

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

UNIVERSITY OF CALIFORNIA
DAVIS

SEP 1 - 1987

Agricultural Economics Library

1987

THE MEAN AND VARIANCE OF THE MEAN-VARIANCE DECISION RULE

by

James A. Chalfant, Robert N. Collender, and Shankar Subramanian

February, 1987

Decision-making

AAEA paper, 1987

The Mean and Variance of the Mean-Variance Decision Rule

The sampling properties of the mean-variance decision vector are studied. We show that, when the parameters of yield distributions are uncertain, risk in estimation causes bias in these decisions and large variances. Especially with small samples, decisions based on estimated parameters can be very poor estimates of optimal behavior.

THE MEAN AND VARIANCE OF THE MEAN-VARIANCE DECISION RULE

1. Introduction

Since Freund (1956) examined the land allocation problem using quadratic programming, agricultural economists have made extensive use of mean-variance (E-V) analysis to study the choice among uncertain alternatives. Along with the allocation of land, examples include participation in agricultural commodity programs, hedging, and the adoption of new technologies. The widely accepted expected utility approach produces a linear E-V objective when either utility is quadratic or the returns from each alternative are jointly normal.

Since quadratic utility implies increasing risk aversion, it is the latter which serves as the justification for E-V. While some papers have examined the normality of returns (e.g., Day, Buccola) and others have considered alternatives to normality (e.g., Collender and Zilberman), the fact that the decision-maker must estimate the underlying distributions is rarely addressed. Yet, this estimation risk has dramatic implications for the usefulness of E-V analysis and for the actual expected utility to be derived from applying the E-V approach to decision making. This is especially true when there is a limited amount of information available for estimating the distributions in question and holds whether or not the normality assumption is appropriate.

In this paper, we illustrate this problem by examining the sampling properties of the mean-variance decision vector for the land allocation problem. An unbiased decision vector is derived using these results. We also examine the sampling variance of these decision vectors, finding that variation around the correct decision is surprisingly large. The results show that E-V analysis should be undertaken only with strong caveats in many cases.

2. The Setup of the Model

The setup for the land allocation problem is identical to that used in the expected utility moment-generating function approach in papers by Collender and Zilberman and Collender and Chalfant. The problem is to allocate L acres of land to K crops, where returns per acre \underline{x} are distributed as $N_K(\underline{\mu}, \Sigma)$. We assume an exponential utility function

$$u(\pi) = -\exp(-r\pi)$$

where r is the Pratt-Arrow measure of risk aversion and π denotes profits:

$$\pi = \sum_{i=1}^K \lambda_i x_i.$$

We assume that per acre returns are net of production costs, and we treat the technologies as predetermined and consider only the acreage decision.

The first-order conditions for maximizing expected utility involve the derivatives of the moment-generating function with respect to each $t_i = -r \lambda_i$. They are

$$\frac{M_1}{M} = \frac{M_i}{M}, \quad i = 2, \dots, K.$$

These conditions are then equivalent to

$$M^{-1} A \nabla M = \underline{0},$$

∇M being the K -vector of derivatives of M and A being a $(K - 1) \times K$ matrix of the form

$$A = \left[\begin{array}{c|c} \underline{i} & -I_{K-1} \end{array} \right]$$

where \underline{i} is used throughout the paper to denote a vector of ones. For a multivariate normal m.g.f. with $\underline{t} = -r \underline{\lambda}$, this condition gives us

$$M^{-1} A \cdot M[\underline{\mu} - r \Sigma \underline{\lambda}] = \underline{0}$$

or

$$A \Sigma \underline{\lambda} = \frac{1}{r} A \underline{\mu}$$

Note that $A \Sigma$ is not a square matrix so it cannot be inverted to solve for $\underline{\lambda}$. It is only $(K - 1) \times K$, and we need one more restriction on $\underline{\lambda}$ so we add that the farm size is L ($\underline{i}_K' \underline{\lambda} = L$). Then, the system of K restrictions on $\hat{\underline{\lambda}}$ for maximization of expected utility can be solved:

$$\hat{\underline{\lambda}} = \begin{bmatrix} A & \hat{\Sigma} \\ \vdots & \\ \underline{i}_K' & \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{r} A & \hat{\underline{x}} \\ & L \end{bmatrix}$$

where $\hat{\Sigma}$ estimates Σ and $\hat{\underline{x}}$ estimates $\underline{\mu}$.

