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Abstract

In this paper, we study three prototypical models of noncooper-
ative oligopoly in markets with a continuum of traders: the model
of Cournot-Walras equilibrium of Codognato and Gabszewicz (1991),
the model of Cournot-Nash equilibrium of Lloyd S. Shapley, and the
model of Cournot-Walras equilibrium of Busetto et al. (2008). We
argue that these models are all distinct and only the Shapley’s model
with a continuum of traders and atoms gives an endogenous explana-
tion of the perfectly and imperfectly competitive behavior of agents in
a one-stage setting. For this model, we prove a theorem of existence
of a Cournot-Nash equilibrium.
Journal of Economic Literature Classification Numbers: C72, D51.

1 Introduction

In this paper, we reconsider the theory of noncooperative oligopoly in gen-
eral equilibrium, focusing both on pure exchange economies, i.e., markets,
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with a continuum of traders (see Aumann (1964)), and with a continuum of
traders and atoms (see Shitovitz (1973)). This theory has so far developed
along two main lines of research. The first is the Cournot-Walras approach,
initiated, in the context of economies with production, by Gabszewicz and
Vial (1972), and, in the case of exchange economies, by Codognato and Gab-
szewicz (1991) (see also Codognato and Gabszewicz (1993), d’Aspremont et
al. (1997), Gabszewicz and Michel (1997), Shitovitz (1997), Lahmandi-Ayed
(2001), Bonnisseau and Florig (2003), among others). The second is the non-
cooperative market game approach, initiated by Shapley and Shubik (1977)
(see also Dubey and Shubik (1977), Postlewaite and Schmeidler (1978), Mas-
Colell (1982), Amir et al. (1990), Peck et al. (1992), Dubey and Shapley
(1994), among others).

A relevant part of the work elaborated within these two lines of research
has been concerned with the issue of the strategic foundation of the noncoop-
erative oligopolistic interaction in general equilibrium. As stressed by Okuno
et al. (1980), an appropriate model of oligopoly in general equilibrium should
give a formal explanation of “[...] either perfectly or imperfectly competitive
behavior may emerge endogenously [...], depending on the characteristics of
the agent and his place in the economy” (see p. 22).

In this paper, we address this issue by concentrating on three prototyp-
ical models proposed in the literature: the model of Codognato and Gab-
szewicz (1991), based on a concept of Cournot-Walras equilibrium, which we
call, following Gabszewicz and Michel (1997), homogeneous oligopoly equi-
librium; the model of Cournot-Nash equilibrium originally proposed by Lloyd
S. Shapley and further analyzed by Sahi and Yao (1989), and the model of
Cournot-Walras equilibrium introduced by Busetto et al. (2008).

We first aim at establishing, in a systematic way, the relationships of
the three concepts of equilibrium proposed in these models with the no-
tion of Walras equilibrium; to this end, we consider, according to Aumann
(1964), limit exchange economies, i.e., markets with an atomless continuum
of traders and, according to Shitovitz (1973), mixed exchange economies, i.e.,
markets with a continuum of traders and atoms. Second, we investigate the
relationships among those three concepts of equilibrium.

We reach the conclusion that the three notions of equilibrium are all dis-
tinct. In particular, we argue that the Shapley’s model with an atomless
continuum of traders and atoms is an autonomous description of the one-
shot oligopolistic interaction in a general equilibrium framework, since even
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its closest Cournot-Walras variant, proposed by Busetto et al. (2008), may
generate different equilibria. At the state of the art, it is the only model of
noncooperative oligopoly which, according to Okuno et al. (1980), provides
an endogenous explanation of the perfectly and imperfectly competitive be-
havior of agents in a one-stage setting. This motivates us to state and prove
a theorem of existence for its Cournot-Nash equilibrium.

As regards the Cournot-Walras approach, instead, the model of Busetto
et al. (2008) turns out to be a well-founded representation of the noncooper-
ative oligopolistic interaction in general equilibrium, but only in a two-stage
setting: this makes clear a fundamental characteristic of the Cournot-Walras
equilibrium concept - namely its two-stage nature - which had remained im-
plicit in all the previous models elaborated within this approach.

The paper is organized as follows. In Section 2, we build the mathematical
model of a pure exchange economy where the space of traders is characterized
as a complete measure space, with a purely atomic space of large traders
and an atomless space of small traders. This model allows us to analyze,
within a unifying structure, the different models proposed in the literature
on noncooperative oligopoly in general equilibrium. Moreover, it provides
the general analytical setup on the basis of which we prove our existence
theorem. In Sections 3, 4, and 5, we introduce, respectively, the concept of
homogeneous oligopoly equilibrium of Codognato and Gabszewicz (1991), the
concept of Cournot-Nash equilibrium of the Shapley’s model, and the concept
of Cournot-Walras equilibrium of Busetto et al. (2008), and we analyze the
relationships of each of them with the notion of Walras equilibrium. In
Section 6, we compare the three different concepts of equilibrium. In Section
7, we state our existence theorem for a Cournot-Nash equilibrium of the
mixed version of the Shapley’s model. Appendix 1 contains the proofs of
all the propositions and of a corollary. Appendix 2 contains the proof of
existence.

2 The mathematical model

We shall consider a pure exchange economy with large traders, represented
as atoms, and small traders, represented by an atomless sector. The set of
traders is denoted by T = T0∪T1, where T0 = [0, 1] is the set of small traders
and T1 = {2, . . . , m + 1} is the set of large traders. If a, b ∈ T0 satisfy a ≤ b,
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let us write [a, b) = ∅ if a = b and [a, b) = {t ∈ T0 : a ≤ t < b} if a < b.
Then, it is well known that the collection S0 = {[a, b) : a, b ∈ T0 and a ≤ b}
is a semiring. Let S1 = P(T1) be the collection of all the subsets of T1. It is
also well known that this collection is an algebra. We denote by µ0 and µ1,
respectively, the Lebesgue measure on S0 and the counting measure on S1.
The following proposition gives a first characterization of the set of traders
as a measure space.

Proposition 1. The triplet (T,S, µ) - where T is the set of traders, S =
{E ⊂ T : E = A ∪ B, A ∈ S0, B ∈ S1}, and µ : S → [0,∞] is a set function
such that µ(E) = µ0(E ∩ T0) + µ1(E ∩ T1), for each E ∈ S - is a measure
space.

Let µ∗ denote the Carathéodory extension of µ. Since µ∗(T ) = 1+m < ∞,
the measure space (T,S, µ) is finite. This implies that a subset E of T is
µ-measurable if and only if µ∗(E) + µ∗(Ec) = µ∗(T ). Denote by T the
collection of all the µ-measurable subsets of T . The following proposition
gives a characterization of the set of traders as a complete measure space.

Proposition 2. The triplet (T, T , µ∗) is a complete measure space and µ∗

is the unique extension of µ on a measure on T .

Now, consider the triplet (T0,S0, µ0) which, as is well known, is a mea-
sure space. Denote by µ∗

0 the Carathéodory extension of µ0 and by T0 the
collection of all the µ0-measurable subsets of T0. Then, it is also well known
that the triplet (T0, T0, µ

∗
0) is a complete measure space and that µ∗

0 is the
unique extension of µ0 to a measure on T0. Let TT0

= {E ∩ T0 : E ∈ T }
be the restriction of T to T0. The following proposition characterizes the
restriction of the measure space (T, T , µ∗) to T0.

Proposition 3. The triplet (T0, TT0
, µ∗) is a measure space such that TT0

=
T0 and µ∗ = µ∗

0, where these measures are restricted to TT0
.

Now, consider the triplet (T1,S1, µ1). It is easy to show that µ∗
1 = µ1,

where µ∗
1 denotes the Carathéodory extension of µ1, and that S1 is the col-

lection of all the µ1-measurable subsets of T1. This implies that the triplet
(T1,S1, µ1) is a complete measure space. Let TT1

= {E ∩ T1 : E ∈ T } be the
restriction of T to T1. The following proposition characterizes the restriction
of the measure space (T, T , µ∗) to T1.
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Proposition 4. The triplet (T1, TT1
, µ∗) is a measure space such that TT1

=
S1 and µ∗ = µ1, where these measures are restricted to TT1

.

Let us now introduce the concept of an atom of a measure space (see
Aliprantis and Border (1994), p. 303).

Definition 1. Let (X, Σ, µ) be a measure space. A measurable set A is
called an atom if µ∗(A) > 0 and, for every subset B of A, either µ∗(B) = 0
or µ∗(A \ B) = 0. If (X, Σ, µ) has no atoms, then it is called an atomless
measure space. If there exists a countable set A such that, for each a ∈ A,
the singleton set {a} is measurable with µ∗({a}) > 0 and µ∗(X \ A) = 0,
then the measure space (X, Σ, µ) is called purely atomic.

