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The Mean and Variance of the Mean-Variance Decision Rule

The sampling properties of the mean-variance decision vector are studied. We
show that, when the parameters of yield distributions are uncertain, risk in
estimation causes bias in these decisions and large variances. Especially

with small samples, decisions based on estimated parameters can be Very poor

estimates of optimal behavior.




THE MEAN AND VARIANCE OF THE MEAN-VARIANCE DECISION RULE

1. Introduction

Since Freund (1956) examined the land allocation problem using quadratic pro-
gramming, agricultural economists have made extensive use of mean-variance
(E-V) analysis to study the choice among uncertain alternatives. Along with

the allocation of land, examples include participation in agricultural com-

modity programs, hedging, and the adoption of new technologies. The widely

accepted expected utility approach produces a linear E-V objective when either
utility is quadratic or the returns from each alternative are jointly normal.
Since quadratic utility implies increasing risk aversion, it is the latter

which serves as the justification for E-V. While some papers have examined

. the normality of returns (e.g., Day, Buccola) and others have considered

alternatives to normality (e.g., Collender and Zilberman), the fact that the

decision-maker must estimate the underlying distributions is rarely

addressed. Yet, this estimation risk has dramatic implications for the
usefulness of E-V analysis and for the actual expected utility to be derived
from applying the E-V approach to decision making. This is especially true
when there is a limited amount of information available for estimating the
distributions in question and Holds whether or not the normality assumption is
appropriate.

In this paper, we illustrate this problem by examining the sampling
pfoperties of the mean-variance decision vecfor for the land allocation
problem. An unbiased decision vector is derived using these results. We also
examine the sampling variance of these decision vectors, finding that varia-
tion around the correct decision is surprisingly large. The results show that

E-V analysis should be undertaken only with strong caveats in many cases.




2. The Setup of the Model

The setup for the land allocation problem is identical to that used in the
expected utility moment-generating function approach in papers by Collender
and Zilberman and Collender and Chalfant. The problem is to allocate L acres
of land to K crops, where returns per acre x are distributed as NK(E] ). We

assume an exponential utility function
u(n) = -exp(-rm)

where r is the Pratt-Arrow measure of risk aversion and 1 denotes profits:

We assume that per acre returns are net of production costs, and we treat

the technologies as predetermined and consider only the acreage decision.
The first-order conditions for maximizing expected utility involve the
derivatives of the moment-generating function with respect to each t; =-T g

They are

These conditions are then equivalent to

Mt awm=o,

VM being the K-vector of derivatives of M and A being a (K - 1) x K matrix of

the form
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where i is used throughout the paper to denote a vector of ones. For a multi-

variate normal m.g.f. with t = -r %, this condition gives us

MLlA-My-rzel=0

A'Z_&= AE‘

Note that A % is not a square matrix so it cannot be inverted to solve for

L. It is only (K - 1) x K, and we need one more restriction on % so we add
!

that the farm size is L (iK % =L). Then, the system of K restrictions on

E_ for maximization of expected utility can be solved:

- Az]t
&:

FAX
L

1
e

~ ~

where % estimates r and X estimates y.

-~

If the actual parameters were used, ¢ would be the optimal decision
(call it 2*) in the sense of maximizing expected utility. Estimation risk
(Bawa, Brown, and Klein) exists if estimates are used and iis calculated
using what Pope and Ziemer (1984) called the '"plug in' method--sample esti-
mates plugged in for population parameters with no adjustments for the
estimation risk. The decision will be suboptimal if % differs from 2% and
BU(x]2) < EUCx]e®).

The plug-in method is the standard practice, making 2 random, as it is a
function of past realizations of returns, through ﬁ and E Work on esti-
mation risk in the finance literature has shown that the efficient set of

portfolios is unaffected by the problem, though decisions are, and Bayesian
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decision-making techniques have been explored. When that approaéh is not
followed and the plug-in method is used without prior beliefs about u or
Z, the sampling behavior of ; is of interest in determing the usefulness
| of the E-V approach.