If the actual parameters were used, $\underline{\lambda}$ would be the optimal decision (call it $\underline{\lambda}^*$) in the sense of maximizing expected utility. Estimation risk (Bawa, Brown, and Klein) exists if estimates are used and $\hat{\underline{\lambda}}$ is calculated using what Pope and Ziemer (1984) called the "plug in" method--sample estimates plugged in for population parameters with no adjustments for the estimation risk. The decision will be suboptimal if $\hat{\underline{\lambda}}$ differs from $\underline{\lambda}^*$ and $EU(\pi|\hat{\underline{\lambda}}) < EU(\pi|\underline{\lambda}^*)$.

The plug-in method is the standard practice, making $\hat{\underline{\lambda}}$ random, as it is a function of past realizations of returns, through $\hat{\underline{\mu}}$ and $\hat{\Sigma}$. Work on estimation risk in the finance literature has shown that the efficient set of portfolios is unaffected by the problem, though decisions are, and Bayesian

decision-making techniques have been explored. When that approach is not followed and the plug-in method is used without prior beliefs about μ or Σ , the sampling behavior of $\hat{\lambda}$ is of interest in determining the usefulness of the E-V approach.

We assume that data are available on the K different returns per acre observed over n periods and are collected in a $K \times n$ matrix X . Column t of X is a draw, at time t , from $N_K(\mu, \Sigma)$, and we assume timewise independence in these draws. Our estimates \hat{x} and $\hat{\Sigma}$ are obtained as

$$\hat{x} = \frac{1}{n} X i_n$$

and

$$\hat{\Sigma} = (n - 1)^{-1} (X - \hat{x} i_n') (X - \hat{x} i_n')'$$

If we let $Z = X - \mu i_n'$ be deviations from population means so that the columns of Z , $Z_{\cdot i}$ are independent draws from $N_K(0, \Sigma)$, we can then write

$$\hat{x} = \frac{1}{n} Z i_n + \mu.$$

Also, our estimator for the variance matrix, Σ , can be expressed as

$$\begin{aligned} \hat{\Sigma} &= (n - 1)^{-1} (X - \hat{x} i_n') (X - \hat{x} i_n')' = (n - 1)^{-1} X P_n X' \\ &= (n - 1)^{-1} Z P_n Z' = (n - 1)^{-1} W' \end{aligned}$$

where $P_n = I - i_n (i_n' i_n)^{-1} i_n' = I - \frac{1}{n} i_n i_n'$ is a symmetric, idempotent matrix with rank $n - 1$. Only deviations from the population mean contribute to the variance estimator. Then, the expression for $\hat{\lambda}$ becomes

$$(1) \quad \hat{\lambda} = \begin{bmatrix} (n-1)^{-1} A Z P_n Z' \\ \vdots \\ i_K \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{r} A(\mu + \frac{1}{n} Z i_n) \\ \vdots \\ L \end{bmatrix}.$$

The inverse in (1) exists and is equal to the partitioned expression

$$A' [AVV'A']^{-1} (n-1) \begin{bmatrix} I_{K-1} & -(n-1)^{-1} AVV'e_1 \\ \underline{0} & e_1 \end{bmatrix} + \begin{bmatrix} \underline{0} & e_1 \end{bmatrix}$$

where the 0 matrix is $K \times (K-1)$ and e_1 denotes the first elementary vector of length n .

