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Abstract

We study banking with ex ante moral hazard. Resolving the mis-
alignment of the incentives between banks and depositors requires early
liquidation with positive probability: e¢cient risk-sharing between depos-
itors is no longer implementable. In a closed region with a single bank, we
show that (i) with costless and perfect monitoring, contracts with bank
runs o¤ the equilibrium path of play improve on contracts with trans-
fers, (ii) when the bank’s actions are non-contractible, equilibrium bank
runs driven by incentives are linked to liquidity provision by banks. With
multiple regions linked via an interbank market, with local moral hazard,
we show that implementing second-best allocations requires both ex-ante
trade in inter-bank markets and contagion after realization of liquidity
shocks.
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1 Introduction

A key issue in the theoretical literature on banking is the link between illiquid
assets, liquid liabilities and bank runs. In the seminal paper by Diamond and
Dybvig (1983) (see also Bryant (1980)), e¢cient risk-sharing between deposi-
tors with idiosyncratic, privately observed taste shocks creates a demand for
liquidity. Banks invest in illiquid assets but take on liquid liabilities by issu-
ing demand deposit contracts with a sequential service constraint. Although
demand deposit contracts support e¢cient risk-sharing between depositors, the
use of such contracts makes banks vulnerable to runs driven by depositor co-
ordination failure. Allen and Gale (2000) extend the analysis of Diamond and
Dybvig (1983) to study …nancial contagion in an optimal contracting scenario.

However, as Diamond and Dybvig point out, when aggregate taste shocks are
common knowledge, a demand deposit contract with an appropriately chosen
threshold for suspension of convertibility eliminates bank runs while support-
ing e¢cient risk-sharing. This point applies to the model of …nancial contagion
developed by Allen and Gale (2000) as well. Taken together, these two re-
marks raise the following question: without any a priori restrictions on banking
contracts, are there scenarios where equilibrium bank runs and equilibrium con-
tagion occur with positive probability in a banking contract?

This paper studies banking with ex ante moral hazard but without aggre-
gate payo¤-relevant uncertainty. We study a model of banking with ex ante
moral hazard. Resolving the misalignment of the incentives between banks and
depositors requires the early asset liquidation with positive probability: e¢cient
risk-sharing between depositors is no longer implementalbe.

Initially, we study banking in a closed region. Although the bank has no in-
vestment funds of its own, it has a comparative advantage in operating illiquid
assets: no other agent in the economy has the human capital to operate illiquid
assets. Consequently, the bank controls any investment made in illiquid assets.
The bank has a choice of two illiquid assets to invest in. After depositors en-
dowments have been mobilized, but before the realization of idiosyncratic taste
shocks, the bank makes an investment decision. Each illiquid asset generates
a stream of “public” and “private” returns. We think of "public" returns as
cash ‡ows generated by the asset that the bank cannot access without depos-
itors’ consent (for instance, such cash ‡ows are generated by physical capital
which can be monitored and seized by depositors). "Private" returns, then, are
cash ‡ows generated by the asset which can be accessed by the bank without
depositors’ consent1 .

We assume that there is a social planner who maximizes the ex-ante utility
of a representative depositor2 . Even with costless, perfect monitoring of the
banks actions, we show that using transfers to provide the bank with appropri-

1 Following Hart and Moore (1998), we think of "public" returns as cash ‡ows generated
by the asset that the bank cannot steal because they are publicly veri…able (for instance, they
are embedded in physical capital which can be seized by depositors). "Private" returns, then,
are cash ‡ows generated by the asset which can be stolen by the bank.

2 Equivalently, we assume that depositors have all the bargaining power.
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ate incentives can result in narrow banking and no liquidity provision. More
generally, incentive compatible transfers to the bank will lower consumption for
all types of depositors. Nevertheless, our …rst result shows that it is still pos-
sible to implement e¢cient risk sharing between depositors, without sacri…cing
consumption, by using a contract which embodies the threat of a bank run o¤
the equilibrium path of play.

When the investment decision of the bank is non-contractible3 , we show that
e¢cient risk-sharing between depositors is no longer implementable. Even with
forward looking depositors, the positive probability of an equilibrium bank run is
necessary and su¢cient to resolve incentive problems in banking. Although the
second-best incentive compatible contract improves on autarky, it also generates,
endogenously, the risk of a banking crisis.

Next, we extend the model to multiple regions linked by an inter-bank market
along the lines of Allen and Gale (2000). In this case, with local moral hazard
where only the incentive constraint of the bank in region 1 binds, there is trade
in the inter-bank market even allowing for the possibility of bank runs and
contagion after the realization of liquidity shocks. Moreover, the second-best
allocation is implemented by combination of trade in the inter-bank market
with bank runs and contagion induced by the random banking contract. In this
sense, global contagion can result with even local moral hazard.

