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Abstract

An evidence game is a strategic disclosure game in which an informed agent

who has some pieces of verifiable evidence decides which ones to disclose

to an uninformed principal who chooses a reward. The agent, regardless of

his information, prefers the reward to be as high as possible. We compare

the setup where the principal chooses the reward after the evidence is dis-

closed to the mechanism-design setup where he can commit in advance to

a reward policy. The main result is that under natural conditions on the

truth structure of the evidence, the two setups yield the same equilibrium

outcome.



1 Introduction

Ask someone if they deserve a pay raise. The invariable reply (with very

few, and therefore notable, exceptions) is, “Of course I do.” Ask defendants

in court whether they are guilty and deserve a harsh punishment, and the

again invariable reply is, “Of course not.”

So how can reliable information be obtained? How can those who de-

serve a reward, or a punishment, be distinguished from those who do not?

Moreover, how does one determine the right reward or punishment when ev-

eryone, regardless of information and type, prefers higher rewards and lower

punishments?1

These are clearly fundamental questions, pertinent to many important

setups. The original focus in the relevant literature was on equilibrium and

equilibrium prices. This approach was initiated by Akerlof (1970), and fol-

lowed by the large body of work on voluntary disclosure, starting with Gross-

man and Hart (1980), Grossman (1981), Milgrom (1981), and Dye (1985).

In a different line, the same problem was considered by Green and Laffont

(1986) from a general mechanism-design viewpoint, in which one can commit

in advance to a policy.

As is well known, commitment is a powerful device.2 The present pa-

per nevertheless identifies a natural and important class of setups—which

includes voluntary disclosure as well as various other models of interest—

that we call “evidence games,” in which the possibility to commit does not

matter, namely, the equilibrium and the optimal mechanism coincide. This

issue of whether commitment can help was initially addressed by Glazer and

Rubinstein (2004, 2006).3

An evidence game is a standard communication game between an “agent”

who is informed and sends a message (that does not affect the payoffs) and

1Thus “single-crossing”-type properties do not hold here, which implies that usual
separation methods (as in signaling, etc.; see Section 1.2) cannot help.

2Think for instance of the advantage that it confers in bargaining, and in oligopolistic
competition (Stackelberg vs. Cournot). See also Example 3 in Section 1.1 that is closer
to our setup.

3See Sections 1.2 and 5.3 where we discuss in detail the relations between the work of
Glazer and Rubinstein and the present paper.
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a “principal” who chooses the action (call it the “reward”). The two dis-

tinguishing features of evidence games are, first, that the agent’s private

information (the “type”) consists of certain pieces of verifiable evidence, and

the agent can reveal in his message all this evidence (the “whole truth”),

or only some part of it (a “partial truth”).4 The second feature is that the

agent’s preference order on the rewards is the same regardless of his type—he

always prefers the reward to be as high as possible5—whereas the principal’s

utility, which does depend on the type, is single-peaked with respect to the

agent’s order—he prefers the reward to be as close as possible to the “right

reward.” Voluntary disclosure games, in which the right reward is the con-

ditional expected value, obtain when the principal (who may well stand for

the “market”) has quadratic-loss payoff functions (we refer to this as the

“basic case”). See the end of the Introduction for more on this and further

applications.

The possibility of revealing the whole truth, an essential feature of evi-

dence games, allows one to take into account the natural property that the

whole truth has a slight inherent advantage. This is expressed by infinitesi-

mal increases6 in the agent’s utility and in the probability of telling the whole

truth. Specifically, (i) when the reward for revealing some partial truth is

the same as the reward for revealing the whole truth, the agent prefers to

reveal the whole truth; and (ii) there is a small positive probability that the

whole truth is revealed.7 These conditions, which are part of the setup, and

are called truth-leaning, are most natural. The truth is after all a focal point,

and there must be good reasons for not telling it.8 As Mark Twain wrote,

“When in doubt, tell the truth,” and “If you tell the truth you don’t have to

remember anything.”9 With truth-leaning, the resulting equilibria turn out

4Try to recall the number of job applicants who included rejection letters in their files.
5This is why adding (cheap-talk) messages that any type can use does not help here:

all types will use those messages that yield the highest rewards.
6Formally, by limits as these increases go to zero.
7For example, the agent may be nonstrategic with small but positive probability; cf.

Kreps, Milgrom, Roberts, and Wilson (1982).
8Psychologists refer to the “sense of well-being” associated with telling the truth.
9Notebook (1894). When he writes “truth” it means “the whole truth,” since partial

truths require remembering what was revealed and what wasn’t.
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to be precisely those used in the voluntary disclosure literature; moreover,

they satisfy the various refinement conditions offered in the literature.10 See

the examples and the discussion in Section 1.1.

The interaction between the two players may be carried out in two distinct

ways. One way is for the principal to decide on the reward only after receiving

the agent’s message; the other way is for the principal to commit to a reward

policy, which is made known before the agent sends his message.11,12 The

resulting equilibria will be referred to as equilibria without commitment, and

optimal mechanisms with commitment, respectively.

We can now state the main equivalence result.

In evidence games the equilibrium outcome obtained without com-

mitment coincides with the optimal mechanism outcome obtained

with commitment.

Section 1.1 below provides two simple examples that illustrate the result

and the intuition behind it.

An important consequence of the equivalence is that, in the basic case

(where the reward equals the conditional expected value), the equilibria yield

constrained Pareto efficient outcomes (i.e., outcomes that are Pareto efficient

under the incentive constraints).13 In general, the fact that commitment is

not needed in order to obtain optimality is a striking feature of evidence

games. Moreover, we will show that the “truth structure” of evidence games

(which consists of the partial truth relation and truth-leaning) is indispens-

able for this result.

We stated above that evidence games constitute a very naturally oc-

curring environment, which includes a wide range of applications and well-

studied setups of much interest. We discuss three such applications. The

10Such as the “intuitive criterion” of Cho and Kreps (1987), “divinity” and “universal
divinity” of Banks and Sobel (1987), and the “never weak best response” of Kolberg and
Mertens (1986).

11The latter is a Stackelberg setup, with the principal as leader and the agent as follower.
12Interestingly, what distinguishes between “signaling” and “screening” (see Section 1.2

below) is precisely these two different timelines of interaction.
13These outcomes yield the maximal separation that is worthwhile for the principal—or

the market—to get; see the examples in Section 1.1 and the rest of the paper.
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first one deals with voluntary disclosure in financial markets. Public firms

enjoy a great deal of flexibility when disclosing information. While disclos-

ing false information is a criminal act, withholding information is allowed

in some cases, and is practically impossible to detect in other cases. This

has led to a growing literature in financial economics and accounting (see

for example Dye 1985 and Shin 2003, 2006) on voluntary disclosure and its

impact on asset pricing. What our result says is that the market’s behavior

in equilibrium is in fact optimal: it yields the optimal separation that may

be obtained between “good” and “bad” firms (i.e., even if mechanisms and

commitments were possible they could not be separated more).

The second application has to do with the legal doctrine known as “the

right to remain silent.” In the United States, this right was enshrined in

the Fifth Amendment to the Constitution, and is interpreted to include the

provision that adverse inferences cannot be made, by the judge or the jury,

from the refusal of a defendant to provide information. While the right to

remain silent is now recognized in many of the world’s legal systems, its

above interpretation regarding adverse inference has been questioned and is

not universal. The present paper sheds light on this debate. Indeed, because

equilibria entail (Bayesian) inferences, our result implies that the same infer-

ences apply to the optimal mechanism. Therefore adverse inferences should

be allowed, and surely not committedly disallowed. In England, an additional

provision (in the Criminal Justice and Public Order Act of 1994) states that

“it may harm your defence if you do not mention when questioned something

which you later rely on in court,” which may be viewed, on the one hand, as

allowing adverse inference, and, on the other hand, as making the revelation

of only partial truth possibly disadvantageous—which is the same as giving

an advantage to revealing the whole truth (i.e., truth-leaning).

The third application concerns medical overtreatment, which is one of

the more serious problems in many health systems in the developed world;

see Brownlee (2008).14 A reason that doctors and hospitals overtreat may be

fear of malpractice suits; but the more powerful reason is that they are paid

14Between one-fifth and one-third of U.S. health-care expenditures do nothing to improve
health.
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more for doing so. One suggestion for overcoming this is to reward doctors

for providing evidence. The present paper takes a small step towards a better

understanding of an optimal incentive scheme designed to reward revelation

of evidence in these and other applications.

To summarize the main contribution of the present paper: first, the class

of evidence games that we consider models very common and important se-

tups in information economics, setups that lie outside the standard signaling

and cheap talk literature; second, we prove the equivalence between equi-

librium without commitment and optimal mechanism with commitment in

evidence games (which, in the basic case of quadratic loss, implies that the

equilibria are constrained Pareto efficient); and third, we show that the con-

ditions of evidence games—most importantly, the truth structure—are the

indispensable conditions beyond which this equivalence no longer holds.

The paper is organized as follows. After the Introduction (which continues

below with some examples and a survey of relevant literature), we describe

the model and the assumptions in Section 2. The main equivalence result

is then stated in Section 3, and proved in Section 4. We conclude with dis-

cussions on various extensions and connections in Section 5. The Appendix

shows that our conditions are indispensable for the result (Section A.1), and

provides a useful alternative proof of one direction of the equivalence result

(Section A.2).

1.1 Examples

We provide here two simple examples that illustrate the equivalence result

and explain some of the intuition behind it.

Example 1 (A simple version of the model introduced by Dye 1985.) A

professor negotiates his salary with the dean. The dean would like to set

the salary as close as possible to the professor’s expected market value,15

15Formally, the dean wants to minimize (x − v)2, where x is the salary and v is the
professor’s value; the dean’s optimal response to any evidence is thus to choose x to be
the conditional expected value of the types that provide this evidence.

The dean wants the salary to be “right” since, on the one hand, he wants to pay as little
as possible, and, on the other hand, if he pays too little the professor may move elsewhere.
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while the professor would naturally like his salary to be as high as possible.

The dean, knowing that similar professors’ salaries range between, say, 0 and

120, asks the professor if he can provide some evidence of his “value” (such

as whether a recent paper was accepted or rejected, outside offers, and so

on). Assume that with probability 50% the professor has no such evidence,

in which case his expected value is 60, and with probability 50% he does

have some evidence. In the latter case it is equally likely that the evidence

is positive or negative, which translates into an expected value of 90 and 30,

respectively. Thus there are three professor types: the “no-evidence” type

t0, with probability 50% and value 60, the “positive-evidence” type t+, with

probability 25% and value 90, and the “negative-evidence” type t−, with

probability 25% and value 30. See Figure 1.

30 60 90

t− t0 t+

value:

partial truth:

Figure 1: Values and possible partial truth messages in Example 1

Consider first the game setup (without commitment): the professor de-

cides whether to reveal his evidence, if he has any, and then the dean chooses

the salary. It is easy to verify that there is a unique sequential equilibrium,16

where a professor with positive evidence reveals it and is given a salary of

90 (equal to his value), whereas one with negative evidence conceals it and

pretends that he has no evidence. When no evidence is presented the dean’s

optimal response is to set the salary at 50, which is the expected value of the

The same applies when the dean is replaced by the “market.”
16Indeed, in a sequential equilibrium the salary of a professor providing positive evidence

must be 90 (because the positive-evidence type is the only one who can provide such
evidence), and similarly the salary of someone providing negative evidence must be 30.
This shows that the so-called “babbling equilibrium”—where the professor, regardless of
his type, provides no evidence, and the dean ignores any evidence that might be provided
and sets the salary at the average value of 60—is not a sequential equilibrium here. Finally,
we note that truth-leaning yields sequential equilibria.
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two types that provide no evidence: the no-evidence type together with the

negative-evidence type.17 See Figure 2.

30 60 90

t− t0 t+

value:

partial truth:

prof. says:

dean pays: 30 50 90

Figure 2: Equilibrium in Example 1

Next, consider the mechanism setup (with commitment): the dean com-

mits to a salary policy (specifically: three salaries, denoted x+, x−, and x0, for

those who provide, respectively, positive evidence, negative evidence, and no

evidence), and then the professor decides what evidence to reveal. One possi-

bility is of course the above equilibrium, namely, x+ = 90 and x− = x0 = 50.