The solution vector, $\hat{\lambda}$, can therefore be written as

$$\hat{\lambda} = \left\{ \begin{bmatrix} A' (AVV'A')^{-1} (n-1) + \underline{0} & -A' (AVV'A')^{-1} AVV'e_1 + e_1 \\ \vdots & \vdots \end{bmatrix} \right\}_K \begin{bmatrix} \frac{1}{r} A\mu + \frac{1}{rn} AZi_n \\ L \end{bmatrix}$$

or

$$\hat{\lambda} = A' (AVV'A')^{-1} \cdot \frac{n-1}{r} A(\mu + \frac{1}{n} Z i_n) + L e_1 - L A' (AVV'A')^{-1} AVV'e_1.$$

By a series of substitutions, this express reduces to

$$\hat{\lambda} = A' (AVV'A')^{-1} \frac{n-1}{r} A(\underline{\mu} + \frac{1}{n} Z \underline{i}_n) + L e_1 - L A' \alpha - L A' (AVV'A')^{-1} AVu.$$

where $\alpha = (A \Sigma A')^{-1} A \Sigma_{.1}$, $\Sigma_{.1}$ denotes column one of Σ , and $AVu = AV(V'e_1) - AVV'A'\alpha$.

These substitutions make the proofs more convenient but are otherwise of no importance. The expected value of $\hat{\lambda}$ consists of three terms:

$$E(\hat{\lambda}) = A' E(TT')^{-1} A \frac{n-1}{r} \underline{\mu} - L A' \alpha + L e_1,$$

and

$$\hat{\lambda} - E(\hat{\lambda}) = \frac{n-1}{r} A' \left[(TT')^{-1} - E(TT')^{-1} \right] A(\underline{\mu} + \frac{1}{n} Z \underline{i}_n)$$

$$+ \frac{n-1}{r} A' E(TT')^{-1} A \frac{1}{n} Z i_n - L A' (TT')^{-1} AVu.$$

The variance matrix for $\hat{\lambda}$, $V(\hat{\lambda}) = E[\hat{\lambda} - E(\hat{\lambda})][\hat{\lambda} - E(\hat{\lambda})]'$, consists of expectations of the products of each term above and its transpose. All cross-products disappear by independence of each term from the others. The random terms are T , Z_{in} , and u . Since u can be shown to be independent of both $T = AV$ and Z_{in} , the cross products involving u will have a zero expectation. The same is true of those involving the first term since the expectation over T of $[(TT')^{-1} - E(TT')^{-1}]$ is zero.

Our expression for the variance matrix for $\hat{\lambda}$ becomes

$$\begin{aligned}
 V(\hat{\lambda}) &= \left(\frac{n-1}{r}\right)^2 A' E_T \left\{ \left[(TT')^{-1} - E(TT')^{-1} \right] A(\mu\mu' + \frac{1}{n} \Sigma) A' \left[(TT')^{-1} - E(TT')^{-1} \right] \right\} A \\
 &\quad + \left(\frac{n-1}{r}\right)^2 A' E(TT')^{-1} A \frac{1}{n} \Sigma A' E(TT')^{-1} A \\
 &\quad + L^2 A' E_T \left\{ (TT')^{-1} T \bar{\Sigma} I_{n-1} T' (TT')^{-1} \right\} A \\
 &= \left(\frac{n-1}{r}\right)^2 A' E_T \left\{ \left[(TT')^{-1} - E(TT')^{-1} \right] A(\mu\mu' + \frac{1}{n} \Sigma) A' \left[(TT')^{-1} - E(TT')^{-1} \right] \right\} A \\
 &\quad + \frac{1}{n} \left(\frac{n-1}{r}\right)^2 A' E(TT')^{-1} A \Sigma A' E(TT')^{-1} A + \bar{\Sigma} L^2 A' E(TT')^{-1} A.
 \end{aligned}$$

where

$$\bar{\Sigma} = \Sigma_{11} - \Sigma_{\cdot 1} A' (A \Sigma A')^{-1} A \Sigma_{\cdot 1}.$$

The last term simplifies to

$$\bar{\Sigma} L^2 A' \cdot \frac{(A \Sigma A')^{-1}}{n - K - 1} A = \frac{\bar{\Sigma} L^2}{n - K - 1} A' (A \Sigma A')^{-1} A.$$

The second term is

$$\begin{aligned} & \frac{1}{n} \left(\frac{n-1}{r} \right)^2 A' \frac{(A\Sigma A')^{-1}}{n-K-1} A \Sigma A' \frac{(A\Sigma A')^{-1}}{n-K-1} A \\ &= \left(\frac{n-1}{r} \right)^2 \frac{1}{n(n-K-1)^2} A' (A\Sigma A')^{-1} A. \end{aligned}$$

