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Abstract

Consider an “isolation paradox” game with many identical players. By
definition, conforming to a rule which maximizes average utility is in-
dividually a strictly dominated strategy. Suppose, however, that some
players think “quasi-magically” in accordance with evidential (but not
causal) decision theory. That is, they act as if others’ disposition to
conform, or not, is affected by their own behavior, even though they
do not actually believe there is a causal link. Standard game theory
excludes this. Yet such “rational folly” can sustain “rule utilitarian”
cooperative behavior. Comparisons are made with Newcomb’s prob-
lem, and with related attempts to resolve prisoner’s dilemma.

∗My intellectual debts to Amartya Sen are accompanied by a friendship deep enough
to presume it will survive not only well into his fourth quarter century, but also beyond
my taking serious liberties with the titles, if not the ideas, of Sen (1967, 1977).
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1 Introduction

1.1 Isolation versus Assurance

Sen (1967) introduced two simple games to discuss what was an appropriate
rate of discount, and what policy measures might help produce an optimal
rate of saving or investment in an intertemporal economy. The first game,
which he called the “isolation paradox”, is a multi-person version of pris-
oner’s dilemma in which each player has two pure strategies, one of which
(say D) strictly dominates the other (say C). Moreover, if all players chose
their dominated strategy C, the outcome would be unanimously preferred
to the outcome when all choose their dominant strategy D. The second
game, which he called the “assurance problem”, is a significant variant of
the first in which C would become a best response just in case all other
players choose C; otherwise, D is always better.

1.2 Foolish Rationality?

Of course, both games have a pure strategy Nash equilibrium where all
players choose D. In the isolation paradox, moreover, this is the unique
equilibrium. As in prisoner’s dilemma, it is the only strategy profile in
which all players avoid the strictly dominated strategy C. Indeed, the pris-
oner’s dilemma is a special case of an isolation paradox involving only two
players. As in prisoner’s dilemma, there is sharp contrast between individ-
ual rationality and achieving any sensible collective objective that satisfies
the usual Pareto rule. Finally, note that any one player who deviates from
equilibrium to play C instead of D is indeed likely to be “isolated”.

In the assurance problem, however, there is one other Nash equilibrium
in pure strategies, where all play C. This is the best possible outcome that
can be reached by a symmetric pure strategy profile. The “problem”, of
course, is one of coordination. All players would like to be assured that all
others will choose C, to which C is the unique best response. But without
sufficient confidence that this is what other players will choose, the unique
best response reverts to D.

Rather similar games to the isolation paradox also arise in Laffont’s
(1975) discussion of “Kantian economics”, as well as in Harsanyi’s discus-
sions of rule utilitarianism — see especially Harsanyi (1977). That is, al-
though there may be a richer strategy space, the pure strategy rule that
is optimal if all follow it is to choose the strategy C, since this is Pareto
superior to the alternative pure strategy rule where each chooses D.
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A utilitarian ethicist should want to transform any isolation paradox into
an assurance problem, in the hope of achieving a unanimously preferred out-
come. The rest of this paper discusses various attempts to do this. It will
include ways of trying to achieve the optimal symmetric mixed strategy, in
case this is better than any pure strategy. Also, the computations turn out
to be simpler in the limiting case when the games have infinitely many play-
ers, regarded as a random sample of points from a non-atomic probability
measure space.

1.3 Outline

After laying out the game model in Section 2, the next Section 3 briefly
considers the kind of “warm glow” effect that Andreoni (1990) introduced
to explain some individuals’ willingness to donate towards a public good. It
also considers additional “rule consequences”.

The main idea of the paper, however, is to consider whether the concept
of “quasi-magical” thinking due to Shafir and Tversky (1992) may represent
a useful form of rational folly in this context. This is the subject of Section 4,
which begins with some remarks on Newcomb’s problem, and on attempts to
motivate cooperative behavior in prisoner’s dilemma. The section concludes
with a very brief discussion of evidential and causal decision theory, and of
the difference between the two.

Next, Section 5 revisits the isolation game, and considers what is needed
to reach the optimal proportion of cooperation that was considered in Sec-
tion 2.2. The final Section 6 offers a few concluding remarks and suggestions
for future research.