We assume that data are available on the K different retufns per acre
observéd over n periods and are collected in a K x n matrix X. Column t of X
is a draw, at time t, from NK(“’ %), and we assume timewise independence

- lad .
in these draws. Our estimates X and I are obtained as

(-7 x - xi) (X -xi)!

! .
If we let Z = X - E”in be deviations from population means so that the columns

of Z, z,; are independent draws from NK(O, %), we can then write

1,
—HZin'l']__j..

Also, our estimator for the variance matrix, %, can be expressed as

-DV-xi) -xid = @-nTxe x

=m-Dtze 2t =@- 1w

l 1

P N . . . )
where P, =T -1 (i i) i =I-51i is a symmetric, idempotent matrix

n 'n
with rank n - 1. Only deviations from the population mean contribute to the

A
variance estimator. Then, the expression for ¢ becomes




The inverse in (1) exists and is equal to the partitioned expression

,'-\'[ANV'A']—-1 (n-1) [IK—I i -(n - l)—1 AVV'elJ + [Q E e1J

where the 0 matrix is K x (K - 1) and & denotes the first elementary vector
of length n.

A
The solution vector, %, can therefore be written as

g = {[A'(AW'A')-l (n-1) +0Q -Ar(av'an)™t AWW'e, + elﬂ %Au + %ﬁ AZi

K L ‘ K L
-1 n-1

= A'(AVV'A') T . Aly + % Zi ) + Ley - LA'(AW'A") L Avyre

T 1

By a series of substitutions, this'express reduces to

g=arawan™ 2oL+ dzi ) v re; - 1ate - LA @W'A) T Avu.

where o = (AZA')-l Az.l’ Z.1 denotes column one of %, and AVu =
AV(V'el) - AVW'A'q.
These.substitutions make the proofs more convenient but are otherwise of

no importance. The expected value of % consists of three terms:

E(g) = A' E(TT") L A R ; - u - LA'a + Le,

b-E() =Dl [('1'1")'1 - E(Tl")-lJ Ay + 124 )

n-1 Latai - o)™ v

+ = A' E(TT')”
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The variance matrix for ;, V(E) = E[; --E(g)] [; - E(;)]', consists of
expectations of the products of each term above and its transpose. All cross-
products disappear by independence of each term from the others. The random
terms are T, Zin, and u. Since u can be shown to be independent of both T =
AV and Zin, the cross products involving u will have a zero expectation.

The same is true of those involving the first term since the expectation over
T of [(TT)™ - E(rT')™Y] is zero.
Our expréssion for the variance matrix for ; becomes
X \2 ‘ ) . 7
v = (24w ETH('H')‘1 s At + Lo far - )

arrr) ™t ad et a

+ L2 A'ET{(TI")_l T T'(TT")° } A

r

2 ,
= (n - l) Al ET %[(TT!)']' - E(TI")-l] Alup' + % z) A [(TT')-]. ) E(W')-l]} A

2
- 1) A'E(TT) ™ AsvE(TT) L A + T L2E(TT) L AL

- ' 1
L= le - Z.l A'(AZA') -AZ.l.

The last term simplifies to

-1 = 2
=2 a0, (AzAY) _ L r(azar)”L
ILTAY e ST A s T AT(ARAT) T AL




The second term is

-1 -1
1(n-1 (AzA) (AsA")”
n ( r ) Al KT AR o1 A

2
) 1 S AT(AA) L A
n(n - K - 1)

The first term is a bit more involved. It is necessary to use results of
Shaman (1980) and extensive algebraic manipulations to show that the first

term is

2
n-1 1 -1 -1
A'(AZA') © Aun'A'(AZA")
<r) (n-X-1) (n- K)> w

2

n-1 1 -1

+ A'(ARAY)
( r)n(n-K-l)(n—K)z

If we collect all three parts of V(), we have

- 2
v(g) = (B2 1 A'(AAD) L Auracazar) L
( r) (n-K-1) (n - K)? e

n -

2
n-1 1 1 ' -1
“( r)n(n—K-l)[ o2 (n-KT)}A(AZA) A

= 2

+ E—_—%_—H A'(AZA')-I A

An expression for the bias in g can be obtained by subtraction:

Bias (2) = E(2) - 4* = [(n—nTl—l) - 1} aram)ta L Ly
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An unbiased estimator, call it E, can be then obtained by rescaling E by

the term (n - 1)/(n - K - 1). It is easy to show that

Ar(AsA) L Apprarazan Tl a

V(L) ={

r

/n-K-l)z 1

(n-K-1) (n - K)Z

2 ' |
n-XK-1 1 1 1 veaenr -l
+( r )n(n-K-l){(n-K)ZJr(n"K"UJA(AZA)

2

p e arasn A,

Clearly, this implies a smaller variance matrix for E in the sense that
V(2) - V(2) is positive semidefinite.