Can the dean do better by committing? Can he provide incentives to the

negative-evidence type to reveal his information? In order to separate be-

tween the negative-evidence type and the no-evidence type, he must give

them distinct salaries, i.e., x− 6= x0. But then the salary for those who pro-

vide negative evidence must be higher than the salary for those who provide

no evidence (i.e., x− > x0), because otherwise (i.e., when x− < x0) the

negative-evidence type will pretend that he has no evidence and we are back

to the no-separation case. Since the value 30 of the negative-evidence type is

lower than the value 60 of the no-evidence type, setting a higher salary for the

former than for the latter cannot be optimal (indeed, increasing x− and/or

decreasing x0 is always better for the dean, as it sets the salary of at least

one type closer to its value). The conclusion is that an optimal mechanism

cannot separate the negative-evidence type from the no-evidence type,18 and

17The conditional expectation is (50% · 60 + 25% · 30)/(50% + 25%) = 50.
18By contrast, the positive-evidence type is separated from the no-evidence type, because
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so the unique optimal policy is identical to the equilibrium outcome, which

is obtained without commitment. ¤

The following slight variant of Example 1 shows the use of truth-leaning;

the requirement of being a sequential equilibrium no longer suffices here.

Example 2 Replace the positive-evidence type of Example 1 by two types:

a (new) positive-evidence type t+ with value 102 and probability 20%, and

a “medium-evidence” type t± with value 42 and probability19 5%. The type

t± has two pieces of evidence: one is the same positive evidence that t+

has, and the other is the same negative evidence that t− has (for example,

an acceptance decision on one paper, and a rejection decision on another).

Thus, t± may pretend to be any one of the four types t±, t+, t−, or t0. In the

sequential equilibrium that is similar to that of Example 1, types t+ and t±

both provide positive evidence and get the salary x+ = 90 (their conditional

expectation), and types t0 and t− provide no evidence, and get the salary

x0 = 50 (their conditional expectation). It is not difficult to see that this is

also the optimal mechanism outcome.

Now, however, the “babbling equilibrium” (in which the professor, re-

gardless of his type, never provides any evidence, and the dean ignores any

evidence that might be provided and sets the salary at the average value of

60—clearly, this is worse for the dean as it yields no separation between the

types) is a sequential equilibrium. This is supported by the dean’s belief

that it is much more probable that the out-of-equilibrium positive evidence

is provided by t± rather than by t+; such a belief, while possible in a se-

quential equilibrium, appears hard to justify.20 The babbling equilibrium is

not, however, a truth-leaning equilibrium, as truth-leaning implies that the

the former has a higher value. In general, separation of types with more evidence from
types with less evidence can occur in an optimal mechanism only when the former have
higher values than the latter (since someone with more evidence can pretend to have less
evidence, but not the other way around). In short, separation requires that more evidence

be associated with higher value. See Corollary 3 for a formal statement of this property,
which is at the heart of our argument.

19There is nothing special about the specific numbers that we use.
20In fact, this babbling equilibrium satisfies all the standard refinements in the literature

(intuitive criterion, D1, divinity, never weak best response); see Section 5.4.

8



out-of-equilibrium message t+ is used infinitesimally by type t+ (for which it

is the whole truth), and so the reward there must be set at 102, the value

of21 t+. ¤

Communication games, which include evidence games, are notorious for

their multiplicity of equilibria. Requiring the equilibria to be sequential may

eliminate some of them, but in general this is not enough (cf. Shin 2003).

Truth-leaning, which we view as part of the “truth structure” that is char-

acteristic of evidence games, thus provides a natural equilibrium refinement

criterion. See Section 2.3.1.

Finally, lest some readers think that commitment is not useful in the

general setup of communication games, we provide a simple variant of our

examples—one that does not belong to the class of evidence games—where

commitment yields outcomes that are strictly better than anything that can

be achieved without it.

Example 3 There are only two types of professor, and they are equally-

likely: t0, with no evidence and value 60, and t−, with negative evidence and

value 30. As above, the dean wants to set the salary as close as possible to

the value, and t0 wants as high a salary as possible. However, t− now wants

his salary to be as close as possible to 50 (for instance, getting too high a

salary would entail duties that he does not like).22

There can be no separation between the two types in equilibrium, since

that would imply that t0 gets a salary of 60 and t− gets a salary of 30—but

then t− would prefer not to reveal his evidence and get 60 too. Thus the

babbling equilibrium where no evidence is provided and the salary is set at

45, the average of the two values, is the unique Nash equilibrium.

21While taking the posterior belief at unused messages to be the conditional prior would
suffice to eliminate the babbling equilibrium here (because the belief at message t+ would
be 80% − 20% on t+ and t±), this would not suffice in general; see Example 8 in Section
A.1.4.

22Formally, the utility of t− when he gets salary x is −(x − 50)2. The arguments below
and the conclusion would not be affected if we were to take the utility of t0 to be −(x−80)2

and to allow both types to send any message—the standard Crawford and Sobel (1982)
cheap-talk setup. See also Example 9 in the Appendix.
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Consider now the mechanism where the salary policy is to pay 30 when

negative evidence is provided, and 75 when no evidence is provided. Since

t− prefers 30 to 75, he will reveal his evidence, and so separation is obtained.

The mechanism outcome is better for the dean than the equilibrium outcome

(he makes an error of 15 for t0 only in the mechanism, and an error of 15 for

both types in equilibrium).23 The mechanism requires the dean to commit to

pay 75 when he gets no evidence; otherwise, after getting no evidence (which

happens when the type is t0), he will want to change his decision and pay 60

instead. ¤

To put it formally, commitment is required when implementing reward

schemes that are not ex-post optimal. Our paper will show that this does not

happen in evidence games (the requirement that is not satisfied in Example

3 is that the agent’s utility be the same for all types—see Section A.1.5 in the

Appendix; Section A.1.6 there provides another example where commitment

yields strictly better outcomes).

1.2 Related Literature

There is an extensive and insightful literature addressing the interaction be-

tween a principal who takes a decision but is uninformed and an agent who

is informed and communicates information, either explicitly (through mes-

sages) or implicitly (through actions). Separation between different types of

the agent may indeed be obtained when they have different utilities and costs:

signaling (Spence 1973 in economics and Zahavi 1975 in biology), screening

(Rothschild and Stiglitz 1976), cheap talk (Crawford and Sobel 1982, Krishna

and Morgan 2007).24

When the agent’s utility does not however depend on his information,

in order to get any separation the agent’s utility would need to depend on

23The optimal mechanism pays a salary of 70 for no evidence.
24These setups differ in whether the agent’s utility depends on his actions and/or

messages—it does in signaling and screening models, but not in cheap talk—and in who
plays first—the agent in signaling, the principal in screening (which translates into the
distinction between game equilibrium and optimal mechanism). The key condition for
separation in these setups is “single-crossing.”
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his communication. A simple and standard way of doing this is for different

types to have different sets of possible messages.25

First, in the game setup where the agent moves first, Grossman and O.

Hart (1980), Grossman (1981), and Milgrom (1981) initiated the voluntary

disclosure literature. These papers consider a salesperson who has private

information about a product, which he may, if he so chooses, report to a

potential buyer. The report is verifiable, that is, the salesperson cannot

misreport the information that he reveals; he can however conceal it and

not report it. These papers show that in every sequential equilibrium the

salesperson employs a strategy of full disclosure: this is referred to as “un-

raveling.” The key assumption here that yields this unraveling is that it is

commonly known that the agent is fully informed. This assumption was later

relaxed, as described below.

Disclosure in financial markets by public firms is a prime example of vol-

untary disclosure. This has led to a growing literature in accounting and

finance. Dye (1985) and Jung and Kwon (1988) study disclosure of account-

ing data. These are the first papers where it is no longer assumed that the

agent (in this case, the firm, or, more precisely, the firm’s manager) is known

to be fully informed. They consider the case where the information is one-

dimensional, and show that the equilibrium is based on a threshold: only

types who are informed and whose information is above a certain threshold

disclose their information. Shin (2003, 2006), Guttman, Kremer, and Skry-

pacsz (2014), and Pae (2005) consider an evidence structure in which infor-

mation is multi-dimensional.26 Since such models typically possess multiple

equilibria, these papers focus on what they view as the more natural equilib-

rium. The selection criteria that they employ are model-specific. However,

it may be easily verified that all these selected equilibria are in fact “truth-

leaning” equilibria; thus truth-leaning turns out to be a natural way to unify

all these criteria.

25Which is the same as taking the cost of the message to be zero when it is feasible, and
infinite when it isn’t.

26While the present paper studies a static model, there is also a literature on dynamic
models. See, for example, Acharya, DeMarzo, and Kremer (2011), and Dye and Sridhar
(1995).
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Second, in the mechanism-design setup where the principal commits to a

reward policy before the agent’s message is sent, Green and Laffont (1986)

were the first to consider the setup where types differ in the sets of possible

messages that they can send. They show that a necessary and sufficient

condition for the revelation principle to hold for any utility functions27 is that

the message structure be transitive and reflexive—which is satisfied by the

voluntary disclosure models, as well as by our more general evidence games.

Ben-Porath and Lipman (2012) characterize the social choice functions that

can be implemented when agents can also supply hard proofs about their

types.

The approach we are taking of comparing equilibria with optimal mech-

anisms originated in Glazer and Rubinstein (2004, 2006). They analyze

the optimal mechanism-design problem for general type-dependent message

structures, with the principal taking a binary decision of “accepting” or “re-

jecting”; the agent, regardless of his type, prefers acceptance to rejection. In

their work they show that the resulting optimal mechanism can be supported

as an equilibrium outcome. More recently, Sher (2011) has provided condi-

tions (namely, concavity) under which the result holds when the principal’s

decision is no longer binary. See Section 5.3 for a detailed discussion of the

Glazer–Rubinstein setup.

Our paper shows that, in the framework of agents with identical utili-

ties, the addition of the natural truth structure of evidence games—i.e., the

partial truth relation and the inherent advantage of the whole truth—yields

a stronger result, namely, the equivalence between equilibria and optimal

mechanisms.

2 The Model

The model is a communication game in which the set of messages is the set

of types and the set of actions is the real line R. The voluntary disclosure

models (Grossman 1981, Milgrom 1981, Dye 1985, 1988, Shin 2003, 2006)

27They allow an arbitrary dependence of the agent’s utility on his type.
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are all special cases of this model.

There are two players, an agent (“A”) and a principal (“P”). The

agent’s information is his type t, which belongs to a finite set T, and is

chosen according to a given distribution p ∈ ∆(T ) with full support.28 The

principal knows the distribution p but does not know the realized type (which

the agent does know).

The general structure of the interaction is that the agent sends a message,

which consists of a type s in T, and the principal chooses an action, which

consists of a real number x in R. The message is costless: it does not affect

the payoffs of the agent and the principal. The next sections will provide the

details, including in particular the timeline of the interaction.

The interpretation to keep in mind is that the type is the (verifiable)

evidence that the agent possesses, and the message is the evidence that he

reveals.

2.1 Payoffs and Single-Peakedness

A basic assumption of the model (which distinguishes it from the signaling

and cheap-talk setups) is that all the types of the agent have the same pref-

erence, which is strictly increasing in x (and does not, as already stated,

depend on the message sent). Since only the ordinal preference of the agent

matters,29 we assume without loss of generality that the agent’s payoff is x

itself,30 and refer to x also as the reward (to the agent).

As for the principal, his utility does depend on the type t, but, again, not

on the message s; thus, let ht(x) be the principal’s utility31 for type t ∈ T and

reward x ∈ R (and any message s ∈ T ). For every probability distribution

q = (qt)t∈T ∈ ∆(T ) on the set of types T—think of q as a “belief” on the

28∆(T ) := {p = (pt)t∈T ∈ R
T
+ :

∑
t∈T pt = 1} is the set of probability distributions on

the finite set T. Full support means that pt > 0 for every t ∈ T.
29See Section 5.2 for randomized rewards.
30Formally, let the agent’s utility be UA(x, s; t), where x ∈ R is the action, s ∈ T is the

message, and t ∈ T is the type. Then UA(x, s; t) is, for every t ∈ T, a strictly increasing
function gt(x) of x; without loss of generality, gt(x) = x for all t and x.

31Formally, writing UP (x, s; t) for the principal’s utility when the action is x ∈ R, the
message is s ∈ T, and the type is t ∈ T, we have UP (x, s; t) = ht(x) for all x, s, and t.
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space of types—the expected utility of the principal is given, for every reward

x ∈ R, by

hq(x) :=
∑

t∈T

qt ht(x).

The functions ht are assumed to be differentiable (in the relevant domain,

which will turn out to be a compact interval; see Remark (a) below), and

to satisfy a single-peakedness condition. A differentiable real function f :

R → R is single-peaked if there exists a point v ∈ R such that f ′(v) = 0;

f ′(x) > 0 for x < v; and f ′(x) < 0 for x > v. Thus f has a single peak at v,

and it strictly increases when x < v and strictly decreases when x > v. The

assumption on the principal’s payoffs is:

(SP) Single-Peakedness. The expected utility of the principal hq(x) is a

single-peaked function of the reward x for every probability distribution

q ∈ ∆(T ) on the set of types T.

