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Abstract

This paper studies an economy where privately informed hedge funds (HFs)

trade a risky asset in order to exploit potential mispricings. HFs are allowed

to have access to credit, by using their risky assets as collateral. We analyse

the role of the degree of heterogeneity among HFs’ demand for the risky asset

in the emergence of clustering of defaults. We find that fire-sales caused by

margin calls is a necessary, yet not a sufficient condition for defaults to be

clustered. We show that when the degree of heterogeneity is sufficiently high,

poorly performing HFs are able to obtain a higher than usual market share

at the end of the leverage cycle, which leads to an improvement of their

performance. Consequently, their survival time is prolonged, increasing the
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probability of them remaining in operation until the downturn of the next

leverage cycle. This leads to the increase of the probability of poorly and

high-performing hedge funds to default in sync at a later time, and thus the

probability of collective defaults.

Keywords: Financial crises, hedge funds, survival statistics, bankruptcy.

JEL: G01, G23, G32, G33.

1. Introduction

The hedge fund (HF) industry has experienced an explosive growth in

recent years. The total size of the assets managed by HFs in 2015 was

estimated at US$2.74 trillion (BarclayHedge, 2016). Due to the increasing

weight of HFs in the financial market, failures of HFs can pose a major threat

to the stability of the global financial system. The default of a number of

high profile HFs, such as LTCM and HFs owned by Bear Stearns (Haghani,

2014), testifies to this.

At the same time, poor performance of HFs—the prelude to the failure

of a HF—is empirically found to be strongly correlated across HFs (Boyson

et al., 2010), a phenomenon known as “contagion”. Moreover, Boyson et al.

(2010) point out that the correlation between HFs’ worst returns—falling

in the bottom 10% of a HF style’s monthly returns—remains high, even

after taking into account that HF returns are autocorrelated, and the effect

of the exposure of HFs to commonly known risk factors. The findings of

Boyson et al. (2010) support the theoretical predictions of Brunnermeier and

Pedersen (2009), who provide a mechanism revealing how liquidity shocks can
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lead to downward liquidity spirals and thus to contagion1. The mechanism

that leads to contagion is closely related to the theory of the “leverage cycle”,

i.e. the pro-cyclical increase and decrease of leverage, due to the interplay

between equity volatility and leverage, put forward by Geanakoplos (1997)2.

The combination of the dominant role of HFs in the financial system

with the possibility of transmission of the risk, not only to other financial

organisations but also to the real economy, has placed the operation of HFs

under close scrutiny and has highlighted the significance of regulation of

the industry. Regulating the HF industry is not an easy task; designing

the appropriate regulation requires a good understanding of many aspects

such as the mechanism which generates defaults at the individual level, the

mechanism behind contagion, and finally the parameters which determine

the persistency of the effect of a default of an individual HF on the industry.

Although Brunnermeier and Pedersen (2009) provide the mechanism behind

contagion, they overlooked the persistency of the impact of a default of an

individual HF. Our paper aims to fill this gap. In particular, we charac-

terise the conditions under which the correlation between HF’s defaults is

persistent, i.e. defaults are clustered.

We study an economy with heterogeneous interacting agents (HIA) –

1Other works which study the the causes of contagion in financial markets include Kyle

and Xiong (2001), and Kodres and Pritsker (2002).
2In fact the theory of leverage cycle, in contrast to other models that endogenise lever-

age (Brunnermeier and Pedersen, 2009; Brunnermeier and Sannikov, 2014; Vayanos and

Wang, 2012) has the additional merit of making the endogenous determination of collateral

possible.
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HFs in our case – in the tradition of Day and Huang (1990), Brock and

LeBaron (1996), Brock and Hommes (1997, 1998), Chiarella and He (2002),

Thurner et al. (2012) and Poledna et al. (2014) among others.3 We find that

the feedback between market volatility and margin requirements (downward

liquidity spiral), is a necessary yet not a sufficient condition for clustering

of defaults to occur, as has been suggested by Boyson et al. (2010). In this

work we show that heterogeneity plays a pivotal role in the emergence of

clustered defaults: defaults are clustered only if the degree of heterogeneity

is sufficiently high.

We develop a simple dynamic model with a representative mean-reverting

noise trader and a finite number of HF managers trading a risky asset. We

allow for a setup where heterogeneity regarding the demand of the risky

asset may be due to different preferences towards risk, disagreement on the

expected price of the asset, or disagreement on the volatility of the market.

Evidently, market volatility depends on the HFs’ trading strategy, which in

turn, depends on HFs’ demand. In addition, we allow for the HFs to have

access to credit, and we endogenise the probability of default by assuming

that a HF would choose to default when its portfolio value falls below a

threshold.

In this environment we show that when the degree of heterogeneity is

sufficiently high, poorly performing HFs are able to absorb shocks caused by

fire sales. As a result, they obtain a larger than usual market share, and

improve their performance. In this fashion, a default due to exactly their

3For a detailed relevant literature review see Hommes (2006), LeBaron (2006) and

Chiarella et al. (2009).
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poor performance is delayed, allowing them to remain in operation until the

downturn of the next leverage cycle. This leads to the increase of the prob-

ability of poorly and high-performing hedge funds to default in sync at a

later time, and thus the probability of collective defaults. Formally, we show

that for high degree of heterogeneity the default time-sequence shows infinite

memory. Using the definition of Andersen and Bollerslev (1997) clustering is

determined by the divergence of the sum (or integral in continuous time) of

the autocorrelation function (ACF) of the default time sequence, and there-

fore, the presence of infinite memory in the underlying stochastic process

describing the occurrence of defaults. Furthermore, we establish a quantita-

tive connection between the non-trivial aggregate statistics and the presence

of infinite memory in the underlying stochastic process governing the de-

faults of the HFs. The comparison between the theoretical prediction of the

asymptotic behaviour of the autocorrelation function (ACF) of defaults and

the numerical findings, reveals that our theoretical predictions are valid even

in a market with a finite number of HFs and the clustering of defaults is

confirmed.

The structure of the rest of the paper is as follows. Section 2 discusses the

relevant literature. Section 3 presents the economic framework that we use.

In section 4.1 discusses the numerical findings. In Section 4.2, we provide

analytical results linking the heavy-tailed aggregate density to the observed

statistical character of defaults on a microscopic level, and the power-law de-

cay of the ACF of the default time-series of defaults, identifying that defaults

are clustered. Finally, section 5 provides a short summary with concluding

remarks.
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2. Relevant Literature

Our paper is related methodologically to the HIA literature; and in terms

of content, to the literature which studies the effects of leverage on financial

stability.4 Models with HIA can give rise to emergent properties of systems

that are able to replicate the empirical trends seen in asset prices, asset re-

turns and their distributions (Lux, 1995, 1998; Lux and Marchesi, 1999; Iori,

2002; He and Li, 2007; Chiarella et al., 2014). In Levy (2008), spontaneous

crashes are a natural property of a market with heterogeneous investors who

are inclined to conform to their peers, under the condition that the strength

of the conformity effects is large compared to the degree of heterogeneity

of the investors. In other papers, such as Chiarella (1992), Lux (1995) and

Di Guilmi et al. (2014) heterogeneity has to do with the different beliefs and

trading rules of the agents (fundamentalists and chartists) which can result

to asset price fluctuations and market instability.