To summarize the results so far, we have considered the effect on mean-
variance decisions of estimation risk. With returns following a multivariate
normal NK(E) £) and Q and £ unknown, the decision vector % obtained using
sample estimates is biased as an estimator of the unknown optimum g2*. It
-also has greater variation than the unbiased vector we derived, E, making
the latter an improved rule for mean-variance decisions. Of necessity, both
EU(WIQJ and EU(r|2) are less than EU(w]4*) so estimation risk must reduce

average welfare.

5. Examples

The importance of these results can be seen from plugging in the values from
representative applications. A range of coefficients of absolute risk
aversion (10~6, 10'5, 10'4, 107%) similar to those in Collender and

Chalfant (1986b) was used with sample sizes of 5, 10, and 30 to see how

estimation risk might affect the reliability of mean-variance allocations.
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First, we examined the problem of allocating $10,000 to securities of
Chrysler, New York Shipping, and Bulova--the problem studied by Frankfurter
et al. (1971). The means and variances in rates of return for those securi-

ties were taken from their article. They used

u= (16.64, 6.64, 21.35)

2102 -115 1115

-115 1664 -37
1115 -37 - 2223

Table 1 shows the optimal allocation,'g, and the variance of.§ for
selected combinations of risk aversion and sample sizes.

A second and simpler example is the allocation of land (640 acres) to
three crops with independent and identically distributed yields. We took net
profits to be equal to $1.00 and nonstochastic for each and used a mean of
1,714 pounds and standard deviation of 600 pounds similar to Day's calcula-
tions for cotton yields at 45 pounds of nitrogen per acre. Of course, it is
optimal in this case to plant equal areas to each crop. Mean return is un-
affected but variance is lowest with that decision. Table 2 shows how sample
size for estimating y and gz, under various levels of risk aversion,
affects the reliability of using mean-variance for alloca%ing land.

The results demonstrate that estimation risk, operating through
uncertainty about y and g, can be devastating for our estimates of the
optimal decision. Quite often, an interval of two (or less) standard devia-

tions around the optimum includes the corner solution.

~
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Table 1

Calculaticns Using Data from Frankfurter et. al.

n=5 r=le-6

91C.525 -9385.972 12475, Ly
-1.859514¢
-6.586048e

2.3218218e

2.233108eQ -5,734925e8
-5.7340232e3  1.232097e9
-1.659514€9 -6.586046e3

0n=5 r=0,0001
2828.32 4821.€17 2350,062
-31068144

-11621411
43589552

43201288
-11233141
-219€8146

-11233145
22854550
-11621408

n=10 r:le-é
2121.254 -416.5346 8295, 281
145448592

-27326256
-108122328

-37326268
80440952
-42114692

-108122320
—43114704
151237008

n=10 r=0.0001

2840.428 4611.31 2248.26
7177542
-1866365

=5311177

-1865365
3796601
-1930236

-5311177
-1930237
7241413

'n=30 r=1e-6

2307.52  963.379 6729.100
25169106
-6465055

-18704050

6465057
13877749
7412692

~18704050
-TH12694
26116744

n=30 r=0.0001

2842.29 4925.11 2232.599
1655516.
~430484,6

-1225031.