Thus, (SP) requires each function ht to be single-peaked, and also each

weighted average of such functions to be single-peaked. Let v(t) and v(q)

denote the single peaks of ht and hq. Thus, v(t) is the reward that the prin-

cipal views as most fitting, or “ideal,” for type32 t; similarly, v(q) is the ideal

reward when the types are distributed according to q. When the distribution

of types is given by the prior p, we will at times write v(T ) instead of v(p),

and, more generally, v(S) instead of v(p|S) for S ⊆ T (where p|S ∈ ∆(T )

denotes the conditional of p given33 S).

Basic Example: Quadratic Loss. A particular case, common in much

of the literature, uses for each type the quadratic distance from the ideal

point: ht(x) = −(x− v(t))2 for each t ∈ T. In this case, for each distribution

q ∈ ∆(T ), the function hq has its single peak at the expectation with respect

to q of the peaks v(t); i.e., v(q) =
∑

t∈T qt v(t).

More generally, for each type t ∈ T let ht be a strictly concave function

32We will at times refer to v(t) also as the value of type t (recall the examples in Section
1.1 in the Introduction).

33(p|S)t = pt/p(S) for t ∈ S and (p|S)t = 0 for t /∈ S, where p(S) =
∑

t∈S pt is the
probability of S. Thus v(S) is the single peak of

∑
s∈S pt ht = p(S)hp|S .
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that attains its (unique) maximum at a finite point,34 denoted by v(t). Since

any weighted average of such functions clearly satisfies the same properties,

the single-peakedness condition (SP) holds.35 For instance, take ht to be the

negative of some distance from the ideal point v(t). Even more broadly, the

(SP) condition allows one to treat types differently, such as making different

ht more or less sensitive to the distance from the corresponding ideal point

v(t): e.g., take ht(x) = −ct(x − v(t))γ
t for appropriate constants ct and γt.

Also, the penalties for underestimating vs. overestimating the desired ideal

point may be different: take the function ht to be asymmetric around v(t).

Remarks. (a) Let X = [x0, x1] be a compact interval that contains the

peaks v(t) for all t ∈ T in its interior (i.e., x0 < mint∈T v(t) ≤ maxt∈T v(t) <

x1); without loss of generality we can then restrict the principal to actions

x in X rather than in the whole real line R (because the functions ht for all

t ∈ T are strictly increasing for x ≤ x0 and strictly decreasing for x ≥ x1,

and so any x outside the interval X is strictly dominated for the principal

by either x0 or36 x1).

(b) The condition that the functions ht for all t ∈ T are single-peaked

does not suffice to get (SP); and (SP) is more general than concavity of the

functions ht; see Section A.1.10 in the Appendix.

2.2 Information and Truth Structure

The agent’s message may be only partially truthful and he need not reveal

everything that he knows; however, he cannot transmit false evidence, as any

evidence disclosed is assumed to be verifiable. Thus, the agent must “tell the

truth and nothing but the truth,” but not necessarily “the whole truth.” The

34Functions that are everywhere increasing or everywhere decreasing are thus not al-
lowed.

35Indeed, let h1 and h2 be strictly concave, with peaks at v(1) and v(2), respectively. For
each 0 ≤ α ≤ 1 the function h := αh1 + (1−α)h2 is also strictly concave, and it increases
for x < v := min{v(1), v(2)} and decreases for x > v̄ := max{v(1), v(2)} (because both h1

and h2 do so), and so attains its (unique) maximum in the interval [v, v̄] (see Lemma 1
for the general statement of this “in-betweenness” property).

36The strict inequalities x0 < mint v(t) and x1 > maxt v(t) allow dominated actions to
be played (for example, when the principal wants to make the reward for some message
the worst, or the best).
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possible messages of type t, i.e., the types s that t can pretend to be, are

therefore those types s that possess less information than t (“less” is taken

in the weak sense). This entails two conditions. First, revealing the whole

truth is always possible: t can always say t. And second, “less information”

is nested: if s has less information than t and r has less information than s,

then r has less information than t; that is, if t can say s and s can say r then

t can also say r.

This is formalized by a weak order37 “ ֌ ” on the set of types T, with

“ t ֌ s ” being interpreted as type t having (weakly) more information (i.e.,

evidence) than type s; we will say that “s is a partial truth at t” or “s is less

informative than t.” The set of possible messages of the agent when the type

is t, which we denote by L(t), consists of all types that are less informative

than t, i.e., L(t) := {s ∈ T : t ֌ s}. Thus, L(t) is the set of all possible

“partial truth” revelations at t, i.e., all types s that t can pretend to be.

The reflexivity and transitivity of the weak order “֌ ” translate into the

following two conditions:

(L1) t ∈ L(t); and

(L2) if s ∈ L(t) and r ∈ L(s) then r ∈ L(t).

(L1) says that revealing the whole truth is always possible; (L2) says that if

s is a partial truth at t and r is a partial truth at s, then r is a partial truth

at t; thus, if t can pretend to be s and s can pretend to be r, then t can also

pretend to be r.

Some natural models for the “less informative” relation are as follows.

(i) Evidence: Let E be a set of possible “pieces of evidence.” A type is

identified with a subset of E, namely, the set of pieces of evidence that the

agent can provide (e.g., prove in court); thus, T ⊆ 2E (where 2E denotes

the set of subsets of E). Then t ֌ s if and only if t ⊇ s; that is, s is less

informative than t if t has every piece of evidence that s has. It is immediate

that ֌ is a weak order, i.e., reflexive and transitive. The possible messages at

37A weak order is a reflexive and transitive binary relation, i.e., t ֌ t for all t, and
t ֌ s ֌ r implies t ֌ r for all r, s, t. The order need not be complete: there may be t, s
for which neither t ֌ s nor s ֌ t hold.
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t are then either to provide all the evidence he has, i.e., t itself, or to pretend

to be a less informative type s and provide only the pieces of evidence in the

subset s of t (a partial truth).38 See Examples 1 and 2 in the Introduction.

(ii) Partitions : Let Ω be a set of states of nature, and let Λ1, Λ2, ..., Λn be

an increasing sequence of finite partitions of Ω (i.e., Λi+1 is a refinement of

Λi for every i = 1, 2, ..., n−1). The type space T is the collection of all blocks

(also known as “kens”) of all partitions. Then t ֌ s if and only if t ⊆ s; that

is, s is less informative than t if and only if s provides less information than t,

as more states ω are possible at s than at t. For example, take Ω = {1, 2, 3, 4}
with the partitions Λ1 = (1234), Λ2 = (12)(34), and Λ3 = (1)(2)(3)(4).

There are thus seven types: {1, 2, 3, 4}, {1, 2}, {3, 4}, {1}, {2}, {3}, {4} (the

first one from Λ1, the next two from Λ2, and the last four from Λ3). Thus type

t = {1, 2, 3, 4} (who knows nothing) is less informative than type s = {1, 2}
(who knows that the state of nature is either 1 or 2), who in turn is less

informative than type r = {2} (who knows that the state of nature is 2); the

only thing type t can say is t, whereas type s can say either s or t, and type

r can say either r, s, or t. The probability p on T is naturally generated by a

probability distribution µ on Ω together with a probability distribution λ on

the set of partitions: if t is a ken in the partition Λi then pt = λ(Λi) · µ(t).

(iii) Signals. Let Z1, Z2, ..., Zn be random variables on a probability space

Ω, where each Zi takes finitely many values. A type t corresponds to some

knowledge about the values of the Zi-s (formally, t is an event in the field

generated by the Zi-s), with the straightforward “less informative” order:

s is less informative than t if and only if t ⊆ s. For example, the type

s = [Z1 = 7, 1 ≤ Z3 ≤ 4] is less informative than the type t = [Z1 = 7, Z3 =

2, Z5 ∈ {1, 3}]. (It is easy to see that (i) and (ii) are special cases of (iii).)

Remark. We emphasize that there is no relation between the value of a

type and his information; i.e., v(t) is an arbitrary function of t, and having

more or less evidence says nothing about the value.

The second ingredient in the truth structure of evidence games is truth-

38If t were to provide a subset of his pieces of evidence that did not correspond to a
possible type s, it would be immediately clear that he was withholding some evidence.
The only undetectable deviations of t are to pretend that he is another possible type s
that has fewer pieces of evidence.
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leaning, which amounts to giving a slight advantage to revealing the whole

truth (i.e., to type t sending the message t, which is always possible by (L1)).

Formalizing this would require dealing with sequences of games (see Section

5.4 for details). Since only the equilibrium implications of truth-leaning

matter, it is simpler to work directly with the resulting equilibria, which we

call truth-leaning equilibria; see Section 2.3.1 below.

2.3 Game and Equilibria

We now consider the game where the principal moves after the agent (and

cannot commit to a policy); in Section 2.4 we will consider the setup where

the principal moves first, and commits to a reward policy before the agent

makes his moves.

The game Γ proceeds as follows. First, the type t ∈ T is chosen according

to the probability measure p ∈ ∆(T ), and revealed to the agent but not to the

principal. The agent then sends to the principal one of the possible messages

s in L(t). Finally, after receiving the message s, the principal decides on a

reward x ∈ R.

A (mixed)39 strategy σ of the agent associates to every type t ∈ T a

probability distribution σ(·|t) ∈ ∆(T ) with support included in L(t); i.e.,

σ(s|t), which is the probability that type t sends the message s, satisfies

σ(s|t) > 0 only if s ∈ L(t). A (pure)40 strategy ρ of the principal assigns to

every message s ∈ T a reward ρ(s) ∈ R.

A pair of strategies (σ, ρ) constitute a Nash equilibrium of the game Γ if

the agent uses only messages that maximize the reward, and the principal sets

the reward to each message optimally given the distribution of types that send

that message. That is, for every message s ∈ T let σ̄(s) :=
∑

t∈T pt σ(s|t) be

the probability that s is used; if σ̄(s) > 0 let q(s) ∈ ∆(T ) be the conditional

distribution of types that chose s, i.e., qt(s) := pt σ(s|t)/σ̄(s) for every t ∈ T

(this is the posterior probability of type t given the message s), and q(s) =

(qt(s))t∈T . Thus, the equilibrium condition for the agent is:

39The agent, who plays first, may need to randomize in equilibrium.
40As we will see shortly, the principal does not randomize in equilibrium.
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(A) for every type t ∈ T and message s ∈ T : if σ(s|t) > 0 then ρ(s) =

maxs′∈L(t) ρ(s′).

As for the principal, the condition is that the reward ρ(s) to message s

satisfies hq(s)(ρ(s)) = maxx∈R hq(s)(x) for every s ∈ T that is used, i.e., such

that σ̄(s) > 0. By the single-peakedness condition (SP), this is equivalent to

ρ(s) being equal to the single peak v(q(s)) of hq(s):

(P) for every message s ∈ T : if σ̄(s) > 0 then ρ(s) = v(q(s)).

Note that (P) implies in particular that the strategy ρ is pure.

The outcome of a Nash equilibrium (σ, ρ) is the resulting vector of rewards

π = (πt)t∈T ∈ R
T , where

πt := max
s∈L(t)

ρ(s) (1)

for every t ∈ T. Thus πt is the reward when the type is t; the players’ payoffs

are then πt for the agent and ht(πt) for the principal.

Remark. In the basic quadratic-loss case, where, as we have seen, v(q)

equals the expectation of the values v(t) with respect to q, condition (P)

implies that the ex-ante expectation of the rewards, i.e.,
∑

t∈T pt πt = E [πt] ,

equals the ex-ante expectation of the values E [v(t)] =
∑

t∈T pt v(t) = v(T )

(because E [πt|s] = v(q(s)) = E [v(t)|s] for every s that is used; now take

expectation over s). Therefore all equilibria yield the same expected reward

E [πt], namely, the expected value v(T ); they may differ however in how this

amount is split among the types (cf. Remark (c) in Section 3). For the

principal (the “market”), the first best is to give to each type t its value v(t),

which also yields the same expected reward v(T ); however, this first best

may not be achievable because the principal does not know the type.

2.3.1 Truth-Leaning Equilibria

As discussed in the Introduction, truth—more precisely, the whole truth—

has a certain prominence. In evidence games, this is expressed in two ways.

First, if it is optimal for the agent to reveal the whole truth, then he prefers
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to do so.41 Second, there is an infinitesimal probability that the whole truth

is revealed (which may happen because the agent is not strategic and instead

always reveals his information—à la Kreps, Milgrom, Roberts, and Wilson

1982—or, because there may be “trembles,” such as a slip of the tongue, or

of the pen, or a document that is by mistake attached, or an unexpected

piece of evidence).

