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Abstract

This paper presents a convenient shortcut method for implement-
ing the Heckman estimator of the dynamic random effects probit
model and other dynamic nonlinear panel data models using stan-
dard software. It then compares the estimators proposed by Heck-
man, Orme and Wooldridge, based on three alternative approxima-
tions, first in an empirical model for the probability of unemployment
and then in a set of simulation experiments. The results indicate that
none of the three estimators dominates the other two in all cases.
In most cases all three estimators display satisfactory performance,
except when the number of time periods is very small.
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1 Introduction

The initial conditions problem is well-recognised in the estimation of dynamic
non-linear panel data models. Its cause is the presence of both the past value
of the dependent variable and an unobserved heterogeneity term in the equa-
tion and the correlation between them. The strict exogeneity assumption for
regressors, routinely used in static models in order to marginalise the likeli-
hood function with respect to the unobserved heterogeneity, cannot be used
in a dynamic setting due to the presence of the lagged dependent variable.
The standard estimator for the probit model in this context is that sug-
gested by Heckman (1981a, 1981b), who was the first to explicitly address
this problem.! His approach involves the specification of an approximation to
the reduced form equation for the initial observation and maximum likelihood
estimation using the full set of sample observations allowing cross-correlation
between the main and initial period equations. However, use of the estima-
tor has been limited by it requiring separate programming due to its absence
from standard packages. This has led to the proposal of alternative estimators
that have the advantage of requiring only standard software. The estimators
suggested by Orme (1997, 2001) and Wooldridge (2005), based on alterna-
tive approximations, are commonly used in place of the Heckman estimator

for this reason. The main merit claimed by both Orme and Wooldridge for

! Although Heckman discussed the issue in the context of the binary probit model,
his suggested solution (as well as other suggested solutions discussed below) can also be
applied to many other dynamic non-linear panel models, as we discuss later. This paper
concentrates on fully parametric approaches to the estimation of these models. See Honoré
(1993) and Honoré and Kyriazidou (2000) for semi-parametric estimators for this type of
model.



their estimators relative to Heckman’s is that theirs can be straightforwardly
estimated using standard software.

These estimators have been widely used in many different applications.
Some examples are as follows: labour force participation (Hyslop, 1999);
unemployment spells (Arulampalam, et. al., 2000); unemployment and low-
pay dynamics (Stewart, 2007); self-employment (Henley, 2004); well-being
and income support receipts (Lee and Oguzoglu, 2007); social assistance
and welfare participation (Andrén, 2007, and Cappellari and Jenkins, 2008);
absence behaviour (Audas at al, 2004); self-reported health status (Con-
toyannis et al, 2004); health insurance (Propper, 2000); infant mortality
(Arulampalam and Bhalotra, 2006); smoking behaviour (Dorsett, 1999, and
Clark and Etilé, 2006); housing allowance and ownership (Chen and En-
trom Ost, 2005); ownership of stocks and mutual funds (Alessie et al, 2004);
firms’ export behaviour (Bernard and Jensen, 2004); firms’ dividend behav-
iour (Benito and Young, 2003, and Loudermilk, 2007); entry and exit of firms
from foreign markets (Requena-Silvente, 2005); and debt relief (Chauvin and
Kraay, 2007).

The majority of applications have been based on binary probit models,
but some also use the estimators in the context of ordered probit models (e.g.
Contoyannis et al, 2004, and Pudney, 2008) and Tobit models (e.g. Islam,
2007, and Loudermilk, 2007). Some applications have also used extensions
to bivariate models (e.g. Alessie et al, 2004, and Clark and Etilé, 2006).

This paper sets up the three estimators in a common framework and



presents a convenient shortcut method for implementing the Heckman esti-
mator using standard software designed either for the estimation of static
models with heteroskedastic random effects (available in Stata) or for con-
strained random coefficient models (available in Limdep). The dynamic ran-
dom effects probit model is used as the example throughout the paper, since
it is the most commonly used such model.

The increased ease and availability of the Heckman estimator that these
shortcut methods provide removes some of the initial motivation for the sim-
pler alternatives. However since the Heckman estimator is itself based on an
approximation, this raises the question of the relative finite sample perfor-
mance of these three approximation-based estimators. This paper therefore
also provides an examination of the relative merits of the Heckman, Orme
and Wooldridge estimators in the absence of the software issue. It examines
differences between the three estimators first in the context of an empiri-
cal illustration using a model for the probability of unemployment and then
presents a Monte Carlo investigation of their finite sample performance.?
The Orme and Wooldridge estimators are found to perform as well as, and

in some aspects better than, the Heckman estimator. However, none of the

three estimators dominates the other two in all cases.

2The focus in this paper is on the comparison of the parameter estimates across the
three estimators. “Partial effects” can also be estimated after use of these estimators in
various ways. They can for example be evaluated for particular (real or hypothetical) in-
dividuals (in terms of unobservables as well as observables) or averaged across individuals.
Wooldridge (2005) for example discusses easy calculation of “average partial effects” in the
context of his approach. However, given the central focus of this paper, both the empir-
ical illustration and the Monte Carlo investigation focus on comparison of the parameter
estimates across the three estimators



2 Econometric Model and Estimators

Denote the conditional distribution for the observed dependent variable y;; by
D(yit|Yit—1, Tit, ), where ¢ indexes independent cross section units and ¢ in-
dexes time periods, x;; is a vector of conditioning variables at time ¢ which are
assumed to be strictly exogenous, and «; is the unobserved time-invariant
heterogeneity.®> Denote the parametric density associated with this condi-
tional distribution by fi[yi|vit—1, T, au;01] for t = 1,... T, where §; is the
associated vector of parameters. The density of (yi1, Yi2, - - -, Yir |Yio, Tit, ;) 18

then given by
T
Hft[yitwit—l;xit»ai; 61] (1)

t=1

A parametric specification for the distribution of the unobservables o in
(1) would enable the researcher to integrate out the a from (1). However,
in the absence of the start of the sample coinciding with the start of the
stochastic process, yo will not be independent of « in (1). This requires
some assumptions about the generation of the initial observation.* The three
different estimators for estimating d; from (1) proposed in the literature
differ in terms of how the initial conditions problem in (1) is handled. These
methods are detailed below.

