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Abstract

Vickrey-Clarke-Groves (VCG) mechanisms are often usedltxae tasks to selfish and ratio-
nal agents. VCG mechanisms are incentive-compatiblectdinechanisms that are efficient (i.e.
maximise social utility) and individually rational (i.e.gants prefer to join rather than opt out).
However, an important assumption of these mechanismstiththagents wilalwayssuccessfully
complete their allocated tasks. Clearly, this assumptsonnirealistic in many real-world appli-
cations where agents can, and often do, fail in their endeavaMoreover, whether an agent is
deemed to have failed may be perceived differently by difielagents. Such subjective percep-
tions about an agent’s probability of succeeding at a giesk aire often captured and reasoned
about using the notion dfust. Given this background, in this paper, we investigate trségieof
novel mechanisms that take into account the trust betweemsgvhen allocating tasks.

Specifically, we develop a new class of mechanisms, caédiest-based mechanisithat can
take into account multiple subjective measures of the foitihaof an agent succeeding at a given
task and produce allocations that maximise social utilitijlst ensuring that no agent obtains
a negative utility. We then show that such mechanisms podeatlenging new combinatorial
optimisation problem (that is NP-complete), devise a nospitesentation for solving the problem,
and develop an effective integer programming solutiont @ha solve instances with abduk 10°
possible allocations in 40 seconds).

1. Introduction

Task allocation is an important and challenging problem within the field of muliHagjestems.
The problem involves deciding how to assign a number of tasks to a settfsagccording to some
allocation protocol. For example, a number of computational jobs may needtimbated to agents
that run high performance computing data centres [3], a number of Hetmaintenance tasks may
need to be performed by communications companies for a number of buslieggs [14], or a
number of transportation tasks may need to be allocated to a number of yletivepanies [36]. In

(©2008 Al Access Foundation. All rights reserved.



RAMCHURN, MEZZETTI, GIOVANNUCCI, RODRIGUEZ, DASH, AND JENNINGS

the general case, the agents performing these jobs or asking for thede joe performed will be
trying to maximise their own gains (e.g. companies owning data centers orsamlebe trying

to minimise the number of servers utilised, communications companies will try to minimise the
number of people needed to complete the tasks demanded, and truck camwpérnig to use the
minimum number of vehicles). Given this, Mechanism Design (MD) technigaase employed
to design these task allocation protocols since these techniques canegsmlutions that have
provable and desirable properties when faced with autonomous and utilitgnieaeg actors [6]. In
particular, the Vickrey-Clarke-Groves (VCG) class of mechanisms éas hdvocated in a number
of problem domains [38, 12, 6] because they maximise social welfare (eg.atte efficient) and
guarantee a non-negative utility to the participating agents (i.e. they arédinglily rational). In
such mechanisms, agents typically reveal their costs for performing the dasheir valuation of
the requested tasks to a centre and the centre then computes the allocatigks ob teach agent
and the payments they all need to make. However, an important underpassamption that such
mechanisms make is that an agalwayssuccessfully completes every task that is assigned to it by
the centre. The result of this assumption is that an allocation (i.e. an assigohtasks that are
asked for by requester agents and executed by task performer)dgaetsected by the centre based
only on the costs or valuations provided by the agents. This ensuresél#ritre always chooses
the performers that are the cheapest and the requesters that aréor@ay the most. However,
the agents chosen by the centre may ultimately not be successful in compleiingsignment.
For example, an agent providing access to a data centre with a cdsitOpfout with a success
rate of 100%, might be preferable to one providing the same service with a cagbdiut with a
10% chance of being successful. Thus, in order to make efficient allocati@uEncircumstances,
we need to design mechanisms that consider both the task performersfarats serviceand
their probability of succeséPOS). Now, this probability may be perceived differently by different
agents because they typically have different standards or meanslwétavg the performance of
their counterparts. Given this, we turn to the notiortrakt to capture such subjective perceptions
[33]. To take into account the agents’ trust in other agents, as well asctsts, when allocating
tasks requires the design of a new class of mechanism that we haveugiewermed trust-based
[71.

To date, however, existing work on trust-based mechanisms (TBMs)ag@anumber of impor-
tant aspects of the task allocation problem which makes them less robuseitaimnty (see section
2 for more details). First, Porter et al. [32] only allow POS reports to cooma the task performer,
rather than any other agent. This means the task requester can be misledtésktiperformer’s
opinion (even if it is truthfully revealed) since the task requester may bekvenes, that the task
performer failed while the task performer believes it has succeededn&gia our previous work
[7], we presented a mechanism that could result in inefficient allocat®agents had strong incen-
tives to over-report their POS. Even more importantly, however, existirgj-brased mechanisms
completely ignore the computational cost associated with including the POS irutomghe opti-
mal allocation and payments. Thus, while previous work highlights the ecormnifits, they do
not specify how the new problem can be effectively representedficiéetly solved. By so doing,
it is not apparent whether such mechanisms can actually be implementedl, soldevhether they
scale up to reasonable numbers of agents.

Against this background, this paper provides efficient and individuallipmal mechanisms
for scenarios in which there exists uncertainty about agents suclhgssimpleting their assigned
tasks. Thisexecution uncertaintgan generally be modelled as follows. First, potential task per-
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formers are assessed by a task requester that uses both its indixjgeréece of their performance
and information gathered from its environment (such as reports by afleetsabout their perfor-
mance) to construct its estimation of their POS. Often these sources arectaifetence and repu-
tation respectively [33, 5], and when combined they give the notion dfitr@s agent performing a
particular task. This combined view of trust is used here because it is a obwst measure of POS
than any single estimate (especially one emanating from the task perforrhe)is Bvident from
the fact that each agent is only likely to have a partial view of the perfocmaha task performer
because it is derived from a finite subset of its interactions. For exampéesk requester having
ten tasks performed by an agent may benefit from the experience estduam another requester’s
fifty interactions with that same agent. However, incorporating trust in thiside mechanism of
the requester introduces two major issues. First, when agents use feportther agents to build
trust, it introduces the possibility dfterdependent valuationsThis means that the value that is
generated by one agent in the system can be affected by anothesagenott to the mechanism
[13, 22]. This, in turn, makes it much harder than standard VCG-baséditpies to incentivise
agents to reveal their private information truthfully. Second, introducungt involves a significant
computational cost and we show that solving the optimisation problem of tasstshmechanisms
is NP-complete.

To tackle the issue of interdependence, we build upon the work by Me2&tfi3] to construct
a novel mechanism that incentivises agents to reveal their private iniormavioreover, to help
combat the computational complexity generated by trust, we go on to develmgebrapresenta-
tion for the optimisation problem posed by trust-based mechanisms and paoviaglementation
based on Integer Programming (IP). Given this, we show that the main leattlenthe mechanism
lies in searching through a large set of possible allocations, but dementted our IP solution
can comfortably solve small and medium instances within minutes or hours (#.§.tdsks and
70 agents}. In so doing, we provide the first benchmark for algorithms that aim to saleh s
optimisation problems.

In more detail, this paper advances the state of the art in the following ways:

1. We design novel TBMs that can allocate tasks when there is uncerthioty their comple-
tion. Our TBMs are non-trivial extensions to [31] because they are tsietdi consider the
reputation of a task performer within the system, in addition to its self-repoiis allows
us to build greater robustness into the mechanism since it takes into accesuibjective
perceptions of all agents (task requesters in particular) about the P@sk@erformers.

2. We prove that, in expectation, our TBMs are incentive compatible in Naqsiil@ium, effi-
cient and individually rational.

3. We develop a novel representation for the optimisation problem posé&g and, given
this, cast the problem as a special matching problem [2]. We show thaigtihe generalised
version of TBMs is NP-complete and provide the first Integer Programnohdisn for it.
This solution can solve instances of 50 agents and 6 tasks within one minuteemthrger
instances within hours.

The rest of the paper is structured as follows. We first provide arviveiof the related work in
Section 2. We then provide the contributions listed above in a step-wise m&mséra simple task

1. Though the time taken to find the optimal solution grows exponentially withuheer of tasks, our mechanism sets
the baseline performance in solving the optimisation problem posed bybmesti mechanisms.
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allocation model is detailed in Section 3 where we introduce the TBM for a siagleester, single
task scenario. Section 4 then develops the generalised TBM for multiplestegs and multiple
tasks and we prove its economic properties. Having dealt with the econopactaswe then turn
to the computational problem of implementing TBMs in section 5. Specifically, weloe a new
representation for the optimisation problem posed by the generalised Tédy,the computational
costs associated with solving the problem, and provide an IP-based sdtuitorSection 6 then
discusses a number of broader issues related to the development eftfusitrbased mechanisms.

2. Related Work

In associating uncertainty to mechanism design, we build upon work in beds.awith regards to
capturing uncertainty in multi-agent interactions, most work has focuseéwsing computational
models of trust and reputation (see [37] and [33] for reviews). Thesdels mostly use statistical
methods to estimate the reliability of an opponent from other agents’ repattdir@ct interactions
with the opponent. Some of these models also try to identify false or inaccepds by checking
how closely each report matches an agent's direct experience with gomenpt [37, 16]. Now,
while these models can help in choosing the most successful agents, et ahown to generate
efficient outcomes in any given mechanism. In contrast, in this paper weprthe means to use
such models in order to do just this.

In the case of MD, there has been surprisingly little work on achievingefficincentive com-
patible and individually rational mechanisms that take into accouacertaintyin general. The
approaches adopted can be separated into work on reputation mechamismschanisms for task
or resource allocation. The former mainly aim at eliciting honest feedlvack feport providers.
Examples of such mechanisms include [9, 15, 24, 16]. In particular, Millglr eecently developed
the peer prediction model [24] which incentivises agents to report tilyttEfloout their experience.
Their mechanism operates by rewarding reporters according to howheglleports coincide with
the experience of their peers. Specifically, it assigns scores to theadidiatween a given agent’s
report and other selectedferencereporters’ reports on a given task performer. In a similar way,
Jurca and Faltings have also attempted to solve the same problem by placingnpaoitance on
the repeated presence of agents in the system in order to induce trefhduling [17]. However,
given that they focus on eliciting honest feedback, their mechanism i$ af¢a what this feedback
is actually used for. In particular, it cannot be employed in the task allocatienario we study
in this paper because in our case the objective is to maximise the overall utilitg ebthiety that
therefore considers the valaad POS of agents. For example, feedback on the quality of service
of a mechanic is less critical than feedback on a bridge builder due to teeetitfes in value of
these tasks. Interestingly, their mechanism is shown to have truth-tellingremmaifique) Nash
equilibrium and is budget balanced, but not individually rational (seti@&e6 on how these social
desiderata interplay).

In terms of MD for task allocation, type uncertainty is taken into account byeBian mecha-
nisms such as Arrow-d’Aspmont-Gerard-Varet [8]. This considers the case when the payoffs to
the agents are determined via a probability distribution of types which is comnmwidaige to all
agents. However, this mechanism cannot deal with our problem in which ihancertainty about
task completion and each agent has information about the POS of all odr@saBorter et al. [32]
have also considered this task allocation problem and their mechanism isttieadis most closely
related to ours. However, they limit themselves to the case where agentslgagpmrt on their own
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POS. This is a serious drawback because it assumes the agents carerttegisown POS accu-
rately and it does not consider the case where the agents may haverdifferceptions on the POS
(e.g. a performer believes that it performs better or worse than whatduester perceives). More-
over, they only consider a single requester single task setting, while theamsois we develop
here deal with multiple tasks and multiple requesters. Thus, our mechanisrbe cansidered to
be a two-way generalisation of theirs. First, we allow multiple reports of taicgy that need to be
fused appropriately to give a precise POS as perceived by the tegu&scond, we generalise their
mechanism to the case of multiple requesters where the agents can provlleatorial valuations
on multiple tasks. In our earlier work on this problem [7], we proposecelrpinary TBM where
the agents could have followed the risky, but potentially profitable stratégyer-reporting their
costs or underreporting their valuations since payments are not maddiagdo whether they suc-
ceed or fail in the allocated task (which we do in our new mechanism). Inasinin this work, the
payment scheme ensures that such a strategy is not viable and thus thésisiecis more robust.
Moreover, our previous work assumed trust functions that were moiwaity increasing in POS
reports and (similar to Porter et al.) did not develop the algorithms that adedée actually solve
the optimisation problem posed by a TBM. In this paper, we present a nisohémat applies to
more general trust functions and also develop algorithms to solve TBMs.

Finally, our work is a case of interdependent, multidimensional allocatiomsehie With in-
terdependent payoffs, [13] have shown that is impossible to achiéieeerty with a one-stage
mechanism. Mezzetti, however, has shown that it is possible to achieviereffiavith an elegant
two-stage mechanism under very reasonable assumptions [22]. Ouamisalachieves efficiency
without needing two reporting stages because in the setting we consiteepisycan be contingent
on successful task completion and agents do not derive a directf iayofthe allocation of a task
to another agent or the other agents’ assessments about the compleliahilgies. In our set-
ting, there exists a specific function that captures the interdependenexitta among the agents
through their assessments of completion probabilities. This function is, ireser the agents’ trust
model.

3. Single Requester, Single Task Allocation Mechanisms

In this section, we first present the basic VCG mechanism for a simple taglattio model (a
single task being requested by a single agent) where the allocated taskastged to be com-
pleted (i.e. all agents’ POS are equal to 1). We then briefly describerforé’s [31] extension
which considers task performers that have a privately known objegtodeability that they finish
the assigned task. Finally, we consider the case where the POS of atisknge is a function of
privately known variables held by each task performer in the system. Thiges that the choice
made by the task requester is better informed (drawing data from variousesd about the POS of
task performers. We show how Porter et al.'s mechanism would fail wusethe efficient alloca-
tion in such settings and then go on to provide a non-trivial extension ofrttaalel to cater for this.
In so doing, we define a new trust-based mechanism for the single teguesgle task scenario
(as a prelude to the generalised mechanism that we will develop in the t&gh3eWe then go on
to prove the economic properties of this simple TBM. Throughout this se@iamning example
task allocation problem is employed to demonstrate the workings of the mechatissussed.
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3.1 Allocation with Guaranteed Task Completion

In this task allocation scenario, a single agent derives a value wheteindassk is performed. To
this end, an agent needs to allocate the task to one of the available taskeesfaovhich will charge
a certain amount to execute the task. We start by considering the followintgséxgample:

Example 1. MoviePictures.com, a computer graphics company, has an imageriegdask that
it wishes to complete for a new movie. Hence, MoviePictures.com publichuanes its intention
to all companies owning data centres that can execute the task. Given tresirgieown by many
of these companies, MoviePictures.com needs to decide on the mechanikmate the contract
and how much to pay the chosen contractor, given that MoviePicturesioesinot know all the
contractors’ costs to execute the job (i.e. it does not know how much #lictwsts each company
to process the images and render them to the required quality).

The above example can be captured by the following model. There is a agenfs (data
centre agents in the examplg),= {1,2,...,4,...,1}, who each have a privately-known cost
ci(t) € Rt U {0} of performing the rendering task Furthermore, let MoviePictures.com be
represented by a special agénwho has a valuey(7) € Rt U {0} for the rendering task and a
cost ofco(7) > vp(7) to perform the taskdqy(7) = oo in case agent 0 cannot execute the task).
Hence, MoviePictures.com can only get the task performed by anoteet iaghe sef who has a
coste; (1) < vo(7).

Now, MoviePictures.com needs to decide on the procedure to awardritractoand hence acts
as thecentrewhich will invite offers from the other agents to perform the task. In degisinch
a mechanism for task allocation, we focusionentive-compatible direct revelatianechanisms
(DRMs) by invoking therevelation principlewhich states that any mechanism can be transformed
into a DRM [20]. In this context, “direct revelation” means the strategy sfdae. all possible
actions) of the agents is restricted to reporting thgie(i.e. their private information, for example
their cost or valuation of a task) and “incentive-compatible” means the equitibstrategy (i.e.
best strategy under a certain equilibrium concept) is truth-telling.

Thus, in a DRM the designer has control over two parts: 1) the allocatlerthrat determines
who wins the contract and 2) the payment rule that determines the trarfisfeoney between
the centre (i.e. MoviePictures.com) and the agents (i.e. of the data centrets}< denote a
particular allocation within the space of possible allocatighsnd 7 represent that agerit
gets allocated task from agent0. Then, in this setting, the space of all possible allocations are
K= {2,020 . 719 whereo denotes the case where the task is not allocated. More-
over, we abuse notation to define the cost of an allocatiaile agenti, as being:; (K) = ¢;(7) if
K = 7% andc¢;(K) = 0 otherwise. Similarly, for the centre, the value of a non empty allocation
is simply the value it has for the task, i.eq(K) = vo(7) if K # () andvg(K) = 0if K = 0.
Finally, letr;(K) € R be the payment by the centre to agébtased on its allocation i In case
r;(K) is negative, agenthas to pay-;(K) to the centre.

Within the context of task allocation, direct mechanisms take the form of sealealctions
where agents report their costs to a centre (or auctioneer). Agentsoheysh to report their true
costs if reporting these falsely leads to a preferable outcome for them. Weviifore distinguish
between the actual costs and the reported ones by superscripting thevigter’.

The task allocation problem then consists of choosing the allocation and pasutes such that
certain desirable system objectives (some of which are detailed belosatsted. Following the
task execution and payments, an ageterives a utility given by its utility functiom, : xR — R.
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As is common in this domain, we assume that an agent is rational (expected utilityisery and
has a quasi-linear utility function [21]:

Definition 1. A quasi-linear utility function is one that can be expressed as:
ui(K) = ri(K) — ¢;(K) @)
whereK € K is a given allocation.

Having modelled the problem as above, MoviePictures.com then decides koyeanygickrey
auction (also known as a second-price sealed bid auction) since thisgrptssesses the desired
properties of efficiency and individual rationality. In more detail, thessdigata can be formally
defined as follows:

Definition 2. Efficiency: the allocation mechanism is said to be efficient if the outcome it generates
maximises the total utility of all the agents in the system (without consideringféna). That is, it
calculateskK™ such that:

K* = argmax [vo(K) - ch(K)] 2

Kek icT

Definition 3. Individual Rationality: the allocation mechanism is individually rational if agents
derive higher utility when participating in the mechanism than when opting dutA$suming that
the utility that an agent obtains when opting out is zero, then an individuallymatiallocation K

is one in which [20]:

w(K)>0,VieT (3)

In more detail, after having received the sealed bids from all the ageatseittre calculates the
allocation and the payment to the winner as follows (according to the Vickretyoa rules):

e Compute the efficient allocation as:

K* = arg max [vo(K)—Za‘(K)] (4)

ieT
Note this is the same as in equation 2 exceptfeK) instead of; (K).

e Transferr;(K*) to the winneri such that:

ri(K") = vo(K") — max vo(K—i) — > K (5)
- JET\i

whereK _; = 7770, 5 £,

The above auction has been shown to be dominant-strategy incentivexolep20]. This
implies that it is a dominant strategy for the agents to report their types truttgfntlythus the
mechanism is efficient since equations 4 and 2 matcl{.as= c(.) if the agents report truthfully.
Also, the mechanism has been proven to be individually rational [20].
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3.2 Allocation with Execution Uncertainty

In the mechanism presented in the previous section, it is assumed that eraéotationi™ is
decided, its valuey (K *) will be obtained by the centre (eitheg(7) if the task has been allocated
or 0 otherwise). Thus, there is an implicit assumption that once allocated a tagkiainall always
perform it successfully. However, this is unrealistic, as illustrated bydhewing example:

Example 2. Many of the previous rendering tasks required by MoviePictures.com allecated
to PoorRender Ltd because of its very competitive prices. UnfortunatetyRender Ltd, could
not complete the task in many cases because of lack of staff and otheicegroblems (which
it knew about before even bidding for the task). As a result, MoviePictam@sincurred severe
losses. Hence, MoviePictures.com decides to alter the allocation mechen&mh a way that
the agents’ POS in completing the tasks can be factored into the selection dfehpest agent.
MoviePictures.com assumes each contractor knows its own POS anprisasely and needs the
mechanism to elicit this information truthfully in order to choose the best allocation

The above problem was studied by Porter et al. and we briefly desicriber own terms, their
mechanism in order to extend and generalise it later (see sections 3.3. av 4iyst introduce
the boolean indicator variable that will denote whether the task has been completed (1) or
not (+x = 0). Thus,x is only observable after the task has been allocated. Moreover, wedexten
our notation here to capture the centre’s valuation of the task executibrtisate, (<) = vo(K™)
if Kk = 1andvy(k) = 0if k = 0. In this setting, we assume thatis commonly observed (i.e.
if agent: believes thatc = 1, then all agents € Z U {0} believe the same). In our rendering
example,x might denote whether the images are rendered up to the appropriate resolbiit
will allow its usage or not. Furthermore, the probability that= 1 once the task is allocated to
agenti is dependent upon another privately known variaplér) € [0, 1], which is the POS of
agenti in executing task. Note that this variable is privately known to the task perforingself,
and so there is a single observation within the system, carried out by theetdsknper, about its
own POS.

As can be seen, the value that the centre (Movie Pictures.com) will degiize), is not known
beforethe allocation is calculated. Hence the notions of efficiency and individtianality intro-
duced in section 3.1 need to be adjusted to this new setting. Given the probihlailitiie task will
be executed by a given agent, we have to consideexpectedsalue of an allocationy (X, p),
which is calculated as:

0o(K, p) = vo(K) - pi(T) (6)
where: is the agent chosen to perform the task in allocattorandp = (pi(7),...,pr(7)) is
the vector of POS values of all the agents (the list of assessments by aacactor of its own
probability that it will complete the rendering task as in our example). We nofetlas vector of
reportedPOS valuesp: (1), ..., pr(7)).

The following modified desiderata need to be considered now:

Definition 4. Efficiency: a mechanism is said to achieve efficiency if it chooses the allocation that
maximises the sum of expected utilities (without considering the transfers):

K* = argmax [vO(K, p) — ZCZ(K)]

KeKk icT
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Definition 5. Individual Rationality: a mechanism achieves individual rationality if a participating
agent; derives an expected utilityt;, which is always greater thaf

az(Kvp) = Fi(K>p) - CZ(K) >0

whereT; (K, p) is the expected payment that agéneceives.

In order to achieve these desiderata, one could suppose thateaaxéension of the standard
Vickrey mechanism presented above would be sufficient. In such a misohahe centre would
ask the agents to report their extended tyfigsp; } (i.e. these include the POS, in addition to the
cost). The allocation chosen would then be the one maximising the expected @ttigyagents and
the payment rule would be conditioned according to equation 5@tk ™, p) replacingvy (K£*).
However, such a mechanism would fail in these settings, as illustrated inxtheewtion.

3.2.1 NaIVE APPLICATION OF THEVICKREY AUCTION

Example 3. Consider the case where MoviePictures.com derives a valug(ef = 300 when
the rendering task is completed and let there be three contractors wiostg-g 7) to render the
images are given bie; (1), c2(7), c3(7)) = (100, 150, 200). Furthermore, assume each contractor
has a POS given bip, (1), p2(7),p3(7)) = (0.5,0.9,1). This information is represented in table
1.

The efficient allocation in this case (shaded line in table 1) involves assigimngsk to agent
2 with an expected social utility a300 x 0.9 — 150 = 120. The payment to ager using the
(reverse) Vickrey auction with expected valuegi® x 0.9 — (300 — 200) = 170 (from equation
(5)). However, such a mechanism is not incentive-compatible. For draihpgentl reveals that
p1(7) = 1, then the centre will implemerdt* = 71" and will pay agent, 71 = 300— 120 = 180.
Thus, the agents in such a mechanism are always better off reppyting= 1, no matter what
their actual POS is! Hence, the centre will not be able to implement the effallenation.

Agent || ¢;(1) | pi(7)
1 100 | 0.5
2 150 | 0.9
3 200 1

Table 1: Table showing costs of performing tagkand each agent’s own perceived probability of successfully
completing the task.

This type extension (i.e. including the POS) is non-trivial because the Bstrof an agent
affects the social value expected by the centre, but not the agent'simdsr an allocation. As
a result, reporting a higher POS will only positively affect an agent'®abdity of winning the
allocation and thus will positively affect its utility. To rectify this, we need a nselayywhich this
gain in utility is balanced by a penalty so that only on truthfully reporting its typ#,an agent
maximise its utility. This is achieved in Porter et al.'s mechanism which we brietgildie the next
section.
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3.2.2 PORTER ET AL’S MECHANISM

This mechanism is based around payments being apgfiecthe completion of tasks. Specifically,
the mechanism finds the marginal contribution that an agent has made to Hweskpelfare of
other agents depending on whether it completes its assigned task or nitizdlyiithis works since
the payment scheme punishes an agent that is assigned a task buttdaesplete it (i.e.x = 0).
As aresult, the agent is not incentivised to reveal a higher POS valughthagal value since if it is
then allocated the task, it is more likely to reap a punishment rather than thelnehigh it obtains
when it successfully completes the task (ke= 1).

In more detail, the allocation is determined by the centre according to the foll@gunation:

K* = arg max [vo(K, p) — Za(K)] @)

Kek icT

Note here that both;(K) andp are reported by the agents and are key to computing the efficient
allocation (compare this with equation (4) in the case of the Vickrey auctidm® payment rule for

an agent to which the task- is allocated is similar to that of the VCG in that the marginal contri-
bution of the agent to the system is extracted by comparing the efficienttadloedth the second
best allocation, excluding the agent. The difference is that it i€dpectednarginal contribution
that is extracted (i.e. taking into account the agent'’s real probability @essg. This is achieved as
follows: (the agent gets;(K*) = 0 if it is not allocated the task):

UO(K*) - Kn}aEXIC(UO(K_“ﬁ> - Z]GI\Z/C\](K—Z)) ) ifv=1

ri(K*,p) = 8
— max (o(K_i.p) = Tyer G(K-)) L iTr=0

whereK_; = 770 j £ 4.

The mechanism would work with the example provided in table 1 since if, fanple agent
1 reportspy (7) = 1, it will then be allocated the task and will be paid0 — 120 = 180 with a
probability of 0.5 and —120 with a probability of0.5. Thus, on average, agehwill be paid 30
but each time it will incur a cost of00, thereby making an expected utility ef70. Clearly, then,
a rational agent will not overstate its POS. In fact, the incentive compatibilitili® mechanism
arises because an agéstexpected utility, given it is allocated the task, is:

ui (K", p) = pi(7) [vo(K™) — ci(K¥) —Kfilaé;c@o(ff—uﬁ) - Ej(K—z‘)>
' JET\i

+ (1 —pi(7)) | —ci(K*) — max (EO(K_i,ﬁ) — Z /C\](K_Z)) (9)

K_ek
‘ JET\i

= w(K*,p) = ci(K) = max (wo(K_i.P) — Y &(K-)
- JET\i
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Note that the expected utility within this mechanism is the same as what would havelee
rived by agents in the iivge extension of the VCG if they were truthful. However, in this mechanism
agents do not have an incentive to lie. This is becaugg(if) > p;(7) (i.e. the agent over reports
its POS), then the agent might be allocated the task even though:

i # arg max [vg(Kl)pl(T) - Cz(Kl)}
leT

whereK; = 79, which means it could be that:

To(K",p) — ci(K*) < max, (0(K_i.P) - _ezz\'cjum))
7 7

This results in the agent deriving a negative utility as per equation (9)ceé{em agent will not
report higher POS values. A more complete treatment of the proof of thetineeompatibility
of the mechanism is given in [31]. Furthermore, the mechanism is alsorptovee individually
rational and efficient.

Note that in Porter et. al.’s mechanism, truthful revelation is a dominant sgratgglibrium.
This means no matter what other agents do, an agent has no better akahaatito truthfully report
its POS and cost. Such a strong equilibrium concept is achievable sincgdhts’avaluations
are independent of each other (i.e. an agent’s report does not tiftecost or POS of the other
agents). Generally, when moving to more complex settings, where the agelztions are not
independent, it is harder to achieve such strong results. We discuisa satting in the next section.

3.3 Allocation with Multiple Reports of Execution Uncertainty

In the previous section, we considered a mechanism in which each ageontlly its privately known
estimation of its own uncertainty in task completion. This mechanism considetth¢hegntre can
only receive aingleestimation of each agent's POS. We now turn our attention to the previously
unconsidered, but more general, case wkereralagents may have such an estimate. For example,
a number of agents may have interacted with a given data centre provismornmgany on many
occasions in the past and therefore acquired a partial view on the P©& ebmpany. Using such
estimates, the centre can obtain a more accurate picture of a given agetypkkformance if

it combines these different estimates together. This combination results in adstiteate for a
number of reasons, including:

1. Accuracy of estimation: The accuracy of an estimation is typically affdayetbise. Thus,
combining a number of observations should lead to a more refined estimatebthamrg a
single point estimate.

2. Personal Preferences: Each agent within the system may havemifftginions as to what
constitutes success when attempting a task. As a result, the centre may be widsgigio

more weight to an agent’s estimate if it believes this agent’s perspective issinatar to its
own.

We illustrate the above points by considering the following example:

11
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Example 4. MoviePictures.com is still not satisfied with the solution chosen so far. This#&ibe
PoorRender Ltd still reports that it has a high POS, even though MovieeEttom has noticed
that they have failed their task on a number of occasions. This is becaosBénhder Ltd believes
the images it rendered were of a high enough quality to be used in a fedmre/iile MoviePic-
tures.com believed they were not. MoviePictures.com therefore carlgatireghe agents’ own
perception of their POS to decide on the allocation. Rather, MoviePictumsveants to ask all
agents to submit their perception about each others’ POS. In so doiagigictures.com aims to
capture the knowledge that agents might have about each other eithepfavious sub-contracted
tasks or simple observations. To this end, MoviePictures.com needsge dexechanism that will
capture all the agents’ perceptions (including its own) into measures & fdDeach agent and use
these fused measures in the selection process.

The above example can be modelled by introducing a new variable, the tEdp@aality of
Service (EQOS), noted ag (7) which is the perception of each agerdabout the POS of agerit
on taskr. Now, the vector of the agent EQOS of all agents (including itself) within the system
is noted ay; = (n}(7),...,n!(r)). Furthermore, we shall denote a&the EQOS that all agents
within the system (including itself) expect of agenfThus, in our image rendering exampl;é(r)
might denote the probability as perceived by ageahft the rendering task is completed according
to a certain level of quality of the computer graphics (which is perceivéerdiitly by the different
agents). Then, MoviePictures.com needs a function in order to combifEQXB&S of all the agents
S0 as to give it a resultant POS that the movie is rendered up to its own greghicements.

In more detail, given’s previous personal interaction with i can compute, based on the
frequency of good and bad interactions, a probability, termembitédencein j as the POS. Second,
i can also take into account other agentsi)(opinions aboutj, known asj’s reputationin the
society, in order to compute the POS ©{33]. The combination of both measures is generally
captured by the concept of trust, which is defined as the aggregatetaxpe, derived from the
history of direct interactions and information from other sources, jhaill complete the task
assigned to it. The trust of agehin its counterpary to successfully complete taskfor agento,
is a functiontr? : [0, 1]171 — [0, 1].

There are multiple ways in which the trust function could be computed, butfitea oaptured
as follows:

tri(n) = Zwl X} (10)
lel

wherew; € [0,1] and)_ w; = 1. This function generates trust as a weighted sum of EQOS
reports. In some cases, this are actually considered to be probability distributions and the trust
function is the expected value of the joint distribution constructed from thigichahlly reported
distributions [37, 17]. Much work exists in the literature that deals with défiéways of combining
these distributions such that biases or incompatibilities between agentspiienseare taken into
account. Essentially, however, they all assign weights to differenttepbthe agents and select
the expected value of these reports. However, to date, none of thesésraotlially studies how to
get self-interested agents to generate such reports truthfully.

Now, a direct mechanism in this case elicits from each ageits cost and EQOS vector,
{ci(1),m,;}, after which the centre decides on the allocation and payments to the agenteextV
demonstrate why Porter et al.’s would not work in this setting by extendingpjebeal.

12
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3.3.1 RAILURE OF PORTER ET AL’S MECHANISM

Example 5. Two agents have costs for performing a taskquested by the centre and have formed
perceptions on the set of agertgiven in table 2. Suppose that)(n) = [n% () + n5(7)]/2, and
vo(7) = 1.

Agent [ (=) [ ni(r) [ n2(r)
1 0 0.6 1
2 0 0.8 0.6

Cero() | 07 | 08 |

Table 2: Costs and POS reports of agents in a single task scenariotrdstieof the requester is calculated
assuming truthful reports.

Porter et al.'s scheme would then allocate according6n) instead ofp;(7). In the above
example, agent 2 should be the winner since it generates a social utility, @¥ltll8 agent 1 would
generate a utility of 0.7. The expected utility to the agent allocated the task isabeording to
equation 9):

ui(K™, ) = vo(K™) - tro(m) — ci(K”) — max. [vo(K") - tro(n_;) —¢;(K)]  (11)
wheren_,; excludes ally reports by agent, andK_; is the set of allocations excluding agent
Porter et al. do not specify a procedure that deals with EQOS repartge\ér, a simple extension
of their technique would be to ignore all reportsioh the computation. We implement this in
the above equation by using_,. Unfortunately, this extension breaks incentive compatibility in
the following way. Given that the efficient allocation is computed usingéipertedn values of
all agents (usingry(n) instead ofp in equation (7)), the value of the best allocation obtained by
removing one agent could be arbitrarily lower. In the example above, iftdgeeports;? = 0, the
efficient allocation becomes agent 1 with a social utility of 0.7 and agent lagetgpected utility
of 0.1. If agent 1 is truthful it will obtain O utility since agent 2 would be the vénim this case.
In effect, the removal of an agent from the system breaks the mechamisnly because of the
interdependencketween the valuations introduced by the trust model. We elaborate furthieiso
issue and show how to solve it in the next section.

We thus need to develop a mechanism that is incentive-compatible when agemnéporting
about their perceptions of other agents’ POSs. In order to do so,vieowee now need to ad-
ditionally consider the effect that reporting the EQOS vector has on amt'agxpected utility.
Specifically, we need to develop a trust-based mechanism in which the E€pOR&srof an agent
do not provide it with a way of increasing its overall expected utility (as perittkuition behind
the VCG). Then, with the true value of the EQQOS, the mechanism will result iseleetion of the
optimal allocation of tasks.

Note that, in this context, it is difficult to obtain the properties we seek in domstagtegies
because of the interdependence between valuations introduced byetbéalsagents’ reports in
the computation of the expected value (see equation (10)). To make thisrcleaiprovide a simple
example to illustrate this. Consider agents 1 and 2 bidding for a single tas&afig the centre for
which it has a value of 1. The properties of agents 1 and 2 are as follows:

13
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ci(7)
n; | m =0,

3 | Ol
I |OIN

=05 |7 =0,n3=05

In the case where agents reveal their types truthfully, agent 2 getdeskleith an expected
utility of 0.5. However, if agent 1 revealg = 1,77 = 0.1 in order to win the allocation by
reducing the value generated by agent 2 (and so boosting its own},Zaggmdo better by reporting
s = 0,72 = 1. To obtain a dominant strategy equilibrium would require that the mechanism
incentivises agent 2 to reveal its type truthfully no matter what agent &lsefiee. even if agent 1 is
not utility maximising). This is obviously not possible since agent 1 can chémegealue generated
by agent 2 in the system by virtue of ijsreports. Hence, for such settings, it is more appropriate to
seek a Nash equilibrium where we will consider an agent’s standpoien @il other agents reveal
their type truthfully?

3.3.2 THE SINGLE REQUESTERSINGLE TASK TRUST-BASED MECHANISM

Intuitively, the following mechanism works by ascertaining that an agervetea positive utility
when it successfully completes a task and its EQOS report does notecttangllocation in its
favour (thus, the mechanism we develop can be regarded as a gextienalis Porter et al.'s since
it deals with a generalisation of their reporting mechanism).

In more detail, the centre first determines the allocation according to:

K* = arg max ; (vo(K) - trj(@) — Gi(K)) (12)

Having computed the efficient allocation as above, we adopt a similar agjptoaPorter et
al’s to compute the payments after tasks have been executed (see set@)n Blowever, the
novelty of our mechanism lies in the use @f agents’ EQOS reports in the computation of the
efficient allocation (as we showed above). Moreover, we have additi@yments for the losers to
incentivise all agents to select the efficient allocation.

Thus, we apply different payments to the cases where the agent wineiafidbation succeeds
(i.e. x = 1) and when it fails (i.ex = 0). So if agent is allocated the task (i.6<* = {7¢"}) the
payment is:

vo(K*)—B | ifr=1
T’Z(K*) = (13)
—-B ,ifk=0

where B > 0 is a constant that reduces the payment that needs to be made to the dgjesits.
computed independently of the concerned agent’s reports and caetseivo 0. Setting to O
would mean that the centre pays out a large amount and we discuss haiubefs could be set
to reduce the payout made by the centre in section 4.4.

2. The economics literature calls such an equilibrium an ex-post equilij@inbecause if an agent knew (ex-post)
the truthfully revealed types of his opponents, it would remain a best tefhuthfully reveal his own type. Other
equilibria could also exist where all other agents are not assumed @l theg type truthfully. However, studying
such equilibria is beyond the scope of this paper and the approach wg ¢akessuming truthful revelation) is very
common in the economics literature.

14



TRUSTBASED MECHANISMS FORROBUST AND EFFICIENT TASK ALLOCATION

In addition to paying the winner, we also reward the loders I \ i in the following way,
depending on whethérsucceeds or not:

w(K*) —G(K*)— B, ifr=1
r(K") = (14)
—&(K*)— B if k=0

Intuitively, the payment scheme aims to incentivise all agents to reveal theirstyphat the
most efficient allocation is chosen. LAY be the allocation assigning the task to ageruppose
agent: with type {c; (1), n,} reveals its type aéc; (1) ,n;} and all other agents reveal truthfully.
When agent wins the task, it will derive the following expected utility:

; (Kg,m) = vo (Kg) - trg (n) — i (Kg) — B (15)

Note thattr{ (n) reflects the actual POS that the requester, agewbuld expect of agentif
it knewn. When agent: # i is assigned the task, agentbtains the following expected utility by
participating in the mechanism:

a (K§.m) = o (K5) - trl (m) = ex (KG) — B (16)

The only difference between equations (15) and (16) is the identity of theew Hence, by
falsely reporting agent can only influence the identity of the winner. Agerg expected utility
in the mechanism is equal to the social utility in the system minus a constant. Hexgmnif is
rational it should report its true type, so that the efficient agent (outt@ebosen. This shows that
the single task trust-based mechanism is incentive compatible in Nash equildmiiefficient

Proposition 1. The mechanism described by equations (12), (13), and (14) is inearttimpatible
in Nash equilibrium.
Proposition 2. The mechanism described by equations (12), (13), and (14) is efficien

Proof. Since agenk’s report about,, affects the expected utility of all other agents (see equations
(15) and (16)), we have interdependence between agents’ pagpoff@luations. However, no
agent can influence its transfer through its report, because the computhéigent;’s payment is
independent of its repof}; and is only dependent on tlaetual executiof the task and therefore

on the truen, value. It is this feature that permits the implementation of the efficient allocation with
a single-stage mechanism. O]

Proposition 3. For an appropriate choice of B, the mechanism described by equat@ng13),
and (14) is individually rational.

Proof. By not participating in the mechanism, an agent can only obtain O utility. Howiem
agent decides to participate, and by virtue of the selection of the effidlenation (which returns
no allocation if the social welfare generated is less than 0), it is guargrdeedwinner to obtain
the utility u; described in equation (15) or, as a loser, the utilityin equation (16). Since in both
casesu; > —B when the efficient allocation is chosen, aBdcan be set to 0, the mechanism is
individually rational. O

3. We detail the proof further for the generalised case in section 4.3.
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Obviously, since all agents’ utilities are tied to that of the winning agent, theylat® out if
the winning agent fails but, in expectation, all agents should make a prefileast 0 in cas® is
set to0. However, if the centre is trying to recoup some of the losses it has inurieuld setB
to greater than zero, therefore inviting all agents to compensate for itsMesshow how to seB
to a value that still maintains individual rationality in section 4.4.

4. The Generalised Trust-Based Mechanism

The mechanisms we presented in the previous section dealt with the basitideaian problem
in which there is one requester, one task, and several performams, Wizaim to efficiently solve
the more general problem of trust-based interactions in which more thaagere requests or
performs (or both) more than one task. To this end, we extend the singlesteqgsingle task setting
to the more general one of multiple requesters and multiple tasks iGeuneralised Trust-Based
Mechanism{GTBM). This extension needs to consider a number of complex featotepof those
dealt with previously. First, we need to consider multiple requesters thata@nmake requests
for sets of tasks and task performers that can each perform setkefasmsvell. Thus, the centre
now acts as a clearing house, determining the allocation and payments fromltige bids from
the task requesters and multiple asks from the task performers. This sigtifficomplicates the
problem of incentivising agents to reveal their types since we now haveke suse that the agents
reveal their costs, valuations, and trust truthfully over more than one &&slond, the computation
of the efficient allocation and payments will have to consider a much largeegpban previously.
Thus, we believe it is important to show how the problem can be modelled, implementd
solved to demonstrate how our mechanism scales with increasing numbgents and tasks (the
computability aspects are dealt with in section 5).

The following example illustrates this more general setting.

Example 6. After using the trust-based mechanism for a few months, MoviePictures.adsm m
significant profits and expanded into several independent businésseach performing rendering
tasks or having rendering tasks performed for certain clients. Now, Neastieres.com would like
to find ways in which its business units can efficiently allocate tasks amasbther. However,
some companies have uncertainties about each other’s performdribe cendering tasks. For
example, while some business units such as HighDefFilms.com believeeRderR.td (now part
of MoviePictures.com) is inefficient, some others such as GoodFilms.eleneit is not so bad,
having recently had a large set of animations rendered very well foma sleeap price. To cater
for this, MoviePictures.com needs to extend the single task trust-basedmsotand implement
the generalised mechanism efficiently.

In order to deal with this more complex setting, we extend our task allocationlnmatie next
subsection, before describing the allocation rule and payment schenwiamgk2 and proving the
economic properties of the mechanism in section 4.3.

4.1 The Extended Task Allocation Setting
Let7 = {7, 7,...,7ar} denote the set of tasks which can be requested or performed (compared
to the single task before). We use the notatioit’ to specify that the subset of tasksC 7 is
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performed specifically for agenrt* Similarly, by adding the superscript to the task— C K
denotes a subset of tasks that aggregrforms. Note that our model does not restrict an agent to be
only a task performer or requester.

A selected allocatiori in this multiple task, multiple requester model then generates a match-
ing problem that involves finding agents that will perform the tasks thaeangested by some other
agents (e.gK = {r{ 1,712, ..., 7i 1 ... 7[~1}). Let the set of all possible allocations be
denoted a&’. Note that not all requested tasks need to be allocated: that is, the matchinggied
not be perfect.

In the multiple task case, agents may express valuations and costs for tetksoas well as
subsets of these sets of tasks. For example a@geay havey; (71, 72, 73) = 100 andv; (1, 72) = 10
andwv;(73) = 0. Then, if agent getst;, 72 and 73 executed it gets a value of 100, while if only
7 and7, get executed ang; fails, agent still obtains a value of 10. Similarly, agentnay have
task completion costs; (74, 75, 76) = 100 and¢; (74, 75) = 40 and¢;(76) = 10. To capture such
interrelationships between valuations,léz?t be the set of tasks within the allocatiéhwhich have
to be performed by agerjtfor agent; (Kf could be the empty set). Note that each task is specific to
a task requester. This means that if agents 1 and 2 requesttasien a task performer matched to
T, for agent 1, only performs it for agent 1 and not for agent 2. We wilisee notation slightly and
defineK = {K;, K'},ez whereK; = (K}, ..., K!) andK* = (K1, ..., Kt). An agenti has a value
(assumingall the tasks inK” will be completed) and cost for an allocatidf, v;(K) € Rt U {0}
andc;(K) € ®* U {0} respectively, whereby:

0i(K) = vi(Ky)
¢i(K) = ¢i(K")
Moreover, within our model, each ageinhas an EQOS vector, = {n{(Kf)}féng that
represents its belief in how successful all agents within the system apengiating their tasks.

Thus, at the most general level, agéstype is now given by; = {v;, ¢;,n;}. For any given set of
tasksK/ thatj must perform foii, for any subset of tasks? C K7/ and for any EQOS vectay, we
let tr (f(j‘ K7, n) be the trust that exactly the set of task$ will be completed byj. The trust
can be computed as we have shown in 3.3 by simply replacing agent 0 withiagehreplacing
the single task by the set of task& As in the single requester case, the trust function represents
the aggregate belief that agents have about a given task performéennd, all task requesters
form the same probability of success (give all agents’ EQOS reporntsit abgiven task performer.
Finally, we lettr; (f(z Kiﬂ?) = [T tr] (f(f Kg,n)

j€T
We are now ready to present the generalised trust-based mechanism.

4.2 The Allocation Rule and Payment Scheme

In our generalised mechanism, the task requesters first provide the weeétttra list of tasks they
require to be performed, along with their valuation vector associated withseaof tasks, whereas

4. In this paper, we will not consider agents requesting the perforenainmmultiple units of tasks. Although our model
is easily extensible to this case, the explanation is much more intricate.

5. As a result of this setup, an agémhay not want some sets of tasks to be performed or it may be unablefdorpe
such tasks. In such cases, we then assign a default valuanof cost obo to those sets of tasks.
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the task performers provide their costs for performing sets of fasﬁ}di;agegts also submit their
EQOS vector to the centre. Thus, each agent provides the centre wittts&p= {v;, ¢;, 1, }, SO
thatd = (64, ...,6;) is the report profile. Given this, the centre applies the rules of the meahanis
in order to find the allocatio * and net payments to each agent In more detail:

1. The centre computes the allocation according to the following:

K* (5) = arg max Z Z @(IN(Z) - tr; (INQ

K={K;,K'}icz€K jc7 CK
1= 1

Kii) -k an

Thus, the centre uses the reports of the agents in order to find the allotationaximises
the expected utility of all agents within the system.

2. The agents carry out the tasks allocated to them in the allocation \léét@) .

3. The centre computes the payments to the agents, conditional on completientagks al-
located. Letx(K;) be an indicator function that takes the valué K; is the set of all the
tasks (requested by ageinfrom all agents) that are completed, and takes the value of zero
otherwise. The payment to agens as follows:

JEINI | K;CK ()
where B; > 0 is a constant that can be used to reduce the payout that the centre has to
make. B; is computed independently of agerd reports. It should also be noted that the
computation of the payments requires solving several optimisation problemin@iag the
optimal allocation with and without several reports). As the number of ajgeertsases, the
difficulty of computing payments will increase and it is important to show how payments
can be efficiently computed. We elaborate on our solution to this in sectionféreBaoing
so, however, we detail and prove the economic properties of our misahanwhat follows.

4.3 Economic Properties

Here, we provide the proofs of the incentive compatibility, efficiency axdidual rationality of
the mechanism.

Proposition 1. The GTBM is incentive compatible in Nash equilibrium.
Proof. In order to prove incentive-compatibility, we will analyse agémbest response (i.e. its best

~ o~ o~

report off; = {vi, ¢, m;}) when all other agents reveal their tyges truthfully. We first calculate
the expected utility that an ageinill derive given the above mechanism.
The expected utility of an agenis given by:

u; (51',94) = Z vi(KG) - tri (K| K (51',97@') ;1)
KiCK;(0:,0-;) (29)
— ¢ (K* (@',9—@)) + Er; (K* (@',9—1‘) ; (@',9—1'))

6. As noted before, task performers can also be task requesteessaintie time (and vice versa).
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where Er; is the expectation of; taken with respect to the likelihood of task completion. The
probability attached by to the indicator variable (X ;) being equal to one (i.e. all tasks; being
completed), given that the set of tasks requested isyK; and all agents different fromreport

their true types, isr; (f{]‘ K;, n) . Hence, we can now use the formula for the payments to obtain:

S () (] (0-) o)

Er; (K* (@-,«9_1-) , (@,9_0) — jEZI:\i K, K7 (0,0-,) (K* (5 9 )) -B;
—Cj isV—g

If we replace the expression above into the formulazowe obtain:

ﬂi (91,971) = Z Z ’Uj (Kj> . t?”j <KJ‘ K]* (91,9,l> ,’I’]) — Cj (K* (61;971>) —Bi.
JET K;CK? (0:,0-;)
(20)
From the above we note that an agent can only affect its utility with its regodhlanging
K*(0). The key point to note is that the agent’s utility is also dependent oadtul executiorof
the task(s) (i.e. based on trye rather than the predicted execution (i.e repored

Now, equation (17) implies that for all allocatiohS
U; (0;,0-;) > (@',94) ; (21)

because the efficient allocation, computed by taking into account the trae ofpall agents, is
better than or equal to any other allocation.

Given the above condition and since equation (20) applies to all possilisateons off, the
mechanism is incentive compatible in Nash equilibrilim. O

Proposition 2. The GTBM is efficient.

Proof. Given the incentive compatibility of the mechanism, the centre will receive trtdports
from all the agents. As a result, it will compute the allocation according totexuél7), thereby
leading to an efficient outcome. O

Proposition 3. There exist values dB; such that the GTBM is individually rational.

Proof. We again begin by making the standard assumption that the agent derize®, when not
participating in the mechanism. Then, it remains to be shown that the agergsdean-negative
utility from the mechanism. Since the efficient allocation is chosen (and is at eaull allocation),
the expected utility of each agent is always greater than or equaBt@according to equation (19).
SinceB; can be set t, the mechanism is individually rational. ]

The GTBM mechanism of the multiple task, multiple requester scenario is a ¢jieatoa of
the GTBM mechanism with a single requester and a single task. It is also eatigaigon of the
mechanism of Porter et al. by simply assuming that each agent only has@8 Bkbut its own

7. As we already mentioned, in the economics literature such an equilibricaliesl ex-post equilibrium.
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probability of success. It is clear from this latter scenario #Bat= 0 is not the only choice that
satisfies individual rationality. In Porter et al., for example, it is:

B = max (w(K-)-poi(r) = Y &(K))

—1

wherep_;(7) is the reported probability of completion of the agent assigned the task intidloca
K_;.

4.4 Extracting the Minimum Marginal Contribution

Up to now, we have considered that the const@nttould be set to arbitrary values to try and
reduce the payments made by the centre to all the agents. More interestiglgbylid be possible,
as in the standard VCG mechanism, to only pay an agent its marginal contributioa system.
However, in our case, due to the interdependence of valuations, it é&srsitnple as comparing the
social welfare with and without a given agent in the system as is commonby idoviCG-based
mechanisms (Porter et al.'s is an obvious example of this). This is bedaus4, case, when an
agent is removed from the domain used to compute the efficient allocatiorgrttening EQOS
reports can arbitrarily change the allocation value. This could, in turnyeieed by other agents
to improve their utility. The example in section 3.3.1 showing the failure of a simplegxie of
Porter et al.'s mechanism illustrates this point.

Here we propose a novel approach to extracting the marginal contritaftaamagent, by taking
into account EQOS reports of other agents pasisible reportshat the agent could make. Lkt ;
be the set of possible allocations when ageist excluded from society. The constaBf can be
chosen such that it is equivalent to the social utility of the mechanism wresttiag excluded and
its EQOS reports are chosen so as to minimize social utility, that is:

B = ﬁ}%\xm Anax. Z > G (Ka) “trj (Ka‘ Kjﬂhaﬁ—i) — ¢ (K)

;€ |~
: J€INi | K;CK;

Then, the generalised payment scheme is:

(w0 (0).0)= X | S 6 (R) (&) - (5 (7))

JEI\i K;CKY (6)

_n.e[({rﬁ\%\xm KHEI%}: ' NZ ”J'< ) tr]( ‘ M5 1 Z) ¢ (K)
i ]EI\’L Kngj
(22)

The point to note here is that incentive compatibility (and hence efficientlyeomechanism)
still holds given that the payment scheme is still independeiis oéports. In facty; rewardsi with

the maximum difference that ageintould make by setting all elementsqip to different values in
[0, 1]|IIX\T\ 8

8. This minimisation takes place over the domain of trust values which ceutdher tharjo, 1] in the general case.
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This procedure reduces the payments made by the centre, while keepiniduabrationality
since the value of the efficient allocation (given incentive compatibility aggerearlier) is always
higher than or equal to the value Bf, which means that:

w0 => | > () u (f(]‘ K (6),m) = ¢; (K* (9))

JET | K;CK3(0)

i e 37| 370 (K)o (K| Komni) = e ()| >0
: JEINi | K;CK;

It is also to be noted that the above equation implies that there is no restrictmadpa the
functional form oftr for the payment scheme to work and for the properties of the mechanism to
hold. This is an improvement on previous mechanisms (see Section 2) whictohsidered trust
functions that are only monotonically increasingjnfor eachi.

To summarise, in this section, we have devised a mechanism that is incemtipatdae in Nash
equilibrium, individually rational and efficient for task allocation underentainty when multiple
distributed reports are used in order to judge this uncertainty. It is to bel tlodé¢ we did not
need two-stage mechanisms as in [22], because in our settings we catiocopalyments on the
completion of the tasks (the indicator functiert-) captures this dependence of payments on task
completion). So far, we have just considered the economic properties ofebhanisms, but as we
argued earlier, this is only part of the picture. In the next section, wartep its implementation.

5. Implementing the Generalised Trust-Based Mechanism

As shown above, the addition of trust to the basic task allocation problemmhotomplicates the
payment scheme, but also requires a larger number of important optimisiggstisan the normal
VCG. In more detalil, trust-based mechanisms require that agents speepected value for a set
of tasks depending on the performer of such tasks which, in turn, meatriteétspace of solutions to
be explored is significantly larger than in common task allocation problems.dverghe payment
scheme of trust-based mechanisms requires finding the efficient allocatibplentimes with and
without the agents’ reports. With this added level of complexity, it is importashtaw that the
mechanisms are actually implementable and that solutions can be found idhusiebd problems
in reasonable time.

