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The Mean and Variance of the Mean-Variance Decision Rule 

The sampling properties of the mean-variance decision vector are studied. We 

sho,v that, when the parameters of yield distributions are uncertain, risk in 

estimation causes bias in these decisions and large variances. Especially 

with small samples, decisions based on estimated parameters can be very poor 

estimates of optimal behavior. 
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1HE MEAN AND VARIANCE OF THE .MEAN-VARIANCE DECISION RULE 

1. Introduction 

·~ Since Freund (1956) examined the land allocation problem using quadratic pro­

gramming, agricultural economists have made extensive use of mean-variance 

(E-V) analysis to study the choice among uncertain alternatives. Along with 

the allocation of land, examples include participation in agricultural com­

modity programs, hedging, and the adoption of new technologies. The widely 

accepted expected utility approach produces a linear E-V objective when either 

utility is quadratic or the returns from each alternative are jointly normal. 

Since quadratic utility implies increasing risk aversion, it is the latter 

which serves as the justification for E-V. While some papers have examined 

the normality of returns (e.g., Day, Buccola) and others have considered 

alternatives to normality (e.g., Callender and Zilberman), the fact that the 

decision-maker must estimate the underlying distributions is rarely 

addressed. Yet, this estimation risk has dramatic implications for the 

usefulness of E-V analysis and for the actual expected utility to be derived 

from applying the E-V approach to decision making. This is especially true 

when there is a limited amount of information available for estimating the 

distributions in question and holds whether or not the normality assumption is 

appropriate. 

In this paper, we illustrate this problem by examining the sampling 

properties of the mean-variance decision vector for the land allocation 

problem. An unbiased decision vector is derived using these results. lie also 

examine the sampling variance of these decision vectors, finding that varia­

tion around the correct decision is surprisingly large. The results show that 

E-V analysis should be undertaken only with strong caveats in many cases. 
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2. The Setup of the Model 

The setup for the land allocation problem is identical to that used in the 

expected utility moment-generating function approach in papers by Callender 

and Zilberman and Callender and Chalfant. The problem is to allocate L acres 

of land to K crops, where returns per acre ~ are distributed as Niµ, .E). We 

assume an exponential utility function 

u(1r) = -exp(-r1r) 

where r is the Pratt-Arrow measure of risk aversion and rr denotes profits: 

K 
1T = .E fl. x .. 

i=l 1 1 

We assume that per acre returns are net of production costs, and we treat 

the technologies as predetermined and consider only the acreage decision. 

The first-order conditions for maximizing expected utility involve the 

derivatives of the moment-generating function with respect to each t. = -r i-. 
1 1 

They are 

i = 2, ••• , K. 

These conditions are then equivalent to 

-1 
M A v'M = _Q_, 

v'M being the K-vector of derivatives of Mand A being a (K - 1) x K matrix of 

the form 

[t 
.., 

A -I j = 
K-1 
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where i_ is used throughout the paper to denote a vector of ones. For a multi­

variate normal m.g.f. with_!= -r !, this condition gives us 

M-l A • M[l!. - r .E t] = Q 

or 

1 
A· .E i = r A !!· 

Note that A.Eis not a square matrix so it cannot be inverted to solve for 
' 

.Q.. It is only (K - 1) x K, and we need one more restriction on i so we add 
I 

that the farm size is L (_!-Ki= L). Then, the system of K restrictions on 

i for maximization of expected utility can be solved: 

where .E estimates .E and !r estimates µ. 

If the actual parameters were used, i would be the optimal decision 

(call it R.*) in the sense of maximizing expected utility. Estimation risk 
A 

(Bawa, Brown, and Klein) exists if estimates are used and i is calculated 

using what Pope and Ziemer (1984) called the "plug in" method--sample esti­

mates plugged in for population parameters with no adjustments for the 

estimation risk. 
. . A 

The decision will be suboptimal if .Q. differs from R.* and 
A 

EU(nlt) < EU(nlt*). 
. A 

The plug-in method is the standard practice, making .Q. random, as it is a 
A A 

function of past realizations of returns, throughµ and .E. Work on esti-

mation risk in the finance literature has shown that the efficient set of 

portfolios is unaffected by the problem, though decisions are, and Bayesian 
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decision-making techniques have been explored. When that approach is not 

followed and the plug-in method is used without prior beliefs aboutµ or 
"' L, the sampling behavior of i is of interest in determing the usefulness 

of the E-V approach. 