In either case, there is no aggregate uncertainty in preferences and technol-
ogy: the randomness introduced by banking contracts studied here is uncor-
related with fundamentals and is driven purely by incentives. We believe this
is a more primitive explanation for bank runs and contagion. In the formal
model studied here, bailouts are equivalent to building in a suspension of con-
vertibility clause in the banking contract. In this sense, the random second-best
contracts studied here provides a rationale for the doctrine of "creative ambigu-
ity" when the banking regulator makes no ex-ante commitment to a particular
bailout policy but instead leaves the banking sector in doubt about its intentions
(Goodhart (1999)).

Intervention by central banks or government agents takes place typically
after the onset of a crisis (see, for instance, OECD (2002)). Indeed, section
2.5 below for case of closed region, we characterize the structure of second-best
intervention in sequential monitoring scenarios where no other agent can replace
the bank at  = 1. In practice, however, conditional on a bank run, there is
also a third option which involves depositor protection via emergency liquidity
provision and replacing the existing management of the bank via a takeover by
a another bank or nationalization as in the current crisis involving Northern
Rock. As such our results justify such an intervention policy the alternatives
necessarily require bank runs or contagion.

The rest of the paper is structured as follows. The remainder of the in-
troduction relates the results obtained here with other papers on bank runs.
Section 2 studies a simple model of banking with moral hazard and leads up to

3 In particular, any transfer to the bank cannot be made contingent on the actions chosen
by the bank.
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the main result of the paper. Section 3 is devoted to contagion issues. The …nal
section concludes.

1.1 Related literature

Although to the best of our knowledge, both the model and the results of our
paper are new, in what follows, we situate our analysis in the context of related
work.

Perhaps the paper closest to the approach we adopt here is Diamond and
Rajan (2001) who show that the threat of bank runs o¤ the equilibrium path of
play impacts on the bank’s ability and incentives to renegotiate loan contracts
with borrowers. We obtain a similar result: the threat of bank runs o¤ the
equilibrium path of play (when monitoring is both costless and perfect) impacts
on the investment decision of the bank. However, they do not obtain equilibrium
bank runs as, in their model, whether or not banks renegotiate is observable
(though not veri…able and therefore, non-contractible ex-ante).

Calomiris and Kahn (1991) study a model of embezzlement in banking where
the bank’s temptation to embezzle depends on the realization of an exogenous
move of nature and depending on the prevailing state, either the bank will never
be tempted to embezzle or will always be tempted to embezzle. Therefore, in
Calomiris and Kahn (1991), the positive probability of a bank run relies on the
existence of aggregate payo¤-relevant uncertainty. Diamond and Rajan (2000),
in a framework similar to Diamond and Rajan (2001), also require the additional
feature of exogenous uncertainty to obtain equilibrium bank runs. In contrast,
in our paper the existence of equilibrium bank runs doesn’t rely on aggregate
payo¤ relevant uncertainty. Here bank runs are driven purely by incentives.

Holmström and Tirole ((1997), (1998)), study a model where conditional
on the realization of an exogenous liquidity shock, banks incentives have to
be aligned with those of the depositors. In their model, ex-ante (before the
realization of the exogenous liquidity shock), the threshold (in the space of
liquidity shocks) below which the bank is liquidated is set. They show that
this threshold will be higher than the …rst-best threshold when agency costs are
taken into account. In this sense, their ine¢cient termination (relative to the
…rst-best) is driven by exogenous payo¤-relevant uncertainty while in our paper
ine¢cient termination doesn’t require exogenous payo¤-relevant uncertainty.

It is worth remarking that a common feature of Calomiris and Kahn (1991),
Holmström and Tirole ((1997), (1998)), and Diamond and Rajan (2001), is their
focus on issues of moral hazard that arise conditional on the realization of the
liquidity shock. In contrast, here, we study moral hazard issues that arise ex
ante before the realization of the liquidity shock.

A related branch has focused on the relation between incomplete informa-
tion about the distribution of taste shocks across depositors and bank runs in
banking scenarios with a …nite number of depositors. Under the assumption
that the social planner can condition allocations on the position a depositor has
in the queue of depositors attempting to withdraw their deposits, Green and
Lin (2003), building on Wallace ((1998), (1990)), show that it is possible to

4



implement the …rst-best socially optimal risk-sharing allocation without bank
runs. On the other hand, by imposing further restrictions on banking contracts,
Peck and Shell (2003) obtain equilibrium bank runs as a feature of the optimal
banking contract.

Another branch of the literature has focused on the relation between incom-
plete information about the future returns of the illiquid asset and bank runs
(see, for instance, Gorton (1985), Gorton and Pennacchi (1990), Postlewaite and
Vives (1987), Chari and Jaganathan (1988), Jacklin and Bhattacharya (1988),
Allen and Gale (1998)). However, in these papers, the variation in the future re-
turns of the illiquid asset is exogenous while here the variation in future returns
is a function of the investment decision of the bank and is hence endogenous.

Finally, in our paper, as in Aghion and Bolton (1992), bank runs can be
interpreted as a way of allocating control of over banking assets to depositors.
However, unlike Aghion and Bolton (1992), the reallocation of control rights isn’t
triggered by some exogenous event but endogenously via depositor’s actions in
the second-best banking contract.

