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Abstract

We study auctions of a single asset among symmetric bidders with affiliated values. We
show that the second-price auction minimizes revenue among all efficient auction mechanisms
in which only the winner pays, and the price only depends on the losers’ bids. In particular,
we show that the k-th price auction generates higher revenue than the second-price auction,
for all £ > 2. If rationing is allowed, with shares of the asset rationed among the ¢ highest
bidders, then the (¢ + 1)-st price auction yields the lowest revenue among all auctions with
rationing in which only the winners pay and the unit price only depends on the losers’
bids. Finally, we compute bidding functions and revenue of the k-th price auction, with and
without rationing, for an illustrative example much used in the experimental literature to
study first-price, second-price and English auctions.

Journal of Economic Literature Classification Numbers: D44, D82.

Keywords: Auctions, Second-Price Auction, English Auction, k-th Price Auction, Affiliated
Values, Rationing, Robust Mechanism Design.

1 Introduction

We study auctions of a single asset among symmetric bidders with affiliated values, that
satisfy the following three properties: 1. The bidder with the highest signal wins. 2. Only

the winner pays. 3. The price only depends on the losers’ signals. Auction mechanisms in

I'We would like to thank the associate editor and referees for their useful comments. Ilia Tsetlin is grateful
to the Centre for Decision Making and Risk Analysis at INSEAD for supporting this project.



this class are defined by a price function p'(-) which maps the signals of the losers into the
price paid by the winners. The second-price auction is an example of such a mechanism.
Other examples include the k-th price auction, with k£ > 2, in which the highest bidder wins
and pays a price equal to the k-th highest bid.

Property 1 says that the auction is efficient. The properties of efficiency and that losers do
not pay hold in all standard auctions. The third property, that the price paid by the winner
is determined by the losing bids, is a robustness property; it holds in any ex-post incentive
compatible mechanism (see Bergemann and Morris, 2005, for a recent discussion of robustness
in mechanism design and ex-post incentive compatibility). In an auction that satisfies our
third property, a bidder does not need to worry about manipulating the price, because the
price does not depend on his bid; his bid only determines whether he wins or loses. This
property captures an important feature of an ex-post incentive compatible auction, without
going as far as requiring no regret after all possible signal-profile realizations.’

We show that the second-price auction minimizes revenue among all p'-auctions. In
particular, for all £ > 2, the k-th price auction generates higher revenue than the second-
price auction.

We also consider rationing. Auctions with rationing have been used to model initial public
offerings (IPO’s) by Parlour and Rajan (2005). As they point out, in a typical IPO there is
excess demand at the offer price, and shares are rationed to investors. Rationing schemes are
used more widely than just in IPQO’s, for example to sell tickets to sport and entertainment
events. With risk neutral bidders, lottery qualification auctions (see Harstad and Bordley,
1996) are formally equivalent to rationing. In such auctions the highest bidders win lottery
tickets for the assignment of an asset.

Parlour and Rajan (2005) studied a sealed-bid, uniform price auction, in which the winners
are the t highest bidders and the price is the (¢ + 1)-st highest bid. Each of the ¢ winners
receives a share whose value, like in uniform rationing, does not depend on the bids. They

showed that rationing may raise the issuer’s revenue. (See also Bulow and Klemperer, 2002,

I Ex-post incentive compatible mechanisms have the no-regret property that no buyer would want to revise
his decision after observing the rivals’ behavior (signals).



for a discussion of the potential benefits of rationing in common value auctions.)

We study p' auctions, a generalization of p! auctions, and show that all p'-auctions yield
higher revenue than the auction studied by Parlour and Rajan (2005). For example, revenue
can be raised by leaving the number of winners and rationing rule unchanged, but stipulating
that the price is some bid lower than the highest losing bid.

Kagel and Levin (1993) were the first to study a special case of the 3-rd price auction with
independent private values. They found such an auction useful from an experimental point
of view, because its predictions differ in important ways from those of first- and second-price
auctions. Wolfstetter (2001) used revenue equivalence to derive the bidding function in the
k-th price auction, with k£ > 2, for the general model with independent private values.

Besides shedding theoretical light on the affiliated values model, our results could prove
quite useful in the experimental testing of (Bayesian) Nash equilibrium theory. We elaborate
on this point in the concluding section.