The standard uncorrelated random effects model assumes additionally

3For notational convenience, a balanced panel data structure is assumed. The estima-
tors and all the discussions of them below are easily generalisable to certain unbalanced
cases.

4The assumption that the process has been in equilibrium for some time may also
be used to solve the problem. However, this estimator is not easy to implement using
standard software, and in most of the empirical applications this assumption is difficult to
justify (Heckman, 1981b; Wooldridge, 2002; Hsiao, 2003).



that «a; is uncorrelated with x;. Alternatively, following Mundlak (1978),
correlation between «; and the observed characteristics can be captured by
including z; = (zj0,...,2;r), or alternatively averages of the z-variables
over t, as additional regressors in the model. To simplify notation, this
specification will not be used explicitly here; rather it should be understood
that when the Mundlak correlated random effects (CRE) model is used, x;
in (1) implicitly subsumes a full set of period-specific versions of the (time-

varying) z-variables (or their means).

2.1 The Initial Conditions Problem and Heckman’s
Estimator

The Heckman approach starts from the joint density of (yr, y7_1, - - -, yo|x, @)

specified as

f(yTvnyla s ;y0|$704) = f(yTvnyla s 7y1|y07x7a)f0(y0|x7a) (2)

with the first term on the right hand side given by (1).> The unobservable
a can be integrated out of the log likelihood by making a distributional
assumption about the conditional density of the first observation fo(yo|x, @)

and the density for a given .

f(yTanyla s 7340‘5’3) = /f(yT7 cee 7y1’y07$7 Oé)fo(yo|l',06)g(05‘l')d04 (3)

Heckman suggested approximating the density fo(yo|z,a) using the same

parametric form as the conditional density for the rest of the observations.

>To simplify notation, parameters are not explicitly shown in the densities.



Consider the latent variable form of the random effects probit model for

llustration. Let
Yit = 1[y;<t > 0]7 (4)
where

Yir = VYit—1 + T3 + Orcv; + i, t=1,...,T (5)

with 07 = 1 for identification, and the equation for the first period written

using the error components structure as
Yio = ZA + o + wio, (6)

where z; is a vector of exogenous covariates which is expected to include
Tio and additional variables that can be viewed as “instruments” such as
pre-sample variables. The u;; are independent of the «;. The standard as-
sumptions regarding the distributions of the u; and «; — that they are both
normally distributed, the former with variance 1, the latter with variance
o2 — are made. A test of §y = 0 provides a test of exogeneity of the initial
condition in this model.

The above specifications are written in the spirit of the original Heckman
(1981b) paper where his suggestion was to allow the error in the equation
for the initial conditions (fgcv; + ui0) to be freely correlated with the errors
in the equations for the other periods (6;c; + w;;). In addition, the above
specification also relaxes the standard assumption of equi-correlated errors

in periods t = 1,...,7T.5 Most of the existing applications of this technique

6Tn the standard equi-correlated model, Covar(o;+u;t, a;tu;s) = ai, fort,s=1,...,T,
t # s. The correlation between two periods is therefore given by p = 02 /(02 +1).



have assumed fixed correlation between (fgcv; +u;0) and the error terms in the
equations for the other periods,” as well as within these latter, by specifying

equation (5) as
Vi = Vi1 + T8 + i + ua, t=1,...,T (7)

and equation (6) as
Yio = ZiA + Oa; + wip, (8)

Equations (5) and (6) together specify a complete model for (yo, v1, ..., yr)-
The contribution to the likelihood function for individual ¢ in this model is

given by

(3

T
L- | {m(z At 8005) 20 — 1) T @10825 + 1901 + 0100) 2 — 1] b ()
)
with 07 = 1, g(«) is the probability density function of the unobservable
individual-specific heterogeneity and ® is the standard normal cdf. In the
standard case considered here, « is taken to be normally distributed and the
integral in (9) can be evaluated using Gaussian-Hermite quadrature (Butler
and Moffitt, 1982).
The approximation that is used in equation (6) for the initial period can

also be derived as follows. Write the initial period latent equation as
Yio = ZA" + vig (10)

The initial condition problem is present because of correlation between v;g

and ;. Assuming bivariate normality, (vy, ;) ~ BV N(0,0,02,0%,7), gives

"For an exception, see Andrén (2007).



violay ~ Nr(o,/04),0%(1 — r?)]. Using this, (10) can be written as

Yl = 2\ + rﬁai + (0, V1 —1r2)uyo (11)

Ta
where «; and ;g are orthogonal by construction and u;y ~ N (0, 1). Rescaling
this equation by o,1/1 — 72 gives the equivalent of (6) with 6y = r/(g,v1 — 12)

and the latent variable yj, also rescaled by o,v/1 — r2.

