of 

IMPSON, 1951). Thus, the actual 
relevance of results based on aggregated data is argu-
able. In this study, we treat scale as a methodological 
aspect of research. To see whether our results still 
hold when the data is less aggregated, we will conduct 
an empirical analysis at two different measurement 
scales using the terminology introduced by LAM 
(2004).  

Another issue that might affect an empirical 
analysis of organic farming is the conceptualization of 
the spatial relationships of spatial units through spatial 
neighbourhood matrices. According to ANSELIN 
(2002), the determination of such matrices is some-
what arbitrary. Recently, there have been various ap-
proaches to specifying the spatial weights matrix (see, 
e.g., GETIS and ALDSTADT, 2004; ALDSTADT and 
GETIS, 2006; FERNANDEZ-VAZQUEZ and RODRIGUEZ-
VALEZ, 2007; KOSTOV, 2010). Nevertheless, there is 
no formal guidance for sel
neighbourhood matrix (LEE, 2008). As the real spatial 
interdependences and interaction structures of organic 
farms are not known, we analyse, compare and dis-
cuss different specifications of the spatial neighbour-
hood matrix. These specifications are based on the 
data and theoretical considerations regarding the 
structure of spatial dependence in the organic sector.  

In the remainder of the article, we frame the con-
cept of agglomeration effects in organic farming. 
Then, we explain the utilization of different spatial 
resolutions and neighbourhood matrices in the context 
of our study. After presenting our econometric model 
in section 4, we introduce the data used and variables 
constructed. Next, we present and discuss the results, 
and finally, we draw conclusions.  



GJAE 64 (2015), Number 3 

178 

2  Concept of Agglomeration  
Effects in Organic Farming 

In the new economic geography (KRUGMAN, 1996; 
FUJITA et al., 1999), factors such as labour pooling, 
technology spillovers and backward and forward link-
ages in production may increase external economies 
of scale and, thus, favour the concentration of eco-
nomic activity. While some of these factors causing 
agglomeration, such as knowledge spillovers or natu-
ral advantages, may take place only at a narrow opera-
tional scale, others, such as input and output linkages, 
may operate at a wider spatial extent (GIACINTO and 
PAGNINI, 2008). Thus, the adoption of organic farm-
ing practices could be due to different agglomeration 
patterns, depending on the operational scale.  

We assume that easy interaction with organic 
farmers due to local proximity and a strong institu-
tional and market network positively influence the 
propensity of conventional farmers to convert to or-
ganic farming. Besides, also negative edge-effect ex-
ternalities like emissions of pesticides or genetically 
modified pollen from neighbouring conventional 
fields (cf. PARKER and MUNROE, 2007) are likely to 
be less frequent in case of a high share of organic 
farmers within a certain region which may facilitate 
the conversion to organic farming for further farmers. 
Such neighbourhood effects (positive agglomeration 
effects) may be one reason for organic agglomeration 
in space. Generally, the decision to convert to organic 
farming can be seen as an investment problem. Be-
yond the expected profit, this decision is influenced 
by issues such as the transaction costs of converting 
from one farming type to another and possibly by the 
additional utilities associated with organic farming 
(cf. SCHMIDTNER et al., 2012).  

Analysing organic land conversion in Greece, 
GENIUS et al. (2006) suggest that the provision of 
information has an important positive influence on the 
adoption of organic farming. At a high spatial resolu-
tion such as the community level, direct communica-
tion between farmers may be one essential source of 
knowledge exchange. The attitudes of farmers to-
wards alternative agriculture and the resulting ac-
ceptance of organic farmers in the social environment 
might determine the location of organic production in 
space. It is also likely that the common use of ma-
chinery such as combine harvesters1 is facilitated if 

                                                            

1  Due to the relatively small farm sizes in Germany, ma-
chinery such as combine harvesters are quite often shared 

organic farms that want to commonly use machinery 
are located nearby. At a lower spatial resolution such 
as the county level, other factors might be of im-
portance. Analysing the Danish pig sector, LARUE et 
al. (2011) state that spatial technical externalities may 
arise from the diffusion of information and knowledge 

availability of input and output markets as well as the 
associated infrastructure may be relevant to the geo-
graphic concentration of organic farming in Germany 
assuming that transportation costs are relevant  
(THÜNEN, 1826). In addition, extension services of the 

 veterinary 
services might work on a large scale. Furthermore, 
proximate organic processors, such as organic dairy 
enterprises, may facilitate the selling and further pro-
cessing particularly of perishable organic products 
like milk (BICHLER, 2006). However, competition in 
input and output markets, such as access to agricultur-
al land, could have a dispersal effect on agglomeration 
(LARUE et al., 2011).  

Considering the various factors potentially caus-
ing agglomeration of organic farming, it is challeng-
ing to assess the importance of particular agglomera-
tion patterns. Neighbourhood effects may not only 
differ but also span spatial measurement scales. An 
associated problem is the availability of data that is, in 
our case, bound to administrative units. Thus, we can 
only approximate the situation of single farms by us-
ing available aggregated data at the selected spatial 
levels.  

One reason of the differing effects of explanatory 
factors at varying degrees of data aggregation can be 

esponding example 
and Figure A1 in the Annex). Another didactic exam-
ple to illustrate one challenge arising for spatial anal-
yses is presented in Figure 2 which shows the spatial 
distribution of the density of organic farms, i.e., the 
number of organic farms per square kilometre for a 
constructed region and two measurement scales.  