We assume that data are available on the K different returns per acre 

observed over n periods and are collected in a K x n matrix X. Column t of X 

is a draw, at time t, from NK(µ, E), and we assume timewise independence 

in these draws. Our estimates x and E are obtained as 

and 

A 1 • 
x=-X1 - n n 

~ = (n - 1)-l (X - xi 1 ) (X - ; i 1
): 

--n --n 

I 

If we let Z = X - µ in be deviations from population means so that the columns 

of Z, Z. are independent draws from NK(O, E), we can then write 
•1 

A 1 • 
X = - Z1 + µ. 
- n -n -

Also, our estimator for the variance matrix, E, can be expressed as 

A 1 A I A II 1 
E = (n - 1)- (X - xi) (X - xi) = (n - 1)- X P X1 

--n --n n 

= (n - 1)-l Z P Z1 = (n - 1)-l W1 
n 

h I . (. I • )-1 . I I 1 . . I • . . d 
were Pn = - 1n 1n 1n 1n = - n 1n 1n 1s a synnnetr1c, 1 empotent matrix 

with rank n - 1. Only deviations from the population mean contribute to the 

"' variance estimator. Then, the expression for i becomes 
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(1) .Q, = [
!_ A(µ + .!. Zi J r n n 

. 
L 

The inverse in (1) exists and is equal to the partitioned expression 

-1 [ : -1 J [ : ""'j A'[AW'A'] · (n - 1) I • -(n - 1) AW'e + O · e. K-1 : 1 = 1 .L 
' I 

where the O matrix is K x (K - 1) and e1 denotes the first elementary vector 

of length n. 

"' The solution vector, JI,, can therefore be written as 

or 

i = A'(AW'A')-l • n - l A(µ+.!. Zi) + Le - LA'(AW'A')-l AW'e • 
r n n 1 1 

By a series of substitutions, this express reduces to 

i = A'(AW'A')-l n; l A(.l! + ft Z.!.n) + Le1 - LA'a - LA'(AW'A)-l AVu. 

-1 where a= (AEA') Ar.1, r.1 denotes column one of E, and AVu = 

AV(V 1e1) - AW'A'a. 

These substitutions make the proofs more convenient but are otherwise of 

"' -no importance. The expected value of .Q, consists of three terms: 

,.. 

E(t) = A' E(TT')-l An; l .I:!. - LA'a + Le1, 

and 

+ n; l A' E(TT')-l A½ Zin - LA'(TI')-l AVu. 
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" A A A A " 

The variance matrix fort, V(t) = E[t - E(t)] [t - E(t)]', consists of 

expectations of the products of each term above and its transpose. All cross-

products disappear by independence of each term from the others. The random 

terms are T, Zi , and u. Since u can be shown to be independent of both T = n 

AV and Zi , the cross products involving u will have a zero expectation. n 

The same is true of those involving the first term since the expectation over 

T of [(TT')-l - E(TT')-1] is zero. 

Our expression for the variance matrix fort becomes 

2 . . 
+ (n - 11 A'E(TT')-l A.! rA'E(TT')-l A 

r ) n 

+ L 2 A'ETf('rr 1 )-l T E In-l T' (TT' )-1] A 
'-

where 

The last term simplifies to 
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The second term is 

.!. (n - 1) 2 A' (ArA') -1 ArA' (ArA' )-1 A 
n , r n - K - l n - K - l 

= (n; 1)2 1 A'(ArA')-1 A. 
n(n - K - 1)2 

The first term is a bit more involved. It is necessary to use results of 

Shaman (1980) and extensive algebraic manipulations to show that the first 

term is 

1 A I (ArA I ) -1 Aµµ I A I (ArA I ) -1 A 
(n - K - 1) (n - K) 2 

2 
+ ( n ; 1 ) 1 2 A, (ArA, ) -1 A • 

n (n - K - 1) (n - K) 

,.. 

If we collect all three parts of V(t), we have 

V(t) = ( n - 1 ) 2 1 A, (ArA, ) -1 Aµµ, A(Ar.A, ) -1 A 
r (n - K - 1) (n - K J2 

~L2 1 
+ L, l) A'(ArA' )- A. (n - K -

An expression for the bias in Q, can be obtained by subtraction: 

Bias (t) = E(i) - t* = Ii( n -_ 1 ) _ 1] A, (Ar.A, ) -1 A • 1:. • 
~ n - K - l r .l:! 
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A 

An unbiased estimator, call it i, can be then obtained by rescaling Eby 

the term (n - 1)/(n - K - 1). It is easy to show that 

V(i:) = ( n - ~ - 1) 2 (n - K - ~) (n - K)2 A'(Ai;A')-1 Aµµ'A'(Ai;A')-1 A 

+ ( n - K - 1 ) 2 1 [ 1 + 1 ] A, (Ar.A, ) -1 A 
r 2 (n - l( - 1) n (n - K - 1) (n - K) . 

~12 1 
+ L, l) A'(AEA' )- A. (n - l( -

Clearly, this implies a smaller variance matrix fort in the sense that 
A -

V(t) - V(i) is positive semidefinite. 

To Sl.IlllIIlarize the results so far, we have considered the effect on mean­

variance decisions of estimation risk. l'ii th returns following a multi variate 

normal NK(H., .E) andµ and E unknown, the decision vector i obtained using 

sample estimates is biased as an estimator of the unknown optimum t*. It 

also has greater variation than the unbiased vector we derived, i, making 

the latter an improved rule for mean-variance decisions. Of necessity, both 

EU(Tili) and EU(Tili) are less than EU(Tilt*) so estimation risk must reduce 

average welfare. 

3. Examples 

The importance of these results can be seen from plugging in the values from 

representative applications. A range of coefficients of absolute risk 

aversion (10-6, 10-5, 10-4, 10-3) similar to those in Callender and 

Chalfant (1986b) was used with sample sizes of 5, 10, and 30 to see how 

estimation risk might affect the reliability of mean-variance allocations. 

• 
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First, we examined the problem of allocating $10,000 to securities of 

Chrysler, New York Shipping, and Bulova--the problem studied by Frankfurter 

et al. (1971). The means and variances in rates of return for those securi­

ties were taken from their article. They used 

and 

µ = (16.64, 6.64, 21.35) 

[ 

2102 

E = -115 

1115 

-115 

1664 

-37 

1115] 
-37 . 

2223 

A A 

Table 1 shows the optimal allocation, i, and the variance of i for 

selected combinations of risk aversion and sample sizes. 

A second and simpler example is the allocation of land (640 acres) to 

three crops with independent and identically distributed yields. We took net 

profits to be equal to $1.00 and nonstochastic for each and used a mean of 

1,714 pounds a~d standard deviation of 600 pounds similar to Day's calcula­

tions for cotton yields at 45 pounds of nitrogen per acre. Of course, it is 

optimal in this case to plant equal areas to each crop. ~1ean return is un­

affected but variance is lowest with that decision. Table 2 shows how sample 

size for estimating _g_ and f, under various levels of risk aversion, 

affects the reliability of using mean-variance for allocating land. 

The results demonstrate that estimation risk, operating through 

uncertainty about .l:!. and f, can be devastating for our estimates of the 

optimal decision. Quite often, 'an interval of two (or less) standard devia­

tions around the optimum includes the corner solution. 