2 Bank runs with moral hazard

2.1 The model

In this section we study a model of banking in a closed region. The model
extends Diamond-Dybvig (1983) to allow for moral hazard in banking. There
are three time periods,  = 0 1 2. In each period there is a single perishable good
. There is a continuum of identical depositors in [0 1], indexed by , of mass
one, each endowed with one unit of the perishable good at time period  = 0 and
nothing at  = 1 and  = 2. Each depositor has access to a storage technology
that allows him to convert one unit of the consumption good invested at  = 0
to 1 unit of the consumption good at  = 1 or to 1 unit of the consumption good
at  = 2.

Depositors preferences over consumption are identical ex-ante, i.e. as of
period 0. Each faces a privately observed uninsurable risk of being type 1 or
type 2. In period 1, each consumer learns of his type. Type 1 agents care only
about consumption in period 1 while for type 2 agents, consumption in period 1
and consumption in period 2 are perfect substitutes. For each agent, only total
consumption (and not its period-wise decomposition) is publicly observable.
Formally, at  = 1 each agent has a state dependent utility function which has
the following form:

(1 2 ) =

½
(1)      1   

(1 + 2)      2   

In each state of nature, there is a proportion  of the continuum of agents who
are of type 1 and conditional on the state of nature, each agent has an equal and
independent chance of being type 1. It is assumed that  is commonly known.
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In addition, there is a bank, denoted by . The bank’s preferences over
consumption is represented by the linear utility function (0 1 2) = 1 +
2

4 . Unlike depositors, the bank has no endowments of the consumption good
at  = 0. However, the bank is endowed with two di¤erent asset technologies,
 = , that convert inputs of the perishable good at  = 0 to outputs of
the perishable consumption good at  = 1 or  = 2. We will assume that the
size of the bank is large relative to the size of an individual depositor5 . As each
individual depositor has a (Lebesgue) measure zero, if the bank has the same size
as an individual depositor, transfers to the bank can be made without a¤ecting
the overall resource constraint. In order to capture the trade-o¤ between making
transfers to the bank and e¢cient risk sharing between depositors, the bank has
to be large relative to the depositors.

The output of the perishable consumption good produced by either asset
technology has two components: a “private” non-contractible component that
only the bank can access and consume and a “public” component which de-
positors can access and consume as well. Both the “public” and the “private”
component of both asset technologies are characterized by constant returns to
scale. For each unit of the consumption good invested in  = 0, asset technology
,  = , yields either 1 unit of the “public” component of the consumption
good if the project is terminated at  = 1 or   0 units of the “public” com-
ponent of the consumption good at  = 2 if the project continues to  = 2. In
addition, for each unit of the consumption good invested in  = 0, asset tech-
nology ,  = , yields 1 unit of the “private” non-contractible component
of the consumption good if the project is terminated at  = 1, or 

  0 units
of the “private” component of the consumption good at  = 2 if the project
continues to  = 26 . In addition, at  = 0, the bank incurs a direct private
utility cost  per unit of the consumption good invested in asset  at  = 0.

In order to operate either of these two asset technologies, the bank has to
mobilize the endowments of the depositors. At  = 0, we assume that mobilizing
depositors’ endowments requires a banking contract which speci…es an allocation
for each type of depositor and an investment portfolio for the bank.

Any contract used must satisfy the following constraints:
(a) the bank controls any investment that is made into either of these two

asset technologies and the operation of both these two asset technologies,
(b) no other agent in the economy has the human capital to operate either

of these two technologies,
(c) no other agent can replace the bank to take over the operation of either

4 The assumption that  () is linear simpli…es the computations and the notation consid-
erably. All the results stated here extend, with appropiately modi…ed computations, to the
case where  () is a strictly increasing in consumption.

5 Technically, the set of agents is modelled as a mixed measure space where each individual
depositor has a Lebesgue measure zero (and therefore is part of an atomless continuum of
depositors) while the bank is an atom with measure one. For details on how construct such a
measure space see Codognato and Ghosal (2001).

6 The assumption that within a technology there is no choice as to how much of the in-
vestment goes into the public component and how much into the private component is a
simpli…cation and nothing essential in our results depends on this analysis.
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illiquid asset from the bank at  = 1,
(d) at  = 1 verifying or observing the investment decision of the bank, made

at  = 0, is possible only if an appropriate monitoring technology is available,
(e) the public return at  = 1 is observed by the depositors and/or an outside

agent (a court) only if the asset technology is terminated at  = 1 and the public
return at  = 2 is observed by the depositors and/or the outside agent only at
 = 2.

The consequence of making these assumptions is that, in the absence of a
perfect monitoring technology, the investment decision of the bank at  = 0 is
non-contractible. The combination of non-contractible actions together with the
private non-contractible component to asset payo¤s is the source of the moral
hazard problem in banking.

In addition, we make some further assumptions on depositor’s preferences
and the two asset technologies:

(1) () is strictly increasing, strictly concave, smooth utility function,

(2) ¡00()
0()  1 for all   0,

(3)   1    0,
(4)  +

   +
 ,

(5) 1  
 ,  = ,

(6)   .
Assumption (1) implies that each individual type 1 and type 2 depositor

is risk-averse. Assumption (2) implies that whenever there is e¢cient risk-
sharing, the bank has to provide liquidity services: narrow banking is ruled
out. Under assumption (3), it can never be in the depositor’s interest for the
bank to invest in asset : depositors will prefer to invest their endowments of
the consumption good in the storage technology. Assumption (4) implies that
production e¢ciency requires investment in asset . Assumption (5) implies
that for either asset, the bank prefers the project to continue to  = 2. Finally,
assumption (6) implies that the e¤ort cost to the bank of investing in asset 
is less than the e¤ort cost of investing in asset .

An allocation is a vector (   
) where ( ) is the asset (equiva-

lently, investment) portfolio (chosen at  = 0) and describes the proportion of
endowments invested in the storage technology and asset technology  (with
proportion 1 ¡  ¡  invested in asset technology ),  = (1

1 
2
1 

1
2 

2
2) is

the consumption allocation of the depositors ( is the consumption of type 
depositor in time period ,  = 1 2 and  = 1 2) and describes what each type of
depositor consumes in each period and  =

¡
1 


2

¢
describes the consumption

allocation to the bank. A consequence of assumptions (4) and (5) is that
productive e¢ciency, and hence social e¢ciency, requires that  = 1.

Throughout the paper we that the social planner maximizes the ex ante
utility of a representative depositor. Equivalently, we assume that depositors
have all the bargaining power7 . We …rst characterize the (constrained) e¢cient

7 It can be easily veri…ed (details available on requesti that when banks have all the bar-
gaining power, narrow banking results.
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allocation and then, examine the implementation of this allocation using con-
tracts (games). Given the sequential structure of the banking scenario studied
here, our notion of implementation requires that agents use dominant actions
in every subgame of the banking contract.

2.2 Depositor control and contracts without bank runs

Clearly, the ex-ante utility of the representative depositor is

() = (1
1) + (1 ¡ )(2

1 + 2
2)

where () is a weighted sum of type 1 and type 2 depositors preferences where
the weights used re‡ect the aggregate proportions of type 1 and type 2 de-
positors. When there is no monitoring technology available, the representative
depositor cannot condition transfers to the bank at  = 1 or  = 2, on the in-
vestment portfolio chosen by the bank at  = 0. In this case, making transfers
to the bank will have no impact on the bank’s incentives. Without a monitoring
technology, in any banking contract written by the representative depositor, no
transfers, over and above the private non-contractible payo¤ the bank receives
by operating either asset technology, will be made to the bank.

Consider the case when 
 ¸ 

. By assumption,   , and therefore,

 ¡  ¸ 

 ¡ . In this case, we claim that the representative depositor
can design a banking contract that implements the e¢cient risk-sharing with-
out bank runs. The representative depositor solves the following maximization
problem (labelled ( ) for later reference):

max
fg

()

subject to
(1)  ¸ 

¡
1

1 + (1 ¡ )2
1

¢
+

¡
1

2 + (1 ¡ )2
2

¢


(2) (̂2)  ¸ 0  = 1 2  = 1 2
(3) 

¡
1

1

¢
¸ 

¡
2

1

¢


(4) (2
1 + 2

2) ¸ (1
1 + 1

2)
The solutions to ( ) satisfy the equations
(1) 2¤

1 = 1¤
2 = 0

(2) 0(1¤
1 ) = 

0(2¤
2 )

(3)  = 
1¤
1 + (1 ¡ )2¤

2 
while for the bank
(4) ¤ = 1
(4) ¤1 = 0
(4) ¤2 = 


Allocations characterized by (1)¡(4) correspond to the …rst-best allocations

in Diamond and Dybvig (1983). As in their paper, under the assumption (1),
00()  0 while under assumption (3),   1. Therefore, using (2), it follows
that 2¤

2  1¤
1 . This ensures that the truth telling constraints (3) is satis…ed.

Under the additional assumption that ¡00()
0()  1 it also follows that 1¤

1  1
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while 2¤
2  . This implies that whenever there is e¢cient risk-sharing, the

bank has to provide liquidity services: narrow banking is ruled out.

Again, as in Diamond and Dybvig (1983), there is a banking contract
³
̂ ̂ ̂

´
,

satisfying a sequential service constraint and with suspension of convertibility8 ,
that implements (¤ ¤). Each depositor who withdraws in period 1 obtains a
…xed claim ̂1 = 1¤

1 per unit deposited at  = 0 and convertibility is suspended

at ̂ = . If banking continues to  = 2, each agent who withdraws at  = 2,
obtains a …xed claim ̂2 = 2¤

2 per unit deposited at  = 0 and not withdrawn
at  = 1. Moreover, ̂ = 1. The argument establishing how such a contract
implements …rst-best risk sharing follows Diamond and Dybvig (1983) and is
reported in the appendix.

What happens if 
  

? As long as 
¡ ¸ 

¡, nothing essential
in the preceding argument changes and e¢cient risk-sharing without bank runs
can still be implemented. On the other hand, when 

 ¡   
 ¡ 

9 , if
costless and perfect monitoring of the bank’s portfolio choice, made at  = 0,
is possible at  = 1, the depositor can write a banking contract that conditions
transfers at  = 1 on portfolio choices made by the bank at  = 0. Whether the
representative depositor will actually choose to do so is an issue examined in
the next subsection.

2.3 Depositor control and bank runs with costless and
perfect monitoring

In this subsection, we examine the case where at time  = 0, it becomes common
knowledge that the representative depositor invested in the monitoring technol-
ogy and study the case of costless and perfect monitoring. With monitoring,
we assume that (a) before the bank makes its investment decision, it becomes
common knowledge that depositors have invested in the monitoring technology,
and (b) the results of monitoring are revealed, publicly, before depositors choose
whether or not to withdraw their deposits.

Speci…cally, we assume that at  = 0, it is common knowledge that at the be-
ginning of  = 1, the representative depositor observes the investment allocation
across assets made by the bank at  = 0. We assume that 

¡  
¡ . An

obvious additional component in a banking contract is that now the representa-
tive depositor can commit to make transfers to the bank at  = 2, contingent on

8 The sequential service constraint implies that (a) withdrawal tenders are served sequen-
tially in random order until the bank runs out of assets and (b) the bank’s payo¤ to any
agent can depend only on the agent’s place in the line and not on any future information
about agents behind him in the line while suspension of convertibility implies that any agent
attempting to withdraw at  = 1 will receive nothing at  = 1 if he attempts to withdraw at
 = 1 after a fraction ̂ of depositors. Note that along the equilibrium path of play, neither
the sequential service constraint nor the suspension of convertibility constraint ever binds in
any of the banking contracts, whether random or deterministic, studied in this paper.

9 Taken together, the inequalities    and 
 ¡   

 ¡  , imply that from the
bank’s perspective the project with higher net private utility return at  = 2 is also the one
with the higher e¤ort cost at  = 0. When 

 ¡   
 ¡  , as    , the long-run

interests of the depositors and the bank are no longer aligned.
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the actions chosen by the bank at  = 0. Note that under our assumptions, the
representative depositor cannot make negative transfers to the bank. This is be-
cause, by assumption, the payo¤s of the bank are private and non-contractible.
Therefore, any transfer made to the bank has to be non-negative.

Suppose the representative depositor commits to make a transfer, at  = 2,
to the bank of  2 (), such that 

+ 2 (1)¡ = 
¡+, where   0 but

in…nitesimal, while  2 () = 0 for all  6= 1. In this case, the bank will choose
 = 1 if banking continues to  = 2 The resource constraint is

( 01)  ¡ 2 (1) ¸ 

¡
1

1 + (1 ¡ )2
1

¢
+

¡
1

2 + (1 ¡ )2
2

¢
 Let 0, 0

denote a solution to the representative depositor’s maximization problem with
the resource constraint ( 01). Remark that a necessary condition for e¢cient
risk-sharing between type 1 and type 2 depositors is that the equations (1),
(2) and the inequality ( 01) be simultaneously satis…ed. Remark also that for
depositors’ participation constraints to be satis…ed, any solution to the repre-
sentative depositor’s maximization problem must also satisfy the inequality

(5) 01
1 ¸ 1  02

1 + 02
2 ¸ 1

The following example demonstrates the (robust) possibility that there is no
0 satisfying (1), (2), ( 01) and (5).

Example 1 Suppose  () = 1¡

1¡ ,   0 and  ¡ 2 (1)  1 ¡ . Suppose to

the contrary, there is some 0 satisfying (1), (2), ( 01) and (5). Then, any 0

that satis…es (1), (2) must also satisfy the equation 
1



01
1 = 02

2 . Evaluated at

01
1 = 1, the expression on the right hand side of ( 01) is  + (1 ¡ )

1


 
1 as   1 while the left hand side of ( 01) is strictly less than 1 ¡ , a
contradiction.

The above example shows that with transfers, even with costless and perfect
monitoring, there is, in general, a trade-o¤ between (a) e¢cient risk-sharing
between type 1 and type 2 depositors and provision of liquidity, and (b) provid-
ing the bank with appropriate incentives. In robust banking scenarios, banking
contracts with transfers results in no risk-sharing between type 1 and type 2
depositors and consequently, no provision of liquidity i.e. in narrow banking.

In general, however, even if risk-sharing between type 1 and type 2 depositors
and providing the bank with appropriate incentives are consistent i.e. if there
is a solution to the representative depositor’s problem satisfying (1), (2), ( 01)
and (5), incentive compatible transfers to the bank will lower consumption for
both types of depositors. To make this point, observe that when equations (1)
and (2) are satis…ed, we have that

0
¡
01

1

¢
= 

0
¡
02

2

¢

and as 00()  0, the preceding equation implicitly de…nes a function () such
that

02
2 = 

¡
01

1

¢
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where


¡
01

1

¢
= 0¡1

Ã
0

¡
01

1

¢



!



Consider the inequality
(6)  ¡  2 (1) ¸  + (1 ¡ )  (1) 
By computation, it is easily checked that when (6) holds, an interior solution

to the representative depositor’s problem is possible. Note that (6) is equivalent
to


0

µ
 ¡  2 (1) ¡ 

1 ¡ 

¶

 0(1)

which implies that as   1 and 00()  0, 02
2  01

1 , 02
2   (1) and

therefore, 01
1  1. But we also have that 01

1  ¤1
1 and 02

2  ¤2
2 . It follows

that if (6) holds, any solution to the representative depositor’s problem can be
implemented by an appropriately designed banking contract, augmented with
transfers and with suspension of convertibility. However, such an contract will
inevitably entail a consumption loss for both types of depositors.

As, by assumption, depositors have all the bargaining power, assuming that
the action chosen by the bank, at  = 0 can be observed costlessly at  = 1, can
the representative depositor design a banking contract without transfers that
implements the allocation ¤?

The following argument shows that this is indeed possible. The main idea of
the argument is that as the representative depositor can observe , and therefore
make the terms of the banking contract contingent on  so that if  = 1, there is
no bank run while if   1, there is a bank run (equivalently, asset liquidation)
with probability one. Such a banking contract would induce the bank to choose
 = 1 at  = 0. Therefore, in the game induced by the banking contract,
although bank runs are never observed along the equilibrium path of play, the
threat of a bank run o¤ the equilibrium path of play induces the bank to choose
 = 1 along the equilibrium path of play.

The details are as follows. Let 0 () be a function de…ned from [0 1] to
<2

+ while let 0 () be a function de…ned from [0 1] to itself. Consider the
banking contract, subject to a sequential service constraint, described by a
vector (0 0 0) such that 0

1 (1) = 1¤
1 per unit deposited at  = 0, 0

1 () = 1
for   1, 0 (1) =  while 0 () = 1 for   1, and if banking continues to
 = 2, 0

2 (1) = 2¤
2 while for   1, 0

2 () = 0 per unit deposited at  = 0 and
not withdrawn at  = 1. The contract also speci…es the bank’s asset portfolio
where 0 = 1. It follows that when  = 1, it is a dominant action for type
one depositors to withdraw and for type two depositors not to withdraw at
 = 1, while it is a dominant action for all types of depositors to withdraw their
deposits at  = 1 whenever   1. Anticipating this behavior by depositors,
the bank will choose  = 0 = 1 as this yields a payo¤ 

 ¡   1 ¡  while
choosing   1 yields a payo¤  (1 ¡ )+(1 ¡ ) (1 ¡ )  (1 ¡ ) (since by
assumption,    and therefore, 1 ¡   1 ¡ ).

The case of imperfect and costly monitoring combines features of the results
obtained in this section and section 2.4 below and is omitted.
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2.4 Depositor control and bank runs with non-contractible
actions

What happens if 
 ¡   

 ¡  and there is no available monitoring
technology for verifying and observing the investment decision of the bank at
 = 1? In this case, allowing transfers to the bank will have no impact on the
bank’s incentives. A banking contract, all of whose Nash equilibria at  = 1
involve a zero probability of a bank run, will fail to implement any   0.
As    and 1 ¡   1 ¡  and if there is enough chance of a bank run
(equivalently, asset liquidation)10 at  = 1, so that technology  gets to generate
a higher private utility return to the bank than technology , one might get
the bank to invest all available resources at  = 0 in asset technology . So
a run is clearly necessary to implement any allocation with   0. That it is
su¢cient is proved below. However requiring   0 entails a positive probability
of a bank run at  = 1 and although e¢cient risk-sharing between type 1 and
type 2 depositors is never implemented with probability one, it is achieved with
strictly positive probability.

Consider the randomization scheme ( ) where  = f1  g,  ¸ 2,
is some arbitrary but …nite set of states of nature and  = f1  g,  ¸

0,
P=

=1  = 1 is a probability distribution over 11 . The randomization
scheme works as follows: at  = 0, no agent, including the bank, observes 
while at  = 1, before any choices are made, the realized value of  is revealed
to all agents and as before, each depositor privately observes her own type. A
random allocation is a collection (~ ~ ~) where ~ 2 [0 1], ~ :  ! <4

+ and
~ :  ! <2

+. Let ¹ =
©
 2  : ~ () ¸ 0 ~1

1 () + (1 ¡ ) ~2
1 () ¸ 1

ª
,

¹ =
©
 :  2 ¹

ª
and let ¹ =

P
2 ¹ . The interpretation is that whenever

 2 ¹, the asset needs to be liquidated at  = 1 and therefore, ¹ is the
probability of a bank run. Therefore, at  = 1, both the bank and the depositors
can condition any choices they make on .

For  2 [0 1], let  =  + (1 ¡ ). The representative depositor’s

maximization problem (labelled as ( ~ ) for later reference) is:

max
f~~~g

X

2

(~ ()  ~ ())

subject to³
~1

´
~

¡
~1

1 () + (1 ¡ ) ~2
1 ()

¢
+

¡
~1

2 () + (1 ¡ )~2
2 ()

¢
·

~  2 

( ~2) ~ () ¸ 0  = 1 2  = 1 2  2 
( ~3) (~1

1 ()) ¸ (~2
1 ())  2 

( ~4) (~2
1 () + ~2

2 ()) ¸ (~1
1 () + ~1

2 ())  2 

10 By assumption, no other agent can replace the bank to take over the operation of either
illiquid asset from the bank at  = 1 which, in turn, implies that the second-best banking
contract studied below is renegotiation proof.

11 Obviously, there are other ways of introducing randomness in the social planner’s problem.
We choose the randomization scheme presented here as a matter of convenience.
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( ~5) ~ 2 arg max2[01]

½
¹ + (1 ¡ ¹)

¡


 + (1 ¡ )


¢

¡ [ + (1 ¡ ) ]

¾



Fix a pair ( ),  ¸ 2, such that ¹ is non-empty. At any socially optimal
allocation we must have that ~ = 1. Evaluated at ~ = 1, the payo¤s of the bank
is given by the expression

¹ + (1 ¡ ¹)
 ¡ 

For the moral hazard constraint ( ~5) to be satis…ed, we require that

¹ + (1 ¡ ¹)
 ¡  ¸

½
¹ + (1 ¡ ¹)

¡


 + (1 ¡ )


¢

¡ [ + (1 ¡ ) ]

¾

for all  2 [0 1]. When ¹ = 0, as 
  

, ( ~5) will always be violated
for all  2 [0 1]. On the other hand when ¹ = 1, as 1 ¡   1 ¡ , ( ~5)
will hold as a strict inequality for all  2 [0 1]. Further, both sides of the
inequality are continuous in  and 

  1, the expression ¹+(1 ¡ ¹)
 is also

decreasing in ¹ at the rate 1¡
; moreover, as 

  1, for each  2 [0 1], the
expression ¹ + (1 ¡ ¹)

¡


 + (1 ¡ )


¢
is also decreasing in ¹ at the rate

1 ¡
¡


 + (1 ¡ )


¢
. It follows that for each  2 [0 1], as 

  
  1,

¯
¯1 ¡



¯
¯

=
¯
¯

 ¡ 1
¯
¯


¯
¯
¡


 + (1 ¡ )


¢
¡ 1

¯
¯

=
¯
¯1 ¡

¡


 + (1 ¡ )


¢¯
¯

and therefore, there exists a unique threshold ~, 0  ~  1, such that for all
¹  ~, ¹  1, the moral hazard constraint ( ~5) holds as a strict inequality for
all  2 [0 1].

Production e¢ciency and hence, constrained e¢cient risk-sharing requires
that ~ = 1. Next, note that

(10) ~2¤
1 () = 0  2 

(30) 

¡
~1¤

1 () + (1 ¡ ) ~2¤
1 ()

¢
+ (1 ¡ )~2¤

2 () =   2 
(40) ~¤1 () =   2 ¹
(40) ~¤1 () = 0  2 n ¹
(40) ~¤2 () = 0  2 ¹
(40) ~¤2 () = 

  2 n ¹
By construction,
(20) ~2¤

2 () = 0  2 ¹
and as 0()  0, using ( ~3) and ( ~4), we obtain that
(20) ~1¤

1 () = ~2¤
1 ()   2 ¹

while using (30),
(20) ~1¤

1 () = ~2¤
1 () = 1  2 ¹

as when there is a bank run, this is the only allocation consistent with the
feasibility and participation constraints in ~ . It follows that

(20) ~2¤
1 () = 0  2 n ¹
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and
(20) 0(~1¤

1 ()) = 
0(~2¤

2 ())  2 n ¹
and therefore
(20) ~1¤

1 () = 1¤
1   2 n ¹

(20) ~2¤
2 () = 2¤

2   2 n ¹
It follows that for a …xed pair ( ),  ¸ 2, such that ¹ is non-empty

and ¹ ¸ ~, ¹  1, there is a unique random allocation satisfying (10) ¡ (40).
For a …xed pair ( ), such that either ¹ is empty or ¹  ~, we have already
established that there is no allocation that satis…es (10)¡(40). Finally, for a …xed
pair ( ), such that either n ¹ is empty or ¹ = 1, both ~1¤

1 () = ~2¤
2 () =

1, ~¤1 () =  and ~¤2 () = 0 for all  2 . In this case observe that
though the moral hazard constraint (40) always holds, there is no state at which
there is e¢cient risk-sharing.

Next, we examine the optimal choice of the pair ( ). First note that at
any optimal choice of (), generating a unique random allocation satisfying
(10) ¡ (40), both n ¹ and ¹ will have to be non empty. Fix a pair ( ),
 ¸ 2, generating a unique random allocation satisfying (10) ¡ (40) denoted by
(~ ~). Then, there is a pair (0 0), 0 = f0

1 
0
2g and 0 = f0

1 
0
2g so that

(a) ~ () = ~ (0
1) and ~ () = ~ (0

1) for all  2 n ¹, (b) ~ () = ~ (0
2)

and ~ () = ~ (0
2) for all  2 ¹, (c) 0

1 = (1 ¡ ¹) and 0
2 = ¹ and therefore,

X

2

(~ ()  ~ ()) = 0
1(~ (0

1)  ~
 (0

1)) + 0
2(~ (0

2)  ~
 (0

2))

It follows that without loss of generality, we can restrict attention to 0 such
that  = 2. Finally, as the representative depositor wants to maximize the
probability with which e¢cient risk sharing is implemented, she will choose the
lowest value of 0

2 compatible with ( ~5) being satis…ed as a strict inequality i.e.
choose 0

2 = ~+  1, where   0 is small but strictly positive number so that
( ~5) is satis…ed as a strict inequality. Setting 0

2 = ~ will imply that ( ~5) will
be satis…ed as an equality in which case the representative depositor will have
to rely on the bank choosing a tie-breaking rule in favour of asset technology .

It remains to specify a random banking contract that will implement the ran-
dom allocation satisfying (10) ¡ (40). A random banking contract12 is described

by the vector
³
0 0 ~ ~ ~

´
where the pair (0 0) are as in the preceding

paragraph, ~ = 1 and ~1 (0
1) = 1¤

1 , ~1 (0
2) = 1, ~2 (0

1) = 2¤
2 , ~2 (0

2) = 1,
~ (0

1) = , ~ (0
2) = 1. The interpretation is that subject to a sequential service

constraint and suspension of convertibility, each depositor who withdraws in
period 1 obtains a random claim ~1 (0

), 0
 2 0 per unit deposited at  = 0.

If banking continues to  = 2, each agent who withdraws at  = 2, obtains
a random claim ~2 (0

), 0
 2 0 per unit deposited at  = 0. With such a

contract, given 0
 2 0, the payo¤ to per unit of deposit withdrawn at  = 1,

12 As before we assume that at  = 0, no agent, including the bank, observes  while
at  = 1, before any choices are made, the realized value of  is revealed to all agents.
Thererfore, at  = 1, both the bank and the depositers can condition any choices they make
on .
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which depends on the fraction of deposits serviced before agent ,  , is given
by the expression

~1(  ~1 (0
)  ~ (0

)  0
) =

½
 (~1 (0

))    · ~ (0
)

 (0)    ~ (0
)

while the period 2 payo¤ per unit deposit withdrawn at  = 2, which depends
on total fraction of deposits withdrawn in period 1,  (0

), is given by the
expression

~2( ~1 (0
)  0

) =

½
 (~2 (0

))   1   (0
) ~1 (0

)

0 

At  = 1, for each value of 0
 2 0, the above contract induces a noncooperative

game between depositors where each depositor chooses what fraction of their
deposits to withdraw. Fix 0

 2 0. Suppose depositor  withdraws a fraction
 (0

) Then, a type 1 depositor obtains a payo¤  (0
) ~1(  ~1 (0

)  ~ (0
)  0

)

while a type 2 depositor obtains a payo¤ of  (0
) ~1(  ~1 (0

)  ~ (0
)  0

)+
¡
1 ¡  (0

)
¢
~2( ~1 (0

)  0
). Remark that for a type 1 depositor,  (0

) =

0 strictly dominates all other actions. For 0
1, as ~ (0

1) = , ~1 (0
1) = 1¤

1 and
~2 (0

1) = 2¤
2 , it follows that ~2( ~1 (0

1)  
0
1)  ~1(  ~1 (0

1) 
~ (0

1)  
0
1) and for

type 2 depositors,  (0
1) = 0 strictly dominates all other actions. For 0

2, as
~1 (0

2) = 1 while ~2 (0
2) = 0, it follows that for type 2 depositors,  (0

2) = 1
strictly dominates all other actions. Therefore, (i) for 0

1, the unique Nash equi-
librium in strictly dominant actions is  (0

1) = 1 if  is a type 1 depositor while
 (0

1) = 0 if  is a type 2 depositor and (ii) 0
2, the unique Nash equilibrium in

strictly dominant actions is  (0
1) = 1 for all . At  = 0, the bank’s payo¤s

are:
~ () = 0

2 + 0
2

¡


 + (1 ¡ )


¢
¡ [ + (1 ¡ ) ]

As (60) holds as a strict inequality, it follows that choosing  = ~ = 1 is the
strictly dominant choice for the bank.

The above random banking contract implements the allocation satisfying
(10) ¡ (40).

We summarize the above discussion with the following proposition:

Proposition 2 When 
¡  

¡, the second-best allocation determined

by (10) ¡ (40) is implemented by the random banking contract
³
0 0 ~ ~ ~

´
.

The above result makes clear that whenever the moral hazard constraint
binds, bank runs are an endemic feature of the banking contract and limit
e¢cient risk-sharing (equivalently, e¢cient liquidity provision) by banks.

Remark 3 In the preceding analysis, what is critical is that the aggregate pro-
portion  of type 1 depositors is commonly observed at  = 1. Consider a mod-
i…cation of the problