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Abstract

This paper studies an economy where privately informed hedge funds (HF's)
trade a risky asset in order to exploit potential mispricings. HFs are allowed
to have access to credit, by using their risky assets as collateral. We analyse
the role of the degree of heterogeneity among HFs” demand for the risky asset
in the emergence of clustering of defaults. We find that fire-sales caused by
margin calls is a necessary, yet not a sufficient condition for defaults to be
clustered. We show that when the degree of heterogeneity is sufficiently high,
poorly performing HF's are able to obtain a higher than usual market share
at the end of the leverage cycle, which leads to an improvement of their

performance. Consequently, their survival time is prolonged, increasing the
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probability of them remaining in operation until the downturn of the next
leverage cycle. This leads to the increase of the probability of poorly and
high-performing hedge funds to default in sync at a later time, and thus the
probability of collective defaults.

Keywords: Financial crises, hedge funds, survival statistics, bankruptcy.
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1. Introduction

The hedge fund (HF) industry has experienced an explosive growth in
recent years. The total size of the assets managed by HFs in 2015 was
estimated at US$2.74 trillion (BarclayHedge, 2016). Due to the increasing
weight of HF's in the financial market, failures of HF's can pose a major threat
to the stability of the global financial system. The default of a number of
high profile HF's, such as LTCM and HFs owned by Bear Stearns (Haghani,
2014), testifies to this.

At the same time, poor performance of HFs—the prelude to the failure
of a HF—is empirically found to be strongly correlated across HF's (Boyson
et al., 2010), a phenomenon known as “contagion”. Moreover, Boyson et al.
(2010) point out that the correlation between HFs’ worst returns—falling
in the bottom 10% of a HF style’s monthly returns—remains high, even
after taking into account that HF returns are autocorrelated, and the effect
of the exposure of HFs to commonly known risk factors. The findings of
Boyson et al. (2010) support the theoretical predictions of Brunnermeier and

Pedersen (2009), who provide a mechanism revealing how liquidity shocks can



lead to downward liquidity spirals and thus to contagion'. The mechanism
that leads to contagion is closely related to the theory of the “leverage cycle”,
i.e. the pro-cyclical increase and decrease of leverage, due to the interplay
between equity volatility and leverage, put forward by Geanakoplos (1997)2.

The combination of the dominant role of HFs in the financial system
with the possibility of transmission of the risk, not only to other financial
organisations but also to the real economy, has placed the operation of HFs
under close scrutiny and has highlighted the significance of regulation of
the industry. Regulating the HF industry is not an easy task; designing
the appropriate regulation requires a good understanding of many aspects
such as the mechanism which generates defaults at the individual level, the
mechanism behind contagion, and finally the parameters which determine
the persistency of the effect of a default of an individual HF on the industry.
Although Brunnermeier and Pedersen (2009) provide the mechanism behind
contagion, they overlooked the persistency of the impact of a default of an
individual HF. Our paper aims to fill this gap. In particular, we charac-
terise the conditions under which the correlation between HF’s defaults is
persistent, i.e. defaults are clustered.

We study an economy with heterogeneous interacting agents (HIA) —

LOther works which study the the causes of contagion in financial markets include Kyle

and Xiong (2001), and Kodres and Pritsker (2002).
2In fact the theory of leverage cycle, in contrast to other models that endogenise lever-

age (Brunnermeier and Pedersen, 2009; Brunnermeier and Sannikov, 2014; Vayanos and
Wang, 2012) has the additional merit of making the endogenous determination of collateral

possible.



HFs in our case — in the tradition of Day and Huang (1990), Brock and
LeBaron (1996), Brock and Hommes (1997, 1998), Chiarella and He (2002),
Thurner et al. (2012) and Poledna et al. (2014) among others.> We find that
the feedback between market volatility and margin requirements (downward
liquidity spiral), is a necessary yet not a sufficient condition for clustering
of defaults to occur, as has been suggested by Boyson et al. (2010). In this
work we show that heterogeneity plays a pivotal role in the emergence of
clustered defaults: defaults are clustered only if the degree of heterogeneity
is sufficiently high.

We develop a simple dynamic model with a representative mean-reverting
noise trader and a finite number of HF managers trading a risky asset. We
allow for a setup where heterogeneity regarding the demand of the risky
asset may be due to different preferences towards risk, disagreement on the
expected price of the asset, or disagreement on the volatility of the market.
Evidently, market volatility depends on the HFs’ trading strategy, which in
turn, depends on HFs’ demand. In addition, we allow for the HFs to have
access to credit, and we endogenise the probability of default by assuming
that a HF would choose to default when its portfolio value falls below a
threshold.

In this environment we show that when the degree of heterogeneity is
sufficiently high, poorly performing HFs are able to absorb shocks caused by
fire sales. As a result, they obtain a larger than usual market share, and

improve their performance. In this fashion, a default due to exactly their

3For a detailed relevant literature review see Hommes (2006), LeBaron (2006) and

Chiarella et al. (2009).



poor performance is delayed, allowing them to remain in operation until the
downturn of the next leverage cycle. This leads to the increase of the prob-
ability of poorly and high-performing hedge funds to default in sync at a
later time, and thus the probability of collective defaults. Formally, we show
that for high degree of heterogeneity the default time-sequence shows infinite
memory. Using the definition of Andersen and Bollerslev (1997) clustering is
determined by the divergence of the sum (or integral in continuous time) of
the autocorrelation function (ACF) of the default time sequence, and there-
fore, the presence of infinite memory in the underlying stochastic process
describing the occurrence of defaults. Furthermore, we establish a quantita-
tive connection between the non-trivial aggregate statistics and the presence
of infinite memory in the underlying stochastic process governing the de-
faults of the HFs. The comparison between the theoretical prediction of the
asymptotic behaviour of the autocorrelation function (ACF) of defaults and
the numerical findings, reveals that our theoretical predictions are valid even
in a market with a finite number of HFs and the clustering of defaults is
confirmed.

The structure of the rest of the paper is as follows. Section 2 discusses the
relevant literature. Section 3 presents the economic framework that we use.
In section 4.1 discusses the numerical findings. In Section 4.2, we provide
analytical results linking the heavy-tailed aggregate density to the observed
statistical character of defaults on a microscopic level, and the power-law de-
cay of the ACF of the default time-series of defaults, identifying that defaults
are clustered. Finally, section 5 provides a short summary with concluding

remarks.



2. Relevant Literature

Our paper is related methodologically to the HIA literature; and in terms
of content, to the literature which studies the effects of leverage on financial
stability.? Models with HIA can give rise to emergent properties of systems
that are able to replicate the empirical trends seen in asset prices, asset re-
turns and their distributions (Lux, 1995, 1998; Lux and Marchesi, 1999; lori,
2002; He and Li, 2007; Chiarella et al., 2014). In Levy (2008), spontaneous
crashes are a natural property of a market with heterogeneous investors who
are inclined to conform to their peers, under the condition that the strength
of the conformity effects is large compared to the degree of heterogeneity
of the investors. In other papers, such as Chiarella (1992), Lux (1995) and
Di Guilmi et al. (2014) heterogeneity has to do with the different beliefs and
trading rules of the agents (fundamentalists and chartists) which can result
to asset price fluctuations and market instability.