The set up of our model is similar to Thurner et al. (2012) and Poledna

et al. (2014) which study the effects of leverage in an economy with hetero-

geneous HFs. Thurner et al. (2012) show that leverage causes fat tails and

clustered volatility. Under benign market conditions HFs become more lever-

aged as this is then more profitable. High levels of leverage are correlated

with increased asset price fluctuations that become heavy-tailed. The heavy

tails are caused by the fact that when a HF reaches its maximum leverage

4The present paper focuses on the role of leverage on a microeconomic level and does

not discuss the feedback effects with the Macroeconomy. For the latter see Chiarella and

Di Guilmi (2011), Ryoo (2010) and references therein.
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limit then it has to repay part of its loan by selling some of its assets. Poledna

et al. (2014) use a very similar framework to test three regulatory policies:

(i) imposing limits on the maximum leverage, (ii) similar to the Basle II reg-

ulations, and (iii) a hypothetical perfect hedging scheme, in which the banks

hedge against the leverage-induced risk using options. They find that the

effectiveness of the policies depends on the levels of leverage, and that even

though the perfect hedging scheme reduces volatility in comparison to the

Basle II scheme, none of these are able to make the system considerably safer

on a systemic level.

Our model extends this framework in two directions. Firstly, in our model

the behaviour of HFs is not given by heuristics but it is derived from first

principles. In both Thurner et al. (2012) and Poledna et al. (2014), HFs are

risk neutral and have different demand of the asset given the same informa-

tion and the same wealth. The characteristic which makes them heteroge-

neous, is called “aggression” and aims to capture the different responses of

the agents to a mispricing signal. Given the risk neutrality assumption, it is

impossible to provide a rigorous explanation for the difference in aggression.

Furthermore, deriving the HFs demand functions from first principles: (i) we

bridge the gap between Thurner et al. (2012) and Poledna et al. (2014); and

the rest of the leverage cycle literature discussed below and (ii) we provide a

framework which allows the study of different types of heterogeneity.

The leverage cycle models start with the collateral equilibrium models of

Geanakoplos (1997) and Geanakoplos and Zame (1997), who provide a gen-

eral equilibrium model of collateral. The key idea behind these models is that

lenders require a collateral from the borrowers in order to lend them funds.
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This borrowing and lending is agreed through a contract of a promise of pay-

ing back the loan in future states, where the investor who sells the contract

is borrowing money –using a collateral to back the promise– from the agent

who buys the contract. Each contract is chosen from a menu of contracts

with different loan to value (LTV) ratio. In Geanakoplos (1997) scarcity of

collateral leads to only a few contracts being traded, which makes leverage

(LTV) endogenous. Finally, the investors default when the the value of the

collateral is less than the value of the contract that borrowers and lenders

have agreed. Geanakoplos (2003) considers a continuum of risk neutral agents

with different priors in a binomial economy with two or three states of the

world. He shows how changes in volatility lead to changes in equilibrium

leverage which in turn have a bigger effect in asset prices than what agents

believe to be the effect of news. Geanakoplos (2003, 1997) show that in some

cases all agents will choose the same contract from the contract menu. This

result has been recently extended by Fostel and Geanakoplos (2015) who

study in more detail the relationship between leverage and default and prove

that in all binomial economies with financial assets, exactly one contract is

chosen.

Fostel and Geanakoplos (2008) extend the economy of Geanakoplos (2003)

to an economy with multiple assets and two risk averse agents instead of a

continuum of risk neutral ones; and develop an asset pricing theory which

links collateral and liquidity to asset prices. Geanakoplos (2010) combines

the insights from Geanakoplos (1997) where the collateral is based on non

financial assets and Geanakoplos (2003) where the collateral is based on

financial assets; and shows that the introduction of CDS contracts reduces
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the asset prices. By doing this he puts forward a model of a double leverage

cycle, in housing and securities, which contributes in the explanation of the

2007-08 crisis. Fostel and Geanakoplos (2012) provide a further analysis

of CDS contracts and show: (i) why trenching and leverage initially raised

asset prices and (ii) why CDSs lowered them later. Simsek (2013a) considers

a continuum of states and two types of agents beliefs, namely optimist and

pessimist. He shows that the type of disagreement between agents has more

important effects on asset prices than the degree of disagreement between

optimists and pessimists.5. To our knowledge, this is the only paper in this

literature which considers the effect of different degrees of heterogeneity6

Along similar lines the effects of leverage have been studied by Gromb

and Vayanos (2002), Acharya and Viswanathan (2011), Brunnermeier and

Pedersen (2009), Brunnermeier and Sannikov (2014) and Adrian and Shin

(2010), among others. These approaches differ from the models mentioned

in the previous paragraphs in two key aspects. The models of Acharya and

Viswanathan (2011), Adrian and Shin (2010), Brunnermeier and Sannikov

(2014) and Gromb and Vayanos (2002) focus on the ratio of an agent’s total

asset value to his total wealth (investor based leverage) while the leverage cy-

cle models of Geanakoplos and coauthors7 focus on LTV. The second aspect

5Other works in the leverage cycle literature include Geanakoplos and Zame (2014),

Geanakoplos (2014) and Fostel and Geanakoplos (2016). For a recent review of this liter-

ature see Fostel and Geanakoplos (2014).
6In a different context Simsek (2013b) shows that the level of belief disagreement affects

the average consumption risks of individuals in a model which studies the effect of financial

innovation on portfolio risks.
7Also the models of Brunnermeier and Pedersen (2009), and Simsek (2013a) use the
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has to do with the fact that in the models of Brunnermeier and Pedersen

(2009) and Gromb and Vayanos (2002) the leverage ratio is exogenously

given, where in the former is given by a VaR rule, whereas in the latter it is

given by a maximin rule used to prevent defaults. In the cases of Brunner-

meier and Sannikov (2014), Acharya and Viswanathan (2011) and Adrian

and Shin (2010) leverage is endogenous but is not determined by collat-

eral capacities. In Acharya and Viswanathan (2011) and Adrian and Shin

(2010) leverage is determined by asymmetric information between borrowers

and lenders; while in Brunnermeier and Sannikov (2014) it is determined by

agents’ risk aversion.

3. Model

3.1. Environment

We study an economy with two assets, one riskless (cash C) and one risky,

two types of traders and a bank. The supply of the risky asset, which can be

viewed as a stock, is fixed and equal to N , whereas there is an infinite supply

of the riskless asset. The price of the riskless asset is normalised to 1, whereas

the price of the risky asset at time t pt is determined endogenously. The risk-

less and the risky asset are traded by a representative, mean-reverting noise

trader and K types of hedge funds (HFs), whose objective is to exploit po-

tential mispricings of the risky asset. The role of the bank, which is infinitely

liquid, is to provide credit to HFs, by using the HF’s assets as collateral.

Representative Hedge Fund: Each HF is run by a myopic portfolio man-

same ratio.

10



ager, whose objective is to maximise her next period’s CRRA utility function

over his wealth, Wt:

U
(

W j
t

)

= W j
t

1−α
/ (1− α) , (1)

where α > 0 is the measure of relative risk aversion, and j ∈ {1, . . . , K}.
The manager’s strategy of the jth HF is a mapping from her information

set Sj to trading orders for the risky and the riskless asset, where Dj
t (Cj

t )

denotes the units of the risky (riskless) asset the jth HF is willing to trade.

Thus, beliefs about the mean logarithmic price of the risky asset E[log(pt+1]

and the volatility Var[log pt+1] plays a crucial role in determining orders.

We assume that only part (1−γ) of the current wealth of the HF is avail-

able for re-investment in the next period. The purpose of this assumption

is to exclude unrealistic cases where the wealth of HFs explodes and de-

fault never occurs.8 This assumption could be interpreted in multiple ways.