The first term is a bit more involved. It is necessary to use results of Shaman (1980) and extensive algebraic manipulations to show that the first term is

$$\begin{aligned} & \left(\frac{n-1}{r} \right)^2 \frac{1}{(n-K-1)(n-K)^2} A' (A\Sigma A')^{-1} A \mu \mu' A' (A\Sigma A')^{-1} A \\ &+ \left(\frac{n-1}{r} \right)^2 \frac{1}{n(n-K-1)(n-K)^2} A' (A\Sigma A')^{-1} A. \end{aligned}$$

If we collect all three parts of $\hat{\lambda}$, we have

$$\begin{aligned} \hat{\lambda} &= \left(\frac{n-1}{r} \right)^2 \frac{1}{(n-K-1)(n-K)^2} A' (A\Sigma A')^{-1} A \mu \mu' A (A\Sigma A')^{-1} A \\ &+ \left(\frac{n-1}{r} \right)^2 \frac{1}{n(n-K-1)} \left[\frac{1}{(n-K)^2} + \frac{1}{(n-K-1)} \right] A' (A\Sigma A')^{-1} A \\ &+ \frac{\bar{L}^2}{(n-K-1)} A' (A\Sigma A')^{-1} A. \end{aligned}$$

An expression for the bias in $\hat{\lambda}$ can be obtained by subtraction:

$$\text{Bias } (\hat{\lambda}) = E(\hat{\lambda}) - \lambda^* = \left[\left(\frac{n-1}{n-K-1} \right) - 1 \right] A' (A\Sigma A')^{-1} A \cdot \frac{1}{r} \mu.$$

An unbiased estimator, call it $\tilde{\lambda}$, can be then obtained by rescaling $\hat{\Sigma}$ by the term $(n - 1)/(n - K - 1)$. It is easy to show that

$$\begin{aligned}
 V(\tilde{\lambda}) &= \left(\frac{n - K - 1}{r} \right)^2 \frac{1}{(n - K - 1) (n - K)^2} A' (A \Sigma A')^{-1} A \mu \mu' A' (A \Sigma A')^{-1} A \\
 &+ \left(\frac{n - K - 1}{r} \right)^2 \frac{1}{n (n - K - 1)} \left[\frac{1}{(n - K)^2} + \frac{1}{(n - K - 1)} \right] A' (A \Sigma A')^{-1} A \\
 &+ \frac{\bar{\Sigma}^2}{(n - K - 1)} A' (A \Sigma A')^{-1} A.
 \end{aligned}$$

Clearly, this implies a smaller variance matrix for $\tilde{\lambda}$ in the sense that $V(\hat{\lambda}) - V(\tilde{\lambda})$ is positive semidefinite.

To summarize the results so far, we have considered the effect on mean-variance decisions of estimation risk. With returns following a multivariate normal $N_K(\mu, \Sigma)$ and μ and Σ unknown, the decision vector $\hat{\lambda}$ obtained using sample estimates is biased as an estimator of the unknown optimum λ^* . It also has greater variation than the unbiased vector we derived, $\tilde{\lambda}$, making the latter an improved rule for mean-variance decisions. Of necessity, both $EU(\pi|\hat{\lambda})$ and $EU(\pi|\tilde{\lambda})$ are less than $EU(\pi|\lambda^*)$ so estimation risk must reduce average welfare.

3. Examples

The importance of these results can be seen from plugging in the values from representative applications. A range of coefficients of absolute risk aversion ($10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}$) similar to those in Collender and Chalfant (1986b) was used with sample sizes of 5, 10, and 30 to see how estimation risk might affect the reliability of mean-variance allocations.

First, we examined the problem of allocating \$10,000 to securities of Chrysler, New York Shipping, and Bulova--the problem studied by Frankfurter et al. (1971). The means and variances in rates of return for those securities were taken from their article. They used

$$\underline{\mu} = (16.64, 6.64, 21.35)$$

and

$$\Sigma = \begin{bmatrix} 2102 & -115 & 1115 \\ -115 & 1664 & -37 \\ 1115 & -37 & 2223 \end{bmatrix}.$$

Table 1 shows the optimal allocation, $\hat{\underline{\lambda}}$, and the variance of $\hat{\underline{\lambda}}$ for selected combinations of risk aversion and sample sizes.

A second and simpler example is the allocation of land (640 acres) to three crops with independent and identically distributed yields. We took net profits to be equal to \$1.00 and nonstochastic for each and used a mean of 1,714 pounds and standard deviation of 600 pounds similar to Day's calculations for cotton yields at 45 pounds of nitrogen per acre. Of course, it is optimal in this case to plant equal areas to each crop. Mean return is unaffected but variance is lowest with that decision. Table 2 shows how sample size for estimating $\underline{\mu}$ and Σ , under various levels of risk aversion, affects the reliability of using mean-variance for allocating land.

The results demonstrate that estimation risk, operating through uncertainty about $\underline{\mu}$ and Σ , can be devastating for our estimates of the optimal decision. Quite often, an interval of two (or less) standard deviations around the optimum includes the corner solution.

Table 1
Calculations Using Data from Frankfurter et. al.

n=5 r=1e-6			n=5 r=0.00001		
910.525	-9385.972	18475.44	2653.976	3530.018	3816.006
2.233105e9	-5.734925e9	-1.659614e	64883520	-16800068	-48083448
-5.734923e3	1.232097e9	-6.586048e	-16800062	34827248	-18027185
-1.659614e9	-6.586046e3	2.318218e	-48083452	-18027182	66110632
n=5 r=0.0001			n=5 r=0.001		
2828.32	4821.617	2350.062	2845.754	4950.777	2203.468
43201288	-11233145	-31968144	42984468	-11177475	-31806992
-11233141	22854550	-11621411	-11177472	22734824	-11557353
-31968146	-11621408	43589552	-31806994	-11557349	43364344
n=10 r=1e-6			n=10 r=0.00001		
2121.254	-416.5346	8295.281	2775.048	4426.95	2797.939
145448592	-37326268	-108122320	8546563	-2217453	-6329108
-37326256	80440952	-43114704	-2217453	4555456	-2338003
-108122328	-43114692	151237008	-6329109	-2338003	8667112
n=10 r=0.0001			n=10 r=0.001		
2840.428	4911.31	2248.26	2846.965	4959.747	2193.287
7177542	-1866365	-5311177	7163852	-1862854	-5300997
-1866365	3795601	-1930237	-1862854	3789013	-1926159
-5311177	-1930236	7241413	-5300998	-1926158	7227156
n=30 r=1e-6			n=30 r=0.00001		
2307.52	963.379	6729.100	2793.675	4564.953	2641.371
25169106	-6465057	-18704050	1888324	-490233.0	-1398091
-6465055	13877749	-7412694	-490233	1004403.	-514171
-18704050	-7412692	26116744	-1398091	-514170.6	1912262
n=30 r=0.0001			n=30 r=0.001		
2842.29	4925.11	2232.599	2847.152	4961.126	2191.72
1655516.	-430484.8	-1225031.	1653188	-429887.3	-1223300.
-430484.6	875670.2	-445185.5	-429887	874382.8	-444495.7
-1225031.	-445185.4	1670216.	-1223301	-444495.5	1667796.