The set up of our model is similar to Thurner et al. (2012) and Poledna
et al. (2014) which study the effects of leverage in an economy with hetero-
geneous HFs. Thurner et al. (2012) show that leverage causes fat tails and
clustered volatility. Under benign market conditions HF's become more lever-
aged as this is then more profitable. High levels of leverage are correlated
with increased asset price fluctuations that become heavy-tailed. The heavy

tails are caused by the fact that when a HF reaches its maximum leverage

4The present paper focuses on the role of leverage on a microeconomic level and does
not discuss the feedback effects with the Macroeconomy. For the latter see Chiarella and

Di Guilmi (2011), Ryoo (2010) and references therein.



limit then it has to repay part of its loan by selling some of its assets. Poledna
et al. (2014) use a very similar framework to test three regulatory policies:
(i) imposing limits on the maximum leverage, (ii) similar to the Basle II reg-
ulations, and (iii) a hypothetical perfect hedging scheme, in which the banks
hedge against the leverage-induced risk using options. They find that the
effectiveness of the policies depends on the levels of leverage, and that even
though the perfect hedging scheme reduces volatility in comparison to the
Basle IT scheme, none of these are able to make the system considerably safer
on a systemic level.

Our model extends this framework in two directions. Firstly, in our model
the behaviour of HFs is not given by heuristics but it is derived from first
principles. In both Thurner et al. (2012) and Poledna et al. (2014), HFs are
risk neutral and have different demand of the asset given the same informa-
tion and the same wealth. The characteristic which makes them heteroge-
neous, is called “aggression” and aims to capture the different responses of
the agents to a mispricing signal. Given the risk neutrality assumption, it is
impossible to provide a rigorous explanation for the difference in aggression.
Furthermore, deriving the HFs demand functions from first principles: (i) we
bridge the gap between Thurner et al. (2012) and Poledna et al. (2014); and
the rest of the leverage cycle literature discussed below and (ii) we provide a
framework which allows the study of different types of heterogeneity.

The leverage cycle models start with the collateral equilibrium models of
Geanakoplos (1997) and Geanakoplos and Zame (1997), who provide a gen-
eral equilibrium model of collateral. The key idea behind these models is that

lenders require a collateral from the borrowers in order to lend them funds.



This borrowing and lending is agreed through a contract of a promise of pay-
ing back the loan in future states, where the investor who sells the contract
is borrowing money —using a collateral to back the promise— from the agent
who buys the contract. Each contract is chosen from a menu of contracts
with different loan to value (LTV) ratio. In Geanakoplos (1997) scarcity of
collateral leads to only a few contracts being traded, which makes leverage
(LTV) endogenous. Finally, the investors default when the the value of the
collateral is less than the value of the contract that borrowers and lenders
have agreed. Geanakoplos (2003) considers a continuum of risk neutral agents
with different priors in a binomial economy with two or three states of the
world. He shows how changes in volatility lead to changes in equilibrium
leverage which in turn have a bigger effect in asset prices than what agents
believe to be the effect of news. Geanakoplos (2003, 1997) show that in some
cases all agents will choose the same contract from the contract menu. This
result has been recently extended by Fostel and Geanakoplos (2015) who
study in more detail the relationship between leverage and default and prove
that in all binomial economies with financial assets, exactly one contract is
chosen.

Fostel and Geanakoplos (2008) extend the economy of Geanakoplos (2003)
to an economy with multiple assets and two risk averse agents instead of a
continuum of risk neutral ones; and develop an asset pricing theory which
links collateral and liquidity to asset prices. Geanakoplos (2010) combines
the insights from Geanakoplos (1997) where the collateral is based on non
financial assets and Geanakoplos (2003) where the collateral is based on

financial assets; and shows that the introduction of CDS contracts reduces



the asset prices. By doing this he puts forward a model of a double leverage
cycle, in housing and securities, which contributes in the explanation of the
2007-08 crisis. Fostel and Geanakoplos (2012) provide a further analysis
of CDS contracts and show: (i) why trenching and leverage initially raised
asset prices and (ii) why CDSs lowered them later. Simsek (2013a) considers
a continuum of states and two types of agents beliefs, namely optimist and
pessimist. He shows that the type of disagreement between agents has more
important effects on asset prices than the degree of disagreement between
optimists and pessimists.®. To our knowledge, this is the only paper in this
literature which considers the effect of different degrees of heterogeneity®
Along similar lines the effects of leverage have been studied by Gromb
and Vayanos (2002), Acharya and Viswanathan (2011), Brunnermeier and
Pedersen (2009), Brunnermeier and Sannikov (2014) and Adrian and Shin
(2010), among others. These approaches differ from the models mentioned
in the previous paragraphs in two key aspects. The models of Acharya and
Viswanathan (2011), Adrian and Shin (2010), Brunnermeier and Sannikov
(2014) and Gromb and Vayanos (2002) focus on the ratio of an agent’s total
asset value to his total wealth (investor based leverage) while the leverage cy-

cle models of Geanakoplos and coauthors’ focus on LTV. The second aspect

5Other works in the leverage cycle literature include Geanakoplos and Zame (2014),
Geanakoplos (2014) and Fostel and Geanakoplos (2016). For a recent review of this liter-

ature see Fostel and Geanakoplos (2014).
6In a different context Simsek (2013b) shows that the level of belief disagreement affects

the average consumption risks of individuals in a model which studies the effect of financial

innovation on portfolio risks.
"Also the models of Brunnermeier and Pedersen (2009), and Simsek (2013a) use the



has to do with the fact that in the models of Brunnermeier and Pedersen
(2009) and Gromb and Vayanos (2002) the leverage ratio is exogenously
given, where in the former is given by a VaR rule, whereas in the latter it is
given by a maximin rule used to prevent defaults. In the cases of Brunner-
meier and Sannikov (2014), Acharya and Viswanathan (2011) and Adrian
and Shin (2010) leverage is endogenous but is not determined by collat-
eral capacities. In Acharya and Viswanathan (2011) and Adrian and Shin
(2010) leverage is determined by asymmetric information between borrowers
and lenders; while in Brunnermeier and Sannikov (2014) it is determined by

agents’ risk aversion.