Formally, this yields the following two additional equilibrium conditions:42

(A0) for every type t ∈ T : if ρ(t) = maxs∈L(t) ρ(s) then σ(t|t) = 1;

(P0) for every message s ∈ T : if σ̄(s) = 0 then ρ(s) = v(s).

Condition (A0) says that when the message t is optimal for type t, it is chosen

for sure (i.e., the whole truth t is preferred by type t to any other optimal

message s 6= t). Condition (P0) says that, for every message s ∈ T that is

not used in equilibrium (i.e., σ̄(s) = 0), the principal’s belief if he were to

receive message s would be that it came from type s itself (since there is

an infinitesimal probability that type s revealed the whole truth); thus the

posterior belief q(s) at s puts unit mass at s (i.e., s has probability one), to

which the principal’s optimal response is the peak v(s) of hq(s) ≡ hs.

We will refer to a Nash equilibrium of Γ that satisfies (in addition to (A)

and (P)) the conditions (A0) and (P0) as a truth-leaning equilibrium. See

Section 5.4 for the corresponding “limit of perturbations” approach; we will

also see there that truth-leaning satisfies the requirements of most, if not

all, of the relevant equilibrium refinements that have been proposed in the

literature (and coincides with many of them).

2.4 Mechanisms and Optimal Mechanisms

We come now to the second setup, where the principal moves first and com-

mits to a reward scheme, i.e., a function ρ : T → R that associates to every

41This holds for instance when the agent has a “lexicographic” preference: he always
prefers a higher reward, but if the reward is the same whether he tells the whole truth or
not, he prefers to tell the whole truth.

42We call them (A0) and (P0) since they are conditions (in addition to (A) and (P)) on
the strategies σ of the agent and ρ of the principal, respectively.
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message s ∈ T a reward ρ(s). The reward scheme ρ is made known to the

agent, who then sends his message s, and the resulting reward is ρ(s) (the

principal’s commitment to the reward scheme ρ means that he cannot change

the reward after receiving the message s).

This is a standard mechanism-design framework. The reward scheme ρ is

the mechanism. Given ρ, the agent chooses his message so as to maximize his

reward; thus, the reward when the type is t equals maxs∈L(t) ρ(s). A reward

scheme ρ is an optimal mechanism if it maximizes the principal’s expected

payoff, namely,
∑

t∈T pt ht(maxs∈L(t) ρ(s)), among all mechanisms ρ.

The assumptions that we have made on the truth structure, i.e., (L1) and

(L2), imply that the so-called “Revelation Principle” applies: any mechanism

is equivalent to a direct mechanism where it is optimal for each type to be

“truthful,” i.e., to reveal his type (see Green and Laffont 1986).43 Indeed,

given a mechanism ρ, let πt := maxs∈L(t) ρ(s) denote the reward (payoff)

of type t when the reward scheme is ρ. If type t can send the message s,

i.e., s ∈ L(t), then L(s) ⊆ L(t) by the transitivity condition (L2), and so

πs = maxs′∈L(s) ρ(s′) ≤ maxs′∈L(t) ρ(s′) = πt. These inequalities, namely,

πt ≥ πs whenever s ∈ L(t), are the “incentive compatibility” conditions that

guarantee that no t can gain by pretending to be another possible type s (i.e.,

by acting like s). Conversely, any π = (πt)t∈T ∈ R
T that satisfies all these

inequalities is clearly the outcome of the mechanism whose reward scheme is

π itself; such a mechanism is called a direct mechanism.

The vector π = (πt)t∈T ∈ R
T is the outcome of the mechanism (when

the type is t, the payoffs are πt to the agent, and ht(πt) to the principal).44

The expected payoff of the principal, which he maximizes by choosing the

mechanism, is

H(π) =
∑

t∈T

pt ht(πt). (2)

In summary, an optimal mechanism outcome is a vector π ∈ R
T that

satisfies:

43Green and Laffont (1986) show that (L1) and (L2) are necessary and sufficient for the
Revelation Principle to hold for any payoff functions.

44Thus, mechanism outcomes are the same as direct mechanisms.
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(IC) Incentive Compatibility. πt ≥ πs for every t ∈ T and s ∈ L(t).

(OPT) Optimality. H(π) ≥ H(π′) for every payoff vector π′ ∈ R
T that

satisfies (IC).

Remarks. (a) An optimal mechanism is just a Nash equilibrium of

the game where the principal moves first and chooses a reward scheme; the

reward scheme is made known to the agent, who then chooses his message s

(out of the feasible set L(t) when the type is t), and the game ends with the

reward ρ(s).

(b) The outcome π of any Nash equilibrium (σ, ρ) of the game Γ of the

previous section plainly satisfies the incentive-compatibility conditions (IC),

and so an optimal mechanism can yield only a higher payoff to the principal:

commitment can only help the principal.

(c) Optimal mechanisms always exist, since H is continuous and the

rewards πt can be restricted to a compact interval X (see Remark (a) in

Section 2.1).

(d) Truth-leaning does not affect optimal mechanisms (it is not difficult to

show that incentive-compatible mechanisms with and without truth-leaning

yield payoffs that are the same in the limit).

3 The Equivalence Theorem

In general, the possibility of commitment of the principal is significant, and

equilibria of the game (where the principal moves second and cannot commit

in advance) and optimal mechanisms (where the principal moves first and

commits) may be quite different. Nevertheless, in our setup we will show

that they coincide.

Our main result is:

Equivalence Theorem Assume that the payoff functions ht for all t ∈ T

are differentiable and satisfy the single-peaked condition (SP). Then there is

a unique (truth-leaning) equilibrium outcome, a unique optimal mechanism

outcome, and these two outcomes coincide.
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The intuition is roughly as follows. Consider a truth-leaning equilibrium

where a type t pretends to be another type s. Then type s reveals the

whole truth, i.e., his type s (had s something better, t would have it as

well); and second, the value of s must be higher than the value of t (no

one will want to pretend to be worth less than they really are).45 Thus t

and s are not separated in equilibrium, and we claim that in this case they

cannot be separated in an optimal mechanism either: the only way for the

principal to separate them would be by giving a higher reward to t than to

s (otherwise t would pretend to be s), which is not optimal since the value

of t is lower than the value of s (decreasing the reward of t or increasing the

reward of s would bring the rewards closer to the values). The conclusion is

that optimal mechanisms can never separate between types more than truth-

leaning equilibria (as for the converse, it is immediate since whatever can be

done without commitment can clearly also be done with commitment).

Remarks. (a) The Equivalence Theorem is stated in terms of outcomes,

and thus payoffs, rather than strategies and reward policies. The reason is

that there may be multiple truth-leaning equilibria, and multiple optimal

mechanisms—but they all have the same outcome. Indeed, truth-leaning

equilibria (σ, ρ) with outcome π coincide in their principal’s strategy ρ (which

is uniquely determined by π; see (6) in Proposition 2 below), but may differ

in their agent’s strategies σ. However, this can happen only when the agent

is indifferent—in which case the principal is also indifferent—which makes

the nonuniqueness insignificant (see Example 12 in Section A.1.8). As for

optimal mechanisms, while there is a unique direct mechanism with outcome

π (namely, the reward policy is π itself, i.e., ρ(t) = πt for all t), there may

be other optimal mechanisms (specifically, the reward for a message t may

be lowered when there is a message s 6= t in L(t) with πs = πt). Again, we

emphasize that the resulting payoffs of both the agent and the principal, for

all types t, are uniquely determined.

(b) The uniqueness of the outcome does not simply follow from single-

peakedness, but is a more subtle consequence of our assumptions (see the

45As much as these conditions seem reasonable, they need not hold for equilibria that
are not truth-leaning.
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examples in Section A.1 in the Appendix).46

(c) In the basic quadratic-loss case, where ht(x) = −(x−v(t))2, the agent

is indifferent among all equilibria (because his expected payoff equals the

expected value v(T ); see the Remark in Section 2.3). As for the principal,

the Equivalence Theorem implies that the truth-leaning equilibria are the

ones that maximize his payoff. Therefore the truth-leaning equilibria are

precisely the constrained Pareto efficient equilibria.47

The Equivalence Theorem is proved in the next section. After some pre-

liminaries in Section 4.1—which in particular provide useful properties of

truth-leaning equilibria and optimal mechanisms—we prove, first, that the

outcome of any truth-leaning equilibrium equals the unique optimal mecha-

nism outcome (Proposition 5 in Section 4.2), and second, that truth-leaning

equilibria always exist (Proposition 6 in Section 4.3). An alternative proof

showing that an optimal mechanism outcome can be obtained by a truth-

leaning equilibrium is provided in the Appendix (Proposition ?? in Section

A.2).

In Section A.1 in the Appendix we show the tightness of the Equivalence

Theorem: dropping any single condition allows examples where the conclu-

sion does not hold. Specifically, these indispensable conditions are:

• truth structure: reflexivity (L1) of the “partial truth” relation;

• truth structure: transitivity (L2) of the “partial truth” relation;

• truth-leaning: condition (A0) that revealing the whole truth is slightly

better;

• truth-leaning: condition (P0) that revealing the whole truth is slightly

possible;

• the agent’s utility: independent of type;

• the principal’s utility: single-peakedness (SP); and

46When the functions ht are strictly concave for every t (as in the basic canonical case)
the uniqueness of the optimal mechanism outcome is immediate, because averaging optimal
mechanisms yields an optimal mechanism.

47That is, the equilibria that are ex-ante Pareto efficient among all equilibria.
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• the principal’s utility: differentiability.

4 Proof of the Equivalence Theorem

Throughout this section we maintain the assumptions of the Equivalence

Theorem: the functions ht are differentiable and satisfy the single-peakedness

condition (SP).

4.1 Preliminaries

We start with a simple implication of single-peakedness: an in-betweenness

property of the peaks.

Lemma 1 (In-Betweenness) Let the probability vector q ∈ ∆(T ) be a

convex combination of probability vectors q1, q2, ..., qn ∈ ∆(T ) (i.e., q =
∑n

i=1 λi qi for some λi > 0 with
∑n

i=1 λi = 1). Then

min
1≤i≤n

v(qi) ≤ v(q) ≤ max
1≤i≤n

v(qi). (3)

Moreover, both inequalities are strict unless the v(qi) are all identical.

Proof. Single-peakedness (SP) implies that the functions hqi
all increase

when x < mini v(qi), and all decrease when x > maxi v(qi); the same therefore

holds for hq, since q =
∑

i λi qi implies hq =
∑

i λi hqi
, and so the single-peak

of hq must lie between mini v(qi) and maxi v(qi). Moreover, if mini v(qi) <

maxi v(qi) then h′
q(x) =

∑
i λi h

′
qi
(x) is positive at x = mini v(qi) and negative

at x = maxi v(qi).

Remark. If T is partitioned into disjoint nonempty sets T1, T2, ..., Tn

then (3) yields min1≤i≤n v(Ti) ≤ v(T ) ≤ max1≤i≤n v(Ti), because p is an

average of the conditionals p|Ti, namely, p =
∑

i p(Ti) (p|Ti).

Next we provide useful properties of truth-leaning equilibria and their

outcomes.
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Proposition 2 Let (σ, ρ) be a truth-leaning equilibrium, let π be its outcome,

and let S := {t ∈ T : σ̄(t) > 0} be the set of messages used in equilibrium.

Then

t ∈ S ⇔ σ(t|t) = 1 ⇔ v(t) ≥ πt = ρ(t) ; and (4)

t /∈ S ⇔ σ(t|t) = 0 ⇔ πt > v(t) = ρ(t) . (5)

Thus, for every t ∈ T,

ρ(t) = min{πt, v(t)}. (6)

Thus, in truth-leaning equilibria, the reward ρ(t) assigned to message t

never exceeds the peak v(t) of type t. Moreover, each type t that reveals

the whole truth gets an outcome that is at most his value (i.e., πt ≤ v(t)),

whereas each type t that does not reveal the whole truth gets an outcome

that exceeds his value (i.e., πt > v(t)). This may perhaps sound strange at

first. The explanation is that the lower-value types are the ones that have the

incentive to pretend to be a higher-value type, and so each message t that is

used is sent by t as well as by “pretenders” of lower value. In equilibrium, this

effect is taken into account by the principal—or, the market—by rewarding

messages at their true value or less.

Proof. If t ∈ S, i.e., σ(t|t′) > 0 for some t′, then t is a best reply for type

t′, and hence also for type t (because t ∈ L(t) ⊆ L(t′) by (L1), (L2), and

t ∈ L(t′)); (A0) then yields σ(t|t) = 1. This proves the first equivalence in

(4) and in (5).

