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11 Identifyjng a CSD Efficient Set of Mixtures of Risky Alternatives for Risk 

Preferring Decision Makers. 11 Francis McCamley (University of Missouri

Columbia) 

For risk preferring decision makers, identifying the SDWRF efficient set of 

mixtures of risky alternatives can be difficult. It appears to be easier to 

identify the efficient set for a combination of the CSD and SOWRF criteria. A 

procedure is suggested and illustrated using data from Hazell. 



IDENTIFYING A CSD EFFICIENT SET OF MIXTURES OF 
RISKY ALTERNATIVES FOR RISK PREFERRING DECISION MAKERS 

Several methods are available for identifying risk efficient mixtures of 

risky alternatives. The oldest are mean-variance analysis and MOTAD. A few 

years ago, Target MOTAD was introduced by Tauer and Watts, Held and Helmers. 

Direct utility maximization techniques have also been proposed (Kroll, Levy 

and Markowitz; Lambert and Mccarl; and Callender and Chalfant). These methods 

can be very useful for identifying appropriate mixtures for risk averse 

decision makers whose utility functions are relatively well known. 

Although many decision makers are risk averse, there is evidence that 

others prefer risk. Wilson and Eidman reviewed earlier studies which 

suggested that decision makers' absolute risk aversion coefficients range from 

- . 0002 to .0012. In their own survey of hog producers, 69 percent of the 

respondents had risk aversion coefficients in the -.0002 to .0003 interval; 22 

percent of the respondents had negative risk aversion coefficients. 

Imprecise knowledge of decision makers' utility functions has led to the 

use of stochastic dominance to rank mutually exclusive risky alternatives. 

Meyer's stochastic dominance with respect to a function (SDWRF) (also known as 

genera 1 i zed stochastic dominance) is a criterion frequently used for this 

purpose by agricultural economists. 

This and other stochastic dominance criteria are not as frequently 

empl_oyed for problems involving mixtures of risky alternatives .. As Cochran 

has noted, stochastic dominance techniques are not well developed for this 

class of problems. There have been a few attempts to develop methods for 

problems involving mixtures. Knight et al. examined alternative indicators of 

diversification prospects. In a recent paper, Witt, Tew and Reid evaluated 

the effectiveness of stochastic dominance techniques in predicting the 
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components of mean-variance efficient enterprise mixtures. Other work 

(McCamley and Kliebenstein) suggests that it may be possible to apply the . 

SDWRF criterion to problems involving mixtures of risky alternatives when the 

class of decision makers consists only of risk neutral or risk averse 

individuals. 

This paper considers the possibility of applying the SDWRF criterion to 

problems involving mixtures of risky alternatives when all members of the 

class of decision makers are risk seekers. It concludes that identification 

of all SDWRF efficient mixtures may be more difficult than identification of 

those which (also) satisfy the convex set stochastic dominance (CSD) 

criterion. A procedure for i den ti fyi ng the CSD refinement of the SDWRF 

efficient set for a relevant class of problems is presented and illustrated. 

Since this paper combines ideas which, by themselves, are all either very 

simple and/or well discussed elsewhere, no formal proofs are included. 

Interested persons are invited to contact the author directly for proofs and 

other details. 

Preliminary Considerations 

The basic ideas can be revealed by a simple example. Assume that there 

are two equally likely states of nature and two enterprises. Let x1 and x2 be 

(nonnegative) activity levels for the enterprises. Assume that the net return 

received if the first state of nature occurs is 

(1) y1 = 100x1 + 40x2. 

If the second state of nature occurs, then 

(2) y2 = 80x1 + 120x2 

is received. Finally, assume that the sum of x1 plus x2 is constrained to be 

no greater than one. This implies that the set of feasible combinations of y1 

and y2 is represented by the triangle OAB in figure 1. 
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Consider the problem of determining whether the mixture (x1 = ¼, 

x2 = 3/4) associated with D in figure 1 is SDWRF efficient. Earlier work 

exploited necessary {tangency) conditions · for maximization of expected 

utility. It is relatively easy to show that these necessary conditions are 

satisfied for any interval which includes {1/55)ln{2/3) or approximately 

-.00737. The utility function 

(3) u = {2/3)(-m/SS) 

(where m is net returns) has an absolute risk aversion coefficient equal to 

this value. Given utility function (3) and the probability assumptions 

presented above, the tradeoff between y1 and y2 (at D) which is required to 

keep expected utility constant is the same as that implied by line segment AB. 