For this example we assume that there are not 
any relevant explanatory variables but positive ag-
glomeration effects in the closer vicinity (indicated by 
a first order neighbourhood matrix). The underlying 
data has been generated and classified into categories 
by us. It is further assumed that no significant spatial 
concentration of organic farms can be found at the 

                                                                                                   

and used by several farmers. An organic farmer using a 
harvester previously used on a conventional field risks 

m-
bine harvesters are difficult to clean. 
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lower spatial resolution (county level), but rather, is 
found within particular counties (at the higher spatial 
resolution, the community level).2 Such a spatial pat-
tern could be due to important benefits such as the 
common use of machinery or other assets but little or 
no beneficial spillover effects at the spatial scale of 

I (ANSELIN, 1988) is 
calculated to determine whether spatial autocorrela-
tion of organic farms exists. As presented in Table 1, 

I test indicates a positive and high-
ly significant spatial autocorrelation only at the com-
munity level. At the county level, no spatial autocorre-
lation is indicated and, thus, no first-order spatial au-
toregressive model could be estimated at this spatial 
level. Hence, the uneven spatial concentration of or-
ganic farms in the communities cannot be taken into 
account in the analysis at the county level. This points 
us to a general problem: while using aggregated data, 
information like the spatial distribution of aspects at a 
higher spatial resolution is lost.  

To conclude, the two examples support the con-
cerns about the relevance of results based on aggre-
gated data. To address that issue, we compare results 
at different spatial measurement scales. 
                                                            

2  The example could also be translated to other issues 
such as the density of residents or firms. 

3  Spatial Resolution and  
Spatial Neighbourhood Matrix 
Determination 

There exist studies on the organic sector that use spa-
tial econometrics to analyse the spatial distribution of 
organic farming (cf. BICHLER et al., 2005; PARKER 
and MUNROE, 2007; SCHMIDTNER et al., 2012). How-
ever, to our best knowledge, there is no study in the 
field of spatial econometrics that analyses the spatial 
distribution of organic farming at different aggrega-
tion levels. As results might differ between different 
spatial resolutions (OPENSHAW, 1984), we aim to 
analyse spatial effects at different measurement 
scales. The lowest spatial resolution that offers suffi-
cient explanatory variables for the analysis is the 
community association level. We additionally account 
for a lower spatial resolution (the county level) that 
consists of several community associations.3 In the 
year 2007, Bavaria and Baden-Württemberg were 
organized into 1 886 community associations and 140 
counties. However, some counties are very small, 
covering only the area of a city (Table 2 in section 5). 
                                                            

3  Thus, the dataset is based on NUTS 3 level (county-
level) (NUTS being the Nomenclature of Territorial Units 
for Statistics, established by Eurostat). 

Figure 2.  Spatial distribution of the density of organic farms at two measurement scales  

 

Source: a n data generated by the authors 
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-
ea. In the case of the city 

counties, the regional metropolis and its surrounding 
districts are separated artificially, while in other re-
gions the regional metropolis is part of the county. 
Additionally, the city counties often have only one 
neighbour (the surrounding district) and little agricul-
ture. To avoid the problems associated with very 
small counties and to obtain more spatially uniform 
units, the city counties are integrated into larger neigh-
bouring counties based on a systematic approach de-
veloped by the Federal Agricultural Research Centre 
(OSTERBURG, 2005). Thereby, the number of counties 
is reduced from 140 (original counties) to 106 (inte-

 
To capture spatial aspects and represent spatial 

relationships at the two measurement scales, a spatial 
neighbourhood matrix W is used that indicates the 
relative position and proximity of spatial units. To 
determine the spatial connectivity we draw on two 
approaches based on geographical information: conti-
guity (adjacency) and distance-based neighbourhood 
matrices (ANSELIN, 1988). The latter includes inverse 
distance-based neighbourhood matrices and matrices 
identifying the k-nearest neighbours. Because it is 
impossible to estimate the spatial neighbourhood ma-
trix W, we take it as exogenously given (cf. ANSELIN, 
2002). To examine the stability of the estimation re-
sults we try out different specifications of W. 

The spatial neighbourhood matrix is an N x N 
matrix with the weights wij. To facilitate the interpre-
tation of the estimated coefficients, the neighbourhood 
matrix W is row-standardized (see ANSELIN, 1988) for 
all approaches by the following weighting scheme:  

1

*
j

ij
ij

N
ij

j

w
w

w
 

 (1) 

with  
i  = a spatial unit, 
j = another spatial unit,  
N  = Ni = Nj = number of spatial units.  

Probably the most common approach in spatial 
econometrics is to derive a contiguity-based neigh-
bourhood matrix from the administrative units given, 
i.e., adjoining spatial units are defined as neighbours. 
We determine spatial neighbours according to the 
queen criterion. Thus, spatial units that share a com-
mon border or a vertex are treated as neighbours. The 
weights of the contiguity-based neighbourhood matrix 
are defined as follows: 

1,   if    and   have a common border or vertex  

0,  otherwise 
ij

i j
w

.
  (2) 

We consider first and second order neighbours.4 
In the case of the first order neighbourhood matrix 
W(1), the weights are assigned according to Condition 
(2). For W(2), the first and second order neighbours of 
district i are considered and treated equally. A sche-
matic integration of small city counties into neigh-
bouring counties (integrated counties) results in a 
much more uniform neighbourhood matrix than the 
matrix for the original counties. This is another reason 
to use the integrated counties for the analysis.  