2.2 Shortcut Implementation of Heckman’s Estimator

The simplified implementation procedure proposed here involves the creation
of a set of T + 1 dummy variables: d) = 1if ¢t = 7, d\]’ = 0 otherwise.
Equations (5) and (6) in the model with “freely correlated” v;; can then be

combined to give (with 7 = 1)
Prlyie = 1yit—1, Tit, 2i, v

= O[{ (Y1 +5,8) % (1 —dD) + (0:dY +. . +07d) e} + (A + o) ¥ d'Y)

= (1= di i+ (1=di Vi i) 2 (A +0r iVt 00, o]

(12)
This is equivalent to a standard random effects specification, but with a
heteroskedastic factor loading for the random effects. Software that allows

this form of heteroskedasticity, such as the gllamm program in Stata, can be

used to estimate this model. The more standard “equi-correlated” special



case gives

Priyie = L|yit—1, Tit, 2i, i) =
Oy(1 — dY i1 + (1 — d)aly B+ dP A+ (1 — dY) +0dF)a]

(13)

Alternatively the model can be viewed as a constrained random coeffi-

cients model. The model with “equi-correlated” v;; can be rewritten as

Pr[yit = 1|y’it717 Lity Ziy ai] =

®la; + (1 — d) i + (1 — d)a! 8+ dD2N + (0 — Deud ] (14)

This contains a random intercept term, «;, and the coefficient on d is a second
random coefficient, with a unit correlation with the random intercept, but
a different variance. The specification can also be generalised to the “freely
correlated” form as above with a different variance for each period. Software
for estimating random coefficient models that allows this form of restriction,

such as Limdep, can therefore also be used.

2.3 Orme’s Two-step Estimator

Orme’s two-step estimator is in the spirit of Heckman’s two-step procedure
for addressing the issue of endogenous sample selection. Since the cause of the
initial conditions problem is the correlation between the regressor y;; 1 and
the unobservable «;, Orme (1997, 2001) uses an approximation to substitute
«; with another unobservable component that is uncorrelated with the initial

observation. Using the same assumption as in the derivation of the Heckman

9



estimator, that (vy, ;) ~ BV N(0,0,02,02%,7), and writing now

a;lvig ~ N {T&,Ui(l - 7"2)}
o

v

means that we can write

a; = r&vio + oo (1 = 12w, (15)
o

where w; is orthogonal to vy by construction and distributed as N(0,1).

Substituting for «; in (5) gives

* Oq
Yl = Vi1 + T8+ 6, Ui + 00/ (1 = r2)w; | + uy (16)

v
Equation (16) has two time-invariant unobserved components, v;o and w;.
Since E(w;|yio) = 0 by construction, the initial conditions problem can be
addressed by allowing for the correlation of vy with y;0 in (16). As Orme
notes, (10) and the assumption of bivariate normality for the joint distribu-

tion of (v;0, ;) implies that
ei = E(violyio) = (2yio — 1)owdp(N"2i/0,)/@((2yi0 — VA" 2:/04) (17)

where ¢ and ® are the Normal density and distribution functions respectively.
This is the generalised error from a first period probit equation, analogous
to that used in Heckman’s sample selection model estimator. Hence we can
estimate (16) as a random effects probit model using standard software with
v;0 replaced with an estimate of e; after the estimation of (10) using a simple
probit.

Orme’s method can easily be generalised to allow v;y to be freely corre-

lated with v;; in the spirit of Heckman, by including a set of time dummies

10



interacted with the e; as suggested by Orme. A potential problem is that the
time-invariant error component in the second stage will be heteroscedastic.
When v;g is replaced by e; = E(vi|yio), a factor involving [v;o — e;] gets incor-
porated into w;, which is now heteroskedastic because it depends on the two
conditional expectations involved in e;. The extent of this heteroscedasticity
declines as r does.

Although based on a local approximation for small r, Orme finds that
the approximation works reasonably well even when this correlation is fairly
different from zero. Since the Heckman and Orme estimators make the same
distributional assumptions for (vjg, i;), the simplified implementation of the
Heckman estimator in section 2.2 reduces the usefulness of the Orme estima-
tor. However the Orme estimator offers dramatic savings in computing time

relative to the Heckman estimator.

2.4 Wooldridge’s Conditional ML estimator

The Heckman estimator approximates the joint probability of the full ob-
served y sequence (Yo, Y1, - - ., yr). Wooldridge (2005) on the other hand, has
proposed an alternative Conditional Maximum Likelihood (CML) estima-
tor that considers the distribution of 41, vs,...,yr conditional on the initial
period value yo (and exogenous variables).

The joint density for the observed sequence (y1, s, ..., yr|yo) is written
as f(yr,yr—1,---,91|Y0, T, ). In order to integrate out the unobservable «,
Wooldridge specifies an approximation for the density of a conditional on the

initial observation yy. Thus a specification such as the following is assumed

11



in the case of the random effects probit,
ilYio, zi ~ N(So + S1Yi0 + 215, 02) (18)

where

o = So + S1yio + 2 + a; (19)

in which z; includes variables that are correlated with the unobservable «;.
The appropriate z may differ from that in the Heckman specification. The
idea here is that the correlation between y;, and « is handled by the use
of (19) giving another unobservable individual-specific heterogeneity term
a which is uncorrelated with the initial observation y,. Wooldridge in fact
specifies z; to be x; as in the Mundlak specification using information on
periods 1 to T, but alternative specifications of it would also be possible.

Substituting (19) into (7) gives
Pr(yie = 1]ai, yio) = P[z},B+vyie—1+S1yio+2iS +ai] t=1,....,T (20)

In this model, the contribution to the likelihood function for individual 7 is

given by

T
L;= / {H D (25,6 + YYit—1 + S1¥io + 2is + a;) (2yi — 1)]} g*(a;)da; (21)
=1

where g*(a) is the normal probability density function of the new unobserv-
able individual-specific heterogeneity a; given in (19). Since this is the stan-
dard random effects probit model likelihood contribution, one can proceed
with the maximisation using standard software. Note that if x; is used for z;

this means that the Wooldridge estimator for the uncorrelated random effects

12



specification and for the Mundlak correlated random effects specification are
the same, since z; is already included in the model to be estimated. As for
the other estimators, Wooldridge’s method can also be easily generalised to
allow the initial condition error to be freely correlated with the errors in the
other periods in the spirit of Heckman, by including a set of time dummies
interacted with the ;.