For instance, it is consistent with the empirical evidence indicating that the

compensation of the fund managers is tied to the wealth of the HF. This

evidence is also in line with the theoretical literature on optimal contract-

ing in principal-agent environments. Alternatively, the share γ which is not

re-invested could be capturing the HF investors’ payment. Taking this into

account the wealth of a HF evolves according to:

W j
t+1 = (1− γ)W j

t + (pt+1 − pt)D
j
t , (2)

8It is worth highlighting that assuming that the share of wealth which is not re-invested

is fixed and constant over time, allows us to develop a more tractable model. However, the

critical component for our main findings to go through is that not all wealth is re-invested.
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where the first term of the RHS captures the value of the portfolio held in

the previous period, and the second term captures the change in the value

of the risky assets.

It is worth highlighting that the amount of cash required to complement

the trading order for a risky asset, i.e., Dj
tpt, may exceed the cash which

is available at the beginning of each trading period. This can be the case

because we allow for access to credit. However, this access to credit is not

unbounded, and is assumed to be subject to regulation. Here the HF cannot

become more leveraged than λmax, a maximum ratio of the market value of

the risky asset held as collateral by the bank to the net wealth of the risky

asset. Thus, the maximum leverage constraint translates into:

Dj
tpt/W

j
t ≤ λmax.

Consequently, the maximum demand for the risky asset is given by:

Dt,max = λmaxW
j
t /pt, ∀j ∈ {1, . . . , K}. (3)

Furthermore, we allow the HFs to take only long positions, i.e., to be active

only when the asset is underpriced9.

Default: We define as default any event in which the wealth of a HF falls

below Wmin ≪ W0, where W0 denotes the initial endowment of each HF

upon entrance in the market. This enables us to endogenise the probability

9We do this in order to highlight that, even with the HFs taking only long positions,

a strategy inherently less risky than short-selling, the clustering of defaults, and thus

systemic risk, is still present if heterogeneity among the prior beliefs is sufficiently large.
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of default of each HF. The main objective of this paper is to study both

the individual (HF) and collective (systemic) default probabilities over time.

After Tr ∼ U[b, c], time-steps the bankrupt HF is replaced by a HF with

identical characteristics. This allows us to maintain the character of the

market (at a statistical level).

Noise traders: The second type of traders is noise-traders, who are sup-

posed to trade for liquidity reasons. Following the related literature, we

assume that the demand dnt of the representative noise-trader for the risky

asset, in terms of cash value, is assumed to follow a first-order autoregressive

[AR(1)] process (Xiong, 2001; Thurner et al., 2012; Poledna et al., 2014).

log dntt = ρ log dntt−1 + (1− ρ) log(V N) + χt, (4)

where ρ ∈ (0, 1) is a parameter controlling the rate of reverting to the

mean. Given that the expected value of χt and the auto-covariance func-

tion are time-independent, the stochastic process is wide-sense stationary,

χt ∼ N (0, σ2
nt), and V is the fundamental value of the risky asset10.

Trading orders and Equilibrium prices: Finally, the price of the risky

asset is determined endogenously by the market clearing condition [together

with Eqs. (2), (4), and (7)]11.

Dnt
t+1(pt+1) +

K
∑

j=1

Dj
t+1(pt+1) = N, (5)

10The demand of the noise traders in terms of the number of shares of the risky asset

Dnt and the price of the risky asset pt at period t is dntt = Dnt
t pt. Hence, In the absence

of the HFs, from Eq. (4), and Eq. (5) we have E [log pt+1] = log V .
11This system of equations is highly non-linear, and thus, can only be solved numerically.
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where Dnt
t+1(pt+1) = dntt+1/pt+1 stands for the demand of the noise traders

whereas Dj
t+1(pt+1) stands for the demand of the jth HF. Both values are in

number of shares.

Source of Heterogeneity: A critical component, which lies at the heart

of our analysis, is heterogeneity across HFs. We allow for a setup where

different HFs respond differently when facing the same price. In particular,

we assume that for a given price pt, different HFs post different demand

orders of the risky asset, i.e., Di
t 6= Dj

t for i 6= j. One can think of many

cases which could justify heterogeneity across HFs. One explanation could be

that HFs have different beliefs about the fundamental value V of the asset.

Another case which could justify this heterogeneity could be that HFs agree

on the mean, but the disagree on the variance, i.e., Var[log pt+1|F j]. Finally,

HFs’ heterogeneity might be driven by different degrees of risk aversion, i.e.,

α. The main findings are qualitatively equivalent independently of which of

the previous possible interpretations is implemented. Throughout the paper

we assume that HFs disagree on the market volatility.

The rationale behind the assumption that the managers agree on the

fundamental value of the asset, but disagree on price volatility, relies on the

fact that the fundamental value, as opposed to price volatility, is not affected

by the behaviour of HFs. In other words, the fundamental value of the asset is

exogenously determined, whereas the volatility of the market is endogenously

determined, with its value depending on the HFs’ trading strategy, which in

turn, depends on their private information set. Hence, it is not feasible for

the managers to reach an agreement on the market volatility, because they
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have access to different information sets, and the market volatility is affected

by the information each manager has access to.

Timing: Each period t consists of 4 sub-periods

1. The managers set their demand orders for the risky asset.

2. The price of the risky asset is determined, and the return of each port-

folio is realised.

3. The managers receive their compensation.

4. The next-period’s wealth is determined.

3.2. Optimal Demand

The manager of the jth HF maximises his expected utility, given his be-

liefs F j about the asset’s fundamental value and the volatility of the market,

and subject to the constraint that the demand cannot exceed Dj
t,max. This

is expressed as

Dj
t = argmax

D
j
t∈[0,Dt,max]

{

E
[

U(W j
t+1)|F j

]}

(6)

Solving the optimisation problem we obtain12

Dj
t = min

{

1

a

(

sj log (V/pt) +
1

2

)

, λmax

}

W j
t

pt
, (7)

where sj = 1/Var [log pt+1|F j]. Therefore, the demand of the HFs is pro-

portional to the expected logarithmic return and their wealth, and inversely

proportional to the conditional variance of the logarithm of the price, given

their beliefs.

12For details see Appendix A.
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The clustering of HFs’ defaults is determined by the decay rate of the

of the default time-sequence autocorrelation function (ACF) C(t′) , with t′

being the time-lag variable. If defaults are clustered, then C(t′) decays in

such a way that the sum of the ACF over the lag variable diverges (Baillie,

1996; Samorodnitsky, 2006, 2007).

Definition 1. Let C(t′) denote the autocorrelation of the time series of de-

faults, with t′ being the lag variable. Defaults are clustered if and only if

∞
∑

t′=0

C(t′) → ∞. (8)

Given that the ACF is bounded in [−1, 1], it follows that the convergence

of the infinite sum is in turn determined by the asymptotic behaviour t′ ≫ 1

of the ACF. In this limit, the sum can be approximated by an integral.

In the following we assume that the ACF of the default time sequence

can be approximated by a continuous function for t′ ≫ 1. Then it follows

that,

Remark 1. Defaults are clustered if the ACF asymptotically approaches

zero not faster than C(t′) ∼ 1/t′. In this case defaults are interrelated (sta-

tistically dependent) for all times.

Remark 2. If the decay of the ACF is faster than algebraic, then defaults

are not clustered. The effect of the shock caused by the default of a HF on

the market is only transient, and the defaults are in the long-run statistically

independent.

Our main goal is to study the relationship between the degree of hetero-

geneity κ, identified with the difference between extreme values of sj, and
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clustering of defaults. The question arises as to whether the leverage cycle

is a sufficient condition for the defaults to be clustered, or rather whether

there exists a critical value for the degree of heterogeneity above which the

mechanism of the leverage cycle leads to clustering of defaults.