If t /∈ S then πt > ρ(t) (since t is not a best reply for t) and ρ(t) = v(t)

by (P0), and hence πt > v(t) = ρ(t) .

If t ∈ S then πt = ρ(t) (since t is a best reply for t); put α := πt = ρ(t).

Let t′ 6= t be such that σ(t|t′) > 0; then πt′ = ρ(t) ≡ α (since t is optimal

for t′); moreover, t′ /∈ S (since σ(t|t′) > 0 implies σ(t′|t′) < 1), and so, as

we have just seen above, v(t′) < πt′ ≡ α. If we also had v(t) < α, then

the in-betweenness property (Lemma 1) would yield v(q(t)) < α (because

the support of q(t), the posterior after message t, consists of t together with

all t′ 6= t with σ(t|t′) > 0). But this contradicts v(q(t)) = ρ(t) ≡ α by the
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principal’s equilibrium condition (P). Therefore v(t) ≥ α ≡ πt = ρ(t).

Thus we have shown that t /∈ S and t ∈ S imply contradictory statements

(πt > v(t) and πt ≤ v(t), respectively), which yields the second equivalence

in (4) and in (5).

Corollary 3 Let (σ, ρ) be a truth-leaning equilibrium. If σ(s|t) > 0 and

s 6= t then v(s) > v(t).

Proof. σ(s|t) > 0 implies s ∈ S and t /∈ S, and thus v(s) ≥ ρ(s) by (4),

πt > v(t) by (5), and ρ(s) = πt because s is a best reply for t.

Thus, no type will ever pretend to be a lower-valued type (this does

not, however, hold for equilibria that are not truth-leaning; see for instance

Examples 1 and 2 in Section 1.1 in the Introduction). As a consequence,

replacing the set of possible messages L(t) with its subset L′(t) := {s ∈ L(t) :

v(s) > v(t)}∪{t} for every type t affects neither truth-leaning equilibria nor,

by our Equivalence Theorem, optimal mechanisms; note that L′ also satisfies

(L1) and (L2), and as L′ is smaller it is simpler to handle.

In the case where evidence has always positive value—i.e., if t has more

information than s then the value of t is at least as high as the value of

s (formally, s ∈ L(t) implies v(t) ≥ v(s))—Corollary 3 implies that truth-

leaning equilibria are fully revealing (i.e., σ(t|t) = 1 for every type t).48

4.2 From Equilibrium to Mechanism

We now prove that the outcome of a truth-leaning equilibrium is the unique

optimal mechanism outcome.

We consider a special case first, which will turn out to provide the core

of the argument in the general case.

Proposition 4 Assume that there is a type s ∈ T such that: (i) s ∈ L(t)

for every t, and (ii) v(t) < v(T ) for every t 6= s. Then the outcome π∗ with

48See Proposition 4 below for the the case where evidence has negative value and truth-
leaning equilibria are completely nonrevealing.
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π∗
t = v(T ) for all t ∈ T is the unique optimal mechanism outcome; i.e.,

∑

t∈T

pt ht(πt) ≤
∑

t∈T

pt ht(π
∗
t ) = hp(v(T ))

for every π that is incentive-compatible (i.e., satisfies (IC)), with equality

only if πt = π∗
t for all t ∈ T.

Condition (i) says that type s is a “least informative” type (in most

examples, this is the type that has no evidence at all); condition (ii) implies,

by Lemma 1, that we cannot have v(s) < v(T ), and so v(s) is the highest

peak: v(t) < v(T ) ≤ v(s) for all t 6= s. To get some intuition, consider the

simplest case where there are only two types, say, T = {s, t}. The two peaks

v(t) and v(s) satisfy v(t) < v(s), whereas the (IC) constraint πs ≤ πt (which

corresponds to s ∈ L(t)) goes in the opposite direction. This implies that

the maximum of H(π) = pshs(πs) + ptht(πt) subject to πs ≤ πt is attained

when πs and πt are taken to be equal (if πs < πt then increasing πs and/or

decreasing πt would bring at least one of them closer to the corresponding

peak, and hence would increase the value of H). Thus πs = πt = x for some

x, and then the maximum is attained when x equals the peak of hp(x) =

pshs(x) + ptht(x), i.e., when x = v(T ).

Proof. Put α := v(T ). We will show that even if we were to consider only the

(IC) constraints πt ≥ πs for all t 6= s and ignore the other (IC) constraints—

which can only increase the value of the objective function H(π)—the max-

imum of H(π) =
∑

t∈T pt ht(πt) is attained when all the πt are equal, and

thus π∗
t = α for all t ∈ T.

Thus, consider an optimal mechanism outcome π0 for this relaxed prob-

lem, and put β := π0
s. Since the only constraint on πt for t 6= s is πt ≥ β, the

fact that ht has its single peak at v(t) implies the following: if β lies before

the peak, i.e., β ≤ v(t), then we must have π0
t = v(t), and if β is after the

peak, i.e., β ≥ v(t), then we must have π0
t = β. Thus,

π0
t = max{β, v(t)} for every t 6= s. (7)

28



v(t) v(t′) v(s)v(T )

t t′ s

L:

IC: πs ≤ πt

πs ≤ πt′

Figure 3: Proposition 4

Put T 0 := {t ∈ T : π0
t = β}. We claim that

v(T 0) ≥ α. (8)

Indeed, otherwise v(T 0) < α together with v(t) < α for every t /∈ T 0 (which

holds by assumption (ii) because s ∈ T 0 and so t 6= s) would have yielded

v(T ) < α by Lemma 1, a contradiction. Now the optimality of π0 implies

that β, the common value of π0
t for all t ∈ T 0, must be a (local) maximand of

∑
t∈T 0 ptht(x) (since we can slightly increase or decrease β without affecting

the other constraints, namely, πt ≥ πs for all t /∈ T 0, which π0 satisfies as

strict inequalities); therefore β equals the single peak of T 0, i.e., β = v(T 0).

Hence β > v(t) for every t 6= s (by (8) and assumption (ii)), which yields

π0
t = β (by (7)). This shows that T 0 (recall its definition) contains all t 6= s,

as well as s, and so T 0 = T and β = v(T 0) = v(T ) = α, completing the proof

that π0
t = α for every t, i.e., π0 = π∗.

Remark. It is not difficult to show directly (that is, without appealing

to our Equivalence Theorem) that under the assumptions of Proposition 4

there is a unique truth-leaning equilibrium outcome, namely, the same π∗

with π∗
t = v(T ) for all t ∈ T (specifically, the babbling equilibrium (σ, ρ)

with σ(t) = s for every t, and ρ(s) = v(T ) and ρ(t) = v(t) for every t 6= s, is

a truth-leaning equilibrium here). The conditions of Proposition 4 essentially
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(up to replacing some strict inequalities with equalities) identify the case

where one cannot separate between the types, whether the principal commits

or not.

Proposition 5 Let π∗ ∈ R
T be the outcome of a truth-leaning equilibrium

(σ, ρ); then π∗ is the unique optimal mechanism outcome.

Proof. By Proposition 2, π∗
t = maxs∈L(t) ρ(s) and ρ(t) = min{π∗

t , v(t)} for

every t ∈ T . Thus π∗ satisfies (IC): if t′ ∈ L(t) then L(t′) ⊆ L(t) and so

π∗
t′ = maxt′′∈L(t′) ρ(t′′) ≤ maxt′′∈L(t) ρ(t′′) = π∗

t .

We will show H(π∗) > H(π) for every π 6= π∗ that satisfies (IC). Let

S := {s ∈ T : π∗
s = ρ(s)} be the set of messages s in T that are used in the

equilibrium (ρ, σ) (cf. (4) in Proposition 2); and, for every such s ∈ S, let

Ts := {t ∈ T : σ(s|t) > 0} be the set of types that play s. For any π ∈ R
T ,

split the principal’s payoff H(π) as follows:

H(π) =
∑

t∈T

pt ht(πt) =
∑

s∈S

σ̄(s)
∑

t∈Ts

qt(s) ht(πt) (9)

(recall that, given the strategy σ, we write σ̄(s) for the probability of s, and

q(s) ∈ ∆(T ) for the posterior on T given that s was chosen).

Take s ∈ S, and let α := ρ(s) = π∗
s be the reward there; the principal’s

equilibrium condition (P) implies that

ρ(s) = v(q(s)). (10)

For every t ∈ Ts, t 6= s we have π∗
t = ρ(s) (since σ(s|t) > 0), and so t is

unused (since σ(t|t) 6= 1) and v(t) < π∗
t (by (5)), and hence

v(t) < v(q(s)) for all t ∈ Ts, t 6= s. (11)

We can thus apply Proposition 4 to the set of types Ts with the distribution

q(s), to get ∑

t∈Ts

qt(s) ht(πt) ≤
∑

t∈Ts

qt(s) ht(π
∗
t ) (12)
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for every π that satisfies (IC), with equality only if πt = π∗
t for every t ∈ Ts.

Multiplying by σ̄(s) > 0 and summing over s ∈ S yields H(π) ≤ H(π∗)

(use (9) for both π and π∗) for every π that satisfies (IC). Moreover, to get

equality we need equality in (12) for each s ∈ S, that is, πt = π∗
t for every

t ∈ ∪s∈STs = T, which completes the proof.

4.3 Existence of Truth-Leaning Equilibrium

Here we prove that truth-leaning equilibria exist. The proof uses perturba-

tions of the game Γ where a slight advantage is given to revealing the whole

truth, both in payoff and in probability. We show that the limit points of

Nash equilibria of the perturbed games (existence follows from standard ar-

guments) are essentially—up to an inessential modification—truth-leaning

equilibria of the original game. See also the discussion in Section 5.4.

Proposition 6 There exists a truth-leaning equilibrium.

Proof. For every 0 < ε < 1 let Γε be the following ε-perturbation of the

game Γ. First, the agent’s payoff is49 x + ε1s=t when the type is t ∈ T, the

message is s ∈ T, and the reward is x ∈ R; and second, the agent’s strategy

σ is required to satisfy σ(t|t) ≥ ε for every type t ∈ T. Thus, first, the agent

gets an ε “bonus” in his payoff if he reveals the whole truth, i.e., his type;

and second, he must do so with probability at least ε.

A standard argument shows that the game Γε possesses a Nash equilib-

rium. Let Σε be the set of strategies of the agent in Γε; then Σε is a compact

and convex subset of R
T×T . Every σ in Σε uniquely determines the princi-

pal’s best reply ρ ≡ ρσ by ρσ(s) = v(q(s)) for every s ∈ T (cf. (P); in Γε

every message is used: σ̄(s) ≥ εps > 0). The mapping from σ to ρσ is con-

tinuous: the posterior q(s) ∈ ∆(T ) is a continuous function of σ (because

σ̄(s) is bounded away from 0), and v(q) is a continuous function of q (by

the Maximum Theorem together with the single-peakedness condition (SP),

which gives the uniqueness of the maximizer). The set-valued function Φ

that maps each σ ∈ Σε to the set of all σ′ ∈ Σε that are best replies to

49
1s=t is the indicator that s = t (i.e., it equals 1 if s = t, and 0 otherwise).
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ρσ in Γε is therefore upper hemicontinuous, and a fixed point of Φ, whose

existence is guaranteed by the Kakutani fixed-point theorem, is precisely a

Nash equilibrium of Γε.

Let (σ, ρ) be a limit point as ε → 0+ of Nash equilibria of Γε (the strategy

spaces are compact; for the principal, recall Remark (a) in Section 2.1); thus,

there are sequences εn →n 0+ and (σn, ρn) →n (σ, ρ) such that (σn, ρn) is a

Nash equilibrium in Γεn for every n. It is immediate to verify that (σ, ρ) is a

Nash equilibrium of Γ, i.e., (A) and (P) hold.

Let s be such that σ(s|s) < 1. Then there is r 6= s in L(s) such that

σ(r|s) > 0, and so σn(r|s) > 0 for all large enough n. Hence in particular

ρn(r) ≥ ρn(s) + εn > ρn(s), which implies that s is not optimal in Γεn for

any t 6= s (because s ∈ L(t) implies r ∈ L(t) by transitivity (L2) of L, and

r gives to t a strictly higher payoff than s in Γεn); thus σn(s|t) = 0. Taking

the limit yields the following property of the equilibrium (σ, ρ):

if σ(s|s) < 1 then σ(s|t) = 0 for all t 6= s; (13)

what this says is that if s does not choose s for sure, then no other type

chooses s. Moreover, the posterior qn(s) after message s puts all the mass on

s (since σn(s|s) ≥ εn > 0 whereas σn(s|t) = 0 for all t 6= s), i.e., qn(s) = 1s,

and so ρn(s) = v(qn(s)) = v(s); in the limit,

if σ(s|s) < 1 then ρ(s) = v(s). (14)

This in particular yields (P0): σ(s|s) = 0 implies ρ(s) = v(s).