The paper is organized as follows. The next section introduces the model. Section 3
introduces p' auctions, with ¢ > 1, and derives the main results of the paper. In Section 4 we
use an illustrative example to examine k-th price auctions with and without rationing and

the English auction. Section 5 concludes.

2 The Model

A single object is auctioned to N risk-neutral bidders. Bidder i, 7 =1,2,..., N, observes the
realization z; of a signal X;. Denote with s = (x1,...,zy) the vector of signal realizations.
Let s V ' be the component-wise maximum and s A s’ be the component-wise minimum of s
and s’. As in Milgrom and Weber (1982), signals are drawn from a distribution with a joint

pdf f(s), which is symmetric in z1, ...,z and satisfies the affiliation property:

f(sVvs)f(sns')> f(s)f(s) for all s, s'. (1)



If the inequality holds strictly, we say that the signals are strictly affiliated. The support of
fis [z, 7]V, with —co < z < T < +00. We also assume that f is differentiable.

The value V; of the object to bidder i is a function of all signals: V; = u(X;, {X;},_,).
The function u(-) is non-negative, bounded, differentiable, increasing in each variable, and
symmetric in the other bidders’ signal realizations x;, j # . The model with affiliated private
values corresponds to valuation function u(X;, {X; }j ?éi) = X;; that is, bidder ’s valuation
depends only on his own signal.

In studying the equilibrium of a given auction, it is useful to take the point of view of
one of the bidders, say bidder 1 with signal X; = z, and to consider the order statistics
associated with the signals of all other bidders. We denote with Y™ the n-th highest signal
of bidders 2,3, ..., N (i.e., all bidders except bidder 1).

Define

Ut(w7y) =F [‘/1|X1 = Iayt = y] :

Affiliation implies that v (x,y) is increasing in both arguments, and hence differentiable

almost everywhere (see Milgrom and Weber, 1982, Theorem 5).

3 p'-Auctions

Parlour and Rajan (2005) model bookbuilding and rationing in initial public offerings as a
sealed-bid, uniform-price auction in which the winners are the ¢ highest bidders and the unit
price is the (¢ + 1)-st highest bid. Each of the ¢ winners receives a share of the asset whose
value does not depend on the bids (uniform sharing, where each winner receives a share 1/¢,
is a special case), and pays his share of the unit price. The bidding function in such an

auction is

Bi(z)=FE [V1|X1 =,V = 37] . (2)

This is the same as the bidding function in a uniform auction for ¢ objects with bidders

having unit demand and the price being the (¢ 4 1)-st bid (e.g., see Milgrom 1981). When



t = 1, the Parlour-Rajan auction coincides with the second-price auction. More generally,
after rescaling payoff functions by 1/¢, uniform rationing of a single object to the ¢ highest
of N bidders is strategically equivalent to selling ¢ objects to N bidders with unit demand.

By the revelation principle (see Myerson, 1981), given any auction, or mechanism, there is
an equivalent direct mechanism where bidders directly report their signals to a designer, and
it is an equilibrium for all bidders to report truthfully. A direct mechanism can be thought
of as a proxy auction in which each bidder reports a signal to a proxy bidder who then bids
on his behalf in the true auction.

Let 7, ...,7n be the bidders’ reported signal values in decreasing order (r; > 19 > ... >
rn). We are interested in the class of (direct) auction mechanisms, called p‘-auctions, which
satisfy the following three properties: 1. The bidders with the ¢ highest signals win (¢ > 1),
and the share that each winner gets does not depend on the bids. 2. Only the winners
pay; they pay their share of the unit price p!. 3. The uniform unit price does not depend
on the winners’ signals and it is a weakly increasing function of the losers’ signals, p! =
PH(Tes1s Tega, s TN)-

Properties 1 and 2 are satisfied by all standard auctions. If ¢ = 1, so that there is no
rationing, Property 1 implies that the auction is efficient. Property 3 captures an important
feature of an ex-post incentive compatible auction, without going as far as requiring no
regret after all possible signal-profile realizations. In an auction that satisfies it, bidders
cannot directly manipulate the price.