In the next section, we present the results of the model. The first subsec-

tion presents the numerical results obtained by iterating the model defined

above. We present the ACFs for various values of κ and interpret these in

light of Remarks 1 and 2. Section 4.2 provides an analytical insight into the

numerical results.

4. Results

Choice of Parameters

In all simulations we consider a market withK = 10 HFs. In the following

we assume homogeneous preferences towards risk across HFs, and set aj =

3.2 ∀j ∈ {1, . . . , 10}, this being a typical value for HFs (Gregoriou et al.,

2007, p. 417). From Eq. (4) we have σ̃2
nt = σ2

nt/(1 − ρ2), where ρ is the

mean reversion parameter. The inverse of the expected volatility given the

HF’s prior beliefs, i.e. sj = 1/Var [log pt+1|F j] determines the responsiveness

of the HFs to the observed mispricing. In our numerical simulations sj is

sampled from a uniform distribution in [1, δ], and δ ∈ [1.2, 10].

Moreover, the maximum allowed leverage λmax is set to 5. This particular

value is representative of the mean leverage across HFs employing different

strategies (Ang et al., 2011). The remaining parameters are chosen as follows:

σ2
nt = 0.035, V = 1, N = 109, W0 = 2 × 106, Wmin = W0/10, ρ = 0.99

(Poledna et al., 2014), and γ = 5 × 10−4. Bankrupt HFs are reintroduced
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after Tr periods, randomly chosen according to a uniform distribution in

[10, 200]. asset is undervalued—will help moderate the fluctuations realised

in the market. In other words, all HFs correctly believe that the volatility

of the market will be reduced when they enter the market, in comparison to

the volatility observed when only the noise traders are active. However, they

are uncertain about their collective market power, and therefore the extent

to which they will affect the realised volatility. Thus, all HFs believe that

E [Var (log pt+1) |F j] < σ2
nt/(1− ρ2).

4.1. Numerical results

As aforementioned, the leverage cycle consists in the interplay between

the variability of prices of the assets put as collateral, and margin require-

ments. When prices are high, assets used as collateral are overpriced, and

creditors are willing to lend. In the face of an abrupt fall of the market price

of the assets used as collateral, creditors force the lenders to repay part of the

loan, such that the margin requirements are met. Consequently, the lenders

are forced to sell in a falling market, accelerating and reinforcing the fall of

the price of the collateral, creating thus a vicious cycle.

In our model, a fall in the price of the risky asset used as collateral is

caused by a sudden drop of the demand of the noise traders dntt . This results

into a sudden increase of the leverage ratio of the jth HF, λj
t . In case λj

t

exceeds the margin requirement λj
t ≤ λj

max HFs are forced to sell, pushing

the price even lower. This is illustrated in Fig. 1, where we present: (a) the

wealth of three HFs (under, moderately, and highly responsive to mispricings,

j = 2, 6, 10) (b) the corresponding leverage ratio (c) the demand of the noise

traders, and (d) the price of the risky asset at equilibrium as a function of
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time, for a low degree of heterogeneity κ = δ − 1 = 0.5.

At time t = 738 [marked by a blue triangle in panel (c)] a drop in the

demand of the noise-traders causes an underpricing of the risky asset backing

up the loans of HFs [panel (d)]. In turn, the leverage ratio of all the HFs

depicted in Fig 1(b) λt=738 increases abruptly [panel (b)], and the margin

requirement λmax = 5 becomes binding for the most responsive of the HFs

depicted (j = 6, 10). At this point, the HFs are forced to deleverage pushing

the price of the collateral further down, leading all HFs depicted to default

[panel (a)]. The pressure on the price of the risky asset due to the syn-

chronous deleveraging of the highly responsive HFs can clearly be recognized

if we compare the lowest price reached around the downturn of the leverage

cycle at about t = 738 [marked by a the dashed red line in panel (d)], with

the equilibrium price at t = 7153 [blue filled circle], where the demand of

the noise trader becomes virtually the same to that at t = 738 [marked by

a blue triangle], but the price remains at a considerably higher level. This

is because the wealth of all HFs in this case, is such that the leverage ratio

stays well below the maximum threshold [see panel (b)], and the leverage

cycle mechanism remains inactive.

Another observation worth commenting on, is the fact that after the HFs

have been reintroduced in the market, we notice that the least responsive

HF (j = 2), defaults another 2 times, by the end of the time-series depicted

in Fig. 1, namely at t = 3976, and t = 9161 [also marked by blue triangles

in panel (a)]. not because of the presence of a shock in the demand of the

risky asset, but rather, due to its poor performance. This is because time is

costly in our model (HFs pay managerial fees), and if the profitability of a
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Figure 1: (a) The wealth normalised by the endowment W0, (b) the lever-

age ratio λj
t , (c) the demand of the noise traders in terms of money-value,

normalised also by W0, and (d) the equilibrium price of the risky asset, as a

function of time, in the case of κ = 0.5.
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HF is low, then it will inevitably be led to bankruptcy, even in the absence of

a shock on the demand of the risky asset. These defaults happen at random

times, i.e. when the observed mispricings happen to be small, or when the

asset is overpriced, for a period of time, and the profits made are also small,

or null, respectively. This also explains the second default of the 6th HF,

at t = 6618 [red triangle in Fig. 1(a)], when all the HFs are well below the

maximum leverage constraint.

Let us now study an example with a higher degree of heterogeneity. In

Fig. 2 we present the wealth W j
t [panel (a)], the leverage ratio λj

t [panel (b)]

of 3 representative HFs [j = 2, 6, 10], as well as the logarithmic returns [panel

(c)] as a function of time, for κ = 3. At t = 493 [marked by a red circle in

panels (a), and (c)] the leverage cycle becomes active, causing an underpricing

of the risky asset. However, the least responsive to mispricings hedge fund

(j = 2) of the three depicted, manages to absorb the shock, as it stays below

the maximum leverage λmax = 5 [see panel (b), blue line], and never receives

a margin call. However, the bankruptcy of the more responsive HFs, offers

the HF that has survived the shock (j = 2), the opportunity to seize a larger

market share and, as a result, to perform better in the short-run, restoring

its wealth to a level similar to the one before the shock occurred. In this

way, the most poorly performing HF is given the opportunity to continue

operating until the next downturn of the leverage cycle, at which point it

defaults along with the rest of the HFs at t = 2371 [red disc]. After the

second crash of the market we observe the end of yet another leverage cycle,

at which point all the depicted HFs default again in sync at t = 3044 [black

disc]. The narrative is repeated once more at t = 3684 [blue circle], when
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again the least responsive HF after absorbing the shock gets a larger market

share, increasing shortly its profitability.

In conclusion, the study of time-series in the case of low (κ = 0.5) and

high heterogeneity (κ = 3) reveals that increased heterogeneity leads to the

increase of collective defaults. Even more, the synchronous default of highly

responsive HFs, gives the opportunity to the less responsive ones to increase

their market share, and thus, their profitability, even for a short-period of

time. Still, this increases the chance of the poor-performing HFs to survive

until the next downturn of the leverage cycle, suppressing defaults occur-

ring at random times due to their poor performance, and thus increasing

even more the probability of synchronous defaults. Therefore, this analysis

hints that the degree of heterogeneity is intimately connected to the level of

systemic risk in the market.