Table 2
Calculations Using Day's Data

n=5 r=1e-6			n=5 r=0.00001		
213.3340	213.3340	213.3330	213.3334	213.3334	213.3333
7498431	-3749216	-3749215	165096.3	-82548.1	-82548.1
-3749216	7498431	-3749215	-82548.2	165096.3	-82548.1
-3749215	-3749215	7498430	-82548.1	-82548.1	165096.2
n=5 r=0.0001			n=5 r=0.001		
213.3332	213.3334	213.3333	213.3333	213.3334	213.3333
91762.94	-45881.47	-45881.46	91029.6	-45514.8	-45514.8
-45881.48	91762.93	-45881.46	-45514.8	91029.6	-45514.8
-45881.46	-45881.46	91762.92	-45514.8	-45514.8	91029.6
n=10 r=1e-6			n=10 r=0.00001		
213.3335	213.3335	213.3335	213.3332	213.3334	213.3333
482857.5	-241428.8	-241428.7	19347.24	-9923.62	-9923.62
-241428.8	482857.5	-241428.7	-9923.62	19347.24	-9923.62
-241428.7	-241428.7	482857.4	-9923.62	-9923.62	19347.24
n=10 r=0.0001			n=10 r=0.001		
213.3332	213.3334	213.3333	213.3332	213.3334	213.3333
15217.13	-7608.568	-7608.566	15170.83	-7585.417	-7585.416
-7608.568	15217.13	-7608.565	-7585.418	15170.83	-7585.415
-7608.566	-7608.566	15217.13	-7585.416	-7585.416	15170.83
n=30 r=1e-6			n=30 r=0.00001		
213.3334	213.3332	213.3332	213.3332	213.3334	213.3333
83035.0	-41517.5	-41517.5	4296.196	-2148.098	-2148.098
-41517.5	83035.0	-41517.5	-2148.098	4296.196	-2148.097
-41517.5	-41517.5	83035.0	-2148.098	-2148.098	4296.195
n=30 r=0.0001			n=30 r=0.001		
213.3333	213.3334	213.3333	213.3333	213.3334	213.3333
3508.807	-1754.404	-1754.403	3500.934	-1750.467	-1750.467
-1754.404	3508.807	-1754.403	-1750.467	3500.933	-1750.466
-1754.403	-1754.403	3508.807	-1750.466	-1750.466	3500.933

4. Conclusions

The use of mean-variance and similar analyses is so widespread in agricultural economics as to be considered one of the main quantitative techniques. However, the problem of estimation risk is infrequently addressed, and it is common to see both positive and normative applications with very sparse data sets. The results in this paper are a first step toward assigning confidence levels or constructing interval estimates for the optimal decision, and they show that extreme care should be taken in some applications.

The results establish, under the normality assumption, that the usual "plug in" type decision vector is biased and, unless large amounts of data are available, its elements have large variances. An unbiased decision vector can be constructed, but it still suffers from the problem of sparse data.

Our applications were chosen to provide some representative cases, possibly erring on the side of large variances. Still, the fact that the optimal decision is estimated with so little precision is startling. While the magnitudes are specific to the application, the need for care in obtaining estimates of optimal decisions is likely to be less so.

REFERENCES

Bawa, Vijay S., Stephen J. Brown, and Roger W. Klein: Estimation Risk and Optimal Portfolio Choice. Amsterdam: North-Holland Publishing Co., 1979.

Buccola, Steven T.: "Testing for Nonnormality in Farm Net Returns," American Journal of Agricultural Economics, 68(1986), 334-343.

Collender, Robert N., and James A. Chalfant: "An Alternative Approach to Decisions Under Uncertainty Using the Empirical Moment-Generating Function," American Journal of Agricultural Economics, 68(1986a), 727-731.

_____. "Sparse Data and Risk-Efficient Choice Under Uncertainty."

University of California, Department of Agricultural and Resource Economics, Working Paper No. 403, Berkeley, April, 1986b.

Collender, Robert N., and David Zilberman: "Land Allocation Under Uncertainty for Alternative Specifications of Return Distributions," American Journal of Agricultural Economics, 67(1985), 779-786.

Day, Richard H.: "Probability Distributions of Field Crops," Journal of Farm Economics, 47(1965), 713-741.

Frankfurter, G. M., H. E. Phillips, and J. P. Seagle: "Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances," Journal of Financial and Quantitative Analysis, 6(1971), 1251-1262.

Freund, R. J.: "The Introduction of Risk Into a Programming Model," Econometrica, 14(1956), 253-263.

Pope, Rulon D., and Rod F. Ziemer: "Stochastic Efficiency, Normality, and Sampling Errors in Agricultural Risk Analysis," American Journal of Agricultural Economics, 66(1984), 31-40.

Shaman, Paul: "The Inverted Complex Wishart Distribution and its Application to Spectral Estimation," Journal of Multivariate Analysis, 10(1980), 51-59.