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Karp, Larry, and Jeffrey M. Perloff -- Dynamic Oligopoly in Rice~ Estimation 
and Tests of Market Structure and Subgame Perfection 

A linear-quadratic cost-of-adjustment model is used to estimate market struc
ture, firm rationality, and adjustment costs. Market structure is measured by 
an index that is analogous to a conjectural variation. We consider both 
open-loop and subgame perfect equilibria. The model is used to study the rice 
export market. 

Larry Karp is an assistant professor and Jeffrey M. Perloff is an associate 
professor of agricultural and resource economics at the University of Califor
nia, Berkeley. 
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Dynamic Oligopoly in Rice: 
Estimation and Tests of Market Structure and Subgame Perfection 

Larry Karp and Jeffrey M. Perloff 

In recent years, dramatic shifts in the international rice export market 

have occurred. In particular, the share of the largest exporter (Thailand) 

has grown substantially, while the share of the second largest (the U.S.) has 

fallen. A key question in determining policy in each of these countries is 

the degree of competitiveness in the market. All of the major exporters 

except the U.S. (Thailand, China, Burma, and Pakistan) have a single market

ing board that handles exports, so that their behavior can reasonably be 

described as resembling that of a single firm. Thus, we introduce a model of 

dynamic oligopoly behavior to describe behavior in these markets. 

The first part of the paper presents a brief summary of our theoretical 

model. We consider both open-loop and feed-back models. Our formulation is 

flexible enough to allow for price-taking behavior, oligopoly, or monopoly. 

The second part of the paper presents simulation results to show the proper

ties of our model. Finally, our empirical results on the rice market are 

presented. 

A Model of Dynamic Oligopoly 

It is not possible to instantaneously adjust output at zero cost. Each 

country's (firm's) quadratic cost of adjustment is: 

( . + oui, t) 
uo 2 u. t £, 

, l l' 
where u. t e: = q - q 

l, i,t 'i,t-e: 

The firm's quadratic cost of production is: 

( +~) 80,i 2 
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The industry faces a linear demand curve: 

p a - bq, 

so each firm has revenues in period t of: 

p. tq. t = [a - b(q. t + l q. t)J q. t E 
1, 1, 1, .. J, 1, 

J*l 

[Note: we can allow each firm i to have a unique intercept, ai, and slope bi, 

at some cost in complexity] 

Each firm's objective is to maximize its discounted stream of profits 

(given interst rater): 

where, for simplicity, we set e0 ,i = o0 ,i = 0. 

In matrix form, the ith firm's objective is: 

00 

l 
t=1 

( 1 I ) 

where ei is the ith unit vector, e is a column vector of 1 's, Si= eiei'o, 

Ki= b(eei' + eie') + eeiei' [Ki is a matrix with b's on the ith row and 

column except for the (i,i) element which is 2b + e; all other elements are 

O]. 

As E ~ O, this expression approaches: 

( 1 b) 
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Since qi,t is unconstrained so that negative sales are possible. Negative 

prices can be interpreted as very low prices. When prices fall below acer

tain level, firms would prefer to be buyers rather than sellers; they must 

bear the adjustment cost to make the transition. 

Two Families of Eauilibria 

We consider two families of equilibria: open-loop and feed-back. Members 

of each family are indexed by a parameter v (c auj,tl3ui,t for i*j), which 

describes the behavioral assumption that determines the outcome. In a static 

model, v could be interpreted as a constant conjectural variation. Since the 

open-loop game is equivalent to a static problem, the same interpretation can 

be used, but that interpretation does not apply to the feed-back model. We 

use the neutral description of v as a player's behavioral assumption. This 

assumption is taken as primitive and not explained by strategic considerations 

(except for the, three leading cases of collusion, Nash-in-quantities, and 

price-taking): 

A. Collusion: v = 1 (where all firms are identical): match changes in 

output -- maintain market share. 

B. Nash-in-quantity: v = 0: can't change output within a period. 

C. Price-taking: v = ~1/n (where there are n+1 firms): total output is 

unchanged. 

In the open-loop equilibrium, each player chooses a sequence of changes in 

output, ui,t, using a particular behavioral assumption, v. The equilibrium 

levels can be expressed in feed-back form; in which case, strategies are 
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open-loop with revision. This revision is unanticipated. When players choose 

their current levels, they act as if they were also making unconditional 

choices regarding future levels. A control approach can be used to obtain the 

open-loop equilibrium for arbitrary v. 

In the feed-back equilibrium, players recognize that their future choices 

will be conditioned on the future state, so players choose control rules 

rather than levels. The feed-back equilibrium is obtained by the simultaneous 

solution of the n+1 dynamic programming equations: 

J.(qt ) 
l -£ 

where qt= Qt-£+ UtE· When v =0, equation (2) gives the feed-back Nash

Cournot game. When v = -1/n or 1, we obtain the price-taking or collusive 

outcome (i.e., the feed-back and the open-loop solutions are the same). 

Consistent conjectures 

(2) 

We call v a "behavioral assumption." If, however, one viewed v as a 

conjectural variation, it is natural to ask if it could be made endogenous, as 

has been done in static games, by imposing the consistency requirement of 

Laitner, Breshnahan, Kamien and Schwartz, and Perry. This approach can be 

used in the open-loop games because they are essentially static.· A different 

interpretation is used in the feedback game. At the beginning of a period of 

length£, players anticipate an equilibrium in the current period that depends 

on lagged quantities. They expect that any deviation from this equilibrium 
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will be met by an instantaneous response from their rivals. If the conjectur

al response is optimal (to a first-order approximation), then the conjectures 

are said to be consistent. 