3. Model

3.1. Environment

We study an economy with two assets, one riskless (cash C') and one risky,
two types of traders and a bank. The supply of the risky asset, which can be
viewed as a stock, is fixed and equal to IV, whereas there is an infinite supply
of the riskless asset. The price of the riskless asset is normalised to 1, whereas
the price of the risky asset at time ¢ p; is determined endogenously. The risk-
less and the risky asset are traded by a representative, mean-reverting noise
trader and K types of hedge funds (HFs), whose objective is to exploit po-
tential mispricings of the risky asset. The role of the bank, which is infinitely
liquid, is to provide credit to HF's, by using the HF’s assets as collateral.
Representative Hedge Fund: Each HF is run by a myopic portfolio man-

same ratio.
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ager, whose objective is to maximise her next period’s CRRA utility function

over his wealth, W;:

Ui =mi (1= a), 1)

where v > 0 is the measure of relative risk aversion, and j € {1,..., K}.
The manager’s strategy of the jth HF is a mapping from her information
set S7 to trading orders for the risky and the riskless asset, where D! (CY )
denotes the units of the risky (riskless) asset the jth HF is willing to trade.
Thus, beliefs about the mean logarithmic price of the risky asset E[log(ps1]

and the volatility Var[logp;,1] plays a crucial role in determining orders.
We assume that only part (1 —-) of the current wealth of the HF is avail-
able for re-investment in the next period. The purpose of this assumption
is to exclude unrealistic cases where the wealth of HFs explodes and de-
fault never occurs.® This assumption could be interpreted in multiple ways.
For instance, it is consistent with the empirical evidence indicating that the
compensation of the fund managers is tied to the wealth of the HF. This
evidence is also in line with the theoretical literature on optimal contract-
ing in principal-agent environments. Alternatively, the share + which is not
re-invested could be capturing the HF investors’ payment. Taking this into

account the wealth of a HF evolves according to:

Wtj—i-l =(1- W)Wtj + (Pey1 — pt)Dg7 (2)

81t is worth highlighting that assuming that the share of wealth which is not re-invested
is fixed and constant over time, allows us to develop a more tractable model. However, the

critical component for our main findings to go through is that not all wealth is re-invested.
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where the first term of the RHS captures the value of the portfolio held in
the previous period, and the second term captures the change in the value
of the risky assets.

It is worth highlighting that the amount of cash required to complement
the trading order for a risky asset, i.e., D{ P, may exceed the cash which
is available at the beginning of each trading period. This can be the case
because we allow for access to credit. However, this access to credit is not
unbounded, and is assumed to be subject to regulation. Here the HF cannot
become more leveraged than \,,.., a maximum ratio of the market value of
the risky asset held as collateral by the bank to the net wealth of the risky

asset. Thus, the maximum leverage constraint translates into:
D{pt/Wtj < Anaz-
Consequently, the maximum demand for the risky asset is given by:
Dimax = AmacWi /2, Vi € {1,..., K}. (3)

Furthermore, we allow the HF's to take only long positions, i.e., to be active

only when the asset is underpriced®.

Default: We define as default any event in which the wealth of a HF falls
below Wphin < Wy, where W, denotes the initial endowment of each HF

upon entrance in the market. This enables us to endogenise the probability

9We do this in order to highlight that, even with the HFs taking only long positions,
a strategy inherently less risky than short-selling, the clustering of defaults, and thus

systemic risk, is still present if heterogeneity among the prior beliefs is sufficiently large.
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of default of each HF. The main objective of this paper is to study both
the individual (HF') and collective (systemic) default probabilities over time.
After T, ~ U[b,c|, time-steps the bankrupt HF is replaced by a HF with
identical characteristics. This allows us to maintain the character of the
market (at a statistical level).

Noise traders: The second type of traders is noise-traders, who are sup-
posed to trade for liquidity reasons. Following the related literature, we
assume that the demand d™ of the representative noise-trader for the risky
asset, in terms of cash value, is assumed to follow a first-order autoregressive

[AR(1)] process (Xiong, 2001; Thurner et al., 2012; Poledna et al., 2014).
logd* = plogd}*, + (1 — p)log(VN) + x4, (4)

where p € (0,1) is a parameter controlling the rate of reverting to the
mean. Given that the expected value of y; and the auto-covariance func-
tion are time-independent, the stochastic process is wide-sense stationary,

xt ~ N (0,02), and V is the fundamental value of the risky asset!.

Trading orders and Equilibrium prices: Finally, the price of the risky
asset is determined endogenously by the market clearing condition [together

with Egs. (2), (4), and (7)]*.
Dy (per) + Z D]\ (ps1) = N, (5)

=1

10The demand of the noise traders in terms of the number of shares of the risky asset
D™ and the price of the risky asset p; at period ¢ is d** = D?p,. Hence, In the absence

of the HFs, from Eq. (4), and Eq. (5) we have E [logpi1+1] = log V.
1 This system of equations is highly non-linear, and thus, can only be solved numerically.

13



where D}, (pev1) = dity/piy1 stands for the demand of the noise traders
whereas D/ +1(pe+1) stands for the demand of the jth HF. Both values are in

number of shares.

Source of Heterogeneity: A critical component, which lies at the heart
of our analysis, is heterogeneity across HFs. We allow for a setup where
different HF's respond differently when facing the same price. In particular,
we assume that for a given price p;, different HFs post different demand
orders of the risky asset, i.e., D! # DJ for i # j. One can think of many
cases which could justify heterogeneity across HF's. One explanation could be
that HF's have different beliefs about the fundamental value V' of the asset.
Another case which could justify this heterogeneity could be that HF's agree
on the mean, but the disagree on the variance, i.e., Var[log p;41|F7]. Finally,
HFs’ heterogeneity might be driven by different degrees of risk aversion, i.e.,
a. The main findings are qualitatively equivalent independently of which of
the previous possible interpretations is implemented. Throughout the paper
we assume that HF's disagree on the market volatility.

The rationale behind the assumption that the managers agree on the
fundamental value of the asset, but disagree on price volatility, relies on the
fact that the fundamental value, as opposed to price volatility, is not affected
by the behaviour of HFs. In other words, the fundamental value of the asset is
exogenously determined, whereas the volatility of the market is endogenously
determined, with its value depending on the HF's’ trading strategy, which in
turn, depends on their private information set. Hence, it is not feasible for

the managers to reach an agreement on the market volatility, because they

14



have access to different information sets, and the market volatility is affected
by the information each manager has access to.

Timing: Each period ¢ consists of 4 sub-periods

1. The managers set their demand orders for the risky asset.

2. The price of the risky asset is determined, and the return of each port-
folio is realised.

3. The managers receive their compensation.

4. The next-period’s wealth is determined.

3.2. Optimal Demand

The manager of the jth HF maximises his expected utility, given his be-
liefs 77 about the asset’s fundamental value and the volatility of the market,
and subject to the constraint that the demand cannot exceed D! This

t,mazx*

is expressed as

D] = argmax {E[UW/)|F’]} (6)

DJ€[0,Dt max]
Solving the optimisation problem we obtain'?

D} = win {+ (5,108 (V/p) + 3 ) A } 57 @
where s; = 1/Var [logp;41|F’]. Therefore, the demand of the HFs is pro-
portional to the expected logarithmic return and their wealth, and inversely
proportional to the conditional variance of the logarithm of the price, given

their beliefs.

2For details see Appendix A.
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The clustering of HFs” defaults is determined by the decay rate of the
of the default time-sequence autocorrelation function (ACF) C(t') , with ¢
being the time-lag variable. If defaults are clustered, then C(t') decays in
such a way that the sum of the ACF over the lag variable diverges (Baillie,
1996; Samorodnitsky, 2006, 2007).

Definition 1. Let C(#') denote the autocorrelation of the time series of de-

faults, with ¢' being the lag variable. Defaults are clustered if and only if

> Ct') — o (8)

Given that the ACF is bounded in [—1, 1], it follows that the convergence
of the infinite sum is in turn determined by the asymptotic behaviour ¢ > 1
of the ACF. In this limit, the sum can be approximated by an integral.