430484, 8
875670.2
445185, 4

-1225031,
~445185,5
1€70216.

n=5 r=0.00001

2652.976 3520.018 3816.C06

-1£€800068
227248
-18027182

-4 8082443
-18027185
66110632

648832520
-168000€2
-4 8083452

n=5 r=0.C01

2845,754 4950,777 2203.u468
42084468
-11177472
-31806994

-3180€992
-11557253
4336424

=11177TH75
22734824
-11557349

n=10 r=0.00001
2775.C48 4426.95 2797.939
8546563

~2217453
-632910C9

-2217453
4555456
-2338003

-6329108
-2338003
8667112

n=10 r=0.001

2846.965 4959.747 2193,237
7163852
-1862854

-53000998

-1862854
3789013
-1926158

-5300997
-1926159
7227156

n=30 r=0.00C01
2793.675 4564.953 2641, 271
1888324

-490233
-1398091

-4900233.0
1004403,
-514170. 6

-1398001
514171
1912262

n=30 r=0.001

2847.152  4961,126 2191.72
1653188
-42Q387

-1223301

-429887.2
874382, 8
—ikiilig5 5

~1223300.
—4141495.7
1667795,
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Table 2 .
Calculations Using Day's Data

n=5 r=1e=6
212,3240 212.2:340 213,2220
7403431

-374921¢€
=3749215

3740216
7408421
-3749215

-3749215
-3749215
7498430

n=5 r=0.0001
213.2332 213.333%

91762.94 —4588%1,47 -45881, 6
-45881.48  91762.93 -45881, 46
-45881.45 -45881.46  91762.92

n=10 r=le-6
213.3335 213.3335 213,3335

Li82857.5 -2u1428.8 -241428,7
-241428,8  482857.5 -241428.7
-241428,7 -241428,7 u482857.4

n=10 r=0.0001
213.3332 213.2334 213.2323
15217.13

-7608.568
-7608.565

~7608.568
15217.13
-7608.5656

-7608.566

~7608,565
15217.13

n=30 r=le-6

213.3334 213.3232 213.3332
83035.0 -41517,5 —41517.5

-41517.5 83035.0 -41517.5

-41517.5 -41517.5 83035.0

n=30 r=0.0001

213.3333 213.2334  213.2333

3508.807 -1754,404 =175, 403
=-1754.404  3508,807 -175k4, 403
-1754.403 -1754,403  3508. €07

n=5 r=0.C0001
217.2334  212,3224  212,3333
165005,

-32648, 2
-82548. 1

-32548.1
165096. 2
-225423, 1

-82548,1
-32548,1
16509, 2
n=5 r=0.001
212.3333 212.3324 213,2333
91029.6 -45514,8 -45514, 8
-45514,.8 9102¢.6 455148
-45514,8 ~45514,8 91029.6
rn=10 r=0.00001
213.32332 213.2334 213.2233
19347, 24

-9923.62
-9923.62

-9823, 62
10847, 24
-9923, 62

-9923. 52
-9923, 62
19847, 24

n=10 r=0, 001
212,2332 212.3334 213,3333
15170, 83

-7585.418
=7585. 416

-7585.417
15170. 83
~7585.416

-7585, 416
-7585. 415
15170.83
n=30 r=0.00001
213.3332 213.3334 212,3333
4296.196 -2148,098 -2148.008
-2148, 098 4295,106 -2148,097
-2148,098 -2148.093 4296, 195
n=30 r=0.001
212.3333 2132.3334 212.2323
3500.934 -1750.467 -1750. 467

-1750. 467  3500.933 -1750. 466
-1750.466 -1750. 466 3500.933




4. Conclusions

The use of mean-variance and similar analyses is so widespread in égricultural

economics as to be considered one of the main quantitative techniques. How-

ever, the problem of estimation risk is infrequently addressed, and it is
common to see both positive and normative applications with very sparse data

| sets. The results in this paper are a first step toward assigning confidence

levels or constructing interval estimates for the optimal dgcision, and they
show that extreme care should be taken in some applications.

The results establish, under the normality assumption, that the usual
"'plug in'" type decision vector is biased and, unless large amounts of data are
available, its elements have large varianées. An unbiased decision vector can
be constructed, but it still suffers from the problem of sparse data.

Our applications were chosen to provide some representative cases,
possibly erring on the side of large variances. Still, the fact that the

optimal decision is estimated with so little precision is startling. While

the magnitudes are specific to the application, the need for care in obtaining

estimates of optimal decisions is likely to be less so.
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