To get (A0) we may need to modify σ slightly, as follows. Let s ∈ T be

such that s is a best reply for s (i.e., ρ(s) = maxr∈L(s) ρ(r)), but σ(s|s) < 1.

Then ρ(s) = v(s) by (14), and every r 6= s that s uses, i.e., σ(r|s) > 0,

gives the same reward as s, and so v(q(r)) = ρ(r) = ρ(s) = v(s). Therefore

we define σ′ to be identical to σ except that type s chooses only message

s; i.e., σ′(s|s) = 1 and σ′(r|s) = 0 for every r 6= s. We claim that (σ′, ρ)

is a Nash equilibrium: the agent is indifferent between s and r, and, for

the principal, the new posterior q′(r) satisfies v(q′(r)) = v(q(r)) = v(s) (by
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Lemma 1, because q(r) is an average of q′(r) and 1s; note that σ̄′(r) since

σ′(r|r) = σ(r|r) = 1 by (13)). Clearly (13–14), hence (P0), continue to hold.

Proceeding this way for every s as needed yields also (A0).

5 Extensions

In this section we discuss various extensions and related setups.

5.1 State Space

A useful setup that reduces to our model is as follows.

Let ω ∈ Ω be the state of the world, chosen according to a probability

distribution P on Ω (formally, we are given a probability space50 (Ω,F , P)).

Each state ω ∈ Ω determines the type t = τ(ω) ∈ T and the utilities UA(x; ω)

and UP (x; ω) of the agent and the principal, respectively, for any action

x ∈ R. The principal has no information, and the agent is informed of the

type t = τ(w). Since neither player has any information beyond the type,

this setup reduces to our model, where pt = P [τ(ω) = t] and U i(x; t) =

E [U i(x; ω)|τ(ω) = t] for i = A,P.

For a simple example, assume that the state space is Ω = [0, 1] with the

uniform distribution, UA(x; ω) = x, and UP (x; ω) = −(x − ω)2 (i.e., the

“value” in state ω is ω itself). With probability 1/2 the agent is told nothing

about the state (which we call type t0), and with probability 1/2 he is told

whether ω is in [0, 1/2] or in (1/2, 1] (types t1 and t2, respectively). Thus

T = {t0, t1, t2}, with probabilities pt = 1/2, 1/4, 1/4 and expected values

v(t) = 1/2, 1/4, 3/4, respectively. This example illustrates the setup where

the agent’s information is generated by an increasing sequence of partitions

(cf. (ii) in Section 2.2), which is useful in many applications (such as the

voluntary disclosure setup).

50All sets and functions below are assumed measurable (and integrable when needed).
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5.2 Randomized Rewards

Assume that the principal may choose randomized (or mixed) rewards; i.e.,

the reward ρ(s) to each message s is now a probability distribution ξ on R

rather than a pure x ∈ R. The utility functions of the two players are taken

as von Neumann–Morgenstern utilities on R, and so the utility of a random-

ization ξ is its expected utility: Ex∼ξ [gt(x)] for the agent and Ex∼ξ [ht(x)] for

the principal, for each type t ∈ T ; we will denote these by gt(ξ) and ht(ξ),

respectively.

Our assumption on payoffs requires that there be an order on rewards

such that for every type the agent’s utility agrees with this order, and the

principal’s utility is single-peaked with respect to this order. Applying this to

mixed rewards implies, for the agent, that gt must be the same function for all

t; reparametrizing51 x allows us to take gt(x) = x for all x. For the principal,

it includes in particular the requirement that his utility be a function of the

agent’s utility. This entailed no restriction in the case of pure rewards, where

for every utility level of the agent x there is a unique reward yielding him

x (namely, the pure reward x itself). It does however become significant in

the mixed case, where all ξ with expectation x yield the same utility x to

the agent—and they would all need to yield the same utility to the principal

too.52 This is clearly much too strong a requirement, as it amounts to ht(x)

being linear in53 x, for each t.

It turns out that there is a way to overcome this, namely, to consider

only “undominated” rewards. Specifically, let ξ and ξ′ be two mixed rewards

with the same expectation, i.e., E [ξ] = E [ξ′] (the agent is thus indifferent

between ξ and ξ′); then ξ dominates ξ′ if ht(ξ) ≥ ht(ξ
′) for all types t ∈ T,

with strict inequality for at least one t. The single-peakedness condition for

mixed rewards is:

51Take x to be that reward that yields utility x to the agent.
52If ξ and ξ′ both yield the same utility to the agent, which one will the principal choose?

Think moreover of the case where the same message is used by more than one type, and
then there must be a clear way to determine the right ξ. This is what condition (PUB)
below does.

53This will come up in the discussion on the connection to the work of Glazer and
Rubinstein (2004, 2006) in Section 5.3.
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(SP-M) Single-Peakedness for Mixed Rewards. For every probability dis-

tribution q ∈ ∆(T ) on the set of types T, the expected utility of the

principal is a single-peaked function of the agent’s utility on the class of

undominated mixed rewards; i.e., there exists a weakly54 single-peaked

function fq : R → R such that hq(ξ) = fq(E [ξ]) for every undominated

ξ.

Let X ⊂ R be a compact interval containing all the peaks (cf. Remark

(a) in Section 2.1); all x and ξ below will be assumed to lie in X. Let ΞU(x)

denote the set of all undominated mixed rewards ξ with E [ξ] = x, and ΞD(x)

the set of dominated mixed rewards with E [ξ] = x. It is immediate that

every dominated ξ′ ∈ ΞD(x) is in particular dominated by some undominated

ξ ∈ ΞU(x), and therefore (SP-M) yields55

fq(x) = hq(ξ) ≥ hq(ξ
′) (15)

for every ξ ∈ ΞU(x), ξ′ ∈ ΞD(x), and q ∈ ∆(T ). Therefore

fq(x) = max{hq(ξ) : E [ξ] = x} (16)

for every x, which implies that fq equals the concavification ĥq of hq, the

smallest concave function that is everywhere no less than hq (its hypograph

is the convex hull of the hypograph of hq). Since for every x we have fq(x) =
∑

t∈T qt ft(x) (take ξ ∈ ΞU(x) in (15)), it follows that the maximum in (16)

must be reached at the same ξ ∈ ΞU(x) for all q ∈ ∆(T ); equivalently, at the

same ξ ∈ ΞU(x) for all t ∈ T. We state this condition:

(PUB) Principal’s Uniform Best . For every utility level of the agent x there

is a (mixed) reward ξx such that E [ξx] = x and ht(ξx) ≥ ht(ξ
′) for all

types t ∈ T and every ξ′ with E [ξ′] = x.

54A real function ϕ is weakly single-peaked if there exist a ≤ b such that ϕ increases
for x < a, is constant for a ≤ x ≤ b, and decreases for x > b (thus the interval [a, b] is
now a single flat top of ϕ; note that concave functions are weakly single-peaked). This
weakening is needed since, as we will see below, we may get piecewise linear functions.

55We do not use here the single-peakedness of fq, but only the existence of such a function
fq (which maps the utility of the agent to the utility of the principal for undominated mixed
rewards).
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(Clearly, ξx is undominated: ξx ∈ ΞU(x)). Thus what we have shown above

is that (SP-M) implies (PUB); surprisingly, perhaps, the converse also holds:

(PUB) implies (SP-M). Indeed, (PUB) implies that ĥq =
∑

t qt ĥt for every

q ∈ ∆(T ) (since for each x the concavifications are all obtained from the

same mixed reward ξx); since fq = ĥq is a concave function, it is weakly

single-peaked.

For example, take T = {1, 2} and X = [−1, 1]; the functions h1(x) = −x2

and h2(x) = x2 do not satisfy (PUB). Indeed, f1(x) = ĥ1(x) = h1(x) (because

h1 is concave); f2(x) = ĥ2(x) = 1 (because h2(−1) = h2(1) = 0 ≥ h2(x) for

all x ∈ X); for, say, p = (1/2, 1/2), we have hp(x) = 0 and so fp(x) = ĥp(x) =

0, which is different from p1f1(x)+p2f2(x) = −x2/2. Take for instance x = 0:

the maximum in (16) for t = 1 (i.e., q = (1, 0)) is attained only at the pure

reward 0, whereas for t = 2 (i.e., q = (0, 1)), only at the half-half mixture of

1 and −1.

To summarize, (SP-M) and (PUB) are equivalent requirements; moreover,

results similar to those proved in Sections 4.2 and A.2 may then be obtained.

5.3 The Glazer–Rubinstein Setup

As stated in the Introduction, the work closest to the present paper is Glazer

and Rubinstein (2004, 2006), to which we will refer as GR for short. The GR

setup is more general than ours in the communication structure—arbitrary

messages rather than our truth structure (where messages are types and the

mapping L satisfies (L1) and (L2))—and less general in the payoff structure—

only two pure rewards rather than single-peaked payoffs. The first difference

implies that in the GR setup only one direction of our equivalence holds:

optimal mechanisms are always obtained by equilibria,56 but the converse is

not true.57 As for the second difference, GR show that their result cannot

be extended in general to more than two pure rewards (the example at the

end of Section 6 in Glazer and Rubinstein 200658); Sher (2011) later showed

56In our setup we moreover show that these are truth-leaning equilibria.
57Cf. the examples in Sections A.1.1 and A.1.2 in the Appendix.
58While the discussion there considers only pure rewards, it can be checked that the

conclusion holds for mixed rewards as well.

36



that it does hold when the principal’s payoff functions are concave.

The discussion of Section 5.2 above helps clarify all this.

First, consider the GR setup where there are only two pure rewards, say,

0 and 1; then for every x ∈ [0, 1] there is a unique mixed reward yielding

utility x to the agent, namely, getting 1 with probability x and 0 otherwise.

Moreover, the principal’s utility ht(x), as a von Neumann–Morgenstern util-

ity, is an affine function of x, and so is necessarily single-peaked (types t with

ht(0) = ht(1), and so with constant ht, do not affect anything and may be

ignored). Thus (SP) always holds in this case of only two pure rewards.59

However, when there are more than two pure rewards, the single-peakedness

condition (SP-M) becomes restrictive, and no longer holds in general. As seen

in Section 5.2, there are now multiple mixed rewards ξ yielding the same pay-

off x to the agent (i.e., E [ξ] = x); the uniformity condition (PUB) says that

among them there is one that is best for the principal no matter what the

type is. For example, if the pure rewards are 0, 1, 2, then the 1/2− 1/2 mix-

ture between 0 and 2 is the same for the agent as getting the pure reward 1,

and so (PUB) requires that either ht(1) ≥ (1/2)ht(0)+(1/2)ht(2) hold for all

t, or ht(1) ≤ (1/2)ht(0) + (1/2)ht(2) hold for all t (in the above-mentioned

example in Glazer and Rubinstein 2006, this indeed does not hold: for h1 we

get > and for h2 we get <). A particular case where (PUB) holds is therefore

the case where all the functions ht are concave, because then the pure x is

uniformly best for the principal among all mixed ξ with E [ξ] = x; this is

the assumption of Sher (2011). But it also holds, for instance, when all the

functions ht are convex (because then ξx is the appropriate mixture of the

two extreme rewards, 0 and 2), as well as in many other cases.

The single-peakedness condition (and its equivalent version (PUB)) ap-

pears thus as a good way to generalize and unify these assumptions.60

59Moreover (SP-M) is the same as (SP), as there are no dominated mixed rewards
(because for every x ∈ [0, 1] there is a single ξ with E [ξ] = x).

60It turns out to apply also to the case where there are finitely many rewards and
randomizations are not allowed: it can be shown that (SP-M) is equivalent to the concavity
of the functions ht after a suitable increasing transformation is applied to the rewards.
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5.4 Truth-Leaning

An alternative definition of truth-leaning equilibria is based on a “limit of

small perturbations” approach (a simple version of which was used to prove

existence in Proposition 6). We do it here.

Given 0 < ε1
t , ε

2
t < 1 for every t ∈ T (denote this collection by ε), let Γε

be the perturbation of the game Γ where the agents’s payoff is x + ε1
t1s=t,

and his strategy is required to satisfy σ(t|t) ≥ ε2
t for every type t ∈ T. A TL’-

equilibrium is then defined as a limit point of Nash equilibria of Γε as ε → 0.