From now on, to simplify the notation, µ∗, µ∗
0, µ∗

1 will be denoted by µ, µ0,
µ1, respectively. Then, the space of traders will be denoted by the complete
measure space (T, T , µ). By Propositions 3 and 4, it is straightforward to
show that the measure space (T0, TT0

, µ) is atomless and the measure space
(T1, TT1

, µ) is purely atomic. Moreover, it is clear that, for each t ∈ T1,
the singleton set {t} is an atom of the measure space (T, T , µ). A null set of
traders is a set of Lebesgue measure 0. Null sets of traders are systematically
ignored throughout the paper. Thus, a statement asserted for “all” traders,
or “each” trader, or “each” trader in a certain set is to be understood to
hold for all such traders except possibly for a null set of traders. The word
“integrable” is to be understood in the sense of Lebesgue. Given any function
g defined on T , we denote by 0g and 1g the restriction of g to T0 and T1,
respectively. Analogously, given any correspondence G defined on T , we
denote by 0G and 1G the restriction of G to T0 and T1, respectively. The
following proposition reminds us that the integrability of g is equivalent to
the integrability of 0g and 1g.

Proposition 5. A function g : T → R is integrable if and only if 0g and 1g
are integrable over T0 and T1, respectively.

Moreover, it is well known that
∫
T g(t) dµ =

∫
T0

0g(t) dµ +
∫
T1

1g(t) dµ,
where

∫
T0

0g(t) dµ =
∫
T0

0g(t) dµ0 and
∫
T1

1g(t) dµ =
∫
T1

1g(t) dµ1 =
∑m+1

t=2 g(t),
by Propositions 3 and 4.

In the exchange economy, there are l different commodities. A commodity
bundle is a point in Rl

+. An assignment (of commodity bundles to traders)
is an integrable function x: T → Rl

+. There is a fixed initial assignment w,
satisfying the following assumption.
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Assumption 1. w(t) > 0, for all t ∈ T ,
∫
T0

w(t) dµ ≫ 0.

An allocation is an assignment x for which
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by an utility function
ut : Rl

+ → R, satisfying the following assumptions.

Assumption 2. ut : Rl
+ → R is continuous and strictly monotonic, for all

t ∈ T , quasi-concave, for all t ∈ T0, and concave, for all t ∈ T1.

Assumption 3. u : T × Rl
+ → R, given by u(t, x) = ut(x), is measurable.

A price vector is a vector p ∈ Rl
+. According to Aumann (1966), we

define, for each p ∈ Rl
+, a correspondence ∆p : T → P(Rl) such that, for each

t ∈ T , ∆p(t) = {x ∈ Rl
+ : px ≤ pw(t)}, a correspondence Γp : T → P(Rl)

such that, for each t ∈ T , Γp(t) = {x ∈ Rl
+ : for all y ∈ ∆p(t), ut(x) ≥

ut(y)}, and finally a correspondence Xp : T → P(Rl) such that, for each
t ∈ T , Xp(t) = ∆p(t) ∩ Γp(t).

A Walras equilibrium is a pair (p∗,x∗), consisting of a price vector p∗ and
an allocation x∗, such that, for all t ∈ T , x∗(t) ∈ Xp∗(t).

Finally, the following proposition shows that there is a measurable selector
from the correspondence 0Xp.

Proposition 6. Under Assumptions 1, 2, and 3, for each p ∈ Rl
++, there

exists an integrable function 0xp : T0 → Rl
+ such that, for each t ∈ T0,

0xp(t) ∈
0Xp(t).

3 Homogeneous oligopoly equilibrium

We first consider the notion of Cournot-Walras equilibrium for exchange
economies proposed by Codognato and Gabszewicz (1991). The concept of
Cournot-Walras equilibrium was originally introduced by Gabszewicz and
Vial (1972) in the framework of an economy with production. These authors
were already aware that their notion of equilibrium raised some theoretical
difficulties, as it depends on the rule chosen to normalize prices and profit
maximization may not be a rational objective of firms. The reformulation of
the Cournot-Walras equilibrium for exchange economies proposed by Codog-
nato and Gabszewicz (1991) made it possible to overcome these problems,
since it does not depend on price normalization and replaces profit maximiza-
tion with utility maximization. This concept was generalized by Gabszewicz
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and Michel (1997) by means of a notion of oligopoly equilibrium for exchange
economies (see also d’Aspremont et al. (1997), for another generalization of
the concept). More precisely, the Cournot-Walras equilibrium introduced by
Codognato and Gabszewicz (1991) corresponds to the case of homogeneous
oligopoly equilibrium in the framework developed by Gabszewicz and Michel
(1997). We adopt here their denomination.

In order to formulate the concept of homogeneous oligopoly equilibrium,
we assume that the space of traders is as in Section 2. Moreover, we need to
introduce the following variant of Assumption 2.

Assumption 2′. ut : Rl
+ → R is continuous, strictly monotonic, and strictly

quasi-concave for all t ∈ T .

Under Assumption 2′, for each p ∈ Rl
++, it is possible to define the small

traders’ Walrasian demands as a function 0x(·, p) : T0 → Rl
+, such that,

for each t ∈ T0,
0x(t, p) = 0∆p(t) ∩

0Γp(t). It is also possible to show the
following proposition.

Proposition 7. Under Assumptions 1, 2′, and 3, the function 0x(·, p) is
integrable, for each p ∈ Rl

++.

We also consider a particular specification of the exchange economy de-
fined in Section 2, where the initial assignment of atoms is w(t) = (w1(t), 0,
. . . , 0), for all t ∈ T1.

Consider now the atoms’ strategies. A strategy correspondence is a cor-
respondence Y : T1 → P(R) such that, for each t ∈ T1, Y(t) = {y ∈ R : 0 ≤
y ≤ w1(t)}. A strategy selection is an integrable function y : T1 → R such
that, for all t ∈ T1, y(t) ∈ Y(t). For each t ∈ T1, y(t) represents the amount
of commodity 1 that trader t offers in the market. We denote by y \ y(t) a
strategy selection obtained by replacing y(t) in y with y(t) ∈ Y(t). Given a
price vector p ∈ Rl

++ and a strategy selection y, let 1x(·,y(·), p) : T1 → Rl
+

denote a function such that, for each t ∈ T1,
1x1(t,y(t), p) = w1(t) − y(t)

and (1x2(t,y(t), p), . . . , 1xl(t,y(t), p)) is, under Assumption 2′, the unique
solution to the problem

max
x2,...,xl

ut(w
1(t) − y(t), x2, . . . , xl)s.t.

l∑
j=2

pjxj = p1y(t).

Let π(y) denote the correspondence which associates, with each strategy
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selection y, the set of the price vectors such that
∫

T0

0x
1
(t, p) dµ =

∫
T0

0w
1
(t) dµ +

∫
T1

y(t) dµ,

∫
T0

0x
j
(t, p) dµ +

∫
T1

1x
j
(t,y(t), p) dµ =

∫
T0

0w
j
(t) dµ,

j = 2, . . . , l. We assume that, for each y, π(y) 6= ∅ and π(y) ⊂ Rl
++. A

price selection p(y) is a function which associates, with each y, a price vector
p ∈ π(y).

Given a strategy selection y, by the structure of the traders’ measure
space, Proposition 7, and the atoms’ maximization problem, it is straight-
forward to show that the function x(t) such that x(t) = 0x(t, p(y)), for all
t ∈ T0, and x(t) = 1x(t,y(t), p(y)), for all t ∈ T1, is an allocation.

At this stage, we are able to define the concept of homogeneous oligopoly
equilibrium.

Definition 2. A pair (y̌, x̌), consisting of a strategy selection y̌ and an allo-
cation x̌ such that x̌(t) = 0x(t, p(y̌)), for all t ∈ T0, and x̌(t) = 1x(t, y̌(t), p(y̌)),
for all t ∈ T1, is a homogeneous oligopoly equilibrium, with respect to a price
selection p(y), if ut(

1x(t, y̌(t), p(y̌))) ≥ ut(
1x, y(t), (t, p(y̌ \ y(t)))), for all

t ∈ T1 and for all y(t) ∈ Y(t).

Let us consider the relationship between the concepts of homogeneous
oligopoly and Walras equilibrium. As is well known, within the Cournotian
tradition, it has been established that the Cournot equilibrium approaches
the competitive equilibrium as the number of oligopolists increases. Codog-
nato and Gabszewicz (1993) confirmed this result. By considering a limit
exchange economy à la Aumann, they were able to show that the set of the
homogeneous oligopoly equilibrium allocations coincides with the set of the
Walras equilibrium allocations.

On the other hand, they provided an example showing that this result no
longer holds in an exchange economy à la Shitovitz, where strategic traders
are represented as atoms. More precisely, by means of this example they
proved that, within their Cournot-Walras structure, it was possible to avoid
a counterintuitive result obtained by Shitovitz (1973) in the cooperative con-
text. In his Theorem B, this author proved that the core allocations of a
mixed exchange economy are Walrasian when the atoms have the same en-
dowments and preferences (but not necessarily the same measure). In their
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example, Codognato and Gabszewicz (1993) considered an exchange economy
with two identical atoms facing a atomless continuum of small traders and
showed that, in this economy, there is a homogeneous oligopoly equilibrium
allocation which is not Walrasian.