One useful way of contrasting the approaches used by Heckman and
Wooldridge is in terms of the conditioning used and the implications that
this has for the distributional approximations required. Both approaches
share a common specification for f(yi,...,yr|yo, ). Heckman uses this to
specify the joint density of (yo, 41, - .., yr) as in (3). This requires an assump-
tion for the joint density of yo and «, which equals f(yo|a)g(c). Wooldridge

in contrast uses it to specify the conditional density given g

- yrlyo) = / F (@, . yrlo, @)h(alyo)do (22)

Thus while Heckman requires an approximation for the joint density of
and «, Wooldridge only requires an assumption for the conditional density
h(c|yo). In practice in the context of the dynamic probit model, Heckman
and Orme assume bivariate normality for (vjg, c;), while Wooldridge assumes
normality of the conditional distribution of a; given ;.

Another way of contrasting the Wooldridge estimator with those of Heck-
man and Orme is in terms of the implied specification of E(a;|yi0). In the
Heckman and Orme setups, E(«;|yi0) = oar€;/0,, with e; given by (17). In

the Wooldridge setup it is taken to be linear in y;o and z;.

13



2.5 Applications to Other Non-linear Models

Although the random effects probit model has been used for illustration,
the basic principles of the three estimators are easily generalisable to other
random effects dynamic non-linear models such as Tobit, Poisson etc. (see
Wooldridge, 2005; Orme, 2001.) This generalisation also applies to the sim-

plified implementation of the Heckman estimator provided in section 2.2.

Example 1: Dynamic random effects Tobit model

Equations (4) and (5) would become
yir = max|[0, y] (23)

where

Ui = 1q(Yir—1) + T8 + Opv; + uyy t=1,....T (24)

with 7 = 1 and the latent initial condition equation again given by (6).
The effect of the lagged observed response variable is specified in terms of
the function ¢(.). One can also allow separate effects according to whether
the previous period’s outcome was a corner solution or not. See Loudermilk
(2007) and Islam (2007) for recent applications of this model. The other steps
involved in the model estimation, using any of the three methods discussed

earlier, go through.

14



Example 2: Dynamic random effects ordered Probit model

Equations (4), (5) and (6) would become
yir = k if and only if ¢}, € [['x_1,T%), k=1,....K (25)

where

Ui = 1q(Yir—1) + T8 + Opv; + uy t=1,....T (26)

with 67 = 1 and the latent initial condition equation again given by (6).
I'y,...,T'x_1 are threshold parameters with I'y = —oo and 'y = 4+00. The
effect of the lagged observed response variable is specified in terms of the func-
tion ¢(.), containing for example binary indicators for K — 1 of the lagged
potential outcomes. One can also allow separate effects according to the
ordinal response in the previous period. Contoyannis et al. (2004) and Pud-
ney (2008) use models of this form. The other steps involved in the model

estimation, using any of the three methods discussed earlier, go through.

Example 3: Dynamic random effects Poisson model
Here the conditional mean of the y;; process is assumed to take the following

form:

EWit|yit-1, - - -, Yio, Tit, i) = o exp[yq(yie—1) + 25,5] (27)
The effect of the lagged observed response variable is specified in terms of the
function ¢(.). One can allow separate effects according to the specific response

in the previous period. The other steps involved in the model estimation,

using any of the three methods discussed earlier, go through.

15



3 Empirical Illustration

The empirical illustration uses data from the first six waves of the British
Household Panel Survey (BHPS), covering the period 1991-1996, to examine

8 The data used are a sub-

the unemployment dynamics of British men.
sample of those used in Stewart (2007). The sample is restricted to those
who were in the labour force (employed or unemployed) at each of the six
waves. The ILO/OECD definition of unemployment is used, under which a
man is unemployed if he does not have a job, but had looked for work in the
past four weeks and is available for work.

Results for different estimators for a model for the probability of un-
employment of the form of equation (7) above are given in Table 1. The
standard model that assumes equi-correlated errors over periods 1 to 7T is
estimated to keep the illustration simple. Column [1] gives the pooled probit
estimates. Additional education, more labour market experience and being
married reduce the probability of unemployment. Being in poor health or
living in a travel to work area with a high unemployment-vacancy ratio raise
the probability. Being unemployed at ¢ — 1 strongly increases the probability
of being unemployed at t.

Column [2] gives the equivalent standard random effects probit estimates,

treating lagged unemployment as exogenous. The coefficients on all the -

variables are increased, while that on y;_; is reduced relative to the pooled

8The BHPS contains a nationally representative sample of households whose mem-
bers are re-interviewed each year. The sample used here contains only Original Sample
Members, is restricted to those aged 18-64 and excludes full-time students.

16



probit estimates. However the random effects probit and pooled probit mod-
els involve different normalizations. To compare coefficients those from the
random effects estimator need to be multiplied by an estimate of /1 — p,
where p is the constant cross-period error correlation given by p = 02 /(02 +1)
(see Arulampalam, 1999). The scaled coefficient estimate on unemployment
at t — 1 in column [2] is 1.35. Compared with the pooled probit estimator,
the estimate of « is reduced by a quarter in the random effects model, but
remains strongly significant.

The corresponding results for the Heckman estimator are given in column
3], with the initial period equation including two exogenous pre-labour mar-
ket instruments and the full set of period-specific versions of the time-varying
x-variables. (Only the married, poor health and local unemployment-vacancy
ratio variables are treated as time-varying. There are very few changes in the
years of education variable in the sample.) The estimate of  is 0.88, signifi-
cantly greater than zero, rejecting the exogeneity of the initial conditions. (In
fact 0 is insignificantly different from 1.) Compared to the random effects es-
timator treating the initial conditions as exogenous, the Heckman estimator
shows a fall in the estimate of « of about a third and a near doubling in the
estimate of p. In terms of scaled coefficient estimates, v(1 — p)'/2, the stan-
dard random effects probit with the initial conditions treated as exogenous
gives 1.35, while the Heckman estimator gives 0.79.