The k-th price auction with rationing, with £ > ¢ 4 1, in which the ¢ highest bidders win
and pay a unit price equal to the k-th highest bid, corresponds to a p‘-auction with a price
function p’(r;) that only depends on 7. The first-price auction, clearly, is not equivalent to
any p'-auction. The English auction, on the other hand, corresponds to a p'-auction (an
auction with no rationing) with a price function p'(rs, ..., rx) that depends on the reports of
all losers.

We now derive a (necessary) equilibrium condition that must be satisfied by a p‘-auction.



Theorem 1 (The Indifference Condition) A p'-auction must satisfy the following condition
EViXi=2,Y'=z] =E[p" (Y, .. YY) |X;=2,Y" =1], (3)

together with the boundary condition
p(z,...,2)=E [Vlle =2,V = g} ) (4)

Proof. Let fin_1 (s, ..., yn_1|X1 = z) denote the marginal density of Y, ..., Y¥=1 condi-
tional on X; = z, and f;(y;|X; = z) denote the marginal density of Y* conditional on
X, = x. If all bidders different from bidder 1 truthfully bid their signals, then the payoff of

bidder 1 when his type is 2 and he reports r is proportional to?

Ulz,r) = /T E [(Ut(l’ayt) -7’ (Yta --wYN*l)) |1 X1 = Y= yt] fe(ye| Xo = x)dy;. (5)

The first-order condition for maximization with respect to » can be written as:

v(z,r)=E[p" (Y, YV )| X) =2,V =7].

In equilibrium, bidder 1 must bid r = z; hence (3) holds. 1

In a p'-auction a bidder’s payoff is only affected by his own bid when he is tied for a win.
In such a case, the marginal benefit of winning the object is E [V1|X; = 2, Y" = z|, while
the marginal cost is F [P|X; = z,Y" = z]. Optimality, condition (3), requires the two to be
equal.

The indifference condition (3) and the boundary condition (4) are first order conditions.
Lemma 1, proven in the Appendix, shows that they are sufficient for a truthful equilibrium
of a pl-auction if either there are affiliated private values, or an additional assumption is

satisfied.

2The constant of proportionality equals the expected share of the asset that bidder 1 would get, were he
to win.



Assumption 1 One of the following two conditions holds.

(1) For all values of x and r, it is

OE [p' (Y, .YV |X; =2,V =7] _ Ou(a,r)
Ox - Oz

(2) Let fiiin—1(Yes1, - yn—1| X1 = 2, Y = 1) be the density of Y1, ..., YN=L conditional
on X1 =x and Y' =r. The function <(-) defined by

v (z, 1)

C(I’ r> - ft—i—l:N—l (’I", .., T’Xl =T, Yt = T)

1s increasing in x for all values of r.

Part (1) of Assumption 1 requires that an increase in bidder 1’s type = has a larger impact
on the expected value of bidder 1 than on the expected unit price at auction, conditional
on bidder 1 winning the auction and bidding as a type r, the highest losing type. This is
a natural assumption, which is always satisfied if signals are independent, because in such
a case the expected value of p' does not depend on z. The appealing feature of part (2) of
Assumption 1 is that it imposes no restriction on the p' function. It is also always satisfied if
signals are independent, because in such a case the denominator of ¢(x,r) does not depend

on z, while vy(x, r) increases with .

Lemma 1 Suppose that either there are private values, or Assumption 1 holds. Then con-

ditions (3) and (4) are sufficient for a p'-auction to be well defined.

We are now ready to show that the auction with rationing studied by Parlour and Rajan

(2005) minimizes revenue among all p'-auctions.

Theorem 2 The p'-auction in which the unit price is the (t + 1)-st bid, generates the lowest

expected revenue among all pt-auctions.

Proof: Let R’ be the revenue in a p'-auction with price function p’(-), and let R}, be

the revenue in the Parlour-Rajan auction. It follows from (3) and (2) that, conditional on

7



E[Rig|Xize=Y"] = Bi()
= Ep(Y,. .YV )X =12Y" =1
< ERP (YL LYV IX > Y =1

= E[R|Xi>z=Y"],

where the inequality follows from affiliation. Taking expectations of both sides yields £ [Ri +1] <
E [R']. Under strict affiliation the inequality is strict if p’ is strictly increasing in at least one

Theorem 2 does not contradict the main message of Parlour and Rajan (2005). They
showed that with common values rationing may raise the issuer’s revenue. Theorem 2 shows
that there are many auctions with rationing that yield even higher revenue than the auction
they proposed. For example, revenue would be raised by leaving the number of winners
and the rationing rule unchanged, but stipulating that the price is some bid lower than the
highest losing bid.