In the discrete time feed-back game, the consistent conjecture depends on 

E. As E ~ 0, the consistent conjecture goes to 0. As E ~ w, the game becomes 

static and (withe= 0) you get Breshnahan's consistent conjecture of -1/n. 

Intuition (based on equation (2)): A change of ~uj from equilibrium 

changes qj by ~UjE· Firm i's loss from a failure to respond to a change in Uj 

has'two components: the reduction of its profits in the current period and the 

present value of the loss of having a suboptimal qi in the subsequent period. 

Both these components depend on ~ujE and E directly, since the current pe

riod's profits are a flow of profits times E and next period's value function 

is discounted by exp(-rE). 

When Eis large, for give ~uj, the first component dominates firm i can 

suffer a substantial loss from not responding to a change in uj, so the slope 

of i's reaction function (and hence the value of j's consistent conjecture) 

should be large in absolute value. When E si small, a given ~uj has negligi

ble effect on i's payoff, so the consistent conjecture is small. 

Effect of an increase in the number of firms, n+1 

If e = O, we can normalize by setting o = (n+1)c, where c > O is constant. 

This normalization implies that the open-loop price-taker and collusive equi

libria are invariant ton. As n ~ w, the Nash-Cournot feed-back equilibrium 

converges to the Nash-Cournot open-loop equilibrium. Reynolds showed that, as 

o ~ 0, the steady-state open-loop and feed-back Nash-Cournot equilibria do not 

converge. Our result shows that as both o and n ~ w, so that o/(n+1) remains 
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constant, the two steady states do converge. Apparently, for intermediate 

values of v, the open-loop and feed-back equilibria still differ, but we have 

not formally proven this result. 

Simulation results 

To illustrate the properties of these models, we first use simulations. 

In the following simulations, the basic parameters are: two firms (n = 1), 

demand intercept (a)= 255, demand slope (b) = 10, adjustment cost parameters 

( 00 · o) = , l, 5, discount parameter (S) = .95, initial industry output= 20, the 

length of a time period (e), and constant marginal cost (e) = O. Given these 

parameters, the collusive, Nash and price-taker static equilibria industry 

output levels are: 12.75, 17.5, and 25.5. The corresponding steady-state 

values are 12.738 (collusive), 16.983 (Nash open-loop), 17.483 (Nash feed

back), and 25.476 (price-taker). Thus, 

Observation 1: The Nash feed-back steady-state industry output is 

greater than the Nash open-loop output. 

Observation 2 : As the number of firms increase, the collusive and 

price-taking steady-state industry output levels are, of course, not 

affected, but the industry output rises under either of the Nash 

models, approaching the price-taker level. At least for this example, 

the Nash feed-back output increases more rapidly than does the Nash 

open-loop output as the number of firms increases: 
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Table 1 
The Effect of Increasing the Number of Firms on Industry Output 

Nash 

Number of Firms Open-Loop Feed-Back 

2 16.983 17 .483 

3 1 9. 1 06 19.915 

4 20.380 21.348 

5, 21.229 22.270 

10 23.159 24.162 

15 23.883 24.743 

Parameters: n = 1, a= 255, b = 10, o0 ,i = 5, s = .95, o = 2.5(n+1) 

The collusive steady-state output= 12.7375, the price-taker output= 25.475. 

Observation 3: There is no distinction between the feed-back and 

open-loop steady-state outputs where firms act collusively (v = 1) or 

are price-takers (v = -1/n). Under other behavioral rules, the feed

back output is greater than the open-loop output. The greatest dif

ference does not occur at the Nash v (= 0). 

See Figure 1. In this example, the greatest difference occurs at approximate

ly V = -0.7. 

One implication of this result is that using a standard open-loop model 

does not cause problems when firms are collusive or are price-takers. Unfor

tunately, where firms use other behavioral assumptions, the feed-back and 
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open-loop models produce different results (both in terms of steady-state 

values and adjustment paths). In our example, the feed-back steady-state 

output was as much as 5 percent higher than the open-loop output. 
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The Adjustment Equations and Restrictions 

In order to estimate this system we need the basic control rules. The 

feed-back control rule is: 

q. t l, 

p + nvp 1 
~ + (l + O 6 )qi,t-1 

+ nvz 

6 

The Control rule equivalent to the open-loop is: 

q. t l, _L. qJ. t-1 
J ;Ol ' 

The restrictions are: 

2 2 o = rop0 + 6[(2 + nv)b + e] - Po - n p1 (A2a) 

0 (A2b) 

h a6 
(A3) 

Rice 

Our empirical work is still in the early stages. We first estimate the 

linear demand curve for rice using three-stage least squares (asymptotic 

standard errors in the parentheses): 

Pr= 98.026 - o.6202 q + 0.2279 PW - 0.5690 I 

(5.127) (0.107) 

where Pr= real price of rice, q 

price of wheat. 

(0.046) (0.081) 

total rice exports, I income, Pw = real 
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Next we estimate the adjustment equation parameters g1 (diagonal elements 

of the adjustment matrix) and g2 (off-diagonal elements) based on the assump-

tion of symmetry. The parameters g1 = 0.57728 (t-statistic = 7.13) and g2 = -

0.054478 (1.56). The test that these parameters are zero across the equa-

tions are F(5,85) 
6.62 for g1 and F(20,85) = 2.99 for g2, so we can reject 

the hypotheses that these parameters are zero. 

Based on these estimates of b, g1 and g2 , the open-loop parameters are 60 

= 3.2954 and v
0 

= .05958 (standard error= .4033). The feed-back parameters 

are df = 3_3736 and Vf = .1253 (.4126). Thus, the point estimates indicate 

the market is closer to Nash-Cournot (v = 0) than competitive (v = -0.25), but 

we cannot reject competition at the 0.05 level. 

I 
! 
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