The Orme two-step estimates for the same model are given in column

[4]. The estimator uses two exogenous pre-labour market instruments in

17



conjunction with x; for all time periods in z; in the initial period equation
as in the Heckman estimator. Relative to the Heckman estimator, the Orme
estimator gives a slightly higher estimate of v: 1.11 compared with 1.05 and
a slightly lower estimate of p: 0.35 compared with 0.43.

The corresponding Wooldridge CML estimates are given in column [5].
The equation estimated contains z;; for all time periods. This gives an esti-
mate of v of 1.06, between the other two estimates and close to the Heckman
estimate, and an estimate of p of 0.36, also between the other two estimates
and close to the Orme estimate. In terms of scaled coefficient estimates,
v(1 — p)*/2, the Wooldridge estimator gives 0.85, about half way between
0.79 for the Heckman estimator and 0.89 for the Orme estimator. However
all three of these estimates are fairly close together. The Wooldridge esti-
mates of the elements of § corresponding to education, experience and the
local unemployment /vacancy ratio are fairly similar to those from the other
estimators. However this is not the case for the coefficients on married and
health limits. The latter is cut by about half, the former by about two-thirds.
Their standard errors are also appreciably higher than for the other estima-
tors and both are insignificantly different from zero with this estimator. The
likely reason for this is seen in the next paragraph.

Estimates for the corresponding correlated random effects model, using
the Mundlak specification, are given in Table 2. This results in the full set
of period-specific versions of the time-varying x-variables being added to the

main equation (in addition to already being in the initial period specifica-

18



tion). Recall that the Wooldridge estimator is the same in both cases. The
estimates of v using the Heckman and Orme estimators both fall slightly
when this specification is used. The estimates of the coefficients on edu-
cation and experience are little changed, but those on the (time-varying)
married and health limits variables fall considerably and now match closely
those from using the Wooldridge estimator.

As indicated above, other specifications of both the z-vector and the
relationship between « and the z-variables have been proposed and can be
used as alternatives. However the contenders considered here have little
effect on the estimates in Tables 1 and 2. To illustrate, using only x;; rather
than the whole of x; in the initial period equation (in addition to the two
exogenous pre-labour market instruments) reduces the Heckman estimate of
~ in Table 1 from 1.048 to 1.047 and increases the estimate of p from 0.430
to 0.433. Replacing the full x; by the time means changes the estimate of
v to 1.049 and that of p to 0.431. Similar very small differences are found
for the elements of (3, for the other estimators and for the correlated random

effects estimates in Table 2.

4 Simulation Illustration

In this section we present the results from a set of Monte Carlo simulation
experiments, to provide a comparison of these estimators in a set of situations
where the true values of the parameters are known.

For the baseline experiment we consider the data generation process used
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by Heckman (1981b) and Orme (2001), but then consider a fuller set of
variants of, and deviations from, this baseline experiment (as well as inves-
tigating all three estimators). The setup for the baseline experiment is as

follows. The latent variable is generated as
Yir = Vie—1 + Bo + Brie + o + iy t=1,...,T (28)

with y;; = 1[y;; > 0], where u; is generated as iid N(0,1) and «; as iid
N(0,06%). (The inter-period error correlation is therefore given by p =
02 /(1 4+ 02).) The start of the process is assumed for the baseline exper-
iment to be at t=—25, i.e. there are 25 unobserved time periods before the
observed “initial condition” period at t=0. Only observations from periods
t=0,...,T are used in the estimation.

The exogenous regressor is taken to be generated by a Nerlove process
of the form z; = 0.1t + 0.5x;;,_1 + U(—0.5,0.5) with z; o5 ~ U(-3,2).”
The N individual z;; sequences are held fixed across replications. In the first
set of experiments y; o5 is generated as a standard normal random variate.
For the baseline experiment samples with N = 200 and 7" = 3 are used to
match those in Heckman (1981b) and Orme (2001), but an extensive range
of alternative values for these were also examined in further experiments. In
the baseline experiment the parameter values were set at v = 0.5, 8; = —1,
By = 4, 0o = 1. Different experiments are then conducted for different

values of T', N, o, and . Each of the experiments is based on 1000 Monte

9Originally used by Nerlove (1971), this process is used to approximate trended vari-
ables commonly found in, for example, labour market micro data (see Heckman, 1981b).
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Carlo replications.! The Heckman and Orme estimators used x;y alone in
the specification for the initial condition.

Table 3 gives the average bias (in percentage terms relative to the true
value) and the root mean square error for the estimates of v and [ using
the Heckman, Wooldridge and Orme estimators in each of the first set of
experiments. In the baseline experiment, the Heckman estimator has the
largest relative bias in the estimator of 7, in excess of 12% of the true value,
while the Wooldridge estimator has the smallest relative bias at around 4%.
However in contrast the Wooldridge estimator of v has a slightly larger root
mean square error than the other two estimators and the Heckman estimator
a slightly smaller one. In addition the Heckman estimator of 3 has the
smallest bias at around 2% and the Wooldridge estimator the largest at
around 6%. The standard errors of the estimated percentage relative biases
are about 1.7% for v and 0.8% for 3 for all three estimators. Thus the
estimated biases for the baseline experiment are all significantly different
from zero.

Another worthwhile comparison is with the standard random effects pro-
bit estimator, i.e. treating the initial condition as exogenous. This gives an
average estimate of v of 1.37 compared with the true value of 0.5 and hence a
percentage relative bias of 174%. Thus all three of the estimators examined
here do a good job of dramatically reducing this bias. Looking at the asymp-

totic t-statistics for the null hypothesis that v equals its true value and using

10The Monte Carlo simulations were conducted using Stata V10 (StataCorp. 2008). The
Heckman estimator used the gllamm command (http://www.gllamm.org).
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a nominal 5% significance level, the three estimators (in the order used in
the table) give rejection rates of 5.6%, 5.3% and 5.4%. So all fairly close to
the nominal level. This contrasts with a 98% rejection rate for the standard
random effects probit estimator treating the initial condition as exogenous.!!

The relative biases and the root mean square errors all decline when T is
increased to 5 in experiment 2 and mostly decline further when 7" is increased
to 8 in experiment 3. Figure 1 plots the percentage relative biases in the
estimates of v for each value of T' from 2 to 12. For T of 4 and above this
shows bias of about 3% or less, markedly lower than for 7' = 2 or 3. These
are however significantly different from zero at the 5% level for at least one
of the estimators for T' = 4, 5 and 10. As for T'=3, the rejection rates for
the tests of v equal to its true value are fairly close to the nominal 5% for all
T > 4. However for T=2, these rejection rates are far too high: 18%, 14%
and 18% for the three estimators.

The next two experiments reported in Table 3 are for higher values of N
than in the baseline experiment. The three estimators show slight improve-
ments in the bias in ¥ when N is increased from 200 to 500 and considerable
improvement when it is increased to 1,000. The picture is less clear for B
Figure 2 plots the percentage relative biases in the estimates of v for values
of N between 200 and 1,000. The biases are small from about N=800 up-
wards. Experiments 4 and 5 and Figure 2 are all based on T'=3. The biases

are smaller for 7=>5. This is shown further in Figure 3, which gives the cor-

HUDetails of results referred to in the text but not tabulated are available from the
authors on request.
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responding plot to Figure 2 but for 7'=5. In this case the biases are small
for slightly lower N too. Experiment 5 indicates that the biases are small
with N=1,000 even for T=3. Figure 4 plots the percentage relative biases
in the estimates of v for N=1,000 and T" between 2 and 12. The percentage
relative biases are reasonably small for all T" except T=2.

The first five experiments were conducted in parallel with 7; included in
the initial condition specification, with {z;} included, and with neither in-
cluded. The biases in 7 and /B are similar across these three specifications for
all these experiments. In fact for each of the three estimators, the inclusion
of {x;;} worsens the bias more often than it improves it.

Experiments 6 and 7 examine the impact of different values of o, lower
than that in the baseline experiment in experiment 6 and higher in exper-
iment 7. A change in o, has more than one effect on the model and the
estimators. In experiment 6, o, is reduced from 1.0 to 0.5. This of course
reduces the variance of the combined error term and hence increases the “ex-
planatory power” of x; and 1;_; in the latent equation. Second, it reduces
the cross-period error correlation, given by p = 2 /(0% + 1), from 0.5 to 0.2.
Third, it reduces r, the correlation between v;y and «;, from 0.59 to 0.35.
Fourth, it reduces 7, the mean of the outcome variable in the initial condi-
tion period, from 0.31 to 0.25 (and also the means in subsequent periods).
Despite the reduction in 7, this worsens the bias in all three estimators of
and in two of the estimators of 3.

In experiment 7, o, is increased from 1.0 to 1.5. This reduces the “ex-
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planatory power” of x; and y,_; in the latent equation and increases p from
0.5 to 0.69, r from 0.59 to 0.70, and g, from 0.31 to 0.36. Despite the increase
in r, this reduces the bias in two of the estimators of v. However the bias in
the estimation of 3 is increased for all three estimators.

Experiments 8 and 9 examine the impact of different values of v, lower
than that in the baseline experiment in experiment 8 and higher in experi-
ment 9. Again changing 7 has knock-on effects. In experiment 8, v is reduced
from 0.5 to 0.25. This reduces the “explanatory power” of the latent equa-
tion. However it also slightly reduces r, from 0.59 to 0.56, and ¥, from 0.31
to 0.28. This worsens the bias in all three estimators of v and for two of
the estimators of 8. In experiment 9, v is increased from 0.5 to 0.75. This
increases the “explanatory power” of the latent equation. However it also
slightly increases r, from 0.59 to 0.62, and ¥, from 0.31 to 0.35. This re-
duces the bias in all three estimators of v and for two of the estimators of
(although only very slightly).

Experiments 10-13 repeat experiments 6-9 with T'=5 and experiments
14-17 do so with T=8. For the three experiments with any biases in excess
of 10% (namely experiments 1, 6 and 8) the Wooldridge estimator has a
smaller bias in 4 than the other two and the Orme estimator slightly smaller
than the Heckman estimator. The Wooldridge estimator does not have a bias
of 10% in any of the experiments. However for each of these experiments,
the Wooldridge estimator of v has the largest bias of the three estimators

when 7' is increased to 5 and there is nothing to choose between them when
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T is further increased to 8.

In summary, when 7" and/or N are reasonably large (e.g. T' > 6, N >
800), the relative bias in 7 is generally fairly small for all three estimators. For
smaller samples, the biases are larger, but none of the estimators dominates
the other two in all experiments.

More light can potentially be thrown on the differences in performance
of the estimators by the next group of experiments, which take the initial
condition period to coincide with the start of the process and can then vary
r directly without changing other parameters. (The data generation process
used in experiments 1-17 allowed the process to settle down prior to the
estimation period by discarding the first 25 periods prior to the estimation
sample.) The results for this group of experiments are given in Table 4.
(They all also use T=5.) In experiment 18, r is set to zero and hence the
initial condition is exogenous. The initial observation y}, was drawn from
N(—0.45,1.0) and (3, was set equal to —1.0. These intercepts were chosen
to give period-by-period sample means for the observed y similar to the
base experiment. The rest of the parameters are the same as in the base
experiment.