2 Two Games with Many Players

2.1 Players, Strategies, and Payoffs

The isolation paradox and assurance problem are two games with many
features in common. In the limiting versions of both games presented here,
there is a large set of many players represented in the usual way by a non-
atomic probability space (N,N , λ) of ex ante identical agents. This space
may as well be the Lebesgue unit interval [0, 1] of the real line R. We will
consider only symmetric strategies and correlation devices, so there is no
need to bother with agents’ labels.

In both games, each agent has two alternative actions denoted by a ∈
A := {C,D}, where C signifies cooperation and D signifies defection. Al-
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ternatively, C can be regarded as conforming to a rule, and D as deviating
from it.

Let γ ∈ [0, 1] denote the proportion of agents who cooperate by following
the rule in question. Each agent has preferences over lotteries with outcomes
in A×[0, 1] that can be represented by the expected value of a von Neumann–
Morgenstern utility function u(a, γ). We assume that u(D, γ) > u(C, γ) for
each fixed γ ∈ [0, 1), so strategy D is better than C unless γ = 1.

For each fixed a ∈ A, assume that the mapping γ 7→ u(a, γ) is twice
continuously differentiable on [0, 1), with partial derivatives w.r.t. γ that
satisfy u′(a, γ) > 0 and u′′(a, γ) < 0. Assume too that u′(D, γ) ≥ u′(C, γ),
signifying that the (positive) private benefit u(D, γ) − u(C, γ) of deviating
does not decrease as γ increases within the semi-closed interval [0, 1). At
γ = 1, however, u(C, γ) may not even be continuous. Using limγ↑1 to denote
a limit as γ tends to 1 from below, we assume that u(C, 1) ≥ limγ↑1 u(C, γ).
If there is a discontinuity at γ = 1, therefore, it is due to an upward jump.

2.2 An Optimal Symmetric Strategy Rule

Since all agents have identical preferences, an optimal symmetric mixed
strategy rule is to have each agent play C with probability γ∗, chosen to
maximize

U(γ) := γu(C, γ) + (1− γ)u(D, γ)

w.r.t. γ. Because

U ′(γ) = u(C, γ)− u(D, γ) + γu′(C, γ) + (1− γ)u′(D, γ),

it is evident that

U ′′(γ) = 2[u′(C, γ)− u′(D, γ)] + γu′′(C, γ) + (1− γ)u′′(D, γ) < 0

for all γ ∈ [0, 1), given our earlier assumptions.
In principle, there can be a corner maximum at γ∗ = 0. This holds if

0 ≥ U ′(0) = u(C, 0)− u(D, 0) + u′(D, 0)

or u′(D, 0) ≤ u(D, 0) − u(C, 0). In the latter case, however, the isolation
paradox completely disappears because it is best for everybody to deviate.
So we assume that u′(D, 0) > u(D, 0)− u(C, 0) from now on.

This leaves two other possible kinds of optimum. First, there is a corner
maximum at γ∗ = 1 provided that

0 ≤ lim
γ↑1

U ′(γ) = lim
γ↑1

[u(C, γ)− u(D, γ) + u′(C, γ)]
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or
lim
γ↑1

u′(C, 1) ≥ lim
γ↑1

[u(D, γ)− u(C, γ)] > 0.

This is the case when the symmetric optimum is for everybody to follow
the pure strategy C. It occurs when, for each γ < 1, the marginal social
gain per head of increasing γ exceeds the marginal private loss per head of
having more people cooperate.

An alternative kind of optimum is to have only some people obeying the
rule, with others not bothering to do so. For example, it is rarely optimal
to have every person vote; only enough so that the (diminishing) marginal
benefit of having more vote no longer exceeds the marginal cost, which
could be considerable. In the general isolation paradox we are considering,
there would then be an interior maximum at the unique γ∗ ∈ (0, 1) where
U ′(γ∗) = 0. Such an interior optimum γ∗ exists if and only if both u′(D, 0) >
u(D, 0) − u(C, 0) at γ = 0, and u′(C, γ) < u(D, γ) − u(C, γ) for all γ close
enough to 1. Then the symmetric optimum is for everybody to follow the
mixed strategy of choosing C with probability γ∗.

2.3 Distinguishing between Isolation and Assurance

The only difference between the isolation paradox and the assurance problem
comes in the relative values of u(C, 1) and u(D, 1). The isolation paradox
is a generalized prisoners’ dilemma where each player has D as a dominant
strategy. In particular, u(D, γ) > u(C, γ) even when everybody else chooses
C and so γ = 1.