Against the above background, in this section we describe the first Fatioruand implemen-
tation of the GTBM. In patrticular, in the GTBM, we tackle the main optimisation probi®sed
by equation (17) (which is then repeated several times in the payment SchEmgeis commonly
referred to as the winner determination problem in combinatorial auctionsrdir to solve it,
we take insight from solutions to combinatorial exchanges which often maprdistem to a well
studied matching problem [19, 10]. In so doing, we develop a noveéseptation of the optimisa-
tion problem by using hypergraphs to describe the relationships betwéeations, trust, and bids
by task performers and then cast the problem as a special hypemuphing problem. Given

9. It is already known that computing the efficient allocation and payment¥CG mechanisms is NP-hard [35].
Therefore, finding efficient solutions to VCG mechanisms is alreadyrafisignt challenge in its own right.
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this representation, we are then able to solve the problem using Integgafming techniques
through a concise formulation of the objective function and constraints.

5.1 Representing the Search Space

It is important to define the search space in such a way that relationslipsdrevaluations, bids,
trust, and tasks can be clearly and concisely captured. In particutagmesentation aims to map
the GTBM optimisation problem to a matching problem that has been well studied liteitature.
To do this, the representation must allow us to define the whole space iflée@sk allocations,
and, subsequently, define how to select them as valid solutions to the GpBiisation problem.
Now, to allow bidders (task performers) and askers (task requetiarspress their bids and valua-
tions in a consistent and implementable way, we choose the XOR bidding landbiach a bidding
language requires that an auctioneer can accept at most one bideadhoKOR bid and that each
XOR bid can belong to only one agent. We choose this particular bidding dgegoecause it has
been shown that any valuation can be expressed using it{28J example of an XOR bid in
our context would bg¢;(71,72) XOR c¢;(11,73) XOR ¢;(71,72,73)} Which means that agert
would only go for one of the these three bids over tasks, andrs (¢; could also be replaced
by v; for task requesters). In terms of our running example, such a bid waplgss PoorRender
Ltd’s cost for performing a sound editing task (izg), a movie production task (i.ey), or both in
combination (i.ery, 72).

To build the overall representation of the problem, we first focus oresgmting expected val-
uations and costs as well as their relationships. These are depicted depifigeuire 1. In more
detail, we specify three types of nodes: (1) valuations (along’thelumn); (2) bids (under thé
column); and (3) task-per-bidder nodes (under.theolumn). Each node;(7) in the ) column
stands for a valuation submitted by ageémiver a set of taske C 7. Each node:;(7) in theC
column stands for a bid issued by agemntver tasksr C 7. Each element ofd represents the
allocationr?; ~ of a single task;,, € 7 to task performer (biddep)by a task requester yet to be de-
termined (represented by a dot). In other words, the elementsépresenpatternsfor single-task
allocations. We term such elements task-per-bidder nodes.

Note that it is possible that different valuations come from the same requéfsse they are
labelled by the same subscript. Moreover, since we have opted for anbidhg language,
valuations belonging to the very same requester are mutually exclusive.

5.1.1 DEFINING RELATIONSHIPS BETWEENVALUATIONS, TASKS, AND BIDS

Given the nodes defined by, 1, andC, by relating a node?, " in Ato a nodev; (..., T, ...) i V

we define the assignment of task by i to j through the specific valuatian(..., 7,,, ...). Similarly,

by relating a node;, " in A to a node;(..., 7, -..) in C we define the assignment of the task to the
specific bide; (..., 7, ...) by agentj. Therefore, atriplév,rﬂ;{_', c) wherev € Vi e Acec
fully characterises an allocation for task,, namely asingle-task allocation Hence, as can be
seen in figure 1, we define two types of relationships: between valuatoask-per-bidder nodes
(noted by edges;, e, ...), and between bids and task-per-bidder nodes (noted by eflggs...).1t

10. Other bidding languages [26] could equally well be used in our neattélvould only require minor changes to the
constraints that we need to apply.
11. Figure 1 only depicts a sample of all possible relationships for eakesfation.
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Figure 1: Graphical representation of the GTBM search space. Nodieafame colour represent valuation
or cost nodes that belong to the same agent. Edges of the séone either originate from the same node or
end up at the same node.

Using these relationships, a valuation can then be relateddbdaf task-per-bidder nodésand
only if these fully cover the performance of the task(s) in the valuationirfstance, we can relate
v1(71, 72) to nodesri{— (agent 4 performs task) and 72— (agent 2 performs task) because
they guarantee the performance of taskandr,. Similar to valuation relationships, each natle
is only related to the set of task-per-bidder nodeglimto which each bid splits. Thus, in figure 1,
bid c4(m1) is only related tor; ", whereas bid; (7, 73) is related to nodes; — andry .

Thus, we can identify the task performers for each task in a given vatudttos is critical since
the GTBM, contrary to common task allocation mechanisms (such as VCG'opriide auctions),
requires that we identify exactly who performs a task in order to determirle@g:of that task (by
virtue of the requester’s trust in the performer) and hence the expesaiias of the task.

As can be seen, our representation allows us to capture all tasks dodmes of such tasks
since each valuation node Yhcan be potentially related to multiple nodesdnand, likewise, each
bid in theC column can be potentially related to multiple nodeslinTo capture these related rela-
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tionships precisely, we define special edges that can connectlseydes (e.g. the ones depicted as
e1,e2, ..., €], e5, ... infigure 1). Such edges are termed hyperedges because they combiméer

of singleton edges. Hence, figure 1 can be best describetiygseegraph2]. In order to precisely
define the matching problem that the GTBM poses, we elaborate on the fomwdlisypergraphs
since this will help in concisely expressing the problem later on. More sjadigfithe formal notion

of hypergraphs, as introduced in [2], is:

Definition 6. Hypergraph. Let X = {z1,z2,...,z,} be a finite set of, elements, and lef =
{e;lj € J} be afamily of subsets of X whefe= {1, 2, ...}. The family¢ is said to be a hypergraph
on X if:

1. 6]‘750 (V]EJ)

2. Ujege; = X.
The pairH = (X, ) is called a hypergraph. The elements zo, ..., z, are called the vertices
and the setsy, ey, .. ., ¢; are called the hyperedges.

We say that a hypergraphegeightedif we associate to each hyperedge £ a real number,
w(e), called theweightof e. This is used to give more or less importance to some edges.

From the formal definition of hypergraphs, we observe that figuresaltefrom the overlap-
ping of two separate hypergraphs: (i) teuation hypergraphhat occurs from linking valuations
to task-per-bidder nodes; and (ii) thil hypergraphthat occurs from linking each bid to the corre-
sponding task-per-bidder nodes. In what follows, we formally defoth bhypergraphs from valu-
ations and bids so that later on we can structurally characterise the nofimasible and optimal
allocations.

5.1.2 THE VALUATION HYPERGRAPH

The valuation hypergraph highlights the main difference between the GTrigih& common com-
binatorial exchanges (e.g. those based on traditional VCG!®mice auctions). In particular, in
the GTBM valuations need to take into account the trust of the task requestertask performer
while, in normal combinatorial exchanges, task requesters are indifferéask performers. This
means the weight of each hyperedge in a valuation hypergraph is dapgentrust and a large
number of edges need to be generated (one per task performer) whohtlse case in normal
combinatorial exchanges.

To define the valuation hypergraph, we need to define hyperedgesnthatte from each node
inV to one or more nodes id. To this end, leV = {v;(T) # 0|7 C 7,i € Z} andC = {c;(T) #
oo|T C 7T,j € I} be the sets of all valuations and all bids respectively. it = {r € T |
3" C T : ¢j(T) # oo andT € 7'} be the set of tasks over which aggrgubmits bids. Hence,
A= {T]z(_"Tk € 1/ j € Z,cj(T) € C} is the set containing all the tasks bid by each bidder.

Furthermore, we need to define some auxiliary sets as follows. Given atiealwver a set of
tasksr, a set of nodesl C A fulfills it if and only if:

U {7~} =randlr|=|4]

G
T, €A

12. Recall that since the mechanism has been proven to be incentiygatible we can use the agents’ true valuations
and costs instead of their reported counterparts.

24



TRUSTBASED MECHANISMS FORROBUST AND EFFICIENT TASK ALLOCATION

For instance, the set of nodels = {7}, 72—} fulfills any valuation over{r;, »}. Hence, the
subsets ofA that fulfill a valuation over a set of tasksare expressed using” which is defined
as:
AT ={ACA| |J {77} =7 and|r| = |A]}
T]ZH'GA
For instance, considering the example in figure 1,

A = (= o) e ) o )
A = (e (i a

Given the above definitions, we can now define the set of all hypesextgmected to a valuation
vi(T) € Vas:
& (1) = Ugear {{ui(r)} U a}

For instance, from figure 1:
gf(Tl, 7'2) = {61, €9, 63} ande(Tg) = {64, 65},

wheree; = {vi(r1,7), ¢, 79"} ea = {vi (1, 7)), 7, 7}, ..., and so on.
The set of all hyperedges containing valuations of the very same agethiéfined as:

&= &

TCT

Then, the set of hyperedges connecting nodasto nodes inA is defined as:

e =&

i€
Given this, we define the valuation hypergraph as a pair:
H'=(VUA,EY)

Thus, each hyperedge i consists of a single valuation vertex corresponding to an elemént in
along with a complete task allocation for the valued tasks out of the taskigidrinodes in4.

The valuation hypergrapH® partly defines the space within which a solution needs to be found.
However, in order to define the quality of the solution found, it is importantetind the weight
attached to each hyperedge of the hypergrAfsh The weight of a hyperedge is actually equal to
the expected value of the allocation of the tasks to a set of task perforbi@dgis). Consider, for
instance, valuation (1, 72). All the possible matchings that fulfill it are represented by all the
pairs(r;—!, 1). For example, the hyperedgeg involving the pairing(r{—!, 72!) denotes that
agent 4 performs task 1 for agent 1 and agent 2 performs task 2dot agThe expected valuation
associated to this allocation depends on the POS of agemd2 when performing tasks, andr,
respectively.

In this case, the expected valuation associated te assessed as:

o (LT = v, ) pa(r ) pe(m T+
vr(r1) - pa(ri ) - (1= pa(m3 )+ (23)

vi(72) - (1= pa(ri™")) - pa(r5 1)
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wherep is a function that returns the POS of the agent that is assigned a givejetasuted using
confidence, reputation, or trust). Notice that the vadlle- p;(7,” 7)) represents the probability of
agent; failing to perform taskr, for agent j. Since no requests are submittedrfoandr, alone,
v(m1) = v(m) = 0. Thus, the expected valuation associated to the particular allocationesfwéds
by arces becomesr; (731, 7271 = vy (71, ) - palri ) - pa(721). With a similar argument,
we obtainv, (71 7Y = vi (11, 1) - pa(r ) - ps (78T # i (L, 72, corresponding
to hyperedge:s.