As in the proof of Proposition 6, one can show that a TL’-equilibrium (σ, ρ)

satisfies (A), (P), (13), and (14) (and thus (P0)). Condition (13) is a slight

weakening of (A0), as it requires that σ(s|s) = 1 when message s is optimal

for type s and some other type t 6= s uses s. The difference between (A0) and

(13) is insignificant, because the outcomes are identical, and one can easily

modify the equilibrium to get (A0) (as we did in the last paragraph of the

proof of Proposition 6). We view (A0) as a slightly more natural condition.

However, we could have worked with (13) instead, and all the results would

have carried through: the Equivalence Theorem holds for TL’-equilibria too.

Finally, we indicate why truth-leaning is consistent with all standard

refinements in the literature. Indeed, they all amount to certain condi-

tions on the principal’s belief (which determines the reward) after an out-

of-equilibrium message. Now the information structure of evidence games

implies that in any equilibrium the payoff of a type s is minimal among all

the types t that can send the message s (i.e., πs = mint:s∈L(t) πt). Therefore,

if message s is not used in equilibrium (i.e., σ̄(s) = 0), then the out-of-

equilibrium belief at s that it was type s that deviated is allowed by all the

refinements, specifically, the intuitive criterion, the D1 condition, universal

divinity, and never weak best reply (Kohlberg and Mertens 1986, Banks and

Sobel 1987, Cho and Kreps 1987). However, these refinements may not elim-

inate equilibria such as the babbling equilibrium of Example 2 in Section 1.1

(see also Example 8 in Section A.1.4 in the Appendix); only truth-leaning

does.61

61Interestingly, if we consider the perturbed game Γε

1 where the agent’s payoff is
x + ε1

t1s=t (but his strategy is not required to satisfy σ(t|t) ≥ ε2
t ), the refinements D1,
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A Appendix—For Online Publication

A.1 Tightness of the Equivalence Theorem

We will show here that our Equivalence Theorem is tight. First, we show that

dropping any single condition allows examples where the equivalence between

optimal mechanisms and truth-leaning equilibria does not hold (Sections

A.1.1 to A.1.7). Second, we show that the conclusion cannot be strengthened:

truth-leaning equilibria need be neither unique nor pure (Sections A.1.8 and

A.1.9).
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A.1.1 The Mapping L Does Not Satisfy Reflexivity (L1)

We provide an example where the condition (L1) that t ∈ L(t) for all t ∈ T

is not satisfied—some type cannot tell the whole truth and reveal his type—

and there is a truth-leaning Nash equilibrium whose payoffs are different from

those of the optimal mechanism.

Example 4 The type space is T = {0, 1, 3} with the uniform distribution:

pt = 1/3 for each t ∈ T. The principal’s payoff functions are ht(x) = −(x−t)2,

and so v(t) = t for all t. Types 0 and 1 have less information than type 3, but

message 3 is not allowed; i.e., L(0) = {0}, L(1) = {1}, and L(3) = {0, 1}.
The unique optimal mechanism outcome is: π0 = v(0) = 0 and π1 =

v({1, 3}) = 2, i.e., π = (π0, π1, π3) = (0, 2, 2).

Truth-leaning entails no restrictions here: types 0 and 1 have a single

message each (their type), and type 3 cannot send the message 3. There

are three Nash equilibria: (1) σ(1|3) = 1, ρ(0) = 0, ρ(1) = 2, with π =

(0, 2, 2) (which is the optimal mechanism outcome); (2) σ(0|3) = 0, ρ(0) =

3/2, ρ(1) = 1, with π′ = (3/2, 1, 3/2); and (3) σ(0|3) = 4/5, ρ(0) = ρ(1) =

4/3, with π′′ = (4/3, 4/3, 4/3). Note that H(π) > H(π′) > H(π′′). ¤

A.1.2 The Mapping L Does Not Satisfy Transitivity (L2)

We provide an example where (L2) is not satisfied—the “less informative

than” relation induced by L is not transitive—and there is no truth-leaning

equilibrium.

Example 5 The type space is T = {0, 1, 3} with the uniform distribution:

pt = 1/3 for each t ∈ T. The principal’s payoff functions are ht(x) = −(x−t)2,

and so v(t) = t for all t. The allowed messages are L(0) = {0, 1}, L(1) =

{1, 3}, and L(3) = {3}. This cannot be represented by a transitive order,

since type 0 can send message 1 and type 1 can send message 3, but type 0

cannot send message 3.

Let (σ, ρ) be a truth-leaning equilibrium; then ρ(0) = 0 (by (P) if 0

is used, and by (P0) if it isn’t); similarly, 0 ≤ ρ(1) ≤ 1 and 2 ≤ ρ(3) ≤ 3.

Therefore type 1 chooses message 3, and so only type 0 may choose message 1.
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If he does so then ρ(1) = 0 (by (P)), but then ρ(0) = ρ(1), which contradicts

(A0); and if he doesn’t, then ρ(1) = 1 by (P0), and then ρ(0) < ρ(1), which

contradicts the best-replying condition (A).

The unique optimal mechanism is given by62 ρ(0) = 0 and ρ(1) = ρ(3) =

2, with outcome π = (0, 2, 2) (indeed, types 1 and 3 cannot be separated,

since type 1 can say 3 and v(1) < v(3); cf. Proposition 4). ¤

While truth-leaning equilibria do not exist in Example 5, the slightly

more general TL’-equilibrium of Section 5.4 does exist: types 1 and 3 choose

message 3, type 0 chooses message 1, and ρ(0) = 0, ρ(1) = 0, ρ(3) = 2. We

therefore provide another example where even TL’-equilibria do not exist.

Example 6 The type space is T = {0, 5, 8, 10} with the uniform distri-

bution: pt = 1/4 for each t ∈ T. The principal’s payoff functions are

ht(x) = −(x − t)2, and so v(t) = t for all t. The allowed messages are

L(0) = {0, 10}, L(5) = {5, 8}, L(8) = {8, 10}, and L(10) = {10}. This can-

not be represented by a transitive order, since type 5 can send message 8 and

type 8 can send message 10, but type 5 cannot send message 10.

A truth-leaning equilibrium (and thus also a TL’-equilibrium) (σ, ρ) is:

types 0 and 10 say 10, and types 5 and 8 say 8; the rewards are ρ(0) =

0, ρ(5) = 5, ρ(8) = v({5, 8}) = 6.5, and ρ(10) = v({0, 10}) = 5. The

resulting outcome π = (5, 6.5, 6.5, 5) is the optimal mechanism outcome.

There is however another TL’-equilibrium (σ′, ρ′): types 0, 8, and 10 say

10, and type 5 says 8; the rewards are ρ′(0) = 0, ρ′(5) = 5, ρ′(8) = 5, and

ρ′(10) = v({0, 8, 10}) = 6. The outcome is π′ = (6, 5, 6, 6), which is worse

than π, since H(π) = −13.625 > H(π′) = −14. ¤

A.1.3 Equilibrium That Does Not Satisfy (A0)

We provide an example of a sequential equilibrium that does not satisfy the

(A0) condition of truth-leaning, and whose outcome differs from the unique

optimal mechanism outcome.

62While type 0 can send message 1, he cannot fully mimic type 1, because he cannot
send message 3, which type 1 can. Therefore the incentive-compatibility constraints are
not πt ≥ πs for s ∈ L(t) as in Section 2.4, but rather πt = max{ρ(s) : s ∈ L(t)} where
ρ ∈ R

T is a reward scheme (cf. Green and Laffont 1986).
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Example 7 The type space is T = {0, 1, 2} with the uniform distribution:

pt = 1/3 for each t ∈ T. The principal’s payoff functions are ht(x) = −(x−t)2

(and so v(t) = t) for each t ∈ T. Type 0 has less information than type 2

who has less information than type 1; i.e., L(0) = {0}, L(1) = {0, 1, 2}, and

L(2) = {0, 2}.
The unique optimal mechanism outcome is π = (0, 3/2, 3/2), and the

unique truth-leaning equilibrium has types 1 and 2 choosing message 2 (type

0 must choose 0) and63 ρ(0) = 0, ρ(1) = 1, ρ(2) = 3/2. There is however an-

other (sequential) equilibrium: type 1 chooses message 2 and type 2 chooses

message 0, and ρ′(0) = ρ′(1) = ρ′(2) = 1, with outcome π′ = (1, 1, 1), which

is not optimal (H(π′) < H(π)). At this equilibrium (P0) is satisfied (since

ρ′(1) = v(1) for the unused message 1), but (A0) is not satisfied (since mes-

sage 1 is optimal for type 1 but he chooses 2). ¤

A.1.4 Equilibrium That Does Not Satisfy (P0)

We provide an example of a sequential equilibrium that does not satisfy the

(P0) condition of truth-leaning, and whose outcome differs from the unique

optimal mechanism outcome.

Example 8 The type space is T = {0, 3, 10, 11} with the uniform distribu-

tion: pt = 1/4 for each t. The principal’s payoff functions are ht(x) = −(x−
t)2 (and so v(t) = t) for each t ∈ T. Types 10 and 11 both have less informa-

tion than type 0, and more information than type 3; i.e., L(0) = {0, 3, 10, 11},
L(3) = {3}, L(10) = {3, 10}, and L(11) = {3, 11}.

The unique truth-leaning equilibrium is mixed: σ(10|0) = 3/7, σ(11|0) =

4/7, all the other types t 6= 0 reveal their type, and ρ(0) = v(0) = 0,

ρ(3) = v(3) = 3, and ρ(10) = ρ(11) = v({0, 10, 11}) = 7. The optimal

mechanism outcome is thus π = (7, 3, 7, 7).

Take the babbling equilibria where every type sends message 3 and ρ(3) =

v(T ) = 6 and ρ(t) ≤ 6 for t 6= 3; they do not satisfy (P0) (for types 10 and

11), and so it is not truth-leaning.

63By Corollary 3 (see L′ in the paragraph following it) we may drop 0 from L(2).
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Suppose we were to require instead of (P0) that the belief after an unused

message t be that it was sent by some of the types t′ that could send it, rather

than by t itself (as required by (P0)); specifically, put64 ρ(t) = v(L−1(t))

instead of ρ(t) = v(t) (i.e., use the prior probabilities on those types that can

send message t). Then the babbling equilibrium satisfies this requirement,

since ρ(0) = v(0) = 0, ρ(10) = v({0, 10}) = 5, and ρ(11) = v({0, 11}) = 5.5,

and these rewards are all less than ρ(3) = v(T ) = 6. ¤

A.1.5 Agent’s Payoffs Depend on Type

We show here that it is crucial that the agent’s types all have the same

preference (see also Example 3 in the Introduction).

Example 9 Consider the standard cheap-talk games of Crawford and Sobel

(1982), where all the agent’s types can send the same messages (there is

no verifiable evidence), but the types differ in their utilities. Specifically,

consider the following example taken from Krishna and Morgan (2007). The

type t is uniformly distributed on65 [0, 1]. The utilities are −(x − t)2 for the

principal and −(x − t − b)2 for the agent, where b is the “bias” parameter

that measures how closely aligned the preferences of the two players are.

It is easy to verify (see Krishna and Morgan 2007) that when, say, b = 1/4,

no information is revealed in any sequential equilibrium, and so the unique

outcome of the game is πt = E [t] = 1/2 for all t, which yields an expected

payoff of −1/12 to the principal.

By contrast, consider the mechanism with reward function ρ(s) = s+1/4.

The agent’s best response to this policy is to report t truthfully, i.e., s = t,

and so there is full separation and the principal’s expected payoff increases

to −1/16. Thus commitment definitely helps here. ¤

64L−1(t) := {t′ ∈ T : t ∈ L(t′)} is the set of types that can send message t.
65The fact that the type space is not finite does not matter, as a large finite approxi-

mation will yield similar results.

44



A.1.6 Principal’s Payoffs Are Not Single-Peaked (SP)

We provide an example where one of the functions ht is not single-peaked

and all the Nash equilibria yield an outcome that is strictly worse for the

principal that the optimal mechanism outcome.

Example 10 The type space is T = {1, 2} with the uniform distribution,

i.e., pt = 1/2 for t = 1, 2. The principal’s payoff functions h1 and h2 are both

strictly increasing for x < 0, strictly decreasing for x > 2, and piecewise

linear66 in the interval [0, 2] with values at x = 0, 1, 2 as follows: −3, 0,−2

for h1, and 2, 0, 3 for h2. Thus h1 has a single peak at v(1) = 1, whereas h2

is not single-peaked: its global maximum is at v(2) = 2, but it has another

local maximum at x = 0. Type 2 has less information than type 1, i.e.,

L(1) = {1, 2} and L(2) = {2}.
Consider first the optimal mechanism; the only (IC) constraint is π1 ≥ π2.