In the following we assume that the ACF of the default time sequence
can be approximated by a continuous function for ¢’ > 1. Then it follows

that,

Remark 1. Defaults are clustered if the ACF asymptotically approaches
zero not faster than C(t') ~ 1/t'. In this case defaults are interrelated (sta-

tistically dependent) for all times.

Remark 2. If the decay of the ACF is faster than algebraic, then defaults
are not clustered. The effect of the shock caused by the default of a HF on
the market is only transient, and the defaults are in the long-run statistically

independent.

Our main goal is to study the relationship between the degree of hetero-

geneity r, identified with the difference between extreme values of s;, and

16



clustering of defaults. The question arises as to whether the leverage cycle
is a sufficient condition for the defaults to be clustered, or rather whether
there exists a critical value for the degree of heterogeneity above which the
mechanism of the leverage cycle leads to clustering of defaults.

In the next section, we present the results of the model. The first subsec-
tion presents the numerical results obtained by iterating the model defined
above. We present the ACF's for various values of x and interpret these in
light of Remarks 1 and 2. Section 4.2 provides an analytical insight into the

numerical results.

4. Results

Choice of Parameters

In all simulations we consider a market with X' = 10 HFs. In the following
we assume homogeneous preferences towards risk across HFs, and set a; =
3.2 Vj € {1,...,10}, this being a typical value for HFs (Gregoriou et al.,
2007, p. 417). From Eq. (4) we have 6% = 02 /(1 — p?), where p is the
mean reversion parameter. The inverse of the expected volatility given the
HE’s prior beliefs, i.e. s; = 1/Var [log p;+1|F’] determines the responsiveness
of the HF's to the observed mispricing. In our numerical simulations s; is
sampled from a uniform distribution in [1,4], and § € [1.2,10].

Moreover, the maximum allowed leverage An.x is set to 5. This particular
value is representative of the mean leverage across HFs employing different
strategies (Ang et al., 2011). The remaining parameters are chosen as follows:
o2 = 0.035,V =1, N = 10°, Wy = 2 x 10°, Wy, = Wy/10, p = 0.99
(Poledna et al., 2014), and v = 5 x 107%. Bankrupt HFs are reintroduced

17



after T, periods, randomly chosen according to a uniform distribution in
[10,200]. asset is undervalued—will help moderate the fluctuations realised
in the market. In other words, all HFs correctly believe that the volatility
of the market will be reduced when they enter the market, in comparison to
the volatility observed when only the noise traders are active. However, they
are uncertain about their collective market power, and therefore the extent
to which they will affect the realised volatility. Thus, all HFs believe that
E [Var (log pe1) | F7] < o/ (1 = p?).

4.1. Numerical results

As aforementioned, the leverage cycle consists in the interplay between
the variability of prices of the assets put as collateral, and margin require-
ments. When prices are high, assets used as collateral are overpriced, and
creditors are willing to lend. In the face of an abrupt fall of the market price
of the assets used as collateral, creditors force the lenders to repay part of the
loan, such that the margin requirements are met. Consequently, the lenders
are forced to sell in a falling market, accelerating and reinforcing the fall of
the price of the collateral, creating thus a vicious cycle.

In our model, a fall in the price of the risky asset used as collateral is
caused by a sudden drop of the demand of the noise traders dj*. This results
into a sudden increase of the leverage ratio of the jth HF, M. In case X

exceeds the margin requirement )\{ < M__ HFs are forced to sell, pushing

max
the price even lower. This is illustrated in Fig. 1, where we present: (a) the
wealth of three HF's (under, moderately, and highly responsive to mispricings,
Jj =2,6,10) (b) the corresponding leverage ratio (c) the demand of the noise

traders, and (d) the price of the risky asset at equilibrium as a function of
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time, for a low degree of heterogeneity x = — 1 = 0.5.

At time ¢t = 738 [marked by a blue triangle in panel (c)] a drop in the
demand of the noise-traders causes an underpricing of the risky asset backing
up the loans of HFs [panel (d)]. In turn, the leverage ratio of all the HFs
depicted in Fig 1(b) Aj—73s increases abruptly [panel (b)], and the margin
requirement Ay, = 5 becomes binding for the most responsive of the HF's
depicted (j = 6,10). At this point, the HF's are forced to deleverage pushing
the price of the collateral further down, leading all HF's depicted to default
[panel (a)]. The pressure on the price of the risky asset due to the syn-
chronous deleveraging of the highly responsive HFs can clearly be recognized
if we compare the lowest price reached around the downturn of the leverage
cycle at about ¢t = 738 [marked by a the dashed red line in panel (d)], with
the equilibrium price at ¢ = 7153 [blue filled circle], where the demand of
the noise trader becomes virtually the same to that at ¢ = 738 [marked by
a blue triangle], but the price remains at a considerably higher level. This
is because the wealth of all HF's in this case, is such that the leverage ratio
stays well below the maximum threshold [see panel (b)], and the leverage
cycle mechanism remains inactive.

Another observation worth commenting on, is the fact that after the HF's
have been reintroduced in the market, we notice that the least responsive
HF (j = 2), defaults another 2 times, by the end of the time-series depicted
in Fig. 1, namely at ¢t = 3976, and ¢t = 9161 [also marked by blue triangles
in panel (a)]. not because of the presence of a shock in the demand of the
risky asset, but rather, due to its poor performance. This is because time is

costly in our model (HFs pay managerial fees), and if the profitability of a
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Figure 1: (a) The wealth normalised by the endowment Wy, (b) the lever-
age ratio A{, (c) the demand of the noise traders in terms of money-value,
normalised also by Wy, and (d) the equilibrium price of the risky asset, as a

function of time, in the case of kK = 0.5.
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HF is low, then it will inevitably be led to bankruptcy, even in the absence of
a shock on the demand of the risky asset. These defaults happen at random
times, i.e. when the observed mispricings happen to be small, or when the
asset is overpriced, for a period of time, and the profits made are also small,
or null, respectively. This also explains the second default of the 6th HF,
at t = 6618 [red triangle in Fig. 1(a)], when all the HFs are well below the
maximum leverage constraint.

Let us now study an example with a higher degree of heterogeneity. In
Fig. 2 we present the wealth W/ [panel (a)], the leverage ratio A [panel (b)]
of 3 representative HF's [j = 2,6, 10], as well as the logarithmic returns [panel
(c)] as a function of time, for k = 3. At ¢ = 493 [marked by a red circle in
panels (a), and (c)] the leverage cycle becomes active, causing an underpricing
of the risky asset. However, the least responsive to mispricings hedge fund
(7 = 2) of the three depicted, manages to absorb the shock, as it stays below
the maximum leverage A\.x = 5 [see panel (b), blue line], and never receives
a margin call. However, the bankruptcy of the more responsive HFs, offers
the HF that has survived the shock (j = 2), the opportunity to seize a larger
market share and, as a result, to perform better in the short-run, restoring
its wealth to a level similar to the one before the shock occurred. In this
way, the most poorly performing HF is given the opportunity to continue
operating until the next downturn of the leverage cycle, at which point it
defaults along with the rest of the HFs at ¢t = 2371 [red disc|]. After the
second crash of the market we observe the end of yet another leverage cycle,
at which point all the depicted HFs default again in sync at ¢ = 3044 [black

disc]. The narrative is repeated once more at ¢ = 3684 [blue circle], when
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again the least responsive HF after absorbing the shock gets a larger market
share, increasing shortly its profitability.