4 Cournot-Nash equilibrium

The model described in the previous section shares, with the whole Cournot-
Walras approach, a fundamental problem, stressed, in particular, by Okuno
et al. (1980). In fact, it does not explain why a certain agent behaves
strategically rather than competitively.

Taking inspiration from the cooperative approach to oligopoly introduced
by Shitovitz (1973), Okuno et al. (1980) proposed a foundation of agents’
behavior based on the Cournot-Nash equilibria of a model of simultaneous,
noncooperative exchange between large traders, represented as atoms, and
small traders, represented by an atomless sector. Their model belongs to the
line of research initiated by Shapley and Shubik (1977). Moreover, Okuno
et al. (1980) were the first who aimed at showing that the unsatisfying
result obtained by Shitovitz (1973) with his Theorem B could be avoided
in the noncooperative context. In fact, they gave both an example and
a proposition showing that, in their Cournot-Nash equilibrium model, the
small traders always have a negligible influence on prices, while the large
traders keep their strategic power even when their behavior turns out to
be Walrasian in the cooperative framework considered by Shitovitz (1973).
Nevertheless, the model they used incorporates very special hypotheses, since
it considers only two commodities that no trader can simultaneously buy and
sell.

In this section, we show that a more general result can be obtained by
using the mixed version of a model of simultaneous, noncooperative exchange
originally proposed by Lloyd S. Shapley and subsequently analyzed by Sahi
and Yao (1989) in the case of exchange economies with a finite number of
traders.

Let us assume that the space of traders is as in Section 2.
Consider now the traders’ strategies. Let b ∈ Rl2 be a vector such that

b = (b11, b12, . . . , bll−1, bll). A strategy correspondence is a correspondence
B : T → P(Rl2) such that, for each t ∈ T , B(t) = {b ∈ Rl2 : bij ≥ 0, i, j =
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1, . . . , l;
∑l

j=1 bij ≤ wi(t), i = 1, . . . , l}. A strategy selection is an integrable

function b : T → Rl2 , such that, for all t ∈ T , b(t) ∈ B(t). For each t ∈ T ,
bij(t), i, j = 1, . . . , l, represents the amount of commodity i that trader t

offers in exchange for commodity j. Given a strategy selection b, we define
the aggregate matrix B̄ = (

∫
T bij(t) dµ). Moreover, we denote by b \ b(t) a

strategy selection obtained by replacing b(t) in b with b(t) ∈ B(t).
Then, we introduce two further definitions (see Sahi and Yao (1989)).

Definition 3. A nonnegative square matrix A is said to be irreducible if,
for every pair i, j, with i 6= j, there is a positive integer k = k(i, j) such that

a
(k)
ij > 0, where a

(k)
ij denotes the ij-th entry of the k-th power Ak of A.

Definition 4. Given a strategy selection b, a price vector p is market clear-
ing if

p ∈ Rl
++,

l∑
i=1

pib̄ij = pj(
l∑

i=1

b̄ji), j = 1, . . . , l. (1)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Denote
by p(b) the function which associates, with each strategy selection b such
that B̄ is irreducible, the unique, up to a scalar multiple, market clearing
price vector p.

Given a strategy selection b such that p is market clearing and unique,
up to a scalar multiple, consider the assignment determined as follows:

xj(t,b(t), p(b)) = wj(t) −
l∑

i=1

bji(t) +
l∑

i=1

bij(t)
pi(b)

pj(b)
,

for all t ∈ T , j = 1, . . . , l. It is easy to verify that this assignment is
an allocation. Given a strategy selection b, the traders’ final holdings are
defined as

xj(t) = xj(t,b(t), p(b)) if p is market clearing and unique,

xj(t) = wj(t) otherwise,

for all t ∈ T , j = 1, . . . , l.
This reformulation of the Shapley’s model allows us to define the fol-

lowing concept of Cournot-Nash equilibrium for exchange economies with a
continuum of traders (see Codognato and Ghosal (2000)).
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Definition 5. A strategy selection b̂ such that ¯̂B is irreducible is a Cournot-
Nash equilibrium if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))),

for all t ∈ T and for all b(t) ∈ B(t).

Codognato and Ghosal (2000) already showed that, in limit exchange
economies, the set of the Cournot-Nash equilibrium allocations of the Shap-
ley’s model and the set of the Walras equilibrium allocations coincide. It
remains to be verified whether, according to Okuno et al. (1980), this equiv-
alence no longer holds under the assumptions of Theorem B in Shitovitz
(1973). We provide here a proposition and an example showing that, under
those assumptions, the small traders always have a Walrasian price-taking
behavior whereas the large traders have market power even in those circum-
stances where the core outcome is competitive.

Proposition 8. For each strategy selection b such that B̄ is irreducible and
for each t ∈ T0, (i) p(b) = p(b \ b(t)), for all b(t) ∈ B(t); (ii) x(t, b(t), p(b \
b(t))) ∈ Xp(b)(t), for all b(t) ∈ argmax{ut(x(t, b(t), p(b \ b(t)))) : b(t) ∈
B(t)}.

More precisely, part (i) of Proposition 8 establishes that each small trader
is unable to influence prices and part (ii) that all the best replies of each small
trader attains a point in his Walras demand correspondence.

Example 1. Consider the following specification of an exchange economy
satisfying Assumptions 1, 2, and 3, where l = 2, T1 = {2, 3}, T0 = [0, 1],
w(2) = w(3), u2(x) = u3(x), w(t) = (0, 1), ut(x) = (x1)α(x2)1−α, 0 < α < 1,
for all t ∈ T0. Then, if b̂ is a Cournot-Nash equilibrium, the pair (p̂, x̂)
such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂), for all t ∈ T , is not a Walras
equilibrium.

Proof. Suppose that b̂ is a Cournot-Nash equilibrium and that the pair
(p̂, x̂) such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂), for all t ∈ T , is a Walras
equilibrium. Clearly, b̂21(t) = α, for all t ∈ T0. Since, for each atom, at a
Nash equilibrium, the marginal price (see Okuno et al. (1980)) must be equal
to the marginal rate of substitution which, in turn, at a Walras equilibrium,
must be equal to the relative price of commodity 1 in terms of commodity 2,
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we must have
dx2

dx1

= −p̂2 b̂12(t)

b̂21(t) + α
= −p̂,

for each t ∈ T1. But then, we must also have

b̂21(2) + α

b̂12(2)
=

b̂21(2) + b̂21(3) + α

b̂12(2) + b̂12(3)
=

b̂21(3) + α

b̂12(3)
. (2)

The last equality in (2) holds if and only if b̂21(2) = k(b̂21(3) + α) and
b̂12(2) = kb̂12(3), with k > 0. But then, the first and the last members of
(2) cannot be equal because

k(b̂21(3) + α) + α

kb̂12(3)
6=

b̂21(3) + α

b̂12(3)
.

This implies that the pair (p̂, x̂) such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂),
for all t ∈ T , cannot be a Walras equilibrium.

Notice that our example provides a result stronger than the proposition
proved by Okuno et al. (1980) because it requires that atoms have not only
the same endowments and preferences but also the same measure.

Proposition 8 and Example 1 clarify that the mixed version of the Shap-
ley’s model introduced in this section is a well-founded model of oligopoly
in general equilibrium as it gives an endogenous explanation of strategic and
competitive behavior. Therefore, it is immune from the criticism by Okuno
et al. (1980).

5 Cournot-Walras equilibrium

In this section, we describe the concept of Cournot-Walras equilibrium pro-
posed by Busetto et al. (2008), which makes it possible to overcome some
problems inherent in the notion of equilibrium introduced by Codognato and
Gabszewicz (1991). In particular, in the model proposed by these authors,
oligopolists are characterized by a “twofold behavior,” since they act à la
Cournot in making their supply decisions and à la Walras in exchanging
commodities. As we shall see below, in the model of Busetto et al. (2008),
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oligopolists always behave à la Cournot. This model can be viewed as a re-
specification à la Cournot-Walras of the mixed version of the Shapley’s model
presented in Section 4. It can be formulated as follows.

Again the space of traders is as in Section 2.
As regards the atomless sector, like in Section 3, we can define, under

Assumption 2′, the Walrasian demands as a function 0x(·, p) : T0 → Rl
+,

such that for each t ∈ T0,
0x(t, p) = 0∆p(t) ∩

0Γp(t).
Consider now the atoms’ strategies. Let e ∈ Rl2 be a vector such that

e = (e11, e12, . . . , ell−1, ell). A strategy correspondence is a correspondence
E : T1 → P(Rl2) such that, for each t ∈ T1, E(t) = {e ∈ Rl2 : eij ≥
0, i, j = 1, . . . , l;

∑l
j=1 eij ≤ wi(t), i = 1, . . . , l}. A strategy selection is an

integrable function e : T1 → Rl2 such that, for all t ∈ T1, e(t) ∈ E(t). For
each t ∈ T1, eij(t), i, j = 1, . . . , l, represents the amount of commodity i that
trader t offers in exchange for commodity j. We denote by e\ e(t) a strategy
selection obtained by replacing e(t) in e with e(t) ∈ E(t). Finally, we denote
by π(e) the correspondence which associates, with each e, the set of the price
vectors such that

∫
T0

0x
j
(t, p) dµ +

l∑
i=1

∫
T1

eij(t) dµ
pi

pj
=

∫
T0

wj(t) dµ +
l∑

i=1

∫
T1

eji(t) dµ, (3)

j = 1, . . . , l.

Assumption 4. For each e, π(e) 6= ∅ and π(e) ⊂ Rl
++.

A price selection p(e) is a function which associates, with each e, a price
vector p ∈ π(e) and is such that p(e′) = p(e′′) if

∫
T1

e′(t) dµ =
∫
T1

e′′(t) dµ.
For each strategy selection e, let 1x(·, e(·), p(e)) : T1 → Rl

+ denote a function
such that

1xj(t, e(t), p(e)) = wj(t) −
l∑

i=1

eji(t) +
l∑

i=1

eij(t)
pi(e)

pj(e)
, (4)

for all t ∈ T1, j = 1, . . . , l. Given a strategy selection e, taking into account
the structure of the traders’ measure space, Proposition 7, and Equation
(3), it is straightforward to show that the function x(t) such that x(t) =
0x(t, p(e)), for all t ∈ T0, and x(t) = 1x(t, e(t), p(e)), for all t ∈ T1, is an
allocation.

At this stage, we are able to define the concept of Cournot-Walras equi-
librium.
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Definition 6. A pair (ẽ, x̃), consisting of a strategy selection ẽ and an alloca-
tion x̃ such that x̃(t) = 0x(t, p(ẽ)), for all t ∈ T0, and x̃(t) = 1x(t, ẽ(t), p(ẽ)),
for all t ∈ T1, is a Cournot-Walras equilibrium, with respect to a price se-
lection p(e), if ut(

1x(t, ẽ(t), p(ẽ))) ≥ ut(
1x(t, e(t), p(ẽ \ e(t)))), for all t ∈ T1

and for all e(t) ∈ E(t).

Let us investigate the relationship between the concepts of Cournot-
Walras and Walras equilibrium. Here, we show, for the Cournot-Walras
equilibrium, a result similar to those obtained, in limit exchange economies,
by Codognato and Gabszewicz (1993) for the homogeneous oligopoly equi-
librium, and by Codognato and Ghosal (2000) for the Cournot-Nash equi-
librium. More precisely, we assume that the space of traders is denoted by
the complete measure space (T, T , µ), where the set of traders is denoted
by T = T0 ∪ T1, with T0 = [0, 1] and T1 = [2, 3], T is the σ-algebra of all
measurable subsets of T , and µ is the Lebesgue measure on T .

The following proposition establishes that, in this framework, the set
of the Cournot-Walras equilibrium allocations coincides with the set of the
Walras equilibrium allocations.

Proposition 9. Under Assumptions 1, 2′, 3, and 4, (i) if (ẽ, x̃) is a Cournot-
Walras equilibrium with respect to a price selection p(e), there is a price
vector p̃ such that (p̃, x̃) is a Walras equilibrium; (ii) if (p∗,x∗) is a Walras
equilibrium, there is a strategy selection e∗ such that (e∗,x∗) is a Cournot-
Walras equilibrium with respect to a price selection p(e).

Proposition 9 has the following corollary assuring the existence of a
Cournot-Walras equilibrium in limit exchange economies.

Corollary. A Cournot-Walras equilibrium exists.

The question whether the equivalence between the concepts of Cournot-
Walras and Walras equilibrium still holds when the strategic traders are
represented as atoms was dealt with by Busetto et al. (2008). They analyzed
an exchange economy with two identical atoms facing an atomless continuum
of traders and gave an example showing that, in this economy, there is a
Cournot-Walras equilibrium allocation which is not Walrasian. We repropose
here their example.

Example 2. Consider the following specification of an exchange economy
satisfying Assumptions 1, 2′, 3, and 4, where l = 2, T1 = {2, 3}, T0 = [0, 1],
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w(t) = (1, 0), ut(x) = lnx1 + lnx2, for all t ∈ T1, w(t) = (1, 0), ut(x) =
lnx1 + lnx2, for all t ∈ [0, 1

2
], w(t) = (0, 1), ut(x) = lnx1 + lnx2, for all

t ∈ [1
2
, 1]. For this economy, there is a Cournot-Walras equilibrium allocation

which does not correspond to any Walras equilibrium.

Proof. The only symmetric Cournot-Walras equilibrium is the pair (ẽ, x̃),

where ẽ12(2) = ẽ12(3) = 1+
√

13
12

, x̃1(2) = x̃1(3) = 11+
√

13
12

, x̃2(2) = x̃2(3) =
1+

√
13

20+8
√

13
, x̃1(t) = 1

2
, x̃2(t) = 3

10+4
√

13
, for all t ∈ [0, 1

2
], x̃1(t) = 5+2

√
13

6
, x̃2(t) =

1
2
, for all t ∈ [1

2
, 1]. On the other hand, the only Walras equilibrium of

the economy considered is the pair (x∗, p∗), where x∗1(2) = x∗1(3) = 1
2
,

x∗2(2) = x∗2(3) = 1
10

, x∗1(t) = 1
2
, x∗2(t) = 1

10
, for all t ∈ [0, 1

2
], x∗1(t) = 5

2
,

x∗2(t) = 1
2
, for all t ∈ [1

2
, 1], p∗ = 1

5
.

Therefore, the counterintuitive result established by Shitovitz (1973) with
his Theorem B can be avoided also in the framework of Busetto et al. (2008).
It remains to be analyzed, with reference to their Cournot-Walras model, the
problem of the endogenous explanation of strategic and competitive behavior.
We will go back to this issue in the next section, where we compare the
different notions of equilibrium introduced above.

6 Homogeneous oligopoly, Cournot-Nash, and

Cournot-Walras equilibrium

In this section, we propose to analyze, in a systematic way, the relationships
among the three concepts of equilibrium presented above. We first show that
the homogeneous oligopoly equilibrium concept proposed by Codognato and
Gabszewicz (1991) and the Cournot-Walras equilibrium concept introduced
by Busetto et al. (2008) differ. To this end, we provide the following example
showing that there is a Cournot-Walras equilibrium allocation which does not
correspond to any homogeneous oligopoly equilibrium.

Example 3. Consider the following specification of an exchange economy
satisfying Assumptions 1, 2′, 3, and 4, where l = 3, T1 = {2, 3}, T0 = [0, 1],
w(t) = (1, 0, 0), ut(x) = 2x1 + lnx2 + lnx3, for all t ∈ T1, w(t) = (1, 0, 0),
ut(x) = lnx1 + lnx2 + lnx3, for all t ∈ [0, 1

2
], w(t) = (0, 1, 1), ut(x) =

x1 + 1
2
lnx2 + lnx3, for all t ∈ [1

2
, 1]. For this economy, there is a Cournot-

Walras equilibrium allocation which does not correspond to any homogeneous
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oligopoly equilibrium.

Proof. There is a unique Cournot-Walras equilibrium represented by the
pair (ẽ, x̃), where ẽ12(2) = ẽ12(3) = 1+

√
241

48
, ẽ13(2) = ẽ13(3) = −1+

√
97

24
,

x̃1(2) = x̃1(3) = 49−
√

241−2
√

97
48

, x̃2(2) = x̃2(3) = 1+
√

241
44+4

√
241

, x̃3(2) = x̃3(3) =
−1+

√
97

28+4
√

97
, x̃1(t) = 1

3
, x̃2(t) = 4

11+
√

241
, x̃3(t) = 2

7+
√

97
, for all t ∈ [0, 1

2
], x̃1(t) =

9+
√

97+
√

241
12

, x̃2(t) = 6
11+

√
241

, x̃3(t) = 6
7+

√
97

, for all t ∈ [1
2
, 1]. On the other

hand, there is no interior symmetric homogeneous oligopoly equilibrium for
the economy considered.

Codognato (1995) compared the mixed version of the model in Codognato
and Gabszewicz (1991) with the mixed version of the Shapley’s model. The
point was the following: if the set of the equilibrium allocations of the model
of homogeneous oligopoly equilibrium - where strategic and competitive be-
havior is assumed a priori - had coincided with the set of the equilibrium
allocations of the Shapley’s model - where strategic and competitive behavior
is generated endogenously - then the notion of homogeneous oligopoly equi-
librium could have been re-interpreted as the outcome of a game in which
all agents behave strategically but those belonging to the atomless sector
turn out to act competitively whereas the atoms turn out to have market
power. Therefore, this equilibrium concept would have been immune from
the criticism by Okuno et al. (1980).

Nonetheless, Codognato (1995) provided an example showing that the
set of the homogeneous oligopoly equilibrium allocations does not coincide
with the set of the Cournot-Nash equilibrium allocations. There could be
two reasons for this result. The first is that the homogeneous oligopoly equi-
librium, like the other Cournot-Walras equilibrium concepts, has an intrinsic
two-stage nature, which cannot be reconciled with the one-stage Cournot-
Nash equilibrium of the Shapley’s model. The second is that, in the model
of Codognato and Gabszewicz (1991), the oligopolists have the twofold be-
havior mentioned above, as they act à la Cournot in making their supply
decisions and à la Walras in exchanging commodities whereas, in the mixed
version of the Shapley’s model, they always behave à la Cournot.

The relationship between the concepts of Cournot-Walras and Cournot-
Nash equilibrium was analyzed by Busetto et al. (2008). They noticed that
the allocation corresponding to a Cournot-Walras equilibrium in Example 2
also corresponded to a Cournot-Nash equilibrium as in Definition 5. Con-
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sequently, the Cournot-Nash equilibrium could be viewed as a situation in
which all traders behave strategically but those belonging to the atomless
sector have a negligible influence on prices. In effect, our Example 1 and
Proposition 7 provide a more general proof of this fact. Thus, the strategic
behavior of the atomless sector can be interpreted as competitive behavior.

On the other hand, at a Cournot-Walras equilibrium as in Definition 6,
the atomless sector is supposed to behave competitively while the atoms
have strategic power. This led Busetto et al. (2008) to conjecture that the
set of the Cournot-Walras equilibrium allocations coincide with the set of
the Cournot-Nash equilibrium allocations. They were able to show that this
conjecture was false by means of the following example.

Example 4. Consider the following specification of an exchange economy
satisfying Assumptions 1, 2′, 3, and 4, where l = 2, T1 = {2, 3}, T0 =
[0, 1], w(t) = (1, 0), ut(x) = lnx1 + lnx2, for all t ∈ T1, w(t) = (1, 0),
ut(x) = lnx1 + lnx2, for all t ∈ [0, 1

2
], w(t) = (0, 1), ut(x) = x1 + lnx2, for all

t ∈ [1
2
, 1]. For this economy, there is a Cournot-Walras equilibrium allocation

which does not correspond to any Cournot-Nash equilibrium.

Proof. The only symmetric Cournot-Walras equilibrium of the economy
considered is the pair (ẽ, x̃), where ẽ12(2) = ẽ12(3) = −1+

√
37

12
, x̃1(2) =

x̃1(3) = 11−
√

37
12

, x̃2(2) = x̃2(3) = −1+
√

37
14+4

√
37

, x̃1(t) = 1
2
, x̃2(t) = 3

7+2
√

37
, for

all t ∈ [0, 1
2
], x̃1(t) = 1+2

√
37

6
, x̃2(t) = 6

7+2
√

37
, for all t ∈ [1

2
, 1]. On the other

hand, the only symmetric Cournot-Nash equilibrium is the strategy selection
b̂12(2) = b̂12(3) = 1+

√
13

12
, b̂12(t) = 1

2
, for all t ∈ [0, 1

2
], b̂21(t) = 5+2

√
13

11+2
√

13

for all t ∈ [1
2
, 1], which generates the allocation x̂1(2) = x̂1(3) = 11+

√
13

12
,

x̂2(2) = x̂2(3) = 1+
√

13
22+4

√
13

, x̂1(t) = 1
2
, x̂2(t) = 3

11+2
√

13
, for all t ∈ [0, 1

2
],

x̂1(t) = 5+2
√

13
6

, x̂2(t) = 6
11+2

√
13

, for all t ∈ [1
2
, 1], where x̂(t) = x(t, b̂, p(b̂)),

for all t ∈ T .

This confirms, in a more general framework, the nonequivalence result
obtained by Codognato (1995). In this regard, it is worth noticing that,
in both models compared in Example 4, large traders always behave à la
Cournot. Therefore, this example removes one of the possible explanations
of the nonequivalence proved by Codognato (1995), namely the twofold be-
havior of the oligopolists in the model of homogeneous oligopoly equilib-
rium. This suggested to Busetto et al. (2008) that the general cause of the
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nonequivalence between the concepts of Cournot-Walras and Cournot-Nash
equilibrium had to be the two-stage implicit nature of the Cournot-Walras
equilibrium concept, which cannot be reconciled with the one-stage Cournot-
Nash equilibrium of the Shapley’s model. For this reason, they introduced a
reformulation of the Shapley’s model as a two-stage game, where the atoms
move in the first stage and the atomless sector moves in the second stage, and
showed that the set of the Cournot-Walras equilibrium allocations coincides
with a specific set of subgame perfect equilibrium allocations of this two-stage
game. Therefore, they provided a strategic foundation of the Cournot-Walras
approach in a two-stage setting.

7 An existence theorem

The analysis in the previous sections makes clear that a strategic foundation
of the Cournot-Walras approach has been obtained only in a two-stage set-
ting while, in a one-stage setting, the mixed version of the Shapley’s model is
immune from the criticism of Okuno et al. (1989), since it is able to endoge-
nously explain the perfectly and imperfectly competitive behavior of agents.
It provides an autonomous description of the one-shot oligopolistic interac-
tion in a general equilibrium framework, since even its closest Cournot-Walras
variant may generate different equilibria.

The fact that, within this model, traders’ behavior has an endogenous
foundation also permits us to overcome some technical problems which had
so far made it difficult to prove the existence of equilibria in the models
belonging to the Cournot-Walras line of research. In particular, in these
models, equilibria may not exist, even in mixed strategies, since the Walras
price correspondence may fail to be continuous. In the remainder of this
paper, we prove a theorem of existence of a Cournot-Nash equilibrium for
the mixed version of the Shapley’s model. The construction of the mixed
measure space of traders provided in Section 2 allows us to synthesize, in
our proof, the techniques used by Sahi and Yao (1989) to show the existence
of Cournot-Nash equilibria in finite exchange economies and those used to
prove the existence of noncooperative equilibria in nonatomic games (see,
Schmeidler (1973) and Khan (1985), among others). In proving our theorem,
however, we had to deal with new technical problems in taking limits, that we
have overcome by using the proof of the Fatou’s lemma in several dimensions
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provided by Artstein (1979).
Moreover, in order to show our existence theorem, we need to introduce

the following assumption on atoms’ endowments and preferences.

Assumption 5. There are at least two traders in T1 for whom w(t) ≫ 0; ut

is continuously differentiable in Rl
++; {x ∈ Rl

+ : ut(x) = ut(w(t))} ⊂ Rl
++.

The theorem can be stated as follows.

Theorem. Under Assumptions 1, 2, 3, and 5, there is a Cournot-Nash equi-
librium b̂.

8 Appendix 1. Proofs of the Propositions

and the Corollary

Proof of Proposition 1. Since S0 is a semiring and S1 is an algebra, it
easily follows that S is a semiring. Now, observe that

µ(∅) = µ0(∅) + µ1(∅) = 0.

Moreover, let {En} be a disjoint sequence of S with ∪∞
n=1En ∈ S. Then, we

have

µ(∪∞
n=1En) = µ0((∪

∞
n=1En) ∩ T0) + µ1((∪

∞
n=1En) ∩ T1)

= µ0(∪
∞
n=1(En ∩ T0)) + µ1(∪

∞
n=1(En ∩ T1))

=
∞∑

n=1

µ0(En ∩ T0) +
∞∑

n=1

µ1(En ∩ T1)

=
∞∑

n=1

(µ0(En ∩ T0) + µ1(En ∩ T1)) =
∞∑

n=1

µ(En).

Hence, µ is a measure on S.

Proof of Proposition 2. It follows from the Carathéodory Extension Pro-
cedure Theorem (see Aliprantis and Border (1994), p. 289), since the measure
space (T,S, µ), being finite, is σ-finite.
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Proof of Proposition 3. First, we shall show that, for every subset E of
T0, µ∗(E) = µ∗

0(E). This can be done as follows

µ∗(E) = inf{
∞∑

n=1

µ(En) : {En} ⊂ S, E ⊆ ∪∞
n=1En}

= inf{
∞∑

n=1

µ0(En ∩ T0) +
∞∑

n=1

µ1(En ∩ T1) : {En} ⊂ S, E ⊆ ∪∞
n=1En}

= inf{
∞∑

n=1

µ0(En ∩ T0) : {En} ⊂ S, {En ∩ T1} = ∅, E ⊂ ∪∞
n=1(En ∩ T0)}

= µ∗
0(E).

Now, observe that, since T0 is µ-measurable, TT0
is a collection of µ-measurable

subsets of T0. Let E be a subset of T0. By the σ-subadditivity of µ∗, we have

µ∗(T ) ≤ µ∗(E) + µ∗(Ec) = µ∗(E) + µ∗((Ec ∩ T0) ∪ T1)

≤ µ∗(E) + µ∗(Ec ∩ T0) + µ∗(T1).

On the other hand, since E is µ0-measurable, we have

µ∗(E) + µ∗(Ec ∩ T0) + µ∗(T1) = µ∗
0(E) + µ∗

0(E
c ∩ T0) + µ∗(T1)

= µ∗
0(T0) + µ∗(T1) = µ∗(T0) + µ∗(T1) = µ∗(T ).

This implies that µ∗(E) + µ∗(Ec) = µ∗(T ), which, in turn, implies that E is
µ-measurable, thereby showing that T0 ⊆ TT0

. Now, let E be a subset of TT0
.

Since E is µ-measurable, we have

µ∗(E) + µ∗(Ec) = µ∗(T ).

By the σ-additivity of µ∗ on T , it follows that

µ∗(E) + µ∗(Ec ∩ T0) + µ∗(T1) = µ∗(T0) + µ∗(T1).

Therefore, we have µ∗
0(E) + µ∗

0(E
c ∩ T0) = µ∗

0(T0) and this, in turn, implies
that E is µ0-measurable, thereby showing that TT0

⊆ T0. Hence, TT0
= T0.

Proof of Proposition 4. First, by the same argument used in the proof of
Proposition 3, it is possible to show that, for every subset E of T1, µ∗(E) =
µ∗

1(E) = µ1(E). Now, observe that, since S ⊆ T , S1 = S∩T1 ⊆ T ∩T1 = TT1
.

On the other hand, TT1
⊆ P(T1) = S1. Hence, S1 = TT1

.
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Proof of Proposition 5. See Kolmogorov and Fomin (1975) Theorem 4,
p. 298, and Problem 6, p. 302.

Proof of Proposition 6. First, observe that, for each p ∈ Rl
++, Assumption

2 implies that, for each t ∈ T0,
0Xp(t) 6= ∅. Moreover, from Aumann (1966),

we know that the correspondence 0Xp is Borel measurable since the corre-
spondences 0∆p and 0Γp are Borel measurable and {(t, x) : x ∈ 0Xp(t)} =
{(t, x) : x ∈ 0∆p(t)} ∩ {(t, x) : x ∈ 0Γp(t)}. Finally, 0Xp is integrably

bounded because xi ≤
∑l

j=1
pj

w
j(t)

pi , i = 1, . . . , l, for all t ∈ T0 and for all x

such that x ∈ 0Xp(t). But then, by Theorem 2 in Aumann (1965), there
exists an integrable function 0xp such that, for each t ∈ T0,

0xp(t) ∈
0Xp(t).

Proof of Proposition 7. It is an immediate consequence of Proposition 6,
since, for each p ∈ Rl

++, 0x(t, p) = 0Xp(t), for all t ∈ T0.

Proof of Proposition 8. (i) It is an immediate consequence of Definition
3. (ii) It can be proved by the same argument used in the proof of part (i)
of Theorem 2 in Codognato and Ghosal (2000).

Proof of Proposition 9. (i) Let (ẽ, x̃) be a Cournot-Walras equilibrium
with respect to the price selection p(e). First, it is straightforward to show
that, for all t ∈ T1, p̃x̃(t) = p̃w(t), where p̃ = p(ẽ). Let us now show that, for
all t ∈ T1, x̃(t) ∈ ∆p̃(t)∩Γp̃(t). Suppose that this is not the case for a trader
t ∈ T1. Then, by Assumption 2′, there is a bundle z ∈ {x ∈ Rl

+ : p̃x = p̃w(t)}
such that ut(z) > ut(x̃(t)). By Lemma 5 in Codognato and Ghosal (2000),
there exist λj ≥ 0, j = 1, . . . , l,

∑l
j=1 λj = 1, such that

zj = λj

∑l
j=1 p̃jwj(t)

p̃j
, j = 1, . . . , l.

Let eij(t) = wi(t)λj, i, j = 1, . . . , l, for all t ∈ T1. Substituting in Equation
(4) and taking into account the fact that, by Equation (3), p(ẽ) = p(ẽ\e(t)) =
p̃, it is easy to verify that

1x
j
(t, e(t), p(ẽ \ e(t)) = wj(t)−

l∑
i=1

wj(t)λi +
l∑

i=1

wi(t)λj p̃i

p̃j
= zj, j = 1, . . . , l.

But then, we have

ut(
1x(t, e(t), p(ẽ \ e(t)))) = ut(z) > ut(x̃(t)) = ut(

1x(t, ẽ(t), p(ẽ))),
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which contradicts the fact that the pair (ẽ, x̃)) is a Cournot-Walras equi-
librium. (ii) Let (p∗,x∗) be a Walras equilibrium. First, notice that, by
Assumption 2′, p∗ ∈ Rl

++ and p∗x∗(t) = p∗w(t), for all t ∈ T . But then,
by Lemma 5 in Codognato and Ghosal (2000), for all t ∈ T1, there exist
λ∗j(t) ≥ 0, j = 1, . . . , l,

∑l
j=1 λ∗j(t) = 1, such that

x∗j(t) = λ∗j(t)

∑l
j=1 p∗jwj(t)

p∗j
, j = 1, . . . , l.

Define now a function λ
∗ : T1 → Rl

+ such that λ
∗j(t) = λ∗j(t), j = 1, . . . , l,

for all t ∈ T1 and a function e∗ : T1 :→ Rl2

+ such that e∗
ij(t) = wi(t)λ∗j(t),

i, j = 1, . . . , l, for all t ∈ T1. It is straightforward to show that the function
e∗ is integrable. Moreover, by using Equation (4), it is easy to verify that

x∗j(t) = wj(t) −
l∑

i=1

e∗
ji(t) +

l∑
i=1

e∗
ij(t)

p∗i

p∗j
,

j = 1, . . . , l, for all t ∈ T1. As x∗ is an allocation, it follows that

∫
T0

x∗j(t) dµ+
∫

T1

wj(t) dµ−
l∑

i=1

∫
T1

e∗
ji(t) dµ+

l∑
i=1

∫
T1

e∗
ij(t) dµ

p∗i

p∗j
=

∫
T
wj(t) dµ,

j = 1, . . . , l. This, in turn, implies that

∫
T0

x∗j(t) dµ +
l∑

i=1

∫
T1

e∗
ij(t) dµ

p∗i

p∗j
=

∫
T0

wj(t) dµ +
l∑

i=1

∫
T1

e∗
ji(t) dµ,

j = 1, . . . , l. But then, by Assumption 4, there is a price selection p(e) such
that p∗ = p(e∗) and, consequently, x∗(t) = 0x(t, p(e∗)), for all t ∈ T0, and
x∗(t) = 1x(t, e∗(t), p(e∗)), for all t ∈ T1. It remains to show that no trader
t ∈ T1 has an advantageous deviation from e∗. Suppose, on the contrary,
that there exists a trader t ∈ T1 and a strategy e(t) ∈ E(t) such that

ut(
1x(t, , e(t), p(e∗ \ e(t)))) > ut(

1x(t, e∗(t), p(e∗))).

By Equation (3), we have p(e∗ \ e(t)) = p(e∗) = p∗. Moreover, it is easy to
show that p∗1x(t, e(t), p(e∗ \e(t)) = p∗w(t). But then, the pair (p∗,x∗) is not
a Walras equilibrium, which generates a contradiction.

Proof of the Corollary. From Aumann (1966), we know that, under
Assumptions 1, 2′, and 3, a Walras equilibrium exists. But then, by part (ii)
of Proposition 9, this implies that a Cournot-Walras equilibrium exists.
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9 Appendix 2. Proof of the Theorem

As in Sahi and Yao (1989), we shall first show the existence of a slightly
perturbed Cournot-Nash equilibrium. Given ǫ > 0, we define the aggregate
bid matrix B̄ǫ to be B̄ǫ = (

∫
T bij(t) dµ + ǫ). Clearly, the matrix B̄ǫ is ir-

reducible. The interpretation is that an outside agency places fixed bids of
ǫ for each pair of commodities (i, j). Given ǫ > 0, we denote by pǫ(b) the
function which associates to each strategy selection b the unique, up to a
scalar multiple, price vector which satisfies

l∑
i=1

pi(b̄ij + ǫ) = pj(
l∑

i=1

(b̄ji + ǫ), j = 1, . . . , l. (5)

Definition 7. Given ǫ > 0, a strategy selection b̂ǫ is an ǫ-Cournot-Nash
equilibrium if

ut(x(t, b̂ǫ(t), pǫ(b̂ǫ))) ≥ ut(t, b(t), p
ǫ(b̂ǫ \ b(t)))),

for almost all t ∈ T and for all b(t) ∈ B(t).

The following fixed point theorem, proven by Fan (1952) and Glicksberg
(1952), is the basic tool we use to show our theorem.

Theorem (Fan-Glicksberg). Let K be a nonempty, convex and compact
subset of a locally convex space X. If φ is an upper semicontinuos mapping
from K into K and if, for all x ∈ X, the set φ(x) is nonempty and convex,
then there exists a point x̂ ∈ K such that x̂ ∈ φ(x̂).