If values are private, then the Parlour and Rajan auction with rationing always yields less
revenue than the second-price auction. In such a case, revenue in the second-price auction
is the expected value of the second order statistic out of the N bidders’ signals, while in the
Parlour and Rajan auction revenue is the expected value of the (¢ + 1)-st order statistic, with
t>1.

The main result for the important special case of no rationing, p'-auctions, follows as a

corollary of Theorem 2.

Corollary 1 The second-price auction generates the lowest expected revenue among all p'-

auctions.

Under strict affiliation, the second-price auction yields strictly less revenue than any p'-

auction in which the price strictly increases with at least one losing bid different from the

8



second highest bid.

The bidder with the second highest signal, say bidder 2, is the price setter in a second-price
auction. It follows directly from the indifference condition that bidder 2’s bid in a second-
price auction is equal to the expected price in a p'-auction, conditional on bidder 2’s signal
being tied with the winner’s signal. However, because signals are affiliated and bidder 2 has
the second highest signal, the expected price in a p-auction conditional on bidder 2 being
tied with the highest bidder is an underestimate of the true expected price. It follows that in
the class of p'-auctions, expected revenue is minimized by the second-price auction. Thus, in
particular, a k-th price auction generates higher revenue than the second-price auction, for
all £ > 2.

In the special case of affiliated private values, the English and the second-price auction
are equivalent and yield the same revenue. It follows that in such a case any p'-auction not
identical to the second-price auction (for example, the k-th price auction) yields higher rev-
enue than the English auction. In general, the English auction does not necessarily maximize

revenue in the class of p'-auctions.

4 An Illustrative Example

In this section, we discuss the best known analytically solvable example of auctions with
affiliated values. We will derive equilibrium bidding functions and revenue results for the

k-th price (k > 2) and the English auctions with rationing.

Example 1 There is a single object and N bidders. Conditional on V = v, each bidder’s
signal is drawn independently from a uniform distribution on [v — %, v+ %], where the ran-
dom variable (or signal) V' corresponds to the object’s common value component. Bidder i’s
payoff consists of a private-value and a common-value component, with weights A and (1 — \)
respectively, 0 < A < 1. It is u(-) = AX; + (1 — \)V. The random variable V' has a diffuse

prior; that is, it is uniformly distributed on [—M, M| with M — oo.



This example has been extensively used in the experimental literature to study first-price,
second-price, and English auctions in the two polar cases of pure private (A = 1) and pure
common values (A = 0); see Kagel, Harstad and Levin (1987), Kagel and Levin (2002), and
Parlour et al. (2007). Klemperer (2004, pp. 55-57) presents the equilibria and revenue
comparisons of first-price, second-price and English auctions for the pure common-value case
in which A = 0. Parlour and Rajan (2005) study a few variations of this example with A = 0,
including some in which the signal distribution is not uniform and the random variable V'
has finite support, rather than being diffuse over the real line. These variations have the
advantage of making the model more realistic (e.g., V is bounded above and below), but
come at the cost of having to resort to numerical methods in order to calculate bidding
functions near the boundary of the signal support and expected revenue. In the interior of
the signal support, on the other hand, the bidding functions correspond to the analytically

solvable version of the example we study.?

Proposition 3 In Example 1, the bidding function in a k-th price auction with rationing is

given by

k-1 1 1 ¢
t p— —_— - _— — —
Br(x) =x + N 2—1—)\{2 N}

The expected revenue in a k-th price auction with rationing, conditional on V = v, is

1 t N+1-k
E[RZ|V=U]:U+)\[§— ]— i

N T NN

The proof is in the appendix. The bidding function and revenue in a k-th price auc-
tion with rationing satisfy the following properties. (1) The bid and revenue are increasing
functions of k. (2) The bid decreases (and revenue need not increase) with the number of
bidders N. (3) The bid and revenue increase with the weight A attached to the private-value
component if and only if ¢ < N/2. (4) For fixed k and A > 0, the bid and revenue decrease

with the rationing parameter ¢.