To assess quantitatively the effect of the degree of heterogeneity, explained

above, on the systemic risk, we study the persistence of the correlation be-

tween defaults [see Definition 1]. In Figure 3(a) we compare the numeri-

cally computed ACF of the default time-sequence13 as observed on the ag-

gregate level for 11 different degrees of heterogeneity κ, determined by the

support of the distribution of sj. The results were obtained by iterating

the model described in Section 3 for up to 3 × 108 periods, and averag-

ing over 40 realisations of the responsiveness sj; namely, sj ∼ U[1, δ], with

δ = {1.2, 1.4, 1.7, 2, 3, 5, 6, . . . , 10}. Clearly, when the degree of heterogeneity

κ ≤ 1, the ACF decays far more rapidly in comparison with larger values

13The time-sequence considered is constructed by mapping defaults to 1s, irrespective

of which HF defaulted, and to 0 otherwise.
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Figure 2: (a) The wealth normalised by the endowment W0, (b) the leverage

ratio λj
t , and (d) the logarithmic returns on the risky asset, as a function of

time, with κ = 3.
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of heterogeneity. In fact, as it can be observed in the figure, the ACF for

κ ≤ 1 decays faster than a power-law with exponent equal to −1 (black

dashed line), which is the largest exponent (in absolute terms) leading to

a non-integrable ACF [see Remark 1]. On the other hand, the converse is

true for large degrees of heterogeneity (κ > 2), in which case the ACF de-

cays asymptotically—t′ ≫ 1—as a power-law with exponent less than 1 in

absolute value. Consequently,

Result 1. For κ ≤ 1, the ACF decays faster than a power-law with exponent

-1. Hence, the mechanism of the leverage cycle does not result into sufficiently

high long-range correlations for defaults to be clustered.

Figure 3(a) also shows that for increasing heterogeneity the ACF con-

verges to a limiting form as the heterogeneity is increased, which is reflected

in the coalescence of the ACFs corresponding to κ ≥ 5. The latter is more

clearly demonstrated in Fig. 3(b), where a blow-up of the area within the

rectangle shown in panel (a) is presented. Therefore,

Result 2. For sufficiently large values of the degree of heterogeneity κ,

namely for κ ≥ 5, the ACF converges to a limiting form exhibiting a power-

law trend with an exponent less than 1 (in absolute value).

To gain some insight into the qualitative difference with respect to the

persistence of correlations between defaults as a function of the degree of

heterogeneity κ, let us turn our attention to the default statistics. In Fig. 4

we present the aggregate PDF of waiting times between defaults14 using a

14The PDF of waiting-times between default is also known as the failure function in

survival analysis theory.
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Figure 3: (a) The ACF of the binary sequence of defaults corresponding to

11 different values of κ. The dashed black line corresponds to a power-law

with exponent -1, which is the largest exponent that leads to clustering [see

Remark 1].
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Figure 3: (b) A blow-up of the rectangular area shown in panel (a) illustrating

the coalescence of C(t′) for large values of the degree of heterogeneity, κ =

{6, 7, 8, 9}. (c) The ACF corresponding to κ = 9, averaged over 5 × 102

different realisations of sj (red upright triangles). The blue dot-dashed line

is the result of fitting C(t′) with a power-law model C(t′) ∝ t′−η, η = 0.887±
0.003 (R2 = 0.9927). The power-law with exponent −1 is also shown for the

sake of comparison (black dashed line).

logarithmic scale on both axes for 6 different values of κ. We observe that

for small degrees of heterogeneity κ = {0.2, 0.4, 0.7} the density function

asymptotically decays approximately exponentially. This is better demon-

strated in the inset were we use semi-logarithmic axes15. On the contrary,

for sufficiently large heterogeneity—such that the corresponding ACFs have

converged to the limiting form—the PDFs exhibit a constant decay rate in

the doubly logarithmic plot (power-law tail). Fitting the aggregate density

for κ = 916, corresponding to the highest degree of heterogeneity considered,

with the model P̃ (τ) ∼ τ−ζ we obtain ζ = 2.84± 0.03 (red dashed line).

Let us now turn our attention to the statistical properties of HFs on a

microscopic scale, i.e. study each HF default statistics individually. In Fig. 5

we show as an example the density function Pj(τ), of waiting times τ between

defaults, for a number of HFs corresponding to high heterogeneity, κ = 9,

with sj = {2, 4, 6, 8, 10} on a log-linear scale. The results were obtained

15The use of a logarithmic scale for the vertical axis transforms an exponential function

to a linear one.
16To increase the accuracy of the fit, we increase the number of realisations of sj to 103.
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Figure 4: The aggregate PDF of waiting times between defaults for 6 dif-

ferent degrees of heterogeneity using double logarithmic scale. For large

heterogeneity κ = {7, 8, 9}, we observe that the PDF is decaying approxi-

mately linearly, corresponding to a power-law decay. Performing a fit with

the model P̃ (τ) ∼ τ−ζ we obtain ζ = 2.84 ± 0.03 (R2 = 0.9947). To illus-

trate the approximate exponential asymptotic decay of the aggregate PDF

for κ = {0.2, 0.4, 0.7} we also show the corresponding aggregate densities

using a logarithmic scale on the vertical axis (inset).
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by iterating the model for 3 × 108 periods and averaging over 100 different

initial conditions17, holding sj fixed at {1, 2, . . . 10}. We observe that Pj(τ)

for τ ≫ 1 decays linearly, and thus it can be well described by an exponential

function.
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Figure 5: The PDF of waiting times between defaults τ for specific HFs,

having different responsiveness sj = {2, 4, 6, 8, 10} (black diagonal crosses,

downright triangles, red upright crosses, magenta diamonds and cyan upright

triangles, respectively). Note the log-linear scale.

17We are averaging using different seeds for the pseudo-random number generator used

in Eq. (4).
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Consequently, all HFs on a microscopic level—individually—are char-

acterised by exponential PDFs of waiting-times, and therefore the default

events approximately follow a Poisson process. The stability of each HF,

quantified by the probability of default per time-step µj, is different for each

HF, and depends on its responsiveness sj. This is reflected by the different

slopes of the approximately straight lines shown in Fig. 5 for the different

values of sj.

Thus, the default statistics on an aggregate level are qualitatively different

for large values of κ compared to the corresponding ones observed when each

HF is studied individually. Moreover we have already established that for

such high values of the degree of heterogeneity the defaults are clustered.

In the following we will investigate how the emergence of a fat-tail in the

aggregate statistics is connected with the observed clustering of defaults.

4.2. Analytical Results

From the numerical results, we observe that Pj(τ), for τ ≫ 1 decays lin-

early (in log- linear scale) and thus it can be well described by an exponential

function. Therefore we can assume that:

Pj(τ ; τ ≫ 1) ∼ µj exp(−µjτ), ∀j ∈ {1, . . . , 10}. (9)

When the above is true, we know that for sufficiently long waiting times

between defaults; default events of individual HFs have the following statis-

tical properties: (i) they are approximately independent and (ii) occur with

a well defined mean probability per unit time step. From this we get that

the probability Pj(T = τ), τ ∈ N+, is given by a geometric probability mass
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function (PMF)

Pj(τ) = pj(1− pj)
τ−1, (10)

where pj denotes the probability of default of the jth HF.

Given that our focus is in the asymptotic properties of the PDFs, T can be

treated as a continuous variable. In this limit, the renewal process given by

equation (10), becomes a Poisson process; and the geometric PMF tends to

an exponential PDF18. Thus equation (9) can be approximated by equation

(10).