In conclusion, the study of time-series in the case of low (k = 0.5) and
high heterogeneity (k = 3) reveals that increased heterogeneity leads to the
increase of collective defaults. Even more, the synchronous default of highly
responsive HF's, gives the opportunity to the less responsive ones to increase
their market share, and thus, their profitability, even for a short-period of
time. Still, this increases the chance of the poor-performing HFs to survive
until the next downturn of the leverage cycle, suppressing defaults occur-
ring at random times due to their poor performance, and thus increasing
even more the probability of synchronous defaults. Therefore, this analysis
hints that the degree of heterogeneity is intimately connected to the level of
systemic risk in the market.

To assess quantitatively the effect of the degree of heterogeneity, explained
above, on the systemic risk, we study the persistence of the correlation be-
tween defaults [see Definition 1]. In Figure 3(a) we compare the numeri-
cally computed ACF of the default time-sequence!® as observed on the ag-
gregate level for 11 different degrees of heterogeneity x, determined by the
support of the distribution of s;. The results were obtained by iterating
the model described in Section 3 for up to 3 x 108 periods, and averag-
ing over 40 realisations of the responsiveness s;; namely, s; ~ UJL,¢], with

0=412,1.4,1.7,2,3,5,6,...,10}. Clearly, when the degree of heterogeneity

k < 1, the ACF decays far more rapidly in comparison with larger values

13The time-sequence considered is constructed by mapping defaults to 1s, irrespective

of which HF defaulted, and to 0 otherwise.
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Figure 2: (a) The wealth normalised by the endowment Wy, (b) the leverage
ratio X/, and (d) the logarithmic returns on the risky asset, as a function of

time, with x = 3.
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of heterogeneity. In fact, as it can be observed in the figure, the ACF for
k < 1 decays faster than a power-law with exponent equal to —1 (black
dashed line), which is the largest exponent (in absolute terms) leading to
a non-integrable ACF [see Remark 1]. On the other hand, the converse is
true for large degrees of heterogeneity (k > 2), in which case the ACF de-
cays asymptotically—t' > 1-—as a power-law with exponent less than 1 in

absolute value. Consequently,

Result 1. For k < 1, the ACF decays faster than a power-law with exponent
-1. Hence, the mechanism of the leverage cycle does not result into sufficiently

high long-range correlations for defaults to be clustered.

Figure 3(a) also shows that for increasing heterogeneity the ACF con-
verges to a limiting form as the heterogeneity is increased, which is reflected
in the coalescence of the ACFs corresponding to x > 5. The latter is more
clearly demonstrated in Fig. 3(b), where a blow-up of the area within the

rectangle shown in panel (a) is presented. Therefore,

Result 2. For sufficiently large values of the degree of heterogeneity x,
namely for k > 5, the ACF converges to a limiting form exhibiting a power-

law trend with an exponent less than 1 (in absolute value).

To gain some insight into the qualitative difference with respect to the
persistence of correlations between defaults as a function of the degree of
heterogeneity x, let us turn our attention to the default statistics. In Fig. 4

we present the aggregate PDF of waiting times between defaults'* using a

14The PDF of waiting-times between default is also known as the failure function in

survival analysis theory.

24



(@

tidetetedts

(b) -

Figure 3: (a) The ACF of the binary sequence of defaults corresponding to
11 different values of k. The dashed black line corresponds to a power-law
with exponent -1, which is the largest exponent that leads to clustering [see

Remark 1].
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Figure 3: (b) A blow-up of the rectangular area shown in panel (a) illustrating
the coalescence of C(t') for large values of the degree of heterogeneity, kK =
{6,7,8,9}. (c) The ACF corresponding to k = 9, averaged over 5 x 10?
different realisations of s; (red upright triangles). The blue dot-dashed line
is the result of fitting C'(¢') with a power-law model C(¢') oc ¢, n = 0.887 +
0.003 (R? = 0.9927). The power-law with exponent —1 is also shown for the

sake of comparison (black dashed line).

logarithmic scale on both axes for 6 different values of k. We observe that
for small degrees of heterogeneity x = {0.2,0.4,0.7} the density function
asymptotically decays approximately exponentially. This is better demon-

15 On the contrary,

strated in the inset were we use semi-logarithmic axes
for sufficiently large heterogeneity—such that the corresponding ACF's have
converged to the limiting form—the PDFs exhibit a constant decay rate in
the doubly logarithmic plot (power-law tail). Fitting the aggregate density
for K = 96, corresponding to the highest degree of heterogeneity considered,
with the model P(7) ~ 77¢ we obtain ¢ = 2.84 + 0.03 (red dashed line).
Let us now turn our attention to the statistical properties of HFs on a
microscopic scale, i.e. study each HF default statistics individually. In Fig. 5
we show as an example the density function P;(7), of waiting times 7 between

defaults, for a number of HFs corresponding to high heterogeneity, x = 9,

with s; = {2,4,6,8,10} on a log-linear scale. The results were obtained

15The use of a logarithmic scale for the vertical axis transforms an exponential function

to a linear one.
16To increase the accuracy of the fit, we increase the number of realisations of s; to 103,
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Figure 4: The aggregate PDF of waiting times between defaults for 6 dif-
ferent degrees of heterogeneity using double logarithmic scale. For large
heterogeneity x = {7,8,9}, we observe that the PDF is decaying approxi-
mately linearly, corresponding to a power-law decay. Performing a fit with
the model P(7) ~ 77¢ we obtain ¢ = 2.84 + 0.03 (R? = 0.9947). To illus-
trate the approximate exponential asymptotic decay of the aggregate PDF
for k = {0.2,0.4,0.7} we also show the corresponding aggregate densities

using a logarithmic scale on the vertical axis (inset).
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by iterating the model for 3 x 10® periods and averaging over 100 different
initial conditions'”, holding s; fixed at {1,2,...10}. We observe that P;(7)

for 7 > 1 decays linearly, and thus it can be well described by an exponential

function.
104
107
10
S 7
= 10
A
108
107
10710

Figure 5: The PDF of waiting times between defaults 7 for specific HF's,
having different responsiveness s; = {2,4,6,8,10} (black diagonal crosses,
downright triangles, red upright crosses, magenta diamonds and cyan upright

triangles, respectively). Note the log-linear scale.

1"We are averaging using different seeds for the pseudo-random number generator used

in Eq. (4).
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Consequently, all HFs on a microscopic level—individually—are char-
acterised by exponential PDFs of waiting-times, and therefore the default
events approximately follow a Poisson process. The stability of each HF,
quantified by the probability of default per time-step 1, is different for each
HF, and depends on its responsiveness s;. This is reflected by the different
slopes of the approximately straight lines shown in Fig. 5 for the different
values of s;.

Thus, the default statistics on an aggregate level are qualitatively different
for large values of kK compared to the corresponding ones observed when each
HF is studied individually. Moreover we have already established that for
such high values of the degree of heterogeneity the defaults are clustered.
In the following we will investigate how the emergence of a fat-tail in the

aggregate statistics is connected with the observed clustering of defaults.