3We should stress that only for the case of A\ “sufficiently close” to 1, we have been able to establish
existence of equilibrium (i.e., that the second order conditions hold). For other values of A the bidding
functions we present in Proposition 3 are the only increasing symmetric equilibrium candidates.
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In the third-price auction with independent private values and uniform distribution of
types, Kagel and Levin (1993) showed that the bid function satisfy property (2). Wolfstetter
(2001) demonstrated that in the general model with independent private values, the bid
function satisfies properties (1) and (2). As is well known, with independent signals revenue
equivalence holds, and hence for fixed ¢ revenue does not depend on k.

Property (4) shows that, at least in this example, rationing is not beneficial in a k-th
price auction: any auction with rationing in which the price is the k-th highest bid yields
less revenue than the very same auction without rationing (¢ = 1). This does not contradict
Parlour and Rajan (2005), who claimed that rationing raises bids. They assumed k =t + 1,
and if one makes such an assumption, then indeed the bid increases with rationing (i.e., with
t), provided A < 1; that is, provided values are not purely private.

In an English auction with rationing, bidding stops when there are only ¢ bidders left.
Each of them is allocated a share of the asset and pays a share of the unit price, the bid of

the last bidder to drop out of the auction.

Proposition 4 In Example 1, suppose bidder 1 with signal x is left with t opponents in an

English auction with rationing, and hence all signals Y, ..., YN~ have been revealed during

the bidding. Then bidder 1 bids

1

Bo(e) = o+ (1— N [<yN1+1—x>HL1_§]

The expected revenue in an English auction with rationing, conditional on V = v, s

t 1 1

The proof is in the appendix. The bidding function and revenue in an English auction
with rationing satisfy the following properties. (1) Revenue increases with the number of
bidders N. (2) The bid and revenue may increase or decrease with the weight \ attached to

the private-value component. (3) For A < 1, the bid increases with the rationing parameter ¢.

11



Revenue increases with the rationing parameter ¢ if and only if ¢t < \/g — 1. In particular,
with common values (A = 0), an increase in the rationing parameter increases both bids and
revenue, while with private values an increase in rationing reduces revenue. Note here the
contrast with the k-th price auction, where rationing is never beneficial.

According to the standard interpretation of the “linkage principle” (see Milgrom and
Weber, 1982, Milgrom, 1987, Krishna and Morgan, 1997, Krishna, 2002, and Klemperer,
2004), if the price the winner pays in an efficient auction with affiliated signals and common
values is more statistically linked to the other bidders’ signals, then expected revenue is higher.
Since in a k-th price auction the price only depends on “one other bidder’s information,” this
would seem to imply that the expected revenue is higher in an ascending than in any k-th
price auction. It is thus interesting to observe that in the case of common values (i.e., A = 0)
and without rationing (i.e., t = 1) the revenue in an English auction is higher than in a k-th
price auction if and only if k < % The English auction does not maximize revenue in the
class of p'-auctions.*

This result and the result that with private values the k-th price auction always generates
higher revenue than the English auction are related to Lopomo (2000). He showed, using
a two-bidder example, that there are auctions yielding greater revenue than the English
auction, in which losers do not pay. However, the mechanism in Lopomo’s example does not
satisfy the property that the price only depends on the losers’ bids; it is substantially more
complex than p'-auctions (especially k-th price auctions), and it is not easy to generalize

beyond the two-bidder case.

5 Conclusions

We have shown that the second-price auction minimizes revenue in the class of efficient

auctions in which the price paid by the winners depends only on the losing bids, and losers

4By Proposition 3, in the example studied in this section the N-th price auction maximizes revenue among
all k-th price auctions. We have been unable to establish that this is the case in the general model, or to find
a counterexample.
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do not pay (p'-auctions). When an asset is rationed to ¢ bidders, setting the unit price to
be the (¢ + 1)-st bid minimizes revenue among the class of p‘-auctions, a generalization of
pl-auctions.

We do not advocate for the use in practice of p'-auctions as a way to increase revenue.
The criticism raised about the practical use of the second-price auction (e.g., see Rothkopf,
2007) also applies to p'-auctions. In our view, a potentially important application of our
results is experimental testing of (Bayesian) Nash equilibrium theory. In studying auctions
with affiliated values, experimentalists have typically used a pure private-value and a pure
common-value version of a simple example of the general model. We have provided closed
form solutions of the bid function and revenue of the k-th price auction for a generalization of
this example, in which values have a private and a common value component and rationing
is allowed. We have derived several additional predictions that could prove useful in experi-
mental studies (e.g., in a k-th price auction with rationing, the bid and revenue increase with
k and decrease with the rationing parameter ¢, while in an English auction the bid always
increases with ¢ unless values are purely private, and revenue increases with ¢ if there are
common values and decreases with ¢ if there are private values).

In auctions with common or affiliated values, experimental subjects (especially inexpe-
rienced ones) do not behave fully in accordance with the predictions of equilibrium theory.
Instead, they fall prey of the winner’s curse; they do not entirely take into account that
winning conveys the bad news that all other bidders have lower value estimates (e.g., see
Kagel and Levin, 2002, Kagel, Harstad and Levin, 1987, and Parlour et al., 2007). In the
equilibrium of a k-th price auction (with or without rationing) a bidder must bid above his
value estimate conditional on being tied with the winner. It seems then reasonable to conjec-
ture that in such auctions with affiliated values there might be less overbidding relative to the
equilibrium prediction; an underestimate of the strategic need to bid above one’s own value
estimate may counteract the winning curse. Testing experimentally this conjecture and the
other theoretical results concerning k-th price auctions could lead to interesting new insights

about the predictive power of Bayesian Nash equilibrium theory.
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Appendix

Proof of Lemma 1. We need to show that when all other bidders bid truthfully in the
pl-auction, it is optimal for bidder 1 also to bid truthfully. If all other bidders bid truthfully,
the payoff of type = of bidder 1 bidding as type r is U(x;r), defined in (5). Differentiating

with respect to r gives that % is proportional to

{v(z,r) = E[p (Y, . .Y )Xy =2,V =7} filr| Xy = 2). (7)

oU (z;r)

5. = 0forr = z and it has the same sign as z—r if there are private values (because in that

case v(z,r) =z and E [p" (Y, .., YN | X, = 2,Y" = r] is increasing in r by affiliation),
or if part (1) of Assumption 1 holds. It follows that » = z is a global maximizer of U(z;r) if
there are private values, or part (1) of Assumption 1 holds.

We now prove that part (2) of Assumption 1 is also a sufficient condition. The expression

in (7) is proportional to
{vi(z,r) = E[p' (Y, .YV )X =2,Y" =r]} fi(r|X; = 1),

which has the same sign as

A, ) vy, 7) E [pt (Yt, ...,YN_l) |1 X1 =2, = r}
T,r) = —
frrrn1 (r,.,r|Xg =2, Yt =7r) frrrno1 (r,.,r|Xg =2, Yt =7r)
. 'Ut(x>T)
ft+1:N—1 (T’, ‘.,’I“|X1 =, Yt = ’I“)
T[N Frornot W, | X1 = 2, Yt = 1)
¢ t+1:N—1 \Yt+1, 1 )
— .. .. _ dyn_1..d .
/x z DT Beers - 1>ft+1:N71 (ry | Xy =2, Yt =7) YNt G

By affiliation, for all y; < r, j =2,..., N — 1, the expression

fre1:N-1 (yt+1; - ny1|X1 =T, Y= 7”) _ frr1:n-1 (yt+17 --7yN71\X1 = %Yt = 7’)
ft+1:N71 (7", .y T’Xl =T, Yt = 7") ft+1:N71 (7", ..,T"Xl =X, Yt = 7")
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has the same sign of x — r. Thus, for z > r

v (z, 1)
A(x,r) >
( ) ft+1:N71 (7’,..,7”|X1 IJI,Yt :7”)