Relative to experiment 2, all three estimators of v show an improvement
in the relative bias, which is almost zero for all three estimators. However,
despite this, the root mean square error worsens for all three estimators. In
contrast there is a slight increase in the relative bias in the estimators of [,

to about 4% for all three estimators, but a slight reduction in the root mean
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square error.

In the remaining experiments reported in Table 4 the initial condition
is treated as endogenous by allowing correlation between the error term in
the initial observation equation and that in the equation for the subsequent
time periods. This is achieved by generating the initial observation using
yly = —0.45 + ra; + /T — r2uyy where uig ~ N(0,1). (The exogenous initial
condition case is given by r = 0.)!? For small values of r, there are no sig-
nificant differences between the three estimators. However, as r is increased,
while all three estimators of v deteriorate, the Heckman estimator worsens
slightly more than the other two in terms of bias. The root mean square er-
rors for the three estimators though are virtually identical. For /B the relative
bias and root mean square error change relatively little as r is increased and
the differences between the three estimators in both of these are narrow.

In summary, as the initial conditions problem becomes more serious (as
measured by the correlation between the equation errors in the initial period
and later periods), the Heckman estimator deteriorates somewhat more than
the other two in terms of the relative biases. However, the root mean square
errors for all three estimators are very similar.

Judged across the full set of experiments conducted, none of the three
estimators dominates the other two in all cases, or even in a majority of

cases.

12When z was included in the generation process for the initial observation, the results
were very similar to those given here.
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5 Conclusions

This paper presents a convenient shortcut method for implementing the Heck-
man estimator of the dynamic random effects probit model using standard
software. This removes the need for separate programming and puts this
estimator on a similar footing to the simpler estimators suggested by Orme
and Wooldridge based on alternative approximations. The choice between
these estimators can therefore be based on performance rather than avail-
ability or ease of use. An empirical illustration has been presented in section
3 and a set of simulation experiments in section 4. The former suggests that
it is advantageous to allow for correlated random effects using the approach
of Mundlak (1978), but that once this is done, the three estimators provide
similar results. The simulation experiments suggest that none of the three
estimators dominates the other two in all cases. In most cases all three

estimators display satisfactory performance, except when T is very small.
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Table 1
Unemployment probability model: Alternative estimators

[1] 2] [3] [4] [5]
Probit RE probit Heckman  Orme  Wooldridge

Unemp(t-1) 1.837 1.536 1.048 1.107 1.062
0074  [0.122]  [0.130]  [0.115]  [0.115]
Education -0.043 -0.050 -0.058 -0.054 -0.055
0.011]  [0.014]  [0.017]  [0.016]  [0.017]
Experience -0.048 -0.068 -0.072 -0.064 -0.066
0.030]  [0.037]  [0.045]  [0.043]  [0.045]
Married -0.186 -0.236 -0.309 -0.280 -0.092
0.066)  [0.082]  [0.100]  [0.093]  [0.227]
Health limits ~ 0.429 0.503 0.585 0.569 0.289
0.093  [0.114]  [0.133]  [0.126]  [0.185]
Local u/v 0.654 0.849 0.941 0.919 0.880
0.220]  [0.268]  [0.306]  [0.292]  [0.396]
e 0.459
[0.076]
Unemp(0) 1.016
[0.161]
p 0.225 0.430 0.354 0.357
0.065]  [0.063]  [0.044]  [0.043]
0 0.882
[0.189]
LogL -1052.00 -1044.81  -1341.14 -1024.24  -1014.01

Estimators:

1. Pooled Probit

2. Standard Random Effects Probit (initial condition taken to be exogenous)

3. Heckman estimator, with z in all periods and 2 exogenous instruments in initial period equation
4. Orme estimator, with z in all periods and 2 exogenous instruments in initial period equation

5. Wooldridge estimator, with « in all periods included in z
Notes:

1. Full sample size = 10,092. (N = 1,682, T' = 5.)

2. LogL in [3] is for joint model for all periods 0 to 7. Those in other columns are for periods 1 to
T only.
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Table 2
Unemployment probability model: Alternative estimators with
Mundlak correction for correlated individual effects

1] 2] [3] [4] [5]
Probit  RE probit Heckman  Orme  Wooldridge

Unemp(t-1) 1.811 1.500 1.009 1.074 1.062
0.075)  [0.124]  [0.130]  [0.115]  [0.115]
Education -0.044 -0.052 -0.060 -0.056 -0.055
0.012]  [0.015  [0.018]  [0.017]  [0.017]
Experience -0.050 -0.072 -0.077 -0.070 -0.066
0031  [0.040]  [0.048]  [0.045]  [0.045]
Married -0.041 -0.063 -0.095 -0.090 -0.092
0194 (0212  [0.231]  [0.226]  [0.227]
Health limits  0.211 0.254 0.299 0.287 0.289
0.158]  [0.174]  [0.189]  [0.185]  [0.185]
Local u/v 0.633 0.900 0.896 0.873 0.880
0338  [0.378]  [0.406]  [0.396]  [0.396]
e 0.469
[0.076]
Unemp(0) 1.016
[0.161]
P 0.232 0.439 0.357 0.357
0.066]  [0.063]  [0.044]  [0.043]
0 0.885
[0.189)]
LogL -1044.03  -1044.81  -1332.14 -1015.40 -1014.01

Notes:

1. Estimators as in Table 1 with z in all periods added to main equation.
2. Full sample size = 10,092. (N = 1,682, T = 5.)