By contrast, in the assurance problem one has u(D, 1) < u(C, 1). Thus,
provided that almost every other player chooses C (but only in this case),
each player prefers C to D. At γ = 1, therefore, at least one of the functions
γ 7→ u(C, γ) and γ 7→ u(D, γ) must be discontinuous. For simplicity, we as-
sume that u(D, γ) is continuous at γ = 1, but that limγ↑1 u(C, γ) < u(C, 1).

3 Avoiding Isolation: Modified Preferences

3.1 Warm Glow Effects

To transform an isolation paradox into an assurance problem, one can try
to modify the players’ common preference ordering. One way of doing this
is to add some sort of “warm glow” effect, to use the term that Andreoni
(1990) introduced to explain some individuals’ willingness to donate towards
a public good.
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For example, when C is chosen, each player’s payoff function could be
modified from u(C, γ) to u(C, (1 − ε)γ + ε), as if the player were placing
extra weight on his own cooperation compared with all the other players’.
Then, if ε ∈ (0, 1) is sufficently large and γ ∈ [0, 1) is sufficiently small, one
will have

u(C, (1− ε)γ + ε) > u(D, γ).

So if each player experiences this warm glow effect strongly enough, then D
will no longer dominate C. But the point of this paper is not to delve into
what might work to produce such a warm glow.

3.2 Rule Consequences

A second way of transforming an isolation paradox into an assurance prob-
lem is to include a “rule consequence” as an extra argument in each player’s
utility function. If more players adhere to the rule by choosing C, this some-
how reinforces the rule and makes conformity more likely. Also, if there is a
succession of opportunities to conform or deviate in a repeated game, play-
ers may observe how many have conformed to the rule in past periods, and
assign the rule some valuation or reputation accordingly.

Indeed, an obvious way of arriving at an assurance problem is to increase
the payoff u(C, 1) from cooperating in the case when the whole population
plays C so that it exceeds u(D, 1). Yet in a large population, where an obvi-
ous measure of conformity each period is the observed proportion γ ∈ [0, 1]
of players who chose C, each individual has a negligible effect on γ, so D may
well remain a dominant strategy unless u(C, γ) increases discontinuously as
γ ↑ 1. That is precisely why such a discontinuity at γ = 1 was allowed.

3.3 Limitations

In any case, all that any such modification achieves is a different payoff
function u(a, γ) defined on A × [0, 1]. There are two difficulties with this
kind of approach. First, though conceivably it might work when γ∗ = 1, it
would take a rather sophisticated form of rule consequentialism to achieve an
interior optimum γ∗ ∈ (0, 1). Indeed, a rigid rule utilitarian may still choose
C even when γ∗ < 1. Yet if there are many other players who all choose
D, independent of what this rigid player does, the objective of maximizing
the average utility of the whole population may not be achieved; the rigid
player’s gain from bending to play D may well outweigh any (small) negative
effect on the other players of having one more person choose D.
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Second, consider a Harsanyi (1986) world of “very half-hearted altruists”,
many of whom may choose C with a probability below γ∗. Then even
sophisticated altruists have to estimate the proportions π and 1 − π of the
population who will and will not follow a modified rule. They also need to
estimate what proportion q < γ∗ will play C among the fraction 1− π who
will not follow a modified rule. Knowing these statistics would enable them
to choose their optimal mixed strategy, which consists of playing C with a
compensating higher probability p > γ∗ chosen to satisfy πp+(1−π)q = γ∗,
if possible. In fact, the optimum is when

p = min{1, q +
1
π

(γ∗ − q)}.

4 Avoiding Isolation: Two Forms of Folly

4.1 Newcomb’s Problem

Another way to try converting an isolation paradox into an assurance prob-
lem is to alter players’ probabilistic beliefs. This possibility is prominently
illustrated by Newcomb’s problem, to which philosophers in particular have
devoted much attention. Indeed, the first published account is due to Nozick
(1969) — see also Nozick (1993).

The problem postulates an infallible predictor who brings out two boxes.
One is transparent, and can be seen to contain $1,000. The second box is
opaque; its content when opened will depend on what is predicted about the
subject’s choice between the following two alternatives:

either take both boxes, in which case the opaque box will be empty;

or refuse the transparent box (with its $1,000), in which case the opaque
box will contain $1 million.

Note that the predictor has to fill the opaque box, or not, before the subject’s
choice. So obviously taking both boxes is a dominant strategy. Yet when
the opaque box is found empty, might the subject not regret having tried
passing up the $1,000 in the transparent box?

Indeed, consider an alternative version of the paradox. There is no
penalty for taking the $1,000 from the transparent box. Before opening
the opaque box, however, the subject must decide whether or not to sur-
render the whole $1,000 as a bet on what the opaque box contains. The
subject will get the contents of the opaque box whether the bet is made or
not. If the bet is made, however, the predictor will have foreseen this and
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put $1 million in the opaque box; but if no bet is made, the opaque box
will be found empty. Now placing such a bet for $1 million at odds of 1000
to 1 against seems quite tempting, except to a subject who has an urgent
immediate need for the $1,000. Yet the alternative version produces exactly
the same monetary outcomes as the original version — either $0 or $1,000
if the opaque box is empty, and either $1 million or $1,001,000 if it is full.

4.2 Twin Prisoner’s Dilemma

Philosophers such as Gibbard and Harper (1978) and Lewis (1979) were
quick to realize that the prisoner’s dilemma which is so familiar to game
theorists is closely related to Newcomb’s problem. Indeed, suppose two
prisoners each have a dominant strategy D of confessing or a cooperative
strategy C of staying silent. Suppose however that, before being arrested,
both were told that the other could perfectly predict their choice, and would
choose C if and only if they predict that the other player will play C. Then
each faces the Newcomb problem, in effect, with tension between the domi-
nant strategy D and, if the prediction claim is believed, the realization that
the choice is between (C,C) and (D,D).

Twin’s dilemma is a particularly stark version of this, where the two
players are identical twins, who both expect the other twin to choose exactly
the same as they do. Indeed, Howard (1988) considers an interesting variant
of prisoner’s dilemma where the players are two computer programs that are
allowed to read each other. This allows each program to check whether the
other program is an exact copy of itself. Then, of course, it would be rational
to cooperate if the two programs really are the same.

4.3 Magical and Quasi-Magical Thinking

A brief discussion of quasi-magical thinking by an economist can be found in
Shiller (1999). He first explains the standard psychological phenomenon of
“magical” thinking by referring to the work of the behavioral psychologist
Skinner (1948), who discovered that pigeons that were first starved and
then fed a small amount at regular intervals of 15 seconds were prone to
develop strange routines, such as turning completely around several times
while waiting for food. Skinner explained this as a form of superstition.
Having noticed that they were fed every time soon after they followed the
routine, the pigeons confused correlation with causation and acted as if they
believed that their routine magically caused the food to arrive.
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As for “quasi-magical” thinking, and its contrast with magical thinking,
Shafir and Tversky (1992, p. 463) wrote as follows:

Magical thinking refers to the erroneous belief that one can in-
fluence an outcome (e.g., the roll of a die) by some symbolic
or other indirect act (e.g., imagining a particular number) even
though the act has no causal link to the outcome. We introduce
the term quasi-magical thinking to describe cases in which peo-
ple act as if they erroneously believe that their action influences
the outcome, even though they do not really hold that belief.

Recently the biologist Masel (2007) has revived this idea. She did so
in order to explain observed cooperation in public good game experiments,
where offering nothing is a dominant strategy.

4.4 Evidential versus Causal Decision Theory

Shafir and Tversky (1992, p. 463) also quote Gibbard and Harper (1978):

a person . . . wants to bring about an indication of a desired state
of the world, even if it is known that the act that brings about
the indication in no way brings about the desired state itself.

That is, in quasi-magical thinking choosing the act is seen as evidence that a
desired state of the world will occur. Whereas in magical thinking choosing
the act is seen as the cause of that desired state. A corresponding distinction
between “evidential” and “causal” decision theory has received considerable
attention in the philosophical literature (for example, Hurley 1991, 2005;
Joyce & Gibbard 1998; Joyce 1999, 2000, 2007). The point of view taken
here, however, is due to Shin (1991), who argues that one can represent
Jeffrey’s (1983) key notion of ratifiability using counterfactual beliefs, in a
way that is more familiar to game theorists — especially following Aumann
(1987).

5 Rational Folly in the Isolation Game

5.1 Universal Cooperation

We now revert to the isolation game considered in Section 2, where u(C, γ) is
twice continuously differentiable throughout the closed interval [0, 1]. Sup-
pose that, although strategy D dominates C, nevertheless every agent has
quasi-magical beliefs implying that the proportion of other agents who will
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choose C is γC if that agent chooses C himself, but only γD < γC if he
chooses D. Suppose too that u(C, 1) > u(D, 0), so that it is better to have
everybody conform than everybody defect. Then, provided that γC is close
enough to 1 and γD is close enough to 0, continuity evidently implies that
u(C, γC) > u(D, γD). Of course, this is enough to ensure that every agent
prefers C to D, so universal cooperation can be sustained.

5.2 Limited Cooperation

Achieving universal cooperation clearly requires that all agents find a rea-
son not to play their dominant strategy D. In our setting, this requires all
agents to have quasi-magical beliefs. Suppose, however, that only a pro-
portion ρ ∈ (0, 1) of randomly selected agents have such beliefs. Also, as
customary in Bayesian game theory, suppose this proportion ρ is commonly
knowledge. Then the remaining fraction 1− ρ of the population will choose
their dominant strategy D. Accordingly, even an agent with quasi-magical
beliefs will presumably have γC ≤ ρ.

Of course, in this case cooperation by at most a proportion ρ of agents
can be sustained. Even for this to be possible, however, requires that
u(C, γC) > u(D, γD), which is impossible unless u(C, ρ) > u(D, 0). Because
dominance implies that u(C, 0) < u(D, 0) even when u(C, 1) > u(D, 0), this
is possible only if ρ is sufficiently close to 1.

5.3 Optimal Cooperation

In section 2.2 it was shown that the optimal proportion γ∗ of cooperators
might well be in the interior of the interval [0, 1]. Only in the very special
case when γ∗ coincides with the proportion ρ of agents with quasi-magical
beliefs will this optimum be achievable with the kind of pure strategies
considered above.

An obvious next step is to consider mixed strategies. But these raise
conceptual difficulties when some agents have quasi-magical beliefs. This is
because it remains unclear whether the expected proportion γ of cooperators
depends upon the pure strategy that results ex post from randomization, or
upon the mixed strategy that was selected ex ante. To avoid this difficulty,
we postulate that each agent i ∈ N receives a personal disposition signal
si ∈ A, suggesting whether they should be disposed to cooperate or not.

In case this signal suggests playing D, we assume that each agent simply
chooses what is anyway a dominant strategy. Also, even when the signal
suggests playing C, each of the proportion 1 − ρ of agents who lack quasi-
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magical beliefs will still play D. The proportion ρ of agents with quasi-
magical beliefs, however, each expect the proportion of cooperators to be
γC ≤ ρ if they play C, but only γD if they play D. So the agents with
quasi-magical beliefs who receive the disposition signal C will indeed choose
C provided that u(C, γC) > u(D, γD). As before, this is impossible unless
u(C, ρ) > u(D, 0), which requires ρ to be sufficiently close to 1.

To achieve the optimal proportion γ∗ of cooperators, the probability σ
that any agent receives the disposition signal C must be selected to satisfy
ρσ = γ∗, where σ ∈ [0, 1]. So for γ∗ to be achievable, we need ρ ≥ γ∗. In
other words, there must be enough quasi-magical thinkers. Or enough agents
who, for whatever reason, are expected to choose the dominated strategy C
instead of the dominant strategy D.

6 Concluding Remarks

Sen (1967) distinguished between the isolation paradox and assurance games.
In the former, each player has a dominant strategy of departing from a rule
which, if observed by enough people, would benefit all. In the latter, cooper-
ating is better provided everybody else is cooperating; otherwise, defecting
is always better.

This paper considered the quasi-magical beliefs that Shafir and Tversky
(1992) postulated to explain why experimental subjects might be willing to
choose a dominated strategy. It was shown that such “rational folly” may
indeed be able to supplant the kind of “foolish rationality” that excludes
dominated strategies in the isolated paradox.

Nevertheless, quasi-magical beliefs involve a form of self-deception that
should leave game theorists and economists feeling considerable discomfort.
To make such beliefs appear more palatable, it is perhaps worth investigating
the evolutionary stability of this kind of behavior. Especially in the light of
work such as Conley et al. (2006) on the role of “memetics”.

Meanwhile, however, it is perhaps enough to remind ourselves that many
of the issues raised in Sen (1967) and in his later work remain at best
incompletely resolved. They still represent challenges that may only be met
if philosophers, decision and game theorists, psychologists, even economists,
combine all their talents.
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