Neglecting, as usual, the distinction between integrable functions and
equivalence classes of such functions, we denote by L1(µ,Rl2) the set of in-
tegrable functions taking values in Rl2 and by L1(µ,B(·)) the set of strategy
selections (see Schmeidler (1973) and Khan (1985)). The locally convex space
we shall working in is L1(µ,Rl2) endowed with its weak topology. The fol-
lowing lemma provides us with the required properties of the set L1(µ,B(·)).

Lemma 1. The set L1(µ,B(·)) is nonempty, convex and weakly compact.

Proof. For each i = 1, . . . , l, let λij ≥ 0,
∑l

j=1 λij = 1. Since w is an

assignment, the function b : T → Rl2

+ such that, for each t ∈ T , bij(t) =

λijw
i(t), i, j = 1, . . . , l belongs to L1(µ,B(·)). The fact that L1(µ,Rl2) is a
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vector space and the fact that, for each t ∈ T , B(t) is convex imply that
L1(µ,B(·)) is convex. Finally, the weak compactness of L1(µ,B(·)) may be
proved following Khan (1985). First, notice that sup

b∈L1(µ,B(·))
∫
T |bij| dµ <

∞, i, j = 1, . . . , l. Let ǫ > 0. For each j = 1, . . . , l, there exists a δj > 0
(depending upon ǫ) such that |

∫
E wj(t) dµ| ≤ ǫ, for all measurable sets E

with µ(E) ≤ δj (see Problem 18.6 in Aliprantis and Burkinshaw (1990b),
p. 127). This implies that, if µ(E) ≤ δ = min{δ1, . . . , δl}, then, for all
b ∈ L1(µ,B(·)),

∫
E |bij(t)| dµ ≤ ǫ, i, j = 1, . . . , l. This, by the Dunford-

Pettis theorem (see Diestel (1984), p. 93), in turn implies that L1(µ,B(·))
has a weakly compact closure. Now, let {bn} be a Cauchy sequence of
L1(µ,B(·)). Since L1(µ,Rl2) is complete, {bn} converges in the mean to an
integrable function b. But then, there exists a subsequence {bkn} of {bn}
such that bkn → b a.e. (see Theorem 21.5 in Aliprantis and Burkinshaw
(1990a), p. 159). The compactness of B(t), for each t ∈ T , implies that
b ∈ L1(µ,B(·)). Hence L1(µ,B(·)) is norm closed and, since it is also convex,
it is weakly closed (see Corollary 4 in Diestel (1984), p. 12).

Given ǫ > 0, let α : L1(µ,B(·)) → L1(µ,B(·)) be a mapping such that
α(b) = {b ∈ L1(µ,B(·)) : b(t) ∈ αt(b), for almost all t ∈ T} where, for
each t ∈ T , the mapping αt : L1(µ,B(·)) → B(t) is such that αt(b) =
argmax{ut(x(t, b(t), pǫ(b \ b(t)))) : b(t) ∈ B(t)}. The following lemma pro-
vides us with the required properties of α.

Lemma 2. Given ǫ > 0, the mapping α : L1(µ,B(·)) → L1(µ,B(·)) is an
upper semicontinuous mapping such that, for all b ∈ L1(µ,B(·)), the set
α(b) is nonempty and convex.

Proof. Let ǫ > 0 be given. Consider a trader t ∈ T1. By Lemma 4 in Sahi
and Yao (1989), we know that αt is an upper semicontinuos mapping such
that, for all b ∈ L1(µ,B(·)), αt(b) is nonempty, compact and convex. Now,
consider a trader t ∈ T0. Given b ∈ L1(µ,B(·)), Proposition 8 implies that
ut(x(t, b(t), pǫ(b \ b(t)))) = ut(x(t, b(t), pǫ(b))), for all b ∈ B(t). Therefore,
for all b ∈ L1(µ,B(·)), αt is nonempty and compact, by the continuity of the
function ut(x(t, b(t), pǫ(b))) over the compact set B(t), and convex, by As-
sumption 2. The upper semicontinuity of αt is a straightforward consequence
of the Maximum Theorem (see Berge (1997), p. 116). Now, given a strat-
egy selection b ∈ L1(µ,B(·)), by Proposition 6, there exists an integrable
function xpǫ(b) : T0 → Rl

+ such that, for each t ∈ T0, xpǫ(b)(t) ∈ Xpǫ(b)(t).
By Lemma 5 in Codognato and Ghosal (2000), for each t ∈ T0, there exist
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λj(t) ≥ 0,
∑l

j=1 λj(t) = 1, such that

xj
pǫ(b)(t) = λj(t)

∑l
j=1 pǫj(b)0w

j
(t)

pǫj(b)
, j = 1, . . . , l.

Define a function λ : T0 → Rl
+, such that, λ(t) = λ(t), for each t ∈

T0. Since xpǫ(b) and 0w are integrable functions with respect to µ0 and∑l
j=1 pǫj(b)0w

j
(t) ≫ 0, for all t ∈ T0, λ is a integrable function with re-

spect to µ0. Now, define a function 0b
∗

: T0 → Rl2

+ such that 0b
∗
ij(t) =

0w
i
(t)λj(t), i, j = 1, . . . , l, for all t ∈ T0. The function 0b

∗
is integrable with

respect to µ0 and hence, by Proposition 3, with respect to µ. Moreover, by
Theorem 2 in Codognato and Ghosal (2000), b∗(t) ∈ αt(b), for each t ∈ T0.
Let 1b

∗
: T1 → Rl2

+ be a function such that 1b
∗
(t) ∈ αt(b), for each t ∈ T1.

The function 1b
∗
is integrable with respect to µ1 and hence, by Proposition 4,

with respect to µ. But then, by Proposition 5, α(b) is nonempty. The convex-
ity of α(b) is a straightforward consequence of the convexity of αt(b), for all
t ∈ T . Finally, the upper semicontinuity of α may be proved following Khan
(1985). Since L1(µ,B(·)) is weakly compact, we can show the upper semi-
continuity of α by showing that its graph is closed in L1(µB(·))×L1(µB(·))
(see the Corollary in Berge (1997), p. 112). Let {bν ,b∗ν} be a net converging
to (b,b∗) where b∗ν ∈ α(bν). The set {bν ,b∗ν} ∪ (b,b∗), being a subset of
L1(µ,B(·) × L1(µ,B(·)), is relatively weakly compact (see Theorem 2.11 in
Aliprantis and Border (1994), p. 30). By the Eberlein-Smulian Theorem (see
Aliprantis and Border (1994), p. 200), the set {bν ,b∗ν}∪ (b,b∗) is also rela-
tively weakly sequentially compact. This, in turn, implies that there exists a
sequence {bn,b∗n}, extracted from the net {bν ,b∗ν}, which converges weakly
to (b,b∗) (see Problem 17L in Kelley and Namioka (1963), p. 165). Now,
for each t ∈ T , denote by Ls{b

∗n(t)} the set of limit points of the sequence
{b∗n(t)} and by coLs{b

∗n(t)} the set of convex combinations of these limit
points. For each t ∈ T , the fact that αt is compact-valued and upper semi-
continuous and the fact that B(t) is compact imply that Ls{b

∗n(t)} ⊆ αt(b)
and this, together with the fact that αt(b) is convex, in turn, implies that
coLs{b

∗n(t)} ⊆ αt(b). Since the sequence {b∗n} converges weakly to b∗ and
is uniformly integrable (see Hildenbrand (1974), p. 52), by Proposition C in
Artstein (1979), we have b∗(t) ∈ coLs{b

∗n(t)} and so we are done.

Now, we can prove the existence of an ǫ-Cournot-Nash equilibrium.
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Lemma 3. For each ǫ > 0, there is an ǫ-Cournot-Nash equilibrium b̂ǫ.

Proof. It is a straightforward consequence of Lemmas 1 and 2 and the
Fan-Glicksberg Theorem.

As in Sahi and Yao (1989), we introduce the concept of δ-positivity.

Definition 8. For δ > 0, the function Bδ : T → Rl2 is a δ-positive strategy
function if Bδ(t) = B(t) ∩ {b ∈ Rl2 :

∑
i 6∈J

∑
j∈J(bij + bji) ≥ δ, for each J ⊆

{1, . . . , l}}, for each t ∈ T1 with w(t) ≫ 0; Bδ(t) = B(t), for the remaining
traders t ∈ T .

An ǫ-Cournot-Nash equilibrium b̂ǫ is called δ-positive if, for almost all
t ∈ T , b̂ǫ(t) ∈ Bδ(t). For each t ∈ T1, let δ∗(t) = 1

m
min{w1(t), . . . ,wl(t)}

and δ∗ = min{δ∗(t) : δ∗(t) > 0, t ∈ T1}. Given ǫ > 0, let αδ∗ : L1(µ,B(·) →
L1(µ,B(·)) be a mapping such that αδ∗(b) = {b ∈ L1(µ,B(·) : b(t) ∈
αδ∗

t (b), for almost all t ∈ T} where, for each t ∈ T , αδ∗

t (b) = αt(b)∩Bδ∗(t).
The following lemma is a strengthening of Lemma 4.