_ ' N2 t(T )ft+1:N—1 (yt+1, --’Xl =T, Yi= T)d d
s Ja PAT it Y= frounoa (ry o r| Xy =r Yt =7r) Yn-1--QYt+1
vy (,7) v, )

frrrn_a (ry . r| Xy =2, Yt =7) B frounoa (ry o r| Xy =2, Yt =7r)’

which is positive by part (2) of Assumption 1. It follows that when = > r, it is aUéf;T) > 0,

and hence it is profitable for bidder 1 to increase his bid. Similarly, for x < r

Ut(xar)
Alz,r) <
( ) ft+1:N71 (r,..,r]Xlzx,Yt:r)
" yN-2 frarn—1( X =rYi=r)
t t+1:N—1 \Yt+1, 1 )
— . e YN dyn_1..d
/x ; PTs Yty Yn—1) Fron1 (ron | X =7, Y = 1) YN-1.-QYt+1
v, 1) vi(@, )

ft—i—l:N—l (T‘, ..,7”|X1 = I,Yt = 7") B ft+1:N—1 (7”, ‘.,’I“|X1 = I’,Yt = ’I“)7

which is negative by part (2) of Assumption 1. When = < r it is profitable for bidder 1 to

decrease his bid. This completes the proof. 1

Proof of Proposition 3. One can show (e.g., see Klemperer, 2004) that:

N R S
EVIX;=z,Y'=z]| =z 5T N

Furthermore, since E [Y*71V] is equal to the (k — 1)-st highest value out of N — 1 draws

from a uniform on [V — %, V+ %} , it is
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and hence it follows that

EY''"X,=2,Y'=2] = E[E[Y"V]|Xi=2Y" =21]
B I e

k—(1+1)

e

Looking for a linear equilibrium 3 (x) = a + bx of the k-th price auction with rationing, we

can write equation (3) as
M+ (1-NE[VIX, =2,V =2] =a+bE [Y* X, =2,V = 2],

or,

Az + (1= D)) [x—l—i—i] :a+b[x—

e k—(1+t)}.

N
Henceitisb=1and a = k—;]l — % + A [% — %] This gives the bidding function.

Letting Y{ be the k-th highest value out of N draws from a uniform on [V — %, V + %] ,

the expected revenue in a k-th price auction with rationing, conditional on V' = v, is

B[RV =v] = BB (Yn) [V =1

1 k k-1 1 1t
= |v+s- o+ R

2 N+ N 2 7|2 N
N L SR
- YT TN T Ny

This completes the proof. |

Proof of Proposition 4. Let f(x|v) be the density of x conditional on v; it is equal to 1
for v € [x - %, xr + %] and zero otherwise. Its associated distribution in the interior of the
support is F(z|v) =  — v + %. Suppose bidder 1 with signal z is left with ¢ opponents, and

hence all signals Y'*!, ..., YV~ have been revealed during the bidding. Then bidder 1 knows
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that v € [:z: —

ﬁE(ﬂf,Z/t;

7yN*1) =

%, yn-1 + 3] . The bidding function is:

M+ (L= NEV|X) =2,V =2, YT =y, YV
ST N+ (= Al [ = o) f (o). f

= yn-1]
(yn—1|v)dv

120 P~ Falo)]= f @l

nyf1+% v(i—z+ v)t_l dv

r—

f(yn—lv)dv

= M+ (1-N)—2—
fjf;ﬁ (A—z+ v)t_l dv
2
= Azt (1-\) S Rl | S
nyN—lfﬂH*l St=1dy
nyNl —z+1 St
= >\ZL‘—|—<1—)\) —§+ OyN — w+1zt 1dz
P!
VNS B N (PR D SR €= Sk )t
t+1 (yvo1—2+1)
t
- 1 —1/2 et
A (L= 2= 1/2 4 (s =24 1) |

If Y is the m-th highest value out of N draws from a uniform on [V — 1,V + 1], then

EYRIV =0v]=v+41— 2

E[RL|V =] =E [vaﬂ (1 -

2 N+1

N+1’

)

This completes the proof. |

17

and revenue in the English auction conditional on V' = v is

(1t—+A1)t)+<t+1) N1 A)(H_l_%)\vzv]

1 1+X N (1-\t t

2 N+1 N+1 t+1 +(1_)\)<t+1_§>

1 t+1 1 1

S A — (1= =0
R S e )<(N+1)(t+1)+2)
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