-10-

Table 1 
Calculaticns Using Data from Frcmkfurter et. al. 

n=5 r= 1 e-6 

91C.525 -9385.972 1~475.44 

2.233105e9 -5.734925eq 
-5.734923e3 1.232097e9 
-1.659514e9 -6.5S6046e3 

n=5 r=0.0001 

-1.f.59514e 
-6.58604fle 

2.318218e 

2828.32 4821.617 2350.062 

432012!:3 
-11233141 
-31%8146 

-112331'-¼5 
22854550 

-11621403 

n= 1 0 r= 1 e-6 

-31963144 
-11 621 411 

43589552 

2121.254 -416.5346 8295.281 

145448592 -37326268 -108122320 
-37326256 80440952 -43114704 

-108122328 -43114592 151237008 

n=10 r=0.0001 

2840. 428 4911. 31 2243. 26 

7177542 
-1866365 
-5311177 

-1865365 
3795601 

-1930236 

n=30 r=le-6 

-5311177 
-1930237 

7241413 

2307.52 963.379 6729. 100 

25169106 
. -6465055 

-18704050 

-6465057 
13877749 
-7412692 

-18704050 
-7412694 
26116744 

n=30 r=O. 0001 

2842.29 4925.11 2232.599 

1655516. 
-430484. 6 

-1225031. 

-4 30484. 8 
875670. 2 

-445185. 4 

-1225031. 
-4451P.5.5 
1670216. 

n=5 r=O. 00001 

2653.976 3530.018 3816.C06 

64883520 
-16800062 

-1ff00063 -48083448 
34827248 -18027185 

-4 8083452 -18027182 66110632 

n=5 r=0.C01 

2845.754 4950.777 2203.468 

42934468 -11177475 
-11177472 22734824 
-31P.06994 -11557349 

n=10 r=0.00001 

-31806992 
-11557353 

43364344 

2775.048 4426.95 2797.939 

8546563 
-2217453 
-6129109 

-2217453 
4555455 

-2 33 8003 

-6329108 
-2 33 2003 

8657112 

n=10 r=O. 001 

2846.965 4959.747 2193.287 

7163?.52 
-1862854 
-5300998 

-1862854 
3789013 

-1926158 

-5300997 
-1~261 59 
?227156 

n=30 r=O. 00001 

2793.675 4564.953 2641.371 

· 1888324 
-490233 

-1398091 

-490233. 0 
1004403. 
-514170. 6 

-1398091 
-514171 
1912262 

n=30 r=0.001 

2847. 152 4961. 126 2191.72 

1653188 
-429387 

-1223301 

-429887.3 -1223300. 
874382. 8 -444495. 7 

-444495. 5 1667796. 

• 
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Table 2 
Calculations Using Day's Data 

n=5 r= 1 e-6 

213.3340 213.3340 213.3330 

7493431 
-3749216 
-3749215 

-374:??.16 
7403431 

-3749215 

-3749215 
-3749215 

7493430 

n=5 r=0.0001 

213.3332 

91762,94 
-45881.48 
-45881.46 

213.?.334 

-45331. 47 
91762. 93 

-45881. 46 

213.3333 

-4 5831. 46 
-45881. 46 

91762.92 

n:10 r=le-6 

213.3335 213.3335 213,3335 

482857.5 -241428.8 -241428.7 
-241428.8 482857.5 -241428.7 
-241428.7 -241428.7 482857.4 

n=10 r=0.0001 

213.3332 213.3334 213.3333 

1 5217. 13 
-7608.568 
-7608.566 

-7608. 568 
15211. n 
-7608. 566 

-7608.566 
-7608.565 
15217. 13 

n=30 r=1e-6 

213.3334 213.3332 213.3332 

83035.0 -41517.5 -41517.5 
-41517.5 83035.0 -41517.5 
-41517.5 -41517.5 83035. O 

n=30 r=0.0001 

213.3333 213.3334 213.3333 

3508.807 -1754,404 -1754.403 
-1754.404 3508. 807 -1754.401 
-1754.403 -1754.403 3508.807 