Fixing π1 (in the interval [0, 2]), the value of π2 should be as close as possible

to one of the two peaks of h2, and so either π2 = 0 or π2 = π1. In the

first case the maximum of H(π) is attained at π = (1, 0), and in the second

case, at π′ = (2, 2) (because 2 is the peak of hp = (1/2)h1 + (1/2)h2). Since

H(π) = 1 > 1/2 = H(π′), the optimal mechanism outcome is π = (1, 0).

Next, we will show that every Nash equilibrium (σ, ρ), whether truth-

leaning or not, yields the outcome π′ = (2, 2). Indeed, type 2 can only send

message 2, and so the posterior q(2) after message 2 must put on type 2

at least as much weight as on type 1 (i.e., q2(2) ≥ 1/2 ≥ q1(2); recall that

the prior is p1 = p2 = 1/2). Therefore the principal’s best reply is always 2

(because hq(2)(0) < 0, hq(2)(1) = 0, and hq(2)(2) > 0). Therefore type 1 will

never send the message 1 with positive probability (because then q(1) = (1, 0)

and so ρ(1) = v(1) = 1 < 2). Thus both types only send message 2, and

we get an equilibrium if and only if ρ(2) = 2 ≥ ρ(1) (and, in the unique

truth-leaning equilibrium, (P0) implies ρ(1) = v(1) = 1), resulting in the

outcome π′ = (2, 2), which is not optimal: the optimal mechanism outcome

is π = (1, 0). ¤

66The example is not affected if the two functions h1, h2 are made differentiable (by
smoothing out the kinks at x = 0, 1, and 2).
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Thus, the separation between the types—which is better for the principal—

can be obtained here only with commitment.

A.1.7 Principal’s Payoffs Are Not Differentiable

We provide an example where one of the functions ht is not differentiable,

and there exists no truth-leaning equilibrium.

Example 11 The type space is T = {1, 2} with the uniform distribution,

pt = 1/2 for t = 1, 2. The principal’s payoff functions are h1(x) = −(x − 2)2

for x ≤ 1 and h1(x) = −x2 for x ≥ 1 (and so h1 is nondifferentiable at its

single peak v(1) = 1), and h2(x) = −(x − 2)2 (and so h2 has a single peak

at v(2) = 2). Both functions are strictly concave, and so (SP) holds: the

peak v(q) for q ∈ ∆(T ) equals 1 when q1 ≥ q2 and it equals 2q2 when67

q1 ≤ q2 (and thus v(T ) = 1). Type 2 has less information than type 1, i.e.,

L(1) = {1, 2} and L(2) = {2}.
Let (σ, ρ) be a truth-leaning Nash equilibrium. If σ(1|1) = 1 then ρ(1) =

v(1) = 1 and ρ(2) = v(2) = 2 (both by (P)), contradicting (A): message 1 is

not a best reply for type 1. If σ(1|1) = 0 then ρ(1) = v(1) = 1 (by (P0)) and

ρ(2) = v(T ) = 1 (by (P)), contradicting (A0): message 1 is a best reply for

type 1. Thus there is no truth-leaning equilibrium.

It may be checked that the Nash equilibria are given by σ(2|1) = 1 and

ρ(1) ≤ ρ(2) = 1, and the optimal mechanism outcome is π = (1, 1). ¤

A.1.8 Nonunique Truth-Leaning Equilibrium

We provide here an example where there are multiple truth-leaning equilibria

(all having the same outcome).

Example 12 Let T = {0, 1, 3, 4} with the uniform distribution: pt = 1/4

for all t ∈ T ; the principal’s payoff functions are ht(x) = −(x − t)2 (and so

v(t) = t) for all t, and the “strictly less information” relation is 4 ⊳ 3 ⊳ 1 ⊳ 0.

The unique optimal mechanism outcome is πt = v(T ) = 2 for all t, and

67This shows that the strict in-betweenness property may not hold without differentia-
bility (cf. Remark (b) after Lemma 1).
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(σ, ρ) is a truth-leaning Nash equilibrium whenever ρ(0) = 0, ρ(1) = 1,

ρ(3) = ρ(4) = 2, σ(·|0) = (0, 0, α, 1−α), σ(·|1) = (0, 0, 1−2α, 2α), σ(3|3) = 1,

and σ(4|4) = 1, for any α ∈ [0, 1/3]. ¤

A.1.9 Mixed Truth-Leaning Equilibrium

We show here that we cannot restrict attention to pure equilibria: the agent’s

strategy may well have to be mixed (Example 8 above is another such case).

Example 13 The type space is T = {0, 2, 3} with the uniform distribution:

pt = 1/3 for all t. The principal’s payoff function is ht(x) = −(x − t)2, and

so v(t) = t. Types 2 and 3 both have less information than type 0, i.e.,

L(0) = {0, 2, 3}, L(2) = {2}, and L(3) = {3}.
Let (σ, ρ) be a truth-leaning equilibrium. Only the choice of type 0 needs

to be determined. Since ρ(0) = 0 whereas ρ(2) ≥ 1 = v({0, 2}) and ρ(3) ≥
v({0, 3}) = 3/2, type 0 never chooses 0. Moreover, type 0 must put positive

probability on message 2 (otherwise ρ(2) = 2 > 3/2 = v({0, 3}) = ρ(3)), and

also on message 3 (otherwise ρ(3) = 3 > 1 = v({0, 2}) = ρ(2)). Therefore

ρ(2) = ρ(3) (since both are best replies for 0), and then α := σ(2|0) must

solve 2/(1 + α) = 3/(2 − α), hence α = 1/5. This is therefore the unique

truth-leaning equilibrium; its outcome is π = (5/3, 5/3, 5/3). ¤

A.1.10 On the Single-Peakedness Assumption (SP)

We conclude with two comments on the single-peakedness condition (SP)

(see Section 2.1).

First, to get (SP) it does not suffice that the functions ht for t ∈ T be all

single-peaked, since averages of single-peaked functions need not be single-

peaked (this is true, however, if the functions ht are strictly concave). For

example, let ϕ(x) be a function that has a single peak at x = 2 and takes the

values 0, 3, 4, 7, 8 at x = −2,−1, 0, 1, 2, respectively; in between these points

interpolate linearly. Take h1(x) = ϕ(x) and h2(x) = ϕ(−x). Then h1 and

h2 are single-peaked (with peaks at x = 2 and x = −2, respectively), but

(1/2)h1 + (1/2)h2, which takes the values 4, 5, 4, 5, 4 at x = −2,−1, 0, 1, 2,

respectively, has two peaks (at x = −1 and x = 1). Smoothing out the
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kinks and making ϕ differentiable (by slightly changing its values in small

neighborhoods of x = −2,−1, 0, 1, 2) does not affect the example.

Second, the single-peakedness condition (SP) goes beyond concavity. Take

for example h1(x) = −(x3 − 1)2 and h2(x) = −x6; then h1 is not concave

(for instance, h1(1/2) = −49/64 < −1/2 = (1/2)h1(0) + (1/2)h1(1)), but,

for every 0 ≤ α ≤ 1, the function hα has a single peak, at 3
√

α (because

h′
α(x) = −6x2(x3 − α) vanishes only at x = 0, which is an inflection point,

and at x = 3
√

α, which is a maximum).

A.2 From Mechanism to Equilibrium

We show here how to construct a truth-leaning equilibrium from an optimal

mechanism.

To illustrate the idea, consider first a special case where the optimal

mechanism outcome π∗ ∈ R
T gives the same reward, call it α, to all types:

π∗
t = α for all t ∈ T. Recalling Proposition 2, we define the strategy ρ of

the principal by ρ(t) = min{v(t), π∗
t} = min{v(t), α} for all t ∈ T. As for

the agent, let S := {t ∈ T : v(t) ≥ α}; the elements of S will be precisely

the messages used in equilibrium, and we put σ(t|t) = 1 for all t ∈ S and

σ(t|t) = 0 for t /∈ S. The question is how to define σ(·|t) for t /∈ S.

If S consists of a single element s, then we put σ(s|t) = 1 for every t (and

it is easy to verify that (ρ, σ) is then indeed a truth-leaning equilibrium). In

general however S is not a singleton, and then we need carefully to assign

to each type t those messages s ∈ L(t) ∩ S that t plays (it can be shown

that the optimality of π∗ implies that every t has some message to use, i.e.,

L(t) ∩ S 6= ∅).
Take a simple case (such as Example 12 in the Appendix) where T =

{t, s, s′}, S = {s, s′}, L(t) = T, and the principal’s payoff is quadratic (the

value v(R) of a set R is thus the expected value of its elements). How does

type t choose between s and s′ ? First, we have v(t) < α ≤ v(s), v(s′)

by the definition of S. Second, again using the optimality of π∗, we get

v(T ) = α (otherwise moving α towards v(T ) would increase the principal’s

payoff H(π)). Third, v({t, s}) ≤ α (because v({t, s, s′}) ≡ v(T ) = α and
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v(s′) ≥ α), and similarly v({t, s′}) ≤ α. Thus v({t, s}) ≤ α ≤ v(s′), and so

there is some fraction λ ∈ [0, 1] so that v({λ ∗ t, s}) = α, where λ ∗ t denotes

the λ-fraction of t (i.e., the value of the set containing s and the fraction λ of

t is exactly68 α). Therefore v({(1 − λ) ∗ t, s′}) = α too (because v(T ) = α),

and we define σ(s|t) = λ and σ(s′|t) = 1 − λ.

When S contains more than two elements we define the sets Rs := {t /∈
S : s ∈ L(t)}∪{s} for all s ∈ S. Their union is T, and the value of each Rs, as

well as the value of each union of them, is always ≤ α (i.e., v(∪s∈QRs) ≤ α for

every Q ⊂ S; in the three-type example above Rs = {t, s} and Rs′ = {t, s′});
this follows from the optimality of π∗ (increasing πt for t ∈ ∪s∈QRs can only

decrease H). Using a simple extension of the classical Marriage Theorem of

Hall (1953) to continuous measures due to Hart and Kohlberg (1974, Lemma

in Section 4) yields a partition of the set of types T into disjoint “fractional”

sets Fs such that each Fs is a subset of Rs with value exactly α, i.e.,69

v(Fs) = α. This fractional partition gives the strategy σ, as above. (When

we go beyond the quadratic case and the value v is not an expectation, we

use the in-betweenness property instead.)

68Formally: (λptv(t) + ps1
v(s1))/(λpt + ps1

) is a continuous function of λ, which is ≥ α
at λ = 0 and ≤ α at λ = 1.

69Hall’s (1935) result is the following. There are n boys and n girls, each girl knows a
certain set of boys, and we are looking for a one-to-one matching between boys and girls
such that each girl is matched with a boy that she knows. Clearly, for such a matching to
exist it is necessary that any k girls know together at least k different boys; Hall’s result
is that this condition is also sufficient.

This result is extended to nonatomic measures in Hart and Kohlberg (1974, Lemma in
Section 4); replacing each atom by a continuum yields the fractional result that is needed.
For an application, consider a school where each student registers in one or more clubs
(the chess club, the singing club, the writing club, and so on). Assume that the average
grade of all the students in the school equals ḡ, and that the average grade of all the
students registered in each club, as well as in each collection of clubs, is at least ḡ (for a
collection of clubs K, we take all the students that registered in at least one of the clubs
in K and average their grades). The result is that there is a way to divide each student’s
time among the clubs in which he registered, in such a way that the average grade in each

club is exactly ḡ (the average is now a weighted average, with each student’s weight being
his relative time in the club).

Glazer and Rubinstein (2006) used a different line of proof (the “bridges problem”)
for a parallel result: construct an equilibrium (but without the additional requirement of
getting it to be truth-leaning) from an optimal mechanism. We find that the very short
inductive proof of Halmos and Vaughan (1950), as used in Hart and Kohlberg (1974),
provides a simple procedure for constructing the agent’s strategy.
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Finally, the general case (where π∗
t is not the same for all t) is handled by

partitioning T into disjoint “layers” Tα := {t ∈ T : π∗
t = α} corresponding

to the distinct values α of the coordinates of π∗, and then treating each

Tα separately as in the special case above. One may verify that there is no

interaction between the different layers (because T is finite there is a minimal

positive gap δ0 > 0 between distinct values, and then we take the changes in

πt in the arguments above to be less than δ0).

References

Hall, P. (1935), “On Representatives of Subsets,” Journal of the London
Mathematical Society 10, 26–30.

Halmos, P. R. and H. E. Vaughan (1950), “The Marriage Problem,” Ameri-
can Journal of Mathematics 72, 214–215.

Hart, S. and E. Kohlberg (1974), “Equally Distributed Correspondences,”
Journal of Mathematical Economics 1, 167–174.

50