Generalising, given a hyperedges £V with valuationv; (), we can readily build an allocation
for the tasks inr from the elements im andv;(7). If p is a function that returns the POS (be it
confidence, reputation, or trust) of a given task performer from ezgphester’s point of view, then
we can compute the expected valuation of the allocation defined by hygereddollows:

vi(r) =Y u) ] ) 11 (1 —pi(ri™) (24)
T'CT T eeneT! e, rw €T\ T
In other words, given a hyperedge= £, its weight is assessed using equation (24) which is
equivalent to the expected value computed in equation (17) (i.e. the suxp@tted values over
all allocations from agen). Now, given that each edge of the valuation hypergraph is assigned a
weight,H" is termed a weighted hypergraph.

5.1.3 THE BID HYPERGRAPH

To define the bid hypergraph we need to determine the hyperedges timetctdids to task-per-
bidder nodes. In more detail, given a hidT) € C, we relate it to the task-per-bidder nodes4n
by constructing hyperedg&(7) = {c;(7)}U {T,;_'|Tk € 7}. This hyperedge is assigned a weight
which is equal to the cost @fj(). Then the set of all hyperedges containing all the bids of agent
can be defined as:

&= &)

TCT

Given this, the set of all hyperedges connecting nodéstomnodes in4 can be defined as:
e=J&
i€
Finally, we define the bid hypergraph as a pair:
He=(AUC,E9

In other words, each hyperedgefitf consists of a single bid vertex corresponding to an element in
C along with the corresponding task-per-bidder noded.iNotice that our definitions of valuation
and bid hypergraphs ensure that each hyperedg® inontains a single valuation fromand each
hyperedge inff¢ contains a single bid frord.

5.1.4 DEFINING THE MATCHING PROBLEM FOR THEGTBM

Having defined the valuation and bid hypergraphs, we can now strilgtcinaracterise the notions
of feasible and optimal allocations (these are needed to determine the compaltedimplexity of
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the problem and define the objective function in particular). For this marpwe must firstly recall
some notions of hypergraph theory. In a hypergraph, two hypesealgesaid to badjacentif their
intersection is not empty. Otherwise they are said tdisint For a hypergrapf = (X, ¢), a
family £’ C £ is defined to be anatchingif the hyperedges of” are pairwise disjoint. With respect
to a given matching”’, a vertexz; is said to bematchedor coveredif there is a hyperedge ifi’
incident tox;. If a vertex is not matched, it is said to hematchedr exposed A matching that
leaves no vertices exposed is said tabeplete

Based on the definitions above, we can characterise feasible allocatibrs3iBM as follows.
First, we must find a matching for the valuation hypergraph that is not sagkscomplete (some
valuations may remain exposed). Second, we must find another matching fleidthypergraph
that is not necessarily complete either. The two matchings must be related alldlgrfg manner:
the task-per-bidder nodes in both matchings should be the same. In otfis, wven a task-per-
bidder node, it must be related to some valuation node and to some bid nadse twe excluded
from both matchings. In this way, valuations and bids are linked to creatkedamk allocations.
For instance, in figure 1, 2 belongs to the matching for the valuation hypergraph, #iemust
be part of the matching for the bid hypergraph to ensure that there is arbigif- and that either
e}, €, or ¢4 are part of the matching for the bid hypergraph to ensure that there isfarhifi—.
More formally:

Definition 7. Feasible allocationWe say that a pai(gv', EC') defines a feasible allocation iff:
1. £ is a matching forH"

2. £ is a matching forH¢

3.7ceeTecwhereee £V ¢ € EY 1€ A

Given a feasible allocatiof”’, £¢') as defined above, it is straightforward to assess the ex-
pected utility of all agents within the system as follows:

> wle)= Y w(e)

ecgV’ elege
since the weights of the hyperedges in the valuation hypergraph staagected valuations and
the weights of the hyperedges in the bid hypergraph stand for costsingelguation (17) in the
GTBM amounts to finding the feasible allocation that maximises the expected utilityarfents
within the system. Therefore, the following definition naturally follows.

Definition 8. GTBM Task Allocation ProblemThe problem of assessing the task allocation that
maximises the expected utility of all agents within the system amounts to solving:

arg max Z wy(e) — Z we(e) (25)

where(£Y', £¢') stands for a feasible allocation.

Having defined the matching problem for the GTBM, we next describe olutisn to this
problem using Integer Programming techniques that are commonly used &ssallr problems
[4].13

13. Other special purpose algorithms (e.g. using dynamic progragnamisearch trees) could be designed to solve
this combinatorial problem. However, to understand the magnitude ofrtideon and to compare the difficulty of
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5.2 An Integer Programming Solution

In this section we show how to map the problem posed by equation (25) intdemyeirprogram
(IP) [28] so that it can be efficiently implemented and solved. Given thiska#ion, the resulting
program can be solved by powerful commercial solvers such as ILRIEX* or LINGO.1®

5.2.1 BJIECTIVEFUNCTION AND SIDE CONSTRAINTS

The translation of equation (25) into an IP is reasonably straightforwigeth @ur representation.
Thus, solving the GTBM task allocation problem amounts to maximising the followljectve
function:

> we-wyle) = D yor - wele) (26)

ecEv e'eke

wherez. € {0,1} is a binary decision variable representing whether the valuation in hygered
e is selected or not, ang.: € {0, 1} is a binary decision variable representing whether the bid in
hyperedge’ is selected or not. Thus,. is a decision variable that selects a given valuation with a
given task-bidder matching, ang selects a given bid.

However, some side constraints must be fulfilled in order to obtain a valid solufiost, the
semantics of the bidding language must be satisfied. Second, if a hypemugining a set of task-
per-bidder nodes inl is selected, we must ensure that the bids covering such nodes aretstdecte
Moreover, as we employ the XOR bidding language, the auctioneer — ttre @éewour case — can
only select at most one bid per bidder and at most one valuation per @bk, as for bidders, this
constraint translates into:

Sy <1 VieT 27)

e'e&f

For instance, in figure 1 this constraint ensures the auctioneer selectyperedge out aof, ¢,
andej, since they all belong to agent 4 (they all come from nodes labelled with the sabscript
64(.)).
For the valuations, the XOR constraints involving them are collected in the foldpexpres-
sion:
Y we<1l Viel (28)

ety

For instance, in figure 1 this constraint forces the auctioneer to seletiyperedge out @f;, e, €3, e4,
andes since they all belong to agent 1 (they all come from nodes labelled with the Saseript
7}1(.)).

If a valuation hyperedge < £" is selected, the set of task-per-bidder nodeslinonnected
to e must be performed by the corresponding bidder agent. For instancguie fi, if hyperedge
e is selected, the task-per-bidder nod¢s ' and 75! must be covered by some bid of agent
In this case, bid, (71, 73) is the one covering those tasks. Thus, if we select hyperedge are
forced to select bid4 (71, 73) by selecting hyperedge;,. Thus, in terms of hyperedges, we must

solving this problem against other similar problems, we believe it is betterstaafiempt to find the solution using
standard techniques such as IP.

14.http://ww. il og. com

15.http://ww. | i ndo. com
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ensure that the number of valuation hyperarcs containing a given &dhkigder node is less than
or equal to the number of bid hyperarcs containing it. Graphically, this mibanshe number of
incident valuation hyperedges in a given nede A must be less than the number of incident bid
hyperedges im.

Yoowe< Y oy VT eA (29)

e€Eveer] e'egeeler]

In case of no free-disposal (i.e. if we do not allow agents to execute tegthout them being asked
for) we simply have to replace with =. To summarise, solving the GTBM task allocation problem
amounts to maximising the objective function defined by expression 26 stibjbet constraints in
expressions (27), (28), and (29). Next, we determine the complexititsdsr this problem.

5.2.2 GOMPLEXITY RESULTS

Having represented the GTBM task allocation problem and defined thespamding IP formula-
tion, we analyse its computational complexity in order to show the difficulty in sgltie GTBM.

We also identify the main parameters that affect the computational costs itfithee optimal al-
location. These parameters should then allow us to determine in which setting3 B can be
practically used.

Proposition 4. The GTBM task allocation problem j§P-complete and cannot be approximated
to a ratio n'!~¢ in polynomial time unles® = ZP7P, wheren is the total number of bids and
valuations.

Proof. Notice that our optimisation model as formalised by equation 26 naturally transtate
combinatorial exchange [18]. This translation can be achieved usingeprgsentation by taking
the goods (in a combinatorial exchange) to be the dummy taskd , the bids the elements @

and the asks the weights of the hyperedgés.in Thus, while bids remain the same in the exchange,
the number of valuations may significantly increase. The reason being thatttbduction of
trust in our theoretical model makes the initial valuations (asks), the elememisatiocation-
dependent. Hence, every single valuatioinauses several asks to be originated for the exchange
when considering the bidder to which each task may be allocated (see esampéztion 5.1.2).
As shown by Sandholm et al. [35], the decision problem for a binarylesingit combinatorial
exchange winner determination problem\isP-complete and the optimisation problem cannot be
approximated to a ratin' —¢ in polynomial time unles® = ZPP, wheren is the number of bids.
Therefore, the optimisation problemAéP-hard, and so it is in GTBM. O

From the above proof, it can be understood that the search spaceGTBM task allocation
problem is significantly larger than in traditional combinatorial exchangeaus® of the depen-
dency of valuations on the bidders performing tasks. In what follows neeigle a formula that
allows us to calculate exactly how big this search space is. This allows us tondetevhether
the instance to be solved can actually be handled by the solver (which wdlliteagwn limits on
memory requirements and computation time).

In more detail, say tha#, is the subset ofd containing the task-per-bidder nodes referring
to the same tasks. More formally}, = {r/" € A | j € Z}. From the example in figure 1,
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Ao = {r~, 757,757 }. Thus, the expression to assess the number of feasible allocations is:

€ =>" > I 14« (30)

1€ZL v;(T)A0 TRET

Observe that the number of possible allocations can be computed as tmaligrdf £ (i.e. the
number of valuation hyperarcs) since it exactly determines the numberysftva valuations can
be satisfied by the provided bids. The total number of decision variabkbe dfiteger Program is
thus|E?| + |£€¢|. Since the number of expected valuations is several times larger than themofmb
bids, we expect the number of decision variables associated to bid dgesrt be much less than
the number of valuation hyperedges. Hence, assuming&hpk |£”|, the number of decision
variables will be of the order g€"|.