The question then arises as to how the aggregation of these very simple

stochastic processes can lead to the non-trivial fat-tailed statistics we ob-

served in Fig. 4 for a sufficiently high degree of heterogeneity. Evidently, the

aggregate PDF P̃ (τ) we seek to obtain is a result of the mixing of the Poisson

processes governing each of the HFs. In the limit of a continuum of HFs the

aggregate distribution is

P̃ (τ) =

∫

∞

0

µ exp(−µτ)ρ(µ)dµ, (11)

where ρ(µ) stands for the PDF of µ given the responsiveness sj
19.

Assumption 1. ρ(µ) in a neighbourhood of 0 can be expanded in a power

series of the form ρ(µ) = µν
n
∑

k=0

ckµ
k +Rn+1(µ), with ν > −1 20.

18This limit is valid for τ ≫ 1 and pj ≪ 1 such that τpj = µj , where µj is the parameter

of the exponential PDF [see equation (9)] (Nelson, 1995).
19The distribution function of the random parameter µ is also known as the structure

or mixing distribution (Beichelt, 2010).
20Since ρ(µ) is a PDF it must be normalisable and thus, a singularity at µ = 0 must be

integrable.
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This assumption is quite general, and only excludes functions that behave

pathologically in a neighbourhood around 0. Then from equation (9) and

Assumption 1 we can show that the aggregation of the exponential densities

determining the default statistic for each HF individually leads to a qualita-

tively different heavy-tailed PDF.

Let µj ∈ R
+ be the mean default rate of the jth HF, contributing at the

aggregate level with a statistical weight ρ(µ), which is determined by the

interactions between the agents in the market and the distribution of the

responsiveness s.

Proposition 1. Consider the exponential density function P (τ ;µ) describ-

ing the individual default statistics of a HF. It follows then from Assumption

1, that the aggregate PDF P̃ (τ) exhibits a power-law tail.

Proof. The aggregate density can be viewed as the Laplace transform L [.]

of the function φ(µ) ≡ µρ(µ), with respect to µ. Hence,

P̃ (T = τ) ≡ L [φ(µ)] (τ) =

∫

∞

0

φ(µ) exp(−µτ)dµ. (12)

To complete the proof we apply Watson’s Lemma (Debnath and Bhatta,

2007, p. 171) to the function φ(µ), according to which the asymptotic ex-

pansion of the Laplace transform of a function f(µ) that admits a power-

series expansion in a neighbourhood of 0 [see Assumption 1] of the form

f(µ) = µν
n
∑

k=0

bkµ
k +Rn+1(µ), with ν > −1 is

Lµ [f(µ)] (τ) ∼
n

∑

k=0

bk
Γ(ν + k + 1)

τ ν+k+1
+O

(

1

τ ν+n+2

)

. (13)
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Given that φ(µ) for µ → 0+ is

φ(µ) = µν+1

n
∑

k=0

ckµ
k +Rn+1(µ), (14)

we conclude that

P̃ (τ) ∝ 1

τ k+ν+2
+O

(

1

τ k+ν+3

)

. (15)

Corollary 1. If 0 < k + ν ≤ 1, then the variance of the aggregate density

diverges (shows a fat tail). However, the expected value of τ remains finite.

An important aspect of the emergent heavy-tailed statistics stemming

from the heterogeneous behaviour of the HFs, is the absence of a charac-

teristic time-scale for the occurrence of defaults (scale-free asymptotic be-

haviour21). Thus, even if each HF defaults according to a Poisson pro-

cess with intensity µ(s)—which has the intrinsic characteristic time-scale

1/µ(s)—after aggregation this property is lost due to the mixing of all the

individual time-scales. Therefore, on a macroscopic level, there is no charac-

teristic time-scale, and all time-scales, short and long, become relevant.

This characteristic becomes even more prominent if the density function

ρ(µ) is such that the resulting aggregate density becomes fat-tailed, i.e. the

variance of the aggregate distribution diverges. In this case extreme values

of waiting times between defaults will be occasionally observed, deviating far

21If a function f(x) is a power-law, i.e. f(x) = cxa, then a rescaling of the independent

variable of the form x → bx leaves the functional form invariant (f(x) remains a power-

law). In fact, a power-law functional form is a necessary and sufficient condition for scale

invariance (Farmer and Geanakoplos, 2008). This scale-free behaviour of power-laws is

intimately linked with concepts such as self-similarity and fractals (Mandelbrot, 1983).
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from the mean. This will leave a particular “geometrical” imprint on the

sequence of default times. Defaults occurring close together in time (short

waiting times τ) will be clearly separated due to the non-negligible probabil-

ity assigned to long waiting times. Consequently, defaults, macroscopically,

will have a “bursty” or intermittent, character, with long quiescent periods of

time without the occurrence of defaults and “violent” periods during which

many defaults are observed close together in time. Hence, infinite variance

of the aggregate density will result in the clustering of defaults.

In order to show this analytically, we construct a binary sequence by map-

ping time-steps when no default events occur to 0 and 1 otherwise. As we

show below, if the variance of the aggregate distribution is infinite, then the

autocorrelation function of the binary sequence generated in this manner,

exhibits a power-law asymptotic behaviour with an exponent β < 1. There-

fore, the ACF is non-summable and consequently, according to Definition 1

defaults are clustered.

Let Ti, i ∈ N+, be a sequence of times when one or more HFs default and

assume that the PDF of waiting times between defaults P̃ (τ), for τ → ∞,

behaves (to leading order) as P̃ (τ) ∝ τ−a. Consider now the renewal process

Sm =
m
∑

i=0

Ti. Let Y (t) = 1[0,t] (Sm), where 1A : R → {0, 1} denotes the

indicator function, satisfying

1A =







1 : x ∈ A

0 : x /∈ A

Theorem 2. If the variance of the density function P̃ (τ) diverges, i.e. 2 <

a ≤ 3, then the ACF of Y (t),

C(t′) =
E [Yt0Yt0+t′ ]− E [Yt0 ]E [Yt0+t′ ]

σ2
Y

,
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where t0, t
′ ∈ R and σ2

Y is the variance of Y (t), for t → ∞ decays as

C(t′) ∝ t′
2−α

(16)

Proof. Assuming that the process defined by Y (t) is ergodic we can express

the autocorrelation as,

C(t′) ∝ lim
K→∞

1

K

K
∑

t=0

YtYt+t′ . (17)

Obviously, in equation (17) for YtYt+t′ to be non-zero, a default must have

occurred at both time t and t′22. The PDF P̃ (τ) can be viewed as the

conditional probability of observing a default at period t given that a default

has occurred t−τ periods earlier. If we further define C(0) = 1 and P̃ (0) = 0,

the correlation function can then be expressed in terms of the aggregate

density as follows:

C(t′) =
t′
∑

τ=0

C(t′ − τ)P̃ (τ) + δt′,0, (18)

where δt′,0 is the Kronecker delta. Since we are interested in the long time

limit of the ACF we can treat time as a continuous variable and solve equa-

tion (18) by applying the Laplace transform L{f(τ)}(s) =
∫

∞

0
f(τ) exp(−sτ)dτ ,

utilising also the convolution theorem. Taking these steps we obtain

C(s) =
1

1− P̃ (s)
, (19)

where P̃ (s) =
∫

∞

1
P̃ (τ) exp(−sτ)dτ , since P̃ (0) = 0. After the substitution

of the Laplace transform of the aggregate density in equation (19), one can

22A detailed exposition of the proof is given in Appendix 5.
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easily derive the correlation function in the Fourier space F{C(t′)} by the

use of the identity (Jeffrey and Zwillinger, 2007, p. 1129),

F{C(t′)} ∝ C(s → 2πif) + C(s → −2πif). (20)

to obtain ,

F{C(t′)} f≪1∝



















fa−3, 2 < a < 3

| log(f)|, a = 3

const., a > 3

. (21)

Therefore, for a > 3 this power spectral density function is a constant and Yt

behaves as white noise. Consequently, if the variance of P̃ (τ) is finite, then

Yt is uncorrelated for large values of t′.

Finally, inverting the Fourier transform when 2 < a ≤ 3 we find that the

autocorrelation function asymptotically (t′ ≫ 1) behaves as

C(t′) ∝ t′
2−a

, 2 < a ≤ 3. (22)

Turning back to the numerical results shown in Fig. 4, the aggregate PDF

as already discussed converges to a limiting form, characterised by a fat-tail

with an exponent equal −2.84 ± 0.03. Therefore, from equation (22) we

deduce that the ACF should show a power-law trend with exponent −0.84±
0.03. The result of the regression of the ACF for κ = 9 was −0.887± 0.003

[blue dashed-dotted line in Fig. 3(c)], in good agreement with the analytical

result.

In this Section we have shown that when the default statistics of HFs

are individually described by (different) Poisson processes (due to the het-

erogeneity in the prior beliefs among the HFs) we obtain a qualitatively

different result after aggregation: the aggregate PDF of the waiting-times
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between defaults exhibits a power-law tail for long waiting-times. As shown

in Proposition 1, if the relative proportion of very stable HFs approaches 0

sufficiently slowly (at most linearly with respect to the individual default rate

µ, as µ → 0), then long waiting-times between defaults become probable, and

as a result, defaults which occur closely in time will be separated by long qui-

escent time periods and defaults will form clusters. The latter is quantified by

the non-integrability of the ACF of the sequence of default times, signifying

infinite memory of the underlying stochastic process describing defaults on

the aggregate level. It is worth commenting on the fact that the most stable

(in terms of defaults) HFs are responsible for the appearance of a fat-tail in

the aggregate PDF.

5. Conclusions

This paper studied the role of the heterogeneity in available information

among different HFs in the emergence of clustering of defaults. The economic

mechanism leading to the clustering of defaults is related to the leverage cycle

put forward by Geanakoplos and coauthors. In these models the presence of

leverage in a market leads to the overpricing of the collateral used to back-up

loans during a boom, whereas, during a recession, collateral becomes depre-

ciated due to a synchronous de-leveraging compelled by the creditors. In the

present work we have shown that this feedback effect between market volatil-

ity and margin requirements is a necessary, yet not a sufficient condition for

the clustering of defaults and, in this sense, the emergence of systemic risk.

We have shown that a large difference in the expectations of the HFs is

an essential ingredient for defaults to be clustered. We show that when the
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degree of heterogeneity (realised in our model in terms of the beliefs across

HFs about the volatility of the market) is sufficiently high, poorly performing

HFs are able to absorb shocks caused by fire-sales. As a result, they obtain

a larger than usual market share, and improve their performance. In this

fashion, a default due to their poor performance is delayed, allowing them

to remain in operation until the downturn of the next leverage cycle. This

leads to the increase of the probability of poorly and high-performing hedge

funds to default in sync at a later time, and thus the probability of collective

defaults.

This manifests itself in the emergence of heavy-tailed (scale-free) statis-

tics on the aggregate level. We show, that this scale-free character of the

aggregate survival statistics, when combined with large fluctuations of the

observed waiting-times between defaults, i.e. infinite variance of the corre-

sponding aggregate PDF, leads to the presence of infinite memory in the

default time sequence. Consequently, the probability of observing a default

of a HF in the future is much higher if one (or more) is observed in the past,

and as such, defaults are clustered.

Interestingly, a slow-decaying PDF of waiting-times, which inherently

signifies a non-negligible measure of extremely stable HFs, is shown to be

directly connected with the presence of infinite memory. Therefore, our work

shows that individual stability can lead to market-wide risk.

The leverage cycle theory correctly emphasises the importance of collat-

eral, in contrast to the conventional view, according to which the interest

rate completely determines the demand and supply of credit. However, the

feedback loop created by the volatility of asset prices and margin constraints
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poses a systemic risk only if the market is sufficiently heterogeneous such

that “pessimistic” players, who individually are very stable, exceed a critical

mass.

This work raises several interesting questions, which we aim to address

in the future. In this paper we have assumed that the difference in beliefs

is due to disagreement about the long-run volatility of the risky asset, and

remains constant over time, i.e. the agents do not update their beliefs given

their observations. This assumption is crucial in order to be able to analyse

the effects of different degrees of heterogeneity. Regarding this issue, future

work can take two different directions: On the one hand, this assumption

can be relaxed, allowing agents to update their beliefs on market volatility.

However, given that market volatility is endogenous, it is not guaranteed

that agents’ beliefs will convergence. On the other hand, we can study the

effects of heterogeneity stemming from different aversion to risk among the

HFs, while retaining the common prior assumption. Furthermore, these two

approaches can be combined by assuming both different aversion to risk, and

different beliefs about price volatility. Finally, our work can also be extended

in two further directions. The first being to give a more active role to the

bank which provides loans, while the second is to study the effects of different

regulations on credit supply.
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Appendix A: Optimal Demand

We seek to determine the optimal demand for each of the HFs given

their beliefs about price volatility F j. This translates into the optimisation

problem, assuming log-normal returns on the risky asset

argmax
D

j
t∈[0,Dt,max]

{

E
[

U(W j
t+1)|qj

]}

, (.1)

where U
(

W j
t+1

)

= W j
t+1

1−a
/(1 − a) ∼ W j

t+1

1−a
, and W j

t+1 is the wealth of

the jth HF at the next period. To simplify the notation, in the following

we will assume that the expected value, and variance are always conditioned

on HF’s prior beliefs, and moreover, we will drop the superscript j. Eq. (.1)

is equivalent to the maximisation of the logarithm of the expected utility.

Furthermore, given that returns are log-normally distributed, it follows that

(Campbell and Viceira, 2002, pp. 17-21)

logE
[

Wt+1
1−a

]

= E
[

logWt+1
1−a

]

+
Var

[

logWt+1
1−a

]

2
(.2)

Consequently, the problem becomes

argmax
Dt∈[0,Dt,max]

{

(1− a)E [logWt+1] + (1− a)2
Var [logWt+1]

2

}

. (.3)

The wealth of the jth HF at the next period is

Wt+1 = (1− γ)(1 + xtRt+1)Wt, (.4)

where x is the fraction of its wealth invested into the risky asset, and R the

(arithmetic) return of the portfolio. Re-expressing Eq. (.4) in terms of the

logarithmic returns r we get

log (Wt+1) = logWt + log [1 + xt (exp(rt+1)− 1)] + log(1− γ), (.5)
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albeit a transcendental equation with respect to r. An approximative solution

can be obtained by performing a Taylor expansion of Eq (.5) with respect to

r to obtain

log(Wt+1) = log(Wt)+xtrt+1

(

1 +
rt+1

2

)

−xt
2

2
r2t+1+log(1−γ)+O

(

r3
)

. (.6)

Substituting Eq. (.6) into Eq. (.3), and furthermore approximating E(r2t+1)

with Var(rt+1) we obtain

argmax
Dt∈[0,λmax]

{

logWt + xtE(rt+1) +
xt

2
(1− xt)Var(rt+1) + log(1− γ)

}

. (.7)

Finally the first-order condition yields

xt = min

[

E(rt+1) +
1
2
aVar(rt+1)

a Var (rt+1)
, λmax

]

. (.8)

Consequently, the optimal demand for HF j in terms of the number of shares

of the risky asset given the price at the current period is

Dt = min

{

log(V/pt) +
1
2
aVar [log pt+1|F j]

aVar [log pt+1|F j]
, λmax

}

Wt

pt
. (.9)
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Appendix B: Proof of Theorem 2

As already stated in Section 4.2, Theorem 2, assuming that the process

defined by Y (t) = 1[0,t] (Sm) is ergodic, the auto-correlation function can be

expressed as a time-average

C(t′) ∝ lim
K→∞

1

K

K
∑

t=0

YtYt+t′ . (.1)

Given that Y (t) is by definition a binary variable, the only non-zero

terms contributing to the sum appearing on the right hand side (RHS) of

equation (.1) correspond to default events (mapped to 1) that occur with a

time difference equal to t′. Therefore, the RHS of equation (.1) is proportional

to the conditional probability of observing a default at time t′, given that a

default has occurred at time t = 0. Therefore, we can express C(t′) in terms

of the aggregate probability P̃ (τ = t′), i.e. the probability of a default event

being observed after t′ time-steps, given that one has just been observed.