Lemma 4. For each ǫ > 0, there is a δ∗-positive ǫ-Cournot-Nash equilibrium
b̂ǫ.

Proof. Let ǫ > 0 be given. By Lemma 6 in Sahi and Yao (1989), we
know that, for each b ∈ L1(µ,B(·)), αδ∗

t (b) is nonempty, for each t ∈ T1

with w(t) ≫ 0. But then, by the same argument of Lemma 4, αδ∗(b) is
nonempty. The convexity of αδ∗(b) is a straightforward consequence of the
convexity of αt(b) and Bδ∗(t), for all t ∈ T . The upper semicontinuity of
αδ∗ can be proved using the same argument as that of Lemma 4 since, for
all t ∈ T , αδ∗

t is upper semicontinuos, by the upper semicontinuity of αt

and the nonemptyness and compactness of B(t) (see Theorem 2’ in Berge
(1997), p. 114). This completes the proof since all the assumptions of the
Fan-Glicksberg Theorem are satisfied.

Let ǫn = 1
n
, n = 1, 2, . . .. By Lemma 4, for each n = 1, 2, . . ., there is

a δ∗-positive ǫ-Cournot-Nash equilibrium b̂ǫn . The fact that the sequence
{
∫
T0

0b̂
ǫn

(t) dµ0} belongs to the compact set W = {bij ∈ Rl2 : 0 ≤ bij ≤∫
T0

wi(t) dµ0, i, j = 1, . . . , l}, the sequence {1b̂
ǫn

} belongs to the compact set∏
t∈T1

Bδ∗(t) and the sequence p̂ǫn , where p̂ǫn = p(b̂ǫn), for each n = 1, 2, . . .,
belongs, by Lemma 9 in Sahi and Yao (1989), to a compact set P, im-

plies that the sequence {
∫
T0

0b̂
ǫn

(t) dµ0,
1b̂

ǫn

, p̂ǫn} belongs to the compact set
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W ×
∏

t∈T1
Bδ∗(t)×P . This, in turn, implies that it has a subsequence (which

we denote in the same way to save in notation) which converges to an element
of the set W ×

∏
t∈T1

Bδ∗(t) × P (see Problem D in Kelley (1955), p. 238).

Since the sequence {0b̂
ǫn

} satisfies the assumptions of Theorem A in Art-

stein (1979), there is a function 0b̂ such that 0b̂(t) is a limit point of 0b̂
ǫn

(t)

for almost all t ∈ T0 and such that the sequence {
∫
T0

0b̂
ǫn

(t) dµ0} converges

to
∫
T0

0b̂(t) dµ0. Moreover, 0b̂(t) ∈ Bδ∗(t), for almost all t ∈ T0, because
0b̂(t) is the limit of a subsequence of {0b̂

ǫn

(t)}, for almost all t ∈ T0. Since

the sequence {1b̂
ǫn

} converges to a point 1b̂ ∈
∏

t∈T1
Bδ∗(t), the sequence

{
∫
T1

1b̂
ǫn

(t) dµ1} converges to
∫
T1

1b̂(t) dµ1. But then, by Proposition 5, the

sequence {
∫
T b̂ǫn(t) dµ} must converge to

∫
T b̂(t) dµ. Since the sequence {p̂ǫn}

converges to a price vector p̂ ∈ P , by the continuity of (5), p̂ and
∫
T b̂(t) dµ

must satisfy (1). Moreover, since, by Lemma 9 in Sahi and Yao (1989), p̂ ≫ 0,

Lemma 1 in Sahi and Yao (1989) implies that ˆ̄B is completely reducible. But

then, since b̂ ∈ L1(µ,Bδ∗(·)), by Remark 3 in Sahi and Yao (1989), ˆ̄B must
be irreducible. In order to conlcude that b̂ is a δ∗-positive ǫ-Cournot-Nash
equilibrium, we have to show that ut(x(t, b̂(t), p̂)) ≥ ut(x(t, b(t), p(b̂\b(t)))),

for almost all t ∈ T and for all b(t) ∈ B(t). Let ˆ̄B \ b(t) denote the aggregate

matrix corresponding to the strategy selection b̂ \ b(t) and let ˆ̄B
ǫn

\ b(t) de-
note the aggregate matrix corresponding to the strategy selection b̂ǫn \ b(t),
for each n = 1, 2, . . .. As in Sahi and Yao (1989), we proceed by considering
the following possible cases.

Case 1. t ∈ T1 and b(t) ∈ B(t) is such that ˆ̄B \ b(t) is completely re-

ducible. Clearly, ˆ̄B
ǫn

\ b(t) is irreducible, for each n = 1, 2, . . ., and so is
ˆ̄B \ b(t), by Remark 3 in Sahi and Yao (1989). Since the sequence {

∫
T b̂ǫn \

b(t)(t) dµ} converges, by the same argument given above, to
∫
T b̂ \ b(t)(t) dµ

and since, by Lemma 2 in Sahi and Yao (1989), prices are cofactors, the se-
quence {pǫn(b̂ǫn \ b(t))} converges to p(b̂ \ b(t)). Consequently, the sequence
{x(t, b(t), pǫn(b̂ǫn \ b(t)))} converges to x(t, b(t), p(b̂ \ b(t))). The fact that
the sequence {x(t, b̂ǫn(t), p̂ǫn)} converges to x(t, b̂(t), p̂) and the fact that
ut(x(t, b̂ǫn(t), p̂ǫn)) ≥ ut(x(t, b(t), pǫn(b̂ \ b(t)))), for each n = 1, 2, . . ., allow
us to conclude, by Assumption 2, that ut(x(t, b̂(t), p̂)) ≥ ut(x(t, b(t), p(b̂ \
b(t)))).

Case 2. t ∈ T1 and b(t) ∈ B(t) is such that ˆ̄B \ b(t) in not completely re-
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ducible. The fact that the sequence {x(t, b̂ǫn(t), p̂ǫn)} converges to x(t, b̂(t), p̂)
and the fact that ut(x(t, b̂ǫn(t), p̂ǫn) ≥ ut(w(t)), for each n = 1, 2, . . ., imply,
by Assumption 2, that ut(x(t, b̂(t), p̂)) ≥ ut(w(t)) = ut(x(t, b(t), p(b̂\b(t)))).

Case 3. t ∈ T0 and b(t) ∈ B(t). Clearly, the matrix ˆ̄B \ b(t) is irreducible
and, by Proposition 7, pǫn(b̂ǫn \ b(t)) = pǫn(b̂ǫn), for each n = 1, 2, . . ., and
p(b̂ \ b(t)) = p(b̂). Since b̂(t) is a limit point of the sequence {b̂ǫn(t)}, it is a
limit of a subsequence (which we denote in the same way to save in notation)
of this sequence. But then, the fact that the sequence {x(t, b(t), p̂ǫn)} con-
verges to x(t, b(t), p̂), the fact that the sequence {x(t, b̂ǫn(t), p̂ǫn)} converges
to x(t, b̂(t), p̂) and the fact that ut(x(t, b̂ǫn(t), p̂ǫn) ≥ ut(x(t, b(t), p̂ǫn)), for
each n = 1, 2, . . ., imply that ut(x(t, b̂(t), p̂)) ≥ ut(x(t, b(t), p̂)).
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dans une économie d’échange,” Revue Economique 42, 1013-1026.

[14] Codognato G., Gabszewicz J.J. (1993), “Cournot-Walras equilibria in
markets with a continuum of traders,” Economic Theory 3, 453-464.

[15] Codognato G., Ghosal S. (2000), “Cournot-Nash equilibria in limit ex-
change economies with complete markets and consistent prices,” Journal

of Mathematical Economics 34, 39-53.

[16] d’Aspremont C., Dos Santos Ferreira R., Gérard-Varet L.-A.
(1997), “General equilibrium concepts under imperfect competition: a
Cournotian approach,” Journal of Economic Theory 73, 199-230.

[17] Diestel J. (1984), Sequences and series in Banach spaces, Springer, New
York.

[18] Dubey P., Shapley L.S. (1994), “Noncooperative general exchange with a
continuum of traders: two models, ” Journal of Mathematical Economics

23, 253-293.

[19] Dubey P., Shubik M. (1978), “The noncooperative equilibria of a closed
trading economy with market supply and bidding strategies,” Journal of

Economic Theory 17, 1-20.

[20] Fan K. (1952), “Fixed points and minimax theorems concerning sets
with convex sections,” Proceedings of the National Academy of Sciences

of the U.S.A. 38, 121-126.

29



[21] Gabszewicz J.J., Michel P. (1997), “Oligopoly equilibrium in exchange
economies,” in Eaton B.C., Harris R. G. (eds), Trade, technology and

economics. Essays in honour of Richard G. Lipsey, Edward Elgar, Chel-
tenham.

[22] Gabszewicz J.J., Vial J.-P. (1972), “Oligopoly ‘à la Cournot-Walras’ in
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