In order to understand the implications of these parameters, considerstacahich all task
performers bid oveall tasks andll requesters submitsinglevaluation over all tasks. Specifically,
consider a scenario with 15 task performers, 20 requesters, andss t@sken that in this case
| A = 5|, the number of allocations j§,| = 20 x 15° = 15187500. In reality, agents may not be
able to submit bids and asks over all tasks and this would result in a sigtlifit@mer number of
allocations (given the possible matchings). Hence, to see whether stehcies can be practically
solved, in appendix A we report the running times of the solver, showirtgrieances with less
than2 x 10° variables can be comfortably solved within 40 seconds (in the worst.da%n taken
together, our empirical results and our formula to compute the size of the (irpuequation 30)
allow us to affirm that, even if the computational cost associated to the GTBNhiegotential to
be rather high, our solution can handle small and medium sized problemssonedde time (see
table 3). However, as can be seen, the time to complete grows exponentiallthevitumber of

Set| Tasks| Task Requesters Task Performers Worst Case Running Time
1 5 20 15 34s
2 8 20 15 40 mins
3 10 20 15 3 days

Table 3: Average running times for different numbers of tasks anchegg@aken over 300 sample runs for set
1, 50 sample runs for sets 2 and 3).

tasks. During our experimental analysis, we also found that the impaatrefasing the number of
task performers and task requesters was not as significant as ingrésesnumber of tasks. This
can be explained by the fact that, given our setup, a larger numbekefabsws significantly more
matchings between bids and asks than a larger number of bids and asice, Heny more task
requesters and performers can be accomodated for small numberksofitashould also be noted
that we expect these worst case results to occur fairly rarely ongevémauch less than half of the
instances generated from the same parameters), as shown in figurep2mupA.

Having described the complete picture of the GTBM and its implementation, wedisexiss
some important issues that may arise when trying to use a GTBM for task allocatio

6. Discussion

In this paper we have developed task allocation mechanisms that opeeatitvely when agents
cannot reliably complete tasks assigned to them. Specifically, we have eiésigiovel Generalised
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Trust-Based Mechanism that is efficient and individually rational. Thishaeism deals with the
case where task requesters form their opinions about task perfousiagsreports from their envi-
ronment and their own direct interactions with the performers. In additiotuttygg the economic
properties of the allocation mechanisms, we provided the optimisation model treatges the so-
lutions that guarantee the efficiency of our mechanism. This optimisation maithel fgst solver
for trust-based mechanisms (and other mechanisms in which the value of @atiahadepends on
the performer of the allocation) and is based on Integer Programming. ésuli, we have shown
that the input explodes combinatorially due to the huge number of possiblatéles that must
be enumerated. Nevertheless, while the computational cost associate@tbBMeis shown to be
rather high, given our implementation, solutions can be found for small adibmescenarios in
reasonable time.

Speaking more generally, our work on trust-based mechanisms has ameintiveader im-
plications. First, the GTBM shows how to explicitly blend work on trust models witink on
mechanism design. Since the mechanism guarantees that certain prdpedifes task allocation
problems, it can be used as a new, well-founded testbed within which trustismman be evaluated.
Up to now, trust models have mainly been tested with random scenarios aratiiuies that obey
somewhat ad hoc market rules such as those used in the ART testbe®SEcdnd, our work is
the first single-stage interdependent valuations mechanism that is effio@imdividually rational
(as opposed to Mezzetti's two-stage mechanism). This has been madehtshiethe settings we
consider by capturing the interdependence between types throughghiitrction and making the
payments to the agents contingent ondbtial executiomf tasks. Another novelty of our approach
is that we are able to extract the (maximum) marginal contribution of an agepitel¢he valua-
tions being interdependent (as we have shown in Section 4.4). Thirdnplementation of GTBM
highlights the importance of considering the computational aspects of anyneeWwanism, since
these determine whether the mechanism is implementable for realistic scenatioaramdeed
bring about its claimed benefits. Our work is a strong statement in this direation we provide
the complete picture of the problem, starting from its representation, throughgtementation
and sample results, to its complexity analysis.

In practical terms, the GTBM is a step towards building robust multi-agentregdtar uncertain
environments. In such environments, it is important to aggregate the ageetsrences, while
taking into account the uncertainty in order to ensure that the solutiongmrhiesult in the best
possible outcome for the whole system. Prior to the GTBM, it was not possilzenie up with
an efficient solution that would maximise this expected utility. Moreover, thetifedt agents can
express their perception of the task performers’ POS is a new way ofifyitdore expressive
interactions between buyers and sellers of services [34]. We beliavinéhaore such perceptions
are expressed, the better is the ensuing matching between buyers arslaell@ur results are
proof of the gain in efficiency this better matching brings about (see se@i@nl, 3.3.1, and 4.3).

By introducing GTBM as a new class of mechanisms, this work lays the foondgor several
areas of inquiry. To this end, we outline some of the main areas below.

e Budget Balance An important economic property of mechanisms in some contexts is budget
balance'® However, as mentioned in section 3.3.2, we have designed our TBMs without

16. If a mechanism is budget balanced, it computes transfers in Bacht@n such that the overall transfer in the system
is zero [21]. Thus, in a budget balanced mechanism, for each allodatand associated transfer vecigrwe have

Zrierri =0.

31



RAMCHURN, MEZZETTI, GIOVANNUCCI, RODRIGUEZ, DASH, AND JENNINGS

considering budget balance. In fact, the GTBM is not budget balaimcte same respect
as the VCG and Porter et al’'s mechanism. This is necessary to ensutleethachanism is
efficient, individual rational and incentive compatible. Now, one possillg of overcoming
this problem is to sacrifice either efficiency or individual rationality. Intfdbe dAGVA
mechanism is a counterpart of the VCG which does indeed sacrifice indlvidtionality
for budget balance (see section 2). Moreover, [29] develop méshanvhere a number
of budget balancing schemes are proposed and near-incentive tduhityas attained by
making the payments by the agents as close as possible to those of the VCGTdwes
most effective scheme, the Threshold rule, results in a low loss of ineetwimpatibility
and it has a relatively high efficiency (aroug@%). Such budget balance may be useful in
situations where the centre cannot run the risk of incurring a loss in gimgthe efficient
outcome for the set of agents in the system. For example, MoviePictures.cpmoirfand it
worth injecting money into the system to find the efficient outcome if all its suburetsla
nearly equally competitive (both in price and POS). Instead MoviePictwmsight prefer
a mechanism that generates a near-efficient outcome without having st iiméieis way. By
doing this, the set of agents that participate might be reduced becaus®ftimlividually
rational for all of them, but MoviePictures.com may obtain a better outcome.

Trust in Task Requesters One other common criticism of mechanisms such as ours is that
the task requesters (and the centre) must be trusted to reveal theeabsgecution of the
task [22]. However, in our setting, task requesters have a strongtivieea reveal their
observations (in case these are not publicly visible) since they wouldrghefir chosen task
performer to be available next time the mechanism is run. To this end, they maiste
that the task performer does not go bankrupt. As noted in equationaftl3)18), the task
performer would have to pay a significant amount to the centre in case fiasted to fail

at its task. Hence, the task requester is better off revealing a sude@sstution if the task
performer is indeed successful.

Another issue with the trust function used is that weights given to eaci’'a§€pOS report
may be uncertain. Thus, in this case, agents may have to learn these weghtsudtiple
interactions. Given this, it is important to develop learning and searchitpesthat will
be able to deal with the large number of possible weights that could be useelsi titust
functions. These techniques will have to take into account the fact teatagay lose out
significantly while exploring the search space.

Iterative Mechanisms The GTBM is a one shot mechanism in which the allocation and
the payments are calculated given the type of the agants, nn} and their trust functions.
However, in some cases the participants may be engaged in repeatedionsrdm@at can be
exploited by their trust models in order to build accurate trust values of tbeinterparts.
In such situations, the introduction of multiple rounds can compromise the ntiespef the
mechanism by allowing for a greater range of strategies (e.g. cornegmgdtket by consis-
tently offering low prices in initial rounds or accepting losses in initial rouggroviding
false and damaging information about competitors). However, the explositie strategy
space also implies that agents might not be able to compute their optimal stratetytta
intractability of such a process. Now, one way of solving this problem is tstcain the
strategies of the agents to be myopic (i.e. best response to the curredj esushown by
[30] using proxy bidding. Another is to allow the agents to learn the trust mmomighout
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participating in the allocation problem. Then, once the agents have an &coepeesenta-
tion of the trust functions and POS values, the mechanism can be implemertenashot
encounter. Note that this problem arisesityone-shot mechanism which is implemented in
an iterative context and is not solely in the realm of the GTBM.

e Computational Cost As discussed in section 5, the algorithms we developed to compute the
efficient allocation have to be run multiple times to compute the individual paymetitg to
agents for TBMs. Hence, the time needed to compute the allocation and payetiis agay
be impractical if the agents have a very limited time to find a solution, put forwathe
number of bids, or ask for a large number of tasks to be performed. e;l@ris important
that either less complex mechanisms such as those described in [27] oxiapgie (and
computationally less expensive) algorithms be developed to solve suclemofl]. This
will require more work in developing local approximation algorithms and theaqmate
mechanisms that preserve some of the properties we seek. In this veirgpbisgrovides a
starting point for these future mechanisms since it provides the efficieritaniens against
which the approximate ones can be compared.
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Appendix A. Analysing the Performance of the IP Solution

In this section we analyse the computational performance of the Integgrarming solution we
detailed in section 5 in order to gauge the sizes of problems that can be soteadonable time. To
this end, it is important to recall that (as was shown in section 5) the numbgrwfvariables to the
optimization problem is nearly equal to the number of valuation hyperddgesince|&.| < |&,|.
Given this, we can assume that the performance of the solver is directigdetathe number of
possible allocations approximated|&s|.

Therefore, our test set is composed of several instances of the GBBKAllocation Problem
characterised by the number of possible allocations. In more detail, togeadich allocations,
bids and valuations are generated so that the number of bids submitted lnyealsilder and the
number of valuations submitted by a single requester follow a geometric distribwith the p
parameter set t0.23 [25] (in order to randomly generate relatively large numbers of bidsfasks
agent)l” A medium-sized problem is set as follows. The number of negotiated tasksts Se
The number of task performers is setlt® and the number of task requesters is se2(o The
average number of generated valuations for each instar&eand the average number of bids is
65. Finally, the number of runs of the experiments is 300. Our experimentspeefermed on a
Xeon dual processor machine with 3Ghz CPUs, 2 GB RAM and the commsotialare employed
to solve the Integer Program is ILOG CPLEX 9.1.

The results are shown in figure 2. Specifically, thaxis represents the number of allocations
of a given problem instance and theaxis represents the time in seconds elapsed in solving the
corresponding problem instance. Notice that the dependence of tleailigljfiof the problem on the
number of allocations is quite clear. Moreover, as can be seen, it is [@&s#nlve a problem with
less thar2 x 10° variables within 40 seconds. It is important to note that the performancesof th
solver used is critical in this case and future advancements to Mixed Ifteggramming (MIP)
solvers and cpu clock speeds can only improve our results.

Given these results and since we provide a general formula (see eoB@Yim compute a priori
the number of generated allocations, it is possible to estimate the feasibility olesagiproblem
before performing it. This means that the system designer can ask tasstes and performers
to constrain the number of tasks they ask for or the number of bids theytssoene up with an
input that can be solved by the program in a reasonable time. It will be moretampchowever, to
design special purpose algorithms that can deal with larger inputs and ledisas future work.

17. Settingp higher would result in fewer bids/asks per agent.
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Figure 2: Performance of the IP solution.
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