Moreover, we must take into account all possible combinations of defaults

happening at times t < t′. For example, let us assume that we want to

calculate C(t′ = 2). In this case there are exactly 2 possible set of events

that would give a non-zero contribution. Either a default happening exactly 2

time-steps after the last one (at t = 0), or two subsequent defaults happening

at t = 1, and t = 2. In this fashion, we can express the correlation function

in terms of the probability the waiting-times between defaults as (Procaccia
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and Schuster, 1983),

C(1) = P̃ (1), (.2)

C(2) = P̃ (2) + P̃ (1)P̃ (1)

= P̃ (2) + P̃ (1)C(1), (.3)

...

C(t′) = P̃ (t′) + P̃ (t′ − 1)C(1) + . . . P̃ (1)C(t′ − 1). (.4)

If we further define C(0) = 1 and P̃ (0) = 0, then equation (.4) can be written

more compactly as

C(t′) =
t′
∑

τ=0

C(t′ − τ)P̃ (τ) + δt′,0, (.5)

where δt′,0 is the Kronecker delta.

We are interested only in the long time limit of the ACF. Hence, we

can treat time as a continuous variable and solve equation (.5) by applying

the Laplace transform L{f(τ)}(s) =
∫

∞

0
f(τ) exp(−sτ)dτ , utilising also the

convolution theorem .Taking these steps we obtain

C(s) =
1

1− P̃ (s)
, (.6)

where P̃ (s) = L
{

P̃ (τ)
}

(s) =
∫

∞

0
P̃ (τ) exp(−sτ)dτ . We will assume that

P̃ (τ) ∝ τ−a for any τ ∈ [1,∞), i.e. the asymptotic power-law behaviour

(τ ≫ 1) will be assumed to remain accurate for all values of τ . Under this

assumption,

P̃ (τ) =







Aτ−a, τ ∈ [1,∞),

0, τ ∈ [0, 1).
, (.7)
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where A = 1/
∫

∞

1
τ−adτ = a− 1. The Laplace transform of equation (.7) is,

P̃ (s) = (a− 1)Ea(s), (.8)

where Ea(s) denotes the exponential integral function defined as,

Ea(s) =

∫

∞

1

exp (−st) t−adt /; Re(s) > 0. (.9)

The inversion of the Laplace transform after the substitution of equa-

tion (.8) in equation (.6) is not possible analytically. However, we can easily

derive the correlation function in the Fourier space (known as the power spec-

tral density function) F{C(t′)}(f) =
√

2
π

∫

∞

0
C(t′) cos(2πf)dt′ by the use of

the identity (Jeffrey and Zwillinger, 2007, p. 1129),

F{C(t′)} =
1√
2π

[C(s → 2πif) + C(s → −2πif)] . (.10)

relating the Fourier cosine transform F {g(t)} (f), of a function g(t), to its

Laplace transform g(s), to obtain,

C(f) =
1√
2π

(

1

1− (a− 1)Ea(2ifπ)
+

1

1− (a− 1)Ea(−2ifπ)

)

(.11)

From equation (.11) we can readily see that as f → 0+ (equivalently t′ → ∞),

C(f) → ∞. To derive the asymptotic behaviour of C(f) we expand about

f → 0+ (up to linear order) using

Ea(2ifπ) = aia+1(2π)a−1fa−1Γ(−a)− 2iπf

a− 2
+

1

a− 1
+O(f 2) (.12)

to obtain

C(f) = − i
√
2π(a− 2)f

4π2(a− 1)f 2 + (2a+1πa(if)a − a(2iπ)afa) Γ(2− a)

+
i
√
2π(a− 2)f

4π2(a− 1)f 2 + (2a+1πa(−if)a − a(−2iπ)afa) Γ(2− a)
.

(.13)
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After some algebraic manipulation, for f → 0 equation (.13) yields

C(f) = Afa−3, (.14)

where

A = −2a+
1

2 (a− 2)2πa− 3

2 sin
(

πa
2

)

Γ(1− a)

(a− 1)
. (.15)

Therefore, for 2 < a < 3 we see that the Fourier transform of the correlation

function behaves as,

C(f) ∝ fa−3. (.16)

If a = 3, then the instances of the Gamma function appearing on the RHS of

equation (.13) diverge. Therefore, for a = 3 we need to use a different series

expansion around f → 0+. Namely,

E3(2πif) =
1

2
− 2iπf + π2f 2(2 log(2iπf) + 2γ − 3) +O

(

f 5
)

, (.17)

where γ stands for the Euler’s constant. The substitution of equation (.17)

into equation (.11) leads to

C(f) =− Re

{

[

2 log(πf)− 2γ + 3− log(4)
]/[

√
2π(2iπf log(πf)

+ πf(2iγ + π + i(log(4)− 3))− 2)

× (π(3i− 2iγ + π)f − 2iπf log(2πf)− 2)
]

}

,

(.18)
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and thus,

C(f) =

(

− 8γ3π2f 2 − 2π2f(f(−6 log(π)(log
(

16π3
)

− 2γ log
(

4πf 2
)

) +
(

12γ2 + π2
)

log(πf) + 9(3− 4γ) log(2πf))

+ 4f log3(f) + 6f(2γ − 3 + log(4) + 2 log(π)) log2(f)

+ 6f
(

γ log(16) + (log(2π)− 3) log
(

4π2
))

log(f) + 4f log(2π)((log(2)− 3) log(2)

+ log(π) log(4π))− 4 log(2πf))− 4γ2π2f 2(log(64)− 9)− 2γ(π2f(f
(

π2 + 27 + 12 log2(2)
)

− 4) + 4) + π2f
(

f
(

27− π2(log(4)− 3) + log(8) log(16)
)

− 12
)

− 8 log(2πf) + 12

)

/(√
2π(4π2f 2 log(πf)(log(4πf) + 2γ − 3) + π2f(f(4γ2 + π2 + (log(4)− 3)2

+ 4γ(log(4)− 3))− 4) + 4)2
)

.

(.19)

As f → 0 we have,

C(f) ∼ |log(f)| (.20)

Finally, if a > 3, then equation (.11) for f → 0 tends to a constant, and

thus, Yt behaves as white noise. Consequently, if the variance of P̃ (τ) is

finite, then Yt is for large values of t′ is uncorrelated.

To summarise, the spectral density function for f ≪ 1 is,

C(f)
f≪1∝



















fa−3, 2 < a < 3

| log(f)|, a = 3

const., a > 3

. (.21)

The inversion of the Fourier (cosine) transform in equation (.21) yields,

C(t′) ∝ t′
2−a

/; 2 < a ≤ 3 ∧ t′ ≫ 1. (.22)
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