n=S r=O. 00001 

165095. 3 
-32548. 2 
-82548. 1 

-3254?,. 1 
165096. 3 
-~2542. 1 

n=5 r=O. 001 

21~.3333 213.3334 

91 029. 6 -45514.8 
-45514.8 91 02<;. 6 
-45514.8 -45514.8 

n=10 r=O. 00001 

-32548. 1 
-8254 8. 1 
1650()(:. 2 

213. 3333 

-45514.8 
-45514. 8 

91 029 •. 6 

213.3332 213.3334 213.3333 

19347.24 
-9923.6'.2 
-9923. 62 

-9923. 62 
19347.24 
-9923.62 

n=10 r=O, 001 

-9923. 62 
_g923. 62 
19847.24 

213.3332 213.3334 213.3333 

15170. 83 
-7585.418 
-7585.416 

-7585.417 
15170. 83 
-7585.416 

n=3 0 r=O.00001 

-7585.416 
-7585.415 
15170. 83 

213.3332 213.3334 213.3333 

4296. 196 -2148.098 -2148.098 
-2148.098 4296. 196 -2148.097 
-2148.093 -2148.093 4296. 195 

n=30 r=O. 001 

213.3333 213.3334 21~.3333 

1500.934 -1750.467 -1750.467 
-1750.467 3500.933 -1750.466 
-1750.466 -1750.466 3500.933 
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4. Conclusions 

The use of mean-variance and similar analyses is so widespread in agricultural 

economics as to be considered one of the main quantitative techniques. How­

ever, the problem of estimation ~isk is infrequently addressed, and it is 

connnon to see both positive and normative applications with very sparse data 

sets. The results in this paper are a first step toward assigning confidence 

levels or constructing interval estimates for the optimal decision, and they 

show that extreme care should be taken in some applications. 

The results establish, under the normality assumption, that the usual 

"plug in" type decision vector is biased and, unless large amounts of data are 

available, its elements have large variances. An unbiased decision vector can· 

be constructed, but it still suffers from the problem of sparse data. 

Our applications were chosen to provide some representative cases, 

possibly erring on the side of large variances. Still, the fact that the 

optimal decision is estimated with so little precision is startling. While 

the magnitudes are specific to the application, the need for care in obtaining 

estimates of optimal decisions is likely to be less so. 



.. 
-13-

REFERENCES 

Bawa, Vijay S., Stephen J. Brown, and Roger W. Klein: Estimation Risk and 

Optimal Portfolio Choice • .Amsterdam: North-Holland Publishing Co., 1979. 

Buccola, Steven T.: "Testing for Nonnormality in Farm Net Returns," .American 

Journal of .Agricultural Economics, 68(1986), 334-343. 

Collender, Robert N., and James .A. Chalfant: "An Alternative .Approach to 

Decisions Under Uncertainty Using the Empirical Moment-Generating Func­

tion," .American Journal of .Agricultural Economics, 68(1986a), 727~731. 

"Sparse Data and Risk-Efficient Choice Under Uncertainty." 

University of California, Department of Agricultural and Resource Eco­

nomics, Working Paper No. 403, Berkeley, April, 1986b. 

Collender, Robert N., and,David Zilberman: "Land Allocation Under Uncertainty 

for Alternative Specifications of Return Distributions," .American Journal 

of Agricultural Economics, 67(1985), 779-786. 

Day, Richard H.: "Probability Distributions of Field Crops," Journal of Farm 

Economics, 47(1965), 713-741. 

Frankfurter, G. M., H. E. Phillips, and J.P. Seagle: "Portfolio Selection: 

The Effects of Uncertain Means, Variances, and Covariances," Journal of 

Financial and Quantitative Analysis, 6(1971), 1251-1262. 

Freund, R. J.: "The Introduction of Risk Into a Programming Model," 

Econometrica, 14(1956), 253-263. 

Pope, Rulon D., and Rod F. Ziemer: "Stochastic Efficiency, Normality, and 

Sampling Errors in Agricultural Risk Analysis," .American Journal of Agri­

cultural Economics, 66(1984), 31-40. 

Shaman, Paul: "The Inverted Complex Wishart Distribution and its .Application 

to Spectral Estimation," Journal of .Multivariate Analysis, 10(1980), 51-59. 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015