The curve COE shows some of the combinations of y1 and y2 values for which the 

expected value of function (3) equals 1.875. 

While the necessary conditions are satisfied it is clear that D does not 

maximize expected utility subject to the appropriate constraints. In fact, D 

minimizes (rather than maximizes) the expected value of function (3) subject 

to (1), (2) and the requirement that x1 plus x2 either be at least (rather 

than no greater than) one. The curve FBG shows some of the y1 and y2 

combinations associated with a higher level of expected utility and suggests 

that B maximizes the expected value of (3). 

Utility function (3) is only one of the many utility functions associated 

with any risk aversion coefficient interval which includes (1/55)ln(2/3). 

Nonetheless, it does exhibit a characteristic shared by all utility functions 

associated with risk aversion coefficient intervals which include only 

negative values. For each utility function of this sort, expected utility is 

a strictly convex function of the vector, y, of outcomes associated with the 
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various states of nature. This means that no strictly convex combination of A 

and B can maximize expected utility for any utility function in this class. 

This does not guarantee that no strictly convex combination of A and B 

can be SDWRF efficient. Hand each strictly convex combination of Hand I are 

dominated by a convex combination of I and B according to the first degree 

stochastic dominance criterion {FSD). Thus, they cannot be SDWRF efficient 

for any interval of risk aversion coefficients. However, given a sufficiently 

wide interval of risk aversion coefficients, many of the other combinations of 

A and B would be SDWRF efficient. Those near B have larger means than those 

lying closer to A (on AB) and thus would be undominated for any interval whose 

upper bound is sufficiently close to zero. Those near A have larger maximum 

outcomes than those lying closer to B and thus would be undominated when 

sufficiently large negative risk aversion coefficients are permitted. 

The preceding two paragraphs suggest that it may be easier to identify 

the CSD efficient set for a simple problem such as the one discussed above 

than to identify the SDWRF efficient set.l/ For any class of risk preferring 

decision makers, the only candidates for CSD efficiency are the extreme 

vectors A and B. The fact that no strictly convex combination of A and B can 

maximize any utility function wrrich reflects a preference for risk means that 

npne of these vectors can be CSD efficient. The vectors associated with the 

balance of the triangle OAB are obviously inefficient according to the FSD 

criterion and can be neither SDWRF or CSD efficient. Ordinary SDWRF 

algorithms can be used to rank A and B for any given risk aversion coefficient 

interval}/ 

A More General Class of Problems 

Much of the foregoing discussion is valid for more complicated problems. 

One class of such problems is considered in the balance of the paper. It 
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assumes s states of nature. The probability of the ith state of nature is pi. 

The s elements of the column vector, y, are the (total) net returns associated 

with the states of nature. The y vector is related to enterprise activity 

levels as follows: 

(4) y = ex 

where xis a column vector of n activity levels and C is a matrix of per unit 

net returns associated with the activities and the states of. nature. 

Specifically, Cij is the net return per unit of activity j when the ith state 

of nature occurs. As usual, linear resource constraints of the form 

(5) Ax~ band 

(6) X ~ 0 

are assumed. 

To simplify the exposition, it will be assumed that the feasible set of y 

vectors implied by (4), (5) and (6) is a convex polyhedron.~/ The procedure 

to be outlined and illustrated in this paper is valid for many problems even 

when the set of feasible y vectors is .not bounded. However, discussion of 

this situation is somewhat more difficult. 

Three characteristics of the simple example are valid for the more 

general model. Expected utility is a strictly convex function of y whenever 

only risk preferring decision makers are considered. Only extreme vectors 

(corner points) can be CSD efficient. Ordinary SDWRF algorithms can be used 

to help rank alternative mixtures. 

The (potentially) larger dimensions of the more general model lead to two 

complications. First, it may not be quite as easy to identify the relevant 

extreme vectors. This is significant because not all agricultural economists 

are familiar with techniques for i den ti fyi ng extreme vectors. Fortunately, 
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this task is simplified somewhat by the fact that only extreme vectors which 

are also vector efficient need to be identified. 

Second, application of the SDWRF criterion to extreme vectors will not, 

in general, identify the CSD efficient set. It is. a useful screening 

device but the CSD criterion must be applied to guarantee identification of 

the CSD efficient set.11 

A Suggested Procedure 

The following three step procedure is suggested: 

1. Identify the set of vector efficient extreme y vectors. 

2. Apply a standard SDWRF algorithm to these y vectors (and associated 

probability vector). 