3. LogL in [3] is for joint model for all periods 0 to 7. Those in other columns are for periods 1 to
T only.
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Table 3: Simulation results

gl gl &) s
Relative RMSE Relative RMSE
Experiment  Estimator  Bias (%) Bias (%)
1) Base Heckman -12.63 0.264 1.85 0.257
Wooldridge — -3.96 0.280 -5.95 0.262
Orme -8.48 0.274 -2.42 0.257
2) T=5 Heckman -1.98 0.164 -1.57 0.170
Wooldridge -3.09 0.165 -3.55 0.172
Orme -0.65 0.164 -1.77 0.170
3) T=8 Heckman 0.34 0.154 -0.66 0.132
Wooldridge -0.46 0.155 -2.08 0.133
Orme 0.66 0.155 -0.86 0.132

4) N=500 Heckman 7.60 0.177 -0.46 0.169
Wooldridge 2.73 0.177 -6.92 0.181
Orme 8.23 0.179 -1.30 0.169

5) N=1000  Heckman 0.04 0.117 4.99 0.128
Wooldridge 0.07 0.122 -1.02 0.118
Orme 0.20 0.119 3.99 0.125

6) 0,=0.5 Heckman -15.06 0.247 4.85 0.252
Wooldridge -6.18 0.248 -0.36 0.240
Orme -13.02 0.245 3.58 0.247

7) 0,=1.5 Heckman -3.28 0.276 -2.93 0.283
Wooldridge  -5.00 0.321 -7.67 0.303
Orme -6.36 0.321 -6.81 0.299

8) v=0.25 Heckman -20.73 0.269 0.65 0.254
Wooldridge -6.31 0.283 -6.55 0.259
Orme -14.25 0.277 -3.21 0.253

9) v=0.75 Heckman -8.21 0.270 2.56 0.265
Wooldridge -1.11 0.288 -5.78 0.268
Orme -4.58 0.282 -2.11 0.262

33



Table 3 (continued): Simulation results

g gl B p

Relative RMSE Relative RMSE

Experiment  Estimator Bias (%) Bias (%)
10) 0,=0.5, Heckman -1.53 0.170 -2.07 0.169
T=5 Wooldridge -3.25 0.171 -3.27 0.170
Orme -1.17 0.170 -2.24 0.170
11) 04,=1.5, Heckman -1.77 0.180 -1.44 0.178
T = Wooldridge -2.45 0.182 -3.29 0.182
Orme -0.07 0.183 -1.42 0.180
12) v=0.25, Heckman -5.01 0.172 -1.71 0.167
T= Wooldridge  -7.30 0.173 -3.64 0.168
Orme -3.18 0.173 -1.88 0.167
13) v=0.75,  Heckman -0.66 0.167 -1.25 0.171
T=5  Wooldridge -1.54 0.167 -3.26 0.173
Orme 0.36 0.167 -1.49 0.171
14) 0,=0.5, Heckman 0.72 0.167 -0.54 0.138
T = Wooldridge -0.07 0.168 -1.67 0.138
Orme 1.10 0.168 -0.72 0.138
15) 0,=1.5, Heckman 3.34 0.152 -3.71 0.136
T=38 Wooldridge -2.21 0.157 -2.57 0.137
Orme -1.38 0.158 -1.48 0.137
16) v=0.25, Heckman 0.88 0.157 -0.61 0.130
T = Wooldridge  -0.55 0.156 -2.04 0.131
Orme 1.27 0.157 -0.85 0.130
17) v=0.75,  Heckman -0.44 0.155 -0.50 0.135
T=8  Wooldridge  -1.15 0.155 -1.90 0.136
Orme -0.19 0.155 -0.66 0.136

Notes:

1. 1000 Monte Carlo replications used in each experiment.

2. In the baseline experiment the parameter values were set at v=0.5, 3;=-1, By=4, ca=1. The

process starts at t=-25, the observed “initial condition” period is t=0, T'=3 and N=200.
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Table 4
Simulation results for alternative data generation process

g gl B B
Relative RMSE Relative RMSE
Experiment  Estimator  Bias (%) Bias (%)

18)r = 0.0 Heckman 0.04 0.185 3.79 0.146
Wooldridge -0.10 0.184 3.85 0.146
Orme -0.15 0.183 3.85 0.146

19) r=0.2  Heckman -0.73 0.183 3.84 0.146
Wooldridge -0.71 0.184 3.88 0.147
Orme -0.79 0.184 3.86 0.146

20) r=0.4  Heckman -1.57 0.184 4.00 0.149
Wooldridge -1.28 0.185 3.87 0.148
Orme -1.38 0.184 3.88 0.148

21) r=10.6 Heckman -2.96 0.185 4.14 0.151
Wooldridge -2.14 0.186 3.78 0.149
Orme -2.27 0.186 3.81 0.149

22) r =0.8  Heckman -4.37 0.193 4.26 0.153
Wooldridge -1.91 0.193 3.43 0.149
Orme -2.04 0.192 3.52 0.149

Notes:

1.

2.

1000 Monte Carlo replications used in each experiment.

In experiments 18-22 there were no run-in periods, i.e. the process was started at t=0. The initial
observation yj, was generated in the exogenous initial condition experiment (18) as N(—0.45,1)
and in the endogenous initial conditions experiments (19-22) as y¥, = —0.45 + ra; + V1 — r2u;o
where ujo ~ N(0,1). B, was set equal to —1.0. These values were chosen to gives averages for y
similar to the base experiment. T=5, N=200 for all experiments in this table.
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Figure 1: Percentage Bias in Estimates of y by T for N=200
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Figure 2: Percentage Bias in Estimates of y by N for T=3
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Figure 3: Percentage Bias in Estimates of y by N for T=5
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Figure 4: Percentage Bias in Estimates of y by T for N=1000

39