4.2. Analytical Results

From the numerical results, we observe that P;(7), for 7 > 1 decays lin-
early (in log- linear scale) and thus it can be well described by an exponential

function. Therefore we can assume that:
Pi(r;7 > 1) ~ pjexp(—p;7), V5 € {1,...,10}. 9)

When the above is true, we know that for sufficiently long waiting times
between defaults; default events of individual HFs have the following statis-
tical properties: (i) they are approximately independent and (ii) occur with
a well defined mean probability per unit time step. From this we get that

the probability P;(T"= 1), 7 € N4, is given by a geometric probability mass
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function (PMF)
Py(r) = p;(1—p;)"", (10)
where p; denotes the probability of default of the jth HF.

Given that our focus is in the asymptotic properties of the PDF's, T can be
treated as a continuous variable. In this limit, the renewal process given by
equation (10), becomes a Poisson process; and the geometric PMF tends to
an exponential PDF!8. Thus equation (9) can be approximated by equation
(10).

The question then arises as to how the aggregation of these very simple
stochastic processes can lead to the non-trivial fat-tailed statistics we ob-
served in Fig. 4 for a sufficiently high degree of heterogeneity. Evidently, the
aggregate PDF f’(T) we seek to obtain is a result of the mixing of the Poisson
processes governing each of the HF's. In the limit of a continuum of HFs the

aggregate distribution is

P(r) = /OooueXp(—M)p(u)du, (11)

where p(p) stands for the PDF of u given the responsiveness s;'.

Assumption 1. p(x) in a neighbourhood of 0 can be expanded in a power

series of the form p(u) = pu” > cpp® + Ryp1(p), with v > —1 20,
k=0

18This limit is valid for 7 > 1 and p; < 1 such that 7p; = p;, where y; is the parameter

of the exponential PDF [see equation (9)] (Nelson, 1995).
19The distribution function of the random parameter u is also known as the structure

or mizing distribution (Beichelt, 2010).
20Since p(p) is a PDF it must be normalisable and thus, a singularity at p = 0 must be

integrable.
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This assumption is quite general, and only excludes functions that behave
pathologically in a neighbourhood around 0. Then from equation (9) and
Assumption 1 we can show that the aggregation of the exponential densities
determining the default statistic for each HF individually leads to a qualita-
tively different heavy-tailed PDF.

Let 1/ € R* be the mean default rate of the jth HF, contributing at the
aggregate level with a statistical weight p(u), which is determined by the
interactions between the agents in the market and the distribution of the

responsiveness S.

Proposition 1. Consider the exponential density function P(7;u) describ-
ing the individual default statistics of a HF. It follows then from Assumption
1, that the aggregate PDF P(t) exhibits a power-law tail.

PROOF. The aggregate density can be viewed as the Laplace transform L [.]

of the function ¢(u) = up(p), with respect to . Hence,

P(T = 1) = L [6(w)] () = / " b() exp(—pur)d. (12)

To complete the proof we apply Watson’s Lemma (Debnath and Bhatta,
2007, p. 171) to the function ¢(p), according to which the asymptotic ex-
pansion of the Laplace transform of a function f(u) that admits a power-

series expansion in a neighbourhood of 0 [see Assumption 1] of the form

Fp) = p” Y beptk + Ropa(p), with v > —1 is
k=0

n

Gl o~ n i o () )

k=0
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Given that ¢(u) for p — 04 is

n

S(1) = 1™ " e + R (), (14)
k=0
we conclude that
- 1 1

Corollary 1. If 0 < k+ v < 1, then the variance of the aggregate density

diverges (shows a fat tail). However, the expected value of T remains finite.

An important aspect of the emergent heavy-tailed statistics stemming
from the heterogeneous behaviour of the HFs, is the absence of a charac-
teristic time-scale for the occurrence of defaults (scale-free asymptotic be-
haviour?'). Thus, even if each HF defaults according to a Poisson pro-
cess with intensity u(s)—which has the intrinsic characteristic time-scale
1/p(s)—after aggregation this property is lost due to the mixing of all the
individual time-scales. Therefore, on a macroscopic level, there is no charac-
teristic time-scale, and all time-scales, short and long, become relevant.

This characteristic becomes even more prominent if the density function
p(u) is such that the resulting aggregate density becomes fat-tailed, i.e. the
variance of the aggregate distribution diverges. In this case extreme values

of waiting times between defaults will be occasionally observed, deviating far

2f a function f(x) is a power-law, i.e. f(z) = cz?, then a rescaling of the independent
variable of the form = — bx leaves the functional form invariant (f(x) remains a power-
law). In fact, a power-law functional form is a necessary and sufficient condition for scale
invariance (Farmer and Geanakoplos, 2008). This scale-free behaviour of power-laws is

intimately linked with concepts such as self-similarity and fractals (Mandelbrot, 1983).
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from the mean. This will leave a particular “geometrical” imprint on the
sequence of default times. Defaults occurring close together in time (short
waiting times 7) will be clearly separated due to the non-negligible probabil-
ity assigned to long waiting times. Consequently, defaults, macroscopically,
will have a “bursty” or intermittent, character, with long quiescent periods of
time without the occurrence of defaults and “violent” periods during which
many defaults are observed close together in time. Hence, infinite variance
of the aggregate density will result in the clustering of defaults.

In order to show this analytically, we construct a binary sequence by map-
ping time-steps when no default events occur to 0 and 1 otherwise. As we
show below, if the variance of the aggregate distribution is infinite, then the
autocorrelation function of the binary sequence generated in this manner,
exhibits a power-law asymptotic behaviour with an exponent S < 1. There-
fore, the ACF is non-summable and consequently, according to Definition 1
defaults are clustered.

Let T}, i € N, be a sequence of times when one or more HFs default and
assume that the PDF of waiting times between defaults P(7), for 7 — oo,

¢. Consider now the renewal process

Sm = > T;. Let Y(t) = 1j94 (Sm), where 1, : R — {0,1} denotes the
i=0

behaves (to leading order) as P(7) oc 7~

indicator function, satisfying

1 : z€A
0 : z¢ A

1a =

Theorem 2. If the variance of the density function ]5(7') diverges, i.e. 2 <

a < 3, then the ACF of Y(t),
E Vi Yiprv] = E[Vi ]| E [Yig o]

2 )
Oy

o) =
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where ty, ' € R and o3 is the variance of Y (t), for t — oo decays as

Ct') ot (16)
PROOF. Assuming that the process defined by Y () is ergodic we can express
the autocorrelation as,

C(t') « lim —ZY;YHV (17)

K—oo K

Obviously, in equation (17) for Y;Y;.4 to be non-zero, a default must have
occurred at both time ¢ and #?2. The PDF P(7) can be viewed as the
conditional probability of observing a default at period t given that a default
has occurred t—7 periods earlier. If we further define C'(0) = 1 and P(0) = 0,
the correlation function can then be expressed in terms of the aggregate
density as follows:

t/

C(t') =) Ot =7)P(7) + by, (18)

7=0
where 0y o is the Kronecker delta. Since we are interested in the long time
limit of the ACF we can treat time as a continuous variable and solve equa-
tion (18) by applying the Laplace transform L£{ f (7 fo T) exp(—sT)dT,

utilising also the convolution theorem. Taking these steps we obtain

1
C(s) = ——=—, (19)
1—P(s)
where P(s fl 7) exp(—s7)dr, since P(0) = 0. After the substitution

of the Laplace transform of the aggregate density in equation (19), one can

22A detailed exposition of the proof is given in Appendix 5.
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easily derive the correlation function in the Fourier space F{C(t')} by the
use of the identity (Jeffrey and Zwillinger, 2007, p. 1129),

F{C({t")} x C(s = 2mif) + C(s — —2mif). (20)

to obtain ,

fo3, 2<a<3
FCE} 'S Jog(f)], a=3 - (21)
const., a>3
Therefore, for a > 3 this power spectral density function is a constant and Y;
behaves as white noise. Consequently, if the variance of P(T) is finite, then
Y; is uncorrelated for large values of t'.
Finally, inverting the Fourier transform when 2 < a < 3 we find that the

autocorrelation function asymptotically (¢’ > 1) behaves as
Ct') <t 2<a<3. (22)

Turning back to the numerical results shown in Fig. 4, the aggregate PDF
as already discussed converges to a limiting form, characterised by a fat-tail
with an exponent equal —2.84 + 0.03. Therefore, from equation (22) we
deduce that the ACF should show a power-law trend with exponent —0.84 +
0.03. The result of the regression of the ACF for kK = 9 was —0.887 & 0.003
[blue dashed-dotted line in Fig. 3(c)], in good agreement with the analytical
result.

In this Section we have shown that when the default statistics of HF's
are individually described by (different) Poisson processes (due to the het-
erogeneity in the prior beliefs among the HFs) we obtain a qualitatively

different result after aggregation: the aggregate PDF of the waiting-times
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between defaults exhibits a power-law tail for long waiting-times. As shown
in Proposition 1, if the relative proportion of very stable HFs approaches 0
sufficiently slowly (at most linearly with respect to the individual default rate
i, as p — 0), then long waiting-times between defaults become probable, and
as a result, defaults which occur closely in time will be separated by long qui-
escent time periods and defaults will form clusters. The latter is quantified by
the non-integrability of the ACF of the sequence of default times, signifying
infinite memory of the underlying stochastic process describing defaults on
the aggregate level. It is worth commenting on the fact that the most stable
(in terms of defaults) HFs are responsible for the appearance of a fat-tail in

the aggregate PDF.

5. Conclusions

This paper studied the role of the heterogeneity in available information
among different HF's in the emergence of clustering of defaults. The economic
mechanism leading to the clustering of defaults is related to the leverage cycle
put forward by Geanakoplos and coauthors. In these models the presence of
leverage in a market leads to the overpricing of the collateral used to back-up
loans during a boom, whereas, during a recession, collateral becomes depre-
ciated due to a synchronous de-leveraging compelled by the creditors. In the
present work we have shown that this feedback effect between market volatil-
ity and margin requirements is a necessary, yet not a sufficient condition for
the clustering of defaults and, in this sense, the emergence of systemic risk.

We have shown that a large difference in the expectations of the HF's is

an essential ingredient for defaults to be clustered. We show that when the
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degree of heterogeneity (realised in our model in terms of the beliefs across
HF's about the volatility of the market) is sufficiently high, poorly performing
HF's are able to absorb shocks caused by fire-sales. As a result, they obtain
a larger than usual market share, and improve their performance. In this
fashion, a default due to their poor performance is delayed, allowing them
to remain in operation until the downturn of the next leverage cycle. This
leads to the increase of the probability of poorly and high-performing hedge
funds to default in sync at a later time, and thus the probability of collective
defaults.

This manifests itself in the emergence of heavy-tailed (scale-free) statis-
tics on the aggregate level. We show, that this scale-free character of the
aggregate survival statistics, when combined with large fluctuations of the
observed waiting-times between defaults, i.e. infinite variance of the corre-
sponding aggregate PDF, leads to the presence of infinite memory in the
default time sequence. Consequently, the probability of observing a default
of a HF in the future is much higher if one (or more) is observed in the past,
and as such, defaults are clustered.

Interestingly, a slow-decaying PDF of waiting-times, which inherently
signifies a non-negligible measure of extremely stable HF's, is shown to be
directly connected with the presence of infinite memory. Therefore, our work
shows that individual stability can lead to market-wide risk.

The leverage cycle theory correctly emphasises the importance of collat-
eral, in contrast to the conventional view, according to which the interest
rate completely determines the demand and supply of credit. However, the

feedback loop created by the volatility of asset prices and margin constraints
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poses a systemic risk only if the market is sufficiently heterogeneous such
that “pessimistic” players, who individually are very stable, exceed a critical
mass.

This work raises several interesting questions, which we aim to address
in the future. In this paper we have assumed that the difference in beliefs
is due to disagreement about the long-run volatility of the risky asset, and
remains constant over time, i.e. the agents do not update their beliefs given
their observations. This assumption is crucial in order to be able to analyse
the effects of different degrees of heterogeneity. Regarding this issue, future
work can take two different directions: On the one hand, this assumption
can be relaxed, allowing agents to update their beliefs on market volatility.
However, given that market volatility is endogenous, it is not guaranteed
that agents’ beliefs will convergence. On the other hand, we can study the
effects of heterogeneity stemming from different aversion to risk among the
HF's, while retaining the common prior assumption. Furthermore, these two
approaches can be combined by assuming both different aversion to risk, and
different beliefs about price volatility. Finally, our work can also be extended
in two further directions. The first being to give a more active role to the
bank which provides loans, while the second is to study the effects of different

regulations on credit supply.
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Appendix A: Optimal Demand

We seek to determine the optimal demand for each of the HFs given
their beliefs about price volatility 7. This translates into the optimisation
problem, assuming log-normal returns on the risky asset

argmax {E [U(Wt{rlﬂqj} } , (.1)

D{E[OyDt,max}

i 1—a

where U (W},,) = Wt{rll_a/(l —a) ~ W/, ", and W/, is the wealth of
the jth HF at the next period. To simplify the notation, in the following
we will assume that the expected value, and variance are always conditioned
on HF’s prior beliefs, and moreover, we will drop the superscript j. Eq. (.1)
is equivalent to the maximisation of the logarithm of the expected utility.
Furthermore, given that returns are log-normally distributed, it follows that
(Campbell and Viceira, 2002, pp. 17-21)

Var [log Wtﬂl’“}

logE [Wyy1' ] = E [log Wit '] + 5

(-2)

Consequently, the problem becomes

argmax {(1 —a)E[logWia] + (1 —a) (.3)

DtE[O,Dt,max]

, Var [log W] }
— [

The wealth of the jth HF at the next period is
Wi = (1 =) (1 + 2 Ria) W, (-4)

where z is the fraction of its wealth invested into the risky asset, and R the
(arithmetic) return of the portfolio. Re-expressing Eq. (.4) in terms of the

logarithmic returns r we get

log (Wiy1) = log Wy +log [1 + xy (exp(ri41) — 1)] + log(1 —7),  (.5)
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albeit a transcendental equation with respect to r. An approximative solution
can be obtained by performing a Taylor expansion of Eq (.5) with respect to

r to obtain

2
r x
log(Wyi1) = log(Wy)+a4r 11 (1 + %) —Ttrfﬂ—l—log(l—v)—i-(? (T3) . (.6)

Substituting Eq. (.6) into Eq. (.3), and furthermore approximating E(r7, ;)

with Var(ryy) we obtain

x
argmax {log Wi 4+ 2 E(re1) + Et(l — xy)Var(ry ) + log(1l — fy)} (7
DtE[O,)\max]

Finally the first-order condition yields

(-8)

E(re1) + saVar(ry)
a Var (1¢,1) T

T; = min {

Consequently, the optimal demand for HF j in terms of the number of shares
of the risky asset given the price at the current period is

log(V/pt) + saVar[logpet |77] } W,

aVar [log py41|F7] R Y

D; = min { (:9)
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Appendix B: Proof of Theorem 2

As already stated in Section 4.2, Theorem 2, assuming that the process
defined by Y (t) = 1j4 (Sm) is ergodic, the auto-correlation function can be
expressed as a time-average

C(t') « lim _ZY;&Ytth’ (.1)

K—oo K

Given that Y (t) is by definition a binary variable, the only non-zero
terms contributing to the sum appearing on the right hand side (RHS) of
equation (.1) correspond to default events (mapped to 1) that occur with a
time difference equal to t’. Therefore, the RHS of equation (.1) is proportional
to the conditional probability of observing a default at time ', given that a
default has occurred at time t = 0. Therefore, we can express C(t') in terms
of the aggregate probability P(7 = t'), i.e. the probability of a default event
being observed after ¢’ time-steps, given that one has just been observed.
Moreover, we must take into account all possible combinations of defaults
happening at times t < ¢’. For example, let us assume that we want to
calculate C(t' = 2). In this case there are exactly 2 possible set of events
that would give a non-zero contribution. Either a default happening exactly 2
time-steps after the last one (at t = 0), or two subsequent defaults happening
at t = 1, and t = 2. In this fashion, we can express the correlation function

in terms of the probability the waiting-times between defaults as (Procaccia
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and Schuster, 1983),

C(1) = P(1), (-2)
C(2) = P(2) + P(1)P(1)

= P(2)+ P(1)C(1), (-3)
C(t')=P{)+ Pt —1)C(1)+...P()C{ —1). (.4)

If we further define C(0) = 1 and P(0) = 0, then equation (.4) can be written

more compactly as

C(t') =Y _ C(t' —7)P(7) + by, (.5)

where dy o is the Kronecker delta.

We are interested only in the long time limit of the ACF. Hence, we
can treat time as a continuous variable and solve equation (.5) by applying
the Laplace transform L{f(r fo T) exp(—s7)dr, utilising also the

convolution theorem .Taklng these steps we obtain

1
C(s) = 1——]5(3)’ (.6)

where P(s) = ﬁ{ } fo 7) exp(—s7)dr. We will assume that
P(1) o< 7% for any T € [1,00), i.e. the asymptotic power-law behaviour
(7 > 1) will be assumed to remain accurate for all values of 7. Under this

assumption,
. At~ 1€ [1,00),

P(r) = , (.7)
0, 71€][0,1).
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where A =1/ [[°77%dr = a — 1. The Laplace transform of equation (.7) is,

P(s) = (a —1)E,(s), (.8)
where E,(s) denotes the exponential integral function defined as,

E.(s) = /100 exp (—st)t~%dt /; Re(s) > 0. (.9)

The inversion of the Laplace transform after the substitution of equa-
tion (.8) in equation (.6) is not possible analytically. However, we can easily
derive the correlation function in the Fourier space (known as the power spec-
tral density function) F{C(¢')} \/> I3 C(t') cos(2m f)dt' by the use of
the identity (Jeffrey and Zwﬂhnger, 2007, p. 1129),

FlOW) = \/% (Cs — 2mif) + Cs — —2mif)]. (10)
relating the Fourier cosine transform F {g(¢)} (f), of a function g(t), to its

Laplace transform g(s), to obtain,

1 1 1
C = - -f- A1
9= 75 (e Eem e vEc) Y
From equation (.11) we can readily see that as f — 0, (equivalently ' — o),
C(f) — oo. To derive the asymptotic behaviour of C'(f) we expand about

f — 04 (up to linear order) using

Eo(2ifr) = ai®™ (2m)* L f* 0 (—a) — 321”; +- i SO (12)
to obtain
L 2n(a —2) f
C(f) A2 (a — 1) f2 + (29 7o (if ) — a(2im)e f*) T(2 — a) (13)
2n(a —2) f

T Ra DR+ (i) — a(—2im) [ T2 —a)
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After some algebraic manipulation, for f — 0 equation (.13) yields

C(f) = Af*, (.14)

where

2¢%3 (a — 2)%7*" 2 sin (%2) T(1 — a)
(a—1) '

Therefore, for 2 < a < 3 we see that the Fourier transform of the correlation

A (.15)

function behaves as,
C(f) o f*°2, (.16)

If a = 3, then the instances of the Gamma function appearing on the RHS of
equation (.13) diverge. Therefore, for a = 3 we need to use a different series

expansion around f — 0,. Namely,
1
Es(2mif) = 3~ 2irf + 72 f*(2log(2im f) + 2y — 3) + O (f°), (.17)

where 7 stands for the Euler’s constant. The substitution of equation (.17)

into equation (.11) leads to
C(f)=-— Re{ [2log(mf) — 27+ 3 — log(4)}/[\/%(2i7rflog(7rf)
+ 7f(2iy+ 7+ i(log(4) — 3)) — 2) (.18)

x (m(3i — 2iy + ) f — 2im f log(2m f) — 2)] },
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and thus,
C(f) =( —8y°n f2 — 27® f(f (6 log() (log (167°)
— 2ylog (47 f%)) + (129* + 7*) log (7 f) + 9(3 — 47) log(27 f))
+4flog(f) + 6f(2y — 3 + log(4) + 2log(x)) log*(f)
+6f (7 log(16) + (log(27) — 3) log (4%2)) log(f) + 4f log(2m)((log(2) — 3) log(2)
+ log(m) log(47)) — 4log (27 f)) — 4v*w* f*(log(64) — 9) — 2y(w f(f (7* + 27 + 1210g*(2))

—4)+4) + 7 f (f (27 — 7 (log(4) — 3) + log(8) log(16)) — 12) — 8log(27 f) + 12)
/ <\/ﬁ(4w2f2 log () (log(d4n f) + 2y — 3) + #* F(f (47 + ° + (log(4) — 3)

+ 4y(log(4) — 3)) — 4) + 4)2>.
(.19)
As f — 0 we have,

C(f) ~ [log(f)] (:20)

Finally, if a > 3, then equation (.11) for f — 0 tends to a constant, and
thus, Y; behaves as white noise. Consequently, if the variance of ]5(7') is
finite, then Y; is for large values of ¢’ is uncorrelated.

To summarise, the spectral density function for f < 1 is,

fo 3, 2<a<3
cn 'S Nog(f), a=3 (21)

const., a>3

The inversion of the Fourier (cosine) transform in equation (.21) yields,

CH) ot/ 2<a <3Nt > 1. (.22)
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