3. Apply the CSD criterion. 

Methods such as those proposed by Murty {p. 468) and Steuer (pp. 233-244) can 

be adapted to i den ti fy the vector efficient extreme vectors.~/ A 1 most any 

SDWRF algorithm could be used for step 2 when each state of nature is equally 

likely. This probabi 1 i ty assumption is consistent with our tendency to use 

empirical distributions. Some algorithms would have to be modified when 

unequal probabilities are assumed. 

An Example 

Data from Haze 11 are used to i 11 ustrate the suggested procedure. Each 

state of nature (year) is assumed to be equally likely. 

This prob 1 em involves three resource constraints and seven activities 

(including slack activities). Problems with these dimensions can have no more 

than 35 basic feasible solutions and will usually have fewer than that. The 

Hazell problem has fifteen basic feasible solutions. Five of these are 

associated with the same y vector. Thus, there are eleven extreme y vectors. 
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Enterprise mixtures associated with the eight vector efficient extreme vectors 

are presented in table 1. 

One of the risk aversion coefficient subintervals, -.0002 to -.00005, 

used by Bosch, Ei dman and Gi 11 is selected for this paper. When the SDWRF 

criterion was applied, mixtures d, f, g and h were eliminated. For each of 

the remaining mixtures, it was possible to identify a utility function for 

which that mixture yields greater expected utility than each of the other 

three remaining mixtures. Thus, the CSD efficient set consists of mixtures a, 

b, c and e. 

Concluding Remarks 

A method for identifying a CSD efficient set for classes of risk 

preferring decision makers has been proposed and illustrated. Three comments 

are offered about this procedure. 

In the past, stochastic dominance techniques have typically been applied 

to sets of mutually exclusive alternatives. The first step was usually the 

explicit identification of relevant alternatives. The set of alternatives was 

then reduced to an efficient set. Sometimes, several increasingly stringent 

criteria (e.g., FSD, SSD and TSD) were successively applied resulting in 

progressively smaller efficient sets. The procedure suggested in this paper 

is somewhat analogous. By contrast, the procedures which have been proposed 

for classes of risk averse decision makers tend to begin by identifying a 

subset of the efficient mixtures and then 11 search 11 for other efficient 

mixtures. 

At least one major aspect of the application of the CSD/SDWRF criterion 

to mixtures of risky alternatives has apparently not been fully resolved. The 

author is aware of no procedure to identify the efficient set when the risk 

aversion coefficient interval includes both negative and positive values. It 
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Table 1. Enterprise Mixtures Associated with Vector Efficient y Vectors 

Entererise Mixture CSD 
Carrots Celery Cucumbers Peppers Efficien~y 

Identifier xl x2 X3 X4 Status 

--------------------(acres)-------------------

a 27.45 100.00 72.55 X 

b 100.00 23.53 76.47 X 

C 100.00 100.00 X 

d 123.33 76.67 

e 100.00 100.00 X 

f 119.35 80~65 

g 200.00 

h 200.00 

aThe risk· aversion coefficient interval used was -.0002 to -.00005. X's 
indicate CSD efficient mixtures. 
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is certainly possible to divide such an interval into its negative and 

positive portions, and detennine the efficient sets associated with each 

subi nterva 1. The mixtures in these two efficient sets must be 1 ong to the 

efficient set for the overall interval but the union of the subinterval 

efficient sets may not include all of the mixtures belonging to the efficient 

set for the complete interval. 

Finally, it should be obvious that linearity of the resource constraints 

and the relationship between y and the activity level vector x plays an 

important role in the procedure proposed here. If some of these relationships 

are nonlinear (but define a convex set of feasible y vectors) the problem of 

identifying the set of CSD efficient mixtures is more complex. This has 

perhaps more theoreti_ca 1 than practi ca 1 s i gni fi cance given our tendency to 

approximate nonlinear relationships with linear or piecewise linear 

relationships. 
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Footnotes 

.!/ Cochran, Rabi son and Lodwick ( p. 291) suggest that a 1 though convex set 

stochastic dominance provides a way of refining the efficient sets 

associated with any of several stochastic dominance criteria, it is 

perhaps most useful when combined with the SDWRF criterion. Therefore, 

in this paper the phrase, CSD efficient set, refers to the CSD refinement 

of the SDWRF efficient set. 

~/ The CSD criterion is of no benefit when there are only two alternatives. 

~/ Several definitions of the phras€, convex polyhedron, exist. The one 

adopted here assumes boundedness. In some texts, the less familiar term, 

polytope, is used to denote this sort of polyhedron. 

1/ No claim is made in this paper that an extreme vector which is 

undominated (according to the SDWRF criterion) by other extreme vectors 

is SDWRF efficient. The possibility that such a vector could be 

dominated according to the SDWRF criterion by a nonextreme vector is not 

investigated since it is of little consequence when the CSD efficient set 

is desired. Each nonextreme vector is dominated, according to the CSD 

criterion, by the set of extreme vectors of which it (the nonextreme 

vector) is a convex combination. Transitivity of preferences ensures 

that any vector dominated by a nonextreme vector will not belong to the 

CSD efficient set. 

§/ Murty's procedure is designed to identify the extreme points which are 

vector minima. With trivial adjustments, such as changing the sign of 

the elements in the C matrix, vector maxima can be identified. 



12 

References 

Bosch, Darrell Jr., Vernon R. Eidman and · Eric E. Gil 1. "Compensating 

Irrigators for Restricting Water Use: An Expected Utility Analysis. 11 

Western Journal of Agricultural Economics 11(1986): 146-155. 

Cochran, Mark J. "Stochastic Dominance: The State of the Art in Agricultural 

Economics. 11 In Risk Analysis for Agricultural Production Firms: 

Implications for Managers, Policymakers and Researchers, ed. Douglas L. 

Young, pp. 116-143. Pullman, Washington: Department of Agri cultura 1 

Economics, Washington State University, 1986. 

Cochran, Mark J., Lindon J. Robison and Weldon Lodwick. "Improving the 

Efficiency of Stochastic Dominance Techniques Using Convex Set Stochastic 

Dominance. 11 American Journal of Agricultural Economics 67(1985): 

289-295. 

Callender, Robert Neil and James A. Chalfant. 11 An Alternative Approach to 

Decisions under Uncertainty Using the Empirical Moment-Generating 

Function. 11 American Journal of Agricultural Economics 68(1986): 727-731. 

Hazell, P.B.R. 11A Linear Alternative to Quadratic and Semivariance 

Programming for Farm Planning Under Uncertainty. 11 American Journal of 

Agricultural Economics 53(1971): 53-62. 

Knight, Thomas 0., Bruce A. Mccarl, James B. Hastie and James Wilson. 

"Stochastic Dominance Over Correlated Prospects. 11 A paper presented at 

the Annual Meeting of the American Agrjcultural Economics Association, 

July 28, 1986. 

Kroll, Yoram, Haim Levy and Harry M. Markowitz. "Mean-Variance Versus Direct 

Utility Maximization. 11 Journal of Finance 39(1984): 47-62. 



13 

Lambert, David K. and Bruce A. Mccarl. "Risk Modeling Using Direct Solution 

of Nonlinear Approximations of the Utility Function." American Journal 

of Agricultural Economics 67(1985): 846-852. 

McCaml ey, Francis and James B. Kl iebenstein. "Necessary Conditions for 

Generalized Stochastic Dominance Efficiency of Mixtures of Risky 

Alternatives." The Journal of Economics 12:(1986): 28-32. 

Meyer, Jack. "Choice among Di stri buti ans. 11 Journal of Economic Theory 

14(1977): 326-336. 

Murty, Katta G. Linear Programming. New York: John Wiley and Sons, 1983. 

Steuer, Ralph E. Multiple Criteria Optimization: Theory, Computation and 

Application. New York: John Wiley and Sons, 1986. 

Tauer, Loren W. "Target MOTAD. 11 American Journal of Agricultural Economics 

67(1983): 606-614. 

Watts, Myles J., Larry J. Held and Glenn A. Helmers. 11A comparison of Target 

MOTAD to MOTAD. 11 Cana di an Journal of Agricultural Economics 32 ( 1984): 

175-185. 

Wilson, Paul N. and V~rnon R. Eidman. 11An Empirical Test of the Interval 

Approach for Estimating Risk Preferences. 11 Western Journa 1 of 

Agricultural Economics 8(1983): 170-182. 

Witt, Craig A., Bernard V. Tew and Donald W. Reid. 11 The Importance of 

Covariance with Respect to Pairwise Stochastic Dominance Choices. 11 A 

paper presented at the Annual Meeting of the Southern Agricultural 

Economics Association, February 2, 1987. 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015