The distance-based approach of defining a spa-
tial neighbourhood matrix includes inverse distance-
based neighbourhood matrices and matrices identify-
ing the k-nearest neighbours. It is assumed that the 
strength of the spatial relationship declines as distance 
increases between spatial units (GETIS, 2010). Both 
approaches share the challenge of determining the 
appropriate distance or number of neighbours to en-
sure that every district i 
Otherwise, the spatial neighbourhood matrix would be 
incomplete and information of artificially generated 

 
According to LEE (2008), the critical distance 

approach is appropriate when spatial interactions are 
expected to decrease with distance until they are ab-

                                                            

4  First order neighbours have a common border with the 
respective district. Second order neighbours have a 
common border with the first order neighbours (except 
the respective district itself). 

Table 1.  Descriptive statistics and diagnostic test for spatial dependence for the number of organic 

farms per km
2 
(spatial weight: first order contiguity matrix W

(1)
)* 

  N Mean Std Dev Median Min Max Moran's I p-value 

Community level 625 2.19 1.63 1.80 0.05 9.80 0.37 0.00 

County level 25 2.19 0.59 2.18 1.27 2.96 0.00 0.36 

*The data relate to the fictitious example presented in Figure 2. 

Source: a n data generated by the authors 
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sent beyond a certain critical distance. By defining a 
n-

 
The distance-based neighbourhood matrix is defined as: 

1
,   if the distance (dist ) 

dist

between  and   is less 

than a critical distance

0,  otherwise

ij

ij

ijw i j
  

(3) 

The neighbourhood matrix identifying the k-nearest 
neighbours is based on the following condition: 

s, 

where k  0

0,  otherwise

ij

j i

w  (4) 

We assume that interactions between farmers de-
cline with increasing distance. However, there is no 
theoretical evidence for a certain critical distance for 
our research problem. NEGREIROS (2009) notes that 
the distance-based neighbourhood approach is blind to 
obvious natural neighbours and suggests combining it 
with the contiguity-based neighbourhood approach to 
identify direct neighbours. To tackle that point, we 
evaluate the first order contiguity-based neighbour-
hood matrix and use the information gained to estab-
lish a framework determining the distance-based 
neighbourhood relationships. The first order contigui-
ty-based neighbourhood matrix of the community 
associations shows an average number of links of 5.8; 
the most connected region has 24 links. The largest 
distance between two adjacent community associa-
tions is 26,320 m. The distances are calculated based 
on the geographical centroid of each spatial unit and 
measured in meters. We now base the selection of 
relevant distances on at least some plausibility: we 
draw on the spatial characteristics like connections to 
other regions and distance between two adjacent 
communities. Thus, we use several matrices at the 
community association level: a neighbourhood matrix 
identifying the 24 nearest neighbours (W(24nn)), a re-
stricted inverse distance-weighted neighbourhood 
matrix (W(idw30)) considering distances up to 30 km 
(rounded up from 26.32 km) and an unrestricted in-
verse distance-weighted neighbourhood matrix 
(W(idw)). The matrix W(idw) contains the row-standard-
ized inverse distance of each centroid of district j i 
to the centroid of district i. As the maximum distance 
of 26.32 km between two community associations 
exists only in one case, a lower critical distance 

(W(idw15)) is also analysed. As presented in Figure A2 
(Annex), the definition of different critical distance 
bands results in quite different spatial connectivities 
of the community associations. For the counties, only 
the first order, second order and inverse distance-
weighted neighbourhood matrices are considered. 
Using the k-nearest neighbours approach ensures that 
every spatial unit has the same number of neighbours, 
regardless of the size of the spatial units. However, 
the corresponding weighting matrix is asymmetric 
(ANSELIN, 2002). That means if j is a neighbour of i, i 
does not have to be a neighbour of j depending on the 
distances to other neighbouring units. Thus, the k-
nearest neighbour approach would be especially use-
ful to account for specific aspects such as trade rela-
tionships in the organic sector. Even if corresponding 
data is not available, we use the k-nearest neighbours 
approach as an alternative way of representing spatial 
relationships based on distance. 

4  Econometric Model 

The alternative specifications of the spatial neigh-
bourhood matrix W are implemented in the economet-
ric model we use for our analysis. As also described in 
SCHMIDTNER et al. (2012), the general version of our 
model is given by the following equations (cf. ANSELIN, 
1988; LESAGE, 1999): 

y Wy X u  (5) 

u Wu  (6) 

with 2~ (0, )NN I  

and 

y = vector containing the share of organic farms 
within all farms in the selected administrative 
units in Bavaria and Baden-Württemberg; 

X = matrix containing the observations for m inde-
pendent variables for every administrative unit; 

W = row-standardized spatial weight matrix; 
IN = identity matrix; 
u = vector of the spatially correlated residuals; 
 = vector of normally distributed errors (mean = 0, 

variance = 2); 
 = vector containing the regression coefficients for 

the explanatory variables; 
 = spatial lag coefficient reflecting the importance 

of spatial dependence; 
 = coefficient reflecting the spatial autocorrelation 

of the residuals u. 
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As we use row-standardized spatial weighting matri-
ces W the estimated coefficients  and  will usually 
lie between -1 and 1 (theoretically, the lower bound of 
 could be less than 1 also in case of row standardiza-

tion, see ANSELIN, 1999: 7f.). A significant spatial lag 
coefficient  indicates the possible existence of ag-
glomeration effects resulting in spatial dependence, 
whereas a significant coefficient  hints at spatial au-
tocorrelation of the residuals u (spatial heterogeneity). 
We do not know from theoretical considerations 
which spatial effects influence the spatial distribution 
of organic farming in southern Germany. However, 
previous studies such as BICHLER et al. (2005) and 
SCHMIDTNER et al. (2012) indicated that neighbour-
hood effects are very likely to influence the spatial 
distribution of organic farming at the county level in 
Germany. Thus, we strongly assume spatial lag effects 
to be also relevant in our research setting. 

Generally, there are four possibilities (resulting in 
different models): 
(i)  =  = 0 (common Ordinary Least Squares (OLS) 

model); 
(ii)   = 0 (spatial lag model); 
(iii)  = 0,   
(iv)    

Next to the theoretical considerations above we draw 
on the (robust) Lagrange Multiplier test for spatial 
autocorrelation in the residuals from OLS (ANSELIN et 
al., 1996) to identify which of the two effects are rele-
vant in our analysis (cf. ELHORST, 2012).  

5  Data and Variable Construction 

Previous studies such as BICHLER et al. (2005) and 
SCHMIDTNER et al. (2012) draw on agricultural data 
from the official farm census, which are partly re-
stricted due to data protection legislation and are only 
available at the county level for organic farming. Due 
to an improved database, we now have access to in-
formation on all 10 934 certified organic farms and 
3 104 organic processors in Bavaria and Baden-
Württemberg (BLE, 2009). Unfortunately, the precise 
location of the farms and processors is also not avail-
able. However, the provided residential postal code is 
used to assign the location of the organic farms and 
processors to the community associations (DEUTSCHE 
POST DIREKT, 2010).  

As described in section 3, the analysis is con-
ducted at two measurement scales: the community 
association and county level. Due to the data availa-
bility the spatial level of community associations is 

the lowest administrative unit at which our analysis 
(using several data sources) can be performed. To test 
the robustness of spatial models, different specifica-
tions of the spatial neighbourhood matrix are consid-
ered. 

The analysis is conducted for the dependent vari-
able share of organic farms (BLE5) in all farms 
(ASE6). We need to rely upon this farm related varia-
ble because we do not know the share of organically 
farmed land at the community association level. How-
ever, trying to explain the share of organic farms 
makes also sense from a theoretical point of view as 
several supposed agglomeration effects result from 
interactions (communication) between farmers.7 The 
share of all certified organic farms as provided by the 
Federal Agency for Agriculture and Food (BLE, 
2009) is calculated from the total number of agricul-
tural farms reported by the official farm census 
(SAEBL, 2010). However, the official farm census has 
some data restrictions; for example, it accounts only 
for farms with more than 2 ha UAA and a certain 
number of animals. Thus, only farms fulfilling these 
restrictions are represented in the official farm census, 
whereas all organic farms are provided by BLE 
(2009). As shown in Table 2, this results in the fact 
that the maximum share of organic farms (BLE) in all 
farms (ASE) exceeds 100% at the community associa-
tion level. This applies to two community associations 
and is a statistical artefact of the database. At the inte-
grated county level, the bias is reduced through aver-
aging across the counties.  

To capture the availability of and proximity to 
(organic) markets the number of residents per km2, the 
average distance to the next three agglomeration cen-
tres8 (BBR, 2009) and the number of organic proces-
sors per 10 km2 (BLE, 2009) are considered. General-
ly, the location of (potential) consumers might influ-
ence the location of organic producers. It is assumed 
that a high population density indicates a high demand 
potential for (organic) food that might increase result-
                                                            

5  Data source: Federal Agency for Agriculture and Food 
(Bundesanstalt für Landwirtschaft und Ernährung, BLE) 
(BLE, 2009). 

6  Data source: official German farm census (Agrarstruktur-
erhebung, ASE) (SAEBL, 2010). 

7  Furthermore, at least at the county level there is a strong 
correlation between the share of organic farms in all 
farms and the share of organically farmed land in over-
all farmed land. 

8  This variable refers to the average travel time in minutes 
by car to the next 3 out of 36 agglomeration centres as 
defined by the BBR (2009). 
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ing prices for organic products. The proximity to ur-
ban regions (associated with good marketing possibili-
ties) is approximated by the distance to the next three 
agglomeration centres and may lead to a high share of 
organic farms (FREDERIKSEN and LANGER, 2004). 
The existence of organic processors may facilitate the 
selling and further processing of organic products 
(BICHLER, 2006). We assume that organic processors 
in the wider vicinity, e.g., in neighbouring community 
associations, are important for organic farmers. There-
fore, we also account for spatially lagged variables of 
the number of organic processors per 10 km2 using 
different spatial neighbourhood matrices. 

The agricultural structure is approximated by the 
variables share of UAA in the total area, number of 
farms (ASE) per km2 UAA and number of farms (ASE) 
per km2 (SAEBL, 2010). We assume that a high densi-
ty of farms facilitates knowledge exchange between 
farmers.  A high number of organic farms in an area 
might positively influence the propensity of conven-
tional farmers to convert to organic farming. In Ger-
many, the agricultural farm census is based on the 
principle of the farm location 

i.e., all agricultural activities (e.g., UAA, animal hus-
bandry) are attributed to the location of the farm, even 
if the activities are located in other administrative 
units. This results in the maximum shares of UAA in 
the total area being higher than 100% at the communi-
ty association level (Table 2). Unfortunately, this bias 
cannot be corrected. 

The policy environment in which organic farmers 
operate is described by the share of water protection 
areas in the total area (BLU, 2010; LUBW, 2009), the 
share of nature conservation areas in the total area 
(BFN, 2010) and the share of votes cast for the Green 
Party in all valid votes cast (BLSD, 2011; SLBW, 
2010). For the latter, the mean values of the German 
Bundestag elections in 2005 and 2009 are calculated. 
The restrictions on management in water protection 
areas and nature conservation areas may favour less-
intensive forms of agriculture like organic farming. As 
agricultural activities are not allowed in the central 
catchment area of water protection areas, we only 
account for the wider catchment area (zone 3) of wa-
ter protection areas. To consider the different political 
frameworks for organic farmers in the two federal 

Table 2.  Descriptive statistics for variables of interest at different measurement scales 

Mean Min  Max  

Variable Year 
Community 

associations 
Countiesa) 

Community 

associations 
Countiesa) 

Community 

associations 
Countiesa) 

Share of organic farms (BLE) in all farms 
(ASE) (in %) 

2007 5.63 6.60 0.00 1.19 122.58 42.12 

Number of residents per km2 2007 259.01 236.59 0.00 70.68 4,216.20 1,661.29 

Average distance to the next 3 agglomeration 
centres (in min. by car) 

2007 107.84 106.66 49.60 58.80 172.80 164.40 

Number of organic processors per 10 km2 2007 0.33 0.31 0.00 0.04 7.54 2.36 

Share of UAA in the total area (in %) 2007 44.23 43.58 0.00 15.08 158.54 68.48 

Number of farms (ASE) per km2 2007 1.74 1.67 0.00 0.77 14.75 3.06 

Number of farms (ASE) per km2 UAA 2007 4.23 3.94 0.00 2.33 38.74 8.70 

Total annual precipitation (in cm) 1961-1990b) 91.80 92.96 57.08 63.00 203.01 173.12 

Mean annual temperature (in °C) 1961-1990b) 7.89 7.83 5.59 6.32 10.37 9.80 

Soil-Index 1981, 1986c) 47.92 47.73 14.39 27.34 87.00 65.59 

Share of water protection areas in the  
total area (in %) 

2007 8.25 9.91 0.00 0.65 99.84 86.72 

Share of nature conservation areas in the  
total area (in %) 

2007 1.80 2.17 0.00 0.03 99.32 34.82 

Share of votes cast for the Green Party in all 
valid votes cast (in %) 

2005, 2009d) 8.16 9.14 0.00 4.16 27.35 19.86 

Average size of the community associations 
(in km2) 

2007 56.38   1.77   339.07   

Average size of the integrated counties  
(in km2) 

2007   1,003.20   323.96   2,071.27 

Average size of the original counties (in km2)  2007   759.56   35.45   1,971.48 

Community associations: N = 1886 
a) All values refer to the integrated counties (N = 106) with the exception of the variable average size of the original counties (N = 140) 
b) average of 1961-1990 
c) soil data for eastern Germany refer to the year 1981, soil data for western Germany to 1986 (further explanations in the text) 
d) average of 2005 and 2009 
Source:  a BFN (2010), BLE (2009), BLSD (2011), BLU (2010), DWD (2007),  

FORSCHUNGSZENTRUM JÜLICH (2009), LUBW (2009), SAEBL (2010) and SLBW (2010). More details are given in the text. 
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states, such as the designation of and regulations on 
water protection areas, we also generate a regional 
dummy variable Bavaria.  

The total annual precipitation and mean annual 
temperature are used as natural production factors. 
These data are generated based on data from Germa-

ce for the time 
period 1961-1990 (DWD, 2007), using an inverse 
distance-weighted interpolation with the power of one 
and including the five nearest locations when assign-
ing a value to a specific point in space. The resulting 
grid is used to calculate zonal statistics and assign 
corresponding mean values to the spatial units. Addi-
tionally, the German soil-index 9 is con-
sidered as a measure of the productivity of agricultural 
land (FORSCHUNGSZENTRUM JÜLICH, 2009).  

The estimations are done using the programs  
GeoDa, R and STATA along with additional routines 

                                                            

9  The index ranges from 7 (lowest yield potential) to 100 
(best yield potential) and is generated based on the ob-
served grain structure of the soil material, geological 
development and the state of development of the parent 
material of the soils (cf. SCHACHTSCHABEL et al., 1984). 

provided by KEITT et al. (2010), HOTHORN et al. 
(2010), JEANTY (2010a, b, c, d), PEBESMA and  
BIVAND (2011), BIVAND (2011) and PISATI (n.a.). The 
spatial models according to the equations (5) and (6) are 
estimated using the maximum likelihood method. 

6  Results and Discussion 

To determine if spatial autocorrelation of the depend-
ent variable exists, the local and global Moran s I of 
the variable share of organic farms (BLE) in all farms 
(ASE) are calculated (cf. ANSELIN, 1988: 102). The 

I tests indicate a positive and highly 
significant spatial autocorrelation for the dependent 
variable I 
varies between 0.306 (W(1)) and 0.041 (W(idw)) (both 
community associations) and is highly significant 
regardless of the specification of the spatial neigh-
bourhood matrix.  

 I is calculated to identify po-
tential hot spots of organic farming or regions with a 
relatively low share of organic farms. Figure 3 shows 
the local indicators of spatial association (LISA) of 

Figure 3.  LISA cluster map for the share of organic farms at the community association level  

(spatial weight: first order contiguity matrix W
(1)

) 

 

Source: a SAEBL (2010) 
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organic farms for the first order neighbourhood matrix 
of the community associations at a significance level 

-
- cate clustering of similar high / 

low shares of organic farms in neighbouring commu-
nity associations. Striped units show regions with  

- -
clustering of dissimilar shares of organic farms in 
neighbouring community associations. Large areas in 
the southern and north-eastern parts of Baden-
Württemberg are characterized by clusters with a very 
high share of organic farms, whereas regions in north-
ern Bavaria and north-western Baden-Württemberg 
indicate the converse situation. For the counties, the 

I highlights clusters with high shares of 
organic farms in southern Baden-Württemberg and 
clusters with low shares in northern and central Bavar-
ia (see Figure 4).  

First, all explanatory variables and the regional 
dummy variable are taken into account and analysed 
for the community associations. The final models are 
obtained by a step-wise selection procedure applied to  
the spatial models. Those variables lacking significant 
influence are step-by-step taken out of the spatial 
models (identified by the Lagrange Multiplier test, 

 I of the 
residuals of each model is calculated to determine 
whether spatial autocorrelation is of relevance. The 
natural production factors total annual precipitation 
and the soil-index, the political proxy variables share 
of water protection areas and share of nature conser-
vation areas as well as the variables share of UAA in 
the total area and number of farms per km2 UAA are 
removed from the analysis. Also, the dummy variable 
Bavaria and the spatially lagged variables for the 
number of organic processors per 10 km2 do not show 
significant influence on the models.  

In a further analysis, we ignore the results of the 
community associations and merely consider the spa-
tial distribution of organic farms at the county level. 
Again, the number of variables is reduced stepwise 
until only significant explanatory variables remain in 
the models. The aim of this procedure is to analyse 
whether similar results can be found at the county 
level using the same database as for the community 
associations.  

For the retained models, the (robust) Lagrange 
Multiplier test (ANSELIN et al., 1996) suggests esti-
mating general spatial models or spatial lag models 
for nearly all model alternatives, respectively (Table 3). 

Figure 4.  LISA cluster map for the share of organic farms at the county level  

(spatial weight: first order contiguity matrix W
(1)

) 

 

Source: a SAEBL (2010) 
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A spatial  error model is suggested for only two speci-
fications of the inverse distance-weighted neighbour-
hood matrices at the community association level 
(W(idw30), W(idw)).  

Based on our hypothesis that there are agglomer-
ation effects in the organic sector and to allow for 
comparability with previous results, we draw on the 
spatial lag model (suggested in most Lagrange Mu-

I of the 
corresponding residuals indicate that spatial autocor-
relation is of relevance (e.g., for the community asso-
ciations and the first order contiguity matrix W(1):  
I = 0.2417, p = 0.00).  

Table 4 presents the results of the spatial lag 
models for the community associations and the coun-
ties. The spatial lag coefficient  shows a significant 
influence on the models regardless of the neighbour-
hood specification and measurement scale. For  
the first order neighbourhood matrix of the communi-
ty associations (  = 0.439), this implies that ceteris 
paribus, if the share of organic farms in the neigh-
bouring regions increases by one percentage point, 
then the estimated share of organic farms in the region 
will rise by 0.439 percentage points in the first step, 
i.e. without taking further feedback loops into ac-
count. If one considers potential feedback loops, the 
average direct impact of  (0.457) is slightly higher 
(LESAGE and PACE, 2009). Thus, spatial dependence 
seems to influence the spatial distribution of organic 
farms in the southern federal states of Germany. The 
agglomeration effects are weaker at the lower spatial 
resolution than at the community association level. As 
positive agglomeration effects result from interaction 
between farmers this finding makes sense intuitively.  

The explanatory variables exhibit significant in-
fluence on the share of organic farms with consistent 
directional influence for all model alternatives. One 
variable that is not significant in every case is the 
variable number of organic processors per 10 km2. 
For the counties, the mean annual temperature does 
not have a significant impact, too. The fewer number 
of variables remaining in the model at the lower spa-
tial resolution might be due to lower variability at the 
county level (Table 2). 

A larger distance to agglomeration centres influ-
ences the share of organic farms positively. This could 
be due to the low availability of agricultural land near 
agglomeration centres. A low number of residents per 
km2 also positively influences the share of organic 
farms maybe due to the importance of other factors 
for the distribution channels of organic products. For 
example, direct marketing has been very important in 
organic farming, requiring a spatial proximity of pro-
ducers and consumers. Now, supra-regional organic 
discounters become more important and the spatial 
location of production and consumption of organic 
products is increasingly separated.  

A high density of farms influences the share of 
organic farms negatively. We assumed that a high 
density of farms facilitates knowledge exchange be-
tween farmers; a high number of organic farms in an 
area then positively influences the propensity of con-
ventional farmers to convert to organic farming.  

However, other factors like the support of con-
sultants of organic r-
sion process or the agricultural farm structures might 
also be important now. The average size of organic 
farms in Bavaria and Baden-Württemberg (approx. 

Table 3. Diagnostic tests for spatial dependence 

  Community associations Counties 

  W(1) W(2) W(24nn) W(idw15) W(idw30) W(idw) W(1) W(2) W(idw) 

LM  
(spatial error) 

255.30 *** 280.80 *** 267.94 *** 318.65 *** 405.68 *** 159.81 *** 7.32 *** 0.97 n.s. 1.72 n.s. 

robust LM 
(spatial error) 

1.22 n.s. 14.99 *** 21.18 *** 3.77 * 45.77 *** 40.44 *** 0.01 n.s. 0.86 n.s. 1.19 n.s. 

LM  
(spatial lag) 

270.35 *** 290.52 *** 272.44 *** 341.06 *** 390.12 *** 139.62 *** 9.74 *** 4.29 ** 5.50 ** 

robust LM 
(spatial lag) 

16.27 *** 24.70 *** 25.67 *** 26.18 *** 30.21 *** 20.25 *** 2.42 n.s. 4.18 ** 4.97 ** 

LM (spatial  
error and lag) 

271.57 *** 305.51 *** 293.61 *** 344.83 *** 435.90 *** 180.06 *** 9.74 *** 5.15 * 6.69 ** 

*, ** and *** indicate statistical significance at the 10, 5 and 1 per cent significance level, respectively; n.s. indicates not significant 
W(1) = first order neighbourhood matrix; W(2) = second order neighbourhood matrix; W(24nn) = neighbourhood matrix identifying the 24 nearest neighbours; 
W(idw15) and W(idw30) = inverse distance weighted neighbourhood matrices considering distances up to 15 km and 30 km, respectively 
W(idw) = inverse distance weighted neighbourhood matrix 
LM = Lagrange Multiplier test  
The test results refer to the models of which the regression coefficients are given in Table 4. 

Source: a SAEBL (2010) and SLBW (2010) 



 

 

 

Table 4.  Results of the retained spatial lag models at different spatial levels 

  Community associations Counties 

  W(1) W(2) W(24nn) W(idw15) W(idw30) W(idw) W(1) W(2) W(idw) 

Number of residents per km2 -0.0017 ** -0.0017 ** -0.0017 ** -0.0015 ** -0.0017 ** -0.0022 ** -0.0059 ** -0.0063 ** -0.0062 ** 

Average distance to the next 3 agglomeration centres (in min. by car) 0.0242 ** 0.0236 ** 0.0244 ** 0.0215 ** 0.0223 ** 0.0328 *** 0.0728 *** 0.0852 *** 0.0876 *** 

Number of organic processors per 10 km2 0.6315 * 0.6110 n.s. 0.5929 n.s. 0.5582 n.s. 0.5619 n.s. 0.7003 * 
 

  

Number of farms (ASE) per km2 -0.6779 *** -0.7138 *** -0.7131 *** -0.6150 *** -0.6407 *** -0.8201 *** -1.9541 ** -2.1171 ** -2.0626 ** 

Mean annual temperature (in °C) -0.7828 *** -0.7301 ** -0.6223 ** -0.7474 ** -0.6306 ** -0.9789 *** 
 

  

Share of votes cast for the Green Party in all valid votes cast (in %) 0.7050 *** 0.6775 *** 0.6807 *** 0.6702 *** 0.6350 *** 0.8860 *** 1.4300 *** 1.5392 *** 1.5540 *** 

Constant 2.3740 n.s. 1.7532 n.s. 0.6455 n.s. 2.0302 n.s. 0.7360 n.s. -0.9554 n.s. -11.9182 *** -13.5673 *** -16.5645 *** 

 0.439 *** 0.538 *** 0.561 *** 0.529 *** 0.643 *** 0.959 *** 0.3605 *** 0.3101 * 0.6875 ** 

AIC 12888 
 

12942 
 

12958 
 

12870 
 

12919 
 

13044   656 
 

662 
 

661   

BIC 12937   12992   13007   12920   12969   13094   674   680   679   

*, ** and *** indicate statistical significance at the 10, 5 and 1 per cent significance level, respectively; n.s. indicates not significant 
W(1) = first order neighbourhood matrix; W(2) = second order neighbourhood matrix; W(24nn) = neighbourhood matrix identifying the 24 nearest neighbours; 
W(idw15) and W(idw30) = inverse distance weighted neighbourhood matrices considering distances up to 15 km and 30 km, respectively; 
W(idw) = inverse distance weighted neighbourhood matrix 
AIC = Akaike information criterion; BIC = Bayesian information criterion 
dependent variable: share of organic farms (BLE) in all farms (ASE) (in %) 

calculations based on BBR (2009), BLE (2009), BLSD (2011), DWD (2007), SAEBL (2010) and SLBW (2010) 

 

Table 5.  Spatial lag coefficient resulting from different spatial analyses of organic farming in Germany (SCHMIDTNER et al. (2012) vs. current analysis) 

 
Community associations Counties Schmidtner et al. (2012) 

 
W(1) W(2) W(idw) W(1) W(2) W(idw) W(1) W(2) W(idw) 

  y y y y y y ys ysl ys ysl ys ysl 

Number of residents per km2 x x x x x x   
 

        

Average distance to the next 3 agglomeration centers x x x x x x n.s. n.s. n.s. n.s. n.s. x 

Number of organic processors per 10 km2 x n.s. x   
  

  
 

  
 

  
 

Number of farms (ASE) per km2 x x x x x x   
 

  
 

  
 

Mean annual temperature x x x   
  

  
 

  
 

  
 

Share of votes cast for the Green Party in all valid votes cast x x x x x x n.s. x n.s. x n.s. x 

Density of organic food stores   
  

  
  

x x x x x x 

Available household income   
  

  
  

n.s. x n.s. x n.s. x 

Soil climate index   
  

  
  

x x x x x x 

Density of livestock units   
  

  
  

x x x x x x 

Total annual precipitation   
  

  
  

x x x x x x 

Share of nature conservation areas   
  

  
  

x x x x x x 

Dummy north-western Germany (=1)   
  

  
  

n.s. x n.s. n.s. x x 

Constant n.s. n.s. n.s. x x x x x x x n.s. n.s. 

 0.439 *** 0.538 *** 0.959 *** 0.360 *** 0.310 * 0.688 ** 0.442 *** 0.356 *** 0.594 *** 0.585 *** 0.854 *** 0.808 *** 

x indicates statistically significant explanatory variables; *, ** and *** indicate statistical significance of  at the 10, 5 and 1 per cent significance level, respectively; n.s. indicates not significant 
y = dependent variable: share of organic farms (BLE) in all farms (ASE); ys = dependent variable share of organic agricultural area in total UAA; ysl = logit transformation of ys: ysl = ln(ys/(1-ys)) 
W(1) = first order neighbourhood matrix; W(2) = second order neighbourhood matrix; W(idw) = inverse distance weighted neighbourhood matrix 

EBL (2010), SCHMIDTNER et al. (2012) and SLBW (2010) 
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32 ha) 
(STATISTISCHES BUNDESAMT, 2008). Large organic 
farms might tend to be located in regions with lower 
farm density. However, the availability of organic 
processors like organic dairy enterprises seems to 
influence the share of organic farms positively in 
some models at the community association level.  

The climate variable mean annual temperature 
has a highly significant and negative influence at the 
community association level. According to our data, 
relatively cold regions like the Alpine regions have a 
high level of precipitation and a high share of grass-
land. Such grassland areas are often used less inten-
sively for animal husbandry and, thus, facilitate the 
conversion to alternative forms of agriculture like 
organic farming (DABBERT et al., 2004). 

The voters for the Green Party variable shows a 
highly significant positive influence on the share of 
organic farms. It is assumed that voters for the Green 
Party are interested in sustainable resource manage-
ment and non-monetary benefits for farmers, such  
as acceptance in the social environment, may favour 
the conversion to organic farming (MUSSHOFF and 
HIRSCHAUER, 2008).  

To identify the models that perform best in our 
research approach, we draw on the Akaike infor-
mation criterion (AIC) and Bayesian information cri-
terion (BIC). As a BIC difference of at least 10 pro-
vides strong evidence that one model fits the data 
better than another (RAFTERY, 1995), the model using 
the inverse distance-weighted neighbourhood matrix 
W(idw15) is the preferred model at the community asso-
ciation level (the model using the first order neigh-
bourhood matrix W(1) at the county level). 

Compared to the results found by SCHMIDTNER 
et al. (2012), the models at the county level show 
slightly lower spatial lag coefficients (Table 5). This 
might be because we do not analyse the spatial distri-
bution of organic farming for all German counties but 
just focus on the southern federal states; the differ-
ences between the dependent variables in the two 
studies could be another reason.  

However, the results indicate that spatial depend-
ence influences the spatial distribution of organic 
farms at the county level. 

7  Conclusions 

Our study suggests that agglomeration effects do play 
a role in the organic sector and, hence, supports the 
findings by BICHLER et al. (2005) and SCHMIDTNER et 

al. (2012). The analysis yields similar results at two 
spatial resolutions, the community association and the 
county level. The use of aggregated information does 
not distort the results of the spatial analysis; the re-
sults at the lower spatial resolution are not artificially 
generated through the aggregation process. Thus, spa-
tial dependence does not depend on spatial resolution 
in this case. The study indicates that essential aspects 
of the decision to convert from conventional to organic 
farming are also relevant at the county level. Beyond 
the scientific intention of checking the appropriateness 
of former analyses the relevance of the previous stud-
ies are strengthened by the results. To bring the analy-
sis even closer to the real decision processes of farm-
ers, a promising research approach would be to further 
increase the spatial resolution and conduct an analysis 
at the farm level (given data availability).  

The results indicate that certified organic farms 
are often located in rural areas with low farm density 
and low mean annual temperature. The characteristics 
of (climatically) disadvantaged regions seem to facili-
tate the conversion to organic agriculture. This is in 
accordance with the literature (e.g., DABBERT et al., 
2004). A favourable social and political environment 
like a high share of voters for the Green Party might 
also encourage the decision to convert to organic 
farming. Institutional, market and communication 
networks might additionally support the transmission 
of knowledge about organic farming.  

Our case study applies for Bavaria and Baden-
Württemberg, where the majority of German organic 
farms are located. To generalize the conclusions on 
spatial effects at different spatial resolutions, further 
analyses have to be conducted.  

One issue that could not be considered explicitly 
is that the varying size of the spatial units might also 
influence the spatial dependence of neighbouring units 
(ANSELIN and GETIS, 2010). A promising avenue for 
future research might be to use uniform raster cells 
and corresponding aggregated measurement scales as 
spatial units. At the moment, those data are not avail-
able for all explanatory variables used in this study. 
However, this approach could be implemented in a 
theoretical study using artificially generated datasets 
simulating the spatial distribution of organic farming 
and its explanatory variables.  

Our study uses different specifications of the spa-
tial relationship of administrative units. Regarding the 
determination of the spatial neighbourhood matrix, it 
would be interesting to take into account additional 
information such as social network structures or the 
infrastructure. Generally, the consideration and im-
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plementation of a time series could deepen the analy-
sis and enable discussions of policy implications on 
the spatial distribution of organic farming.  

To conclude, spatial dependence does not depend 
on spatial resolution in the case of organic farming in 
southern Germany.  
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Annex 

paradox similar to the one presented in FOTHERINGHAM 
et al. (2002). The relationship of the share of votes 
cast for the Green Party in all valid votes cast and the 
share of organic farms in all farms is expected to be 
positive due to positive agglomeration effects. It is 
assumed that voters for the Green Party are generally 
interested in alternative forms of environmental re-
source management. A high share of votes cast for the 
Green Party may form a positive socio-economic 

environment that supports alternative methods of agri-
culture such as organic farming (LAKNER, 2010). 
However, Figure A1 illustrates that results may re-
verse, depending on the measurement scale used. 
While in the example the share of organic farms is 
positively related to the share of voters for the Green 
Party if one considers two locations separately, the 
converse situation results for the aggregated data of 
both locations, i.e., for aggregated information at a 
lower spatial resolution.  

 

 

  

Source: a nerated by the authors 

 

Figure A2. Connectivity of community associations at different distance bands  

 

Source: a lculations based on BKG (2010) 
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a) Spatially aggregated data
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b) Spatially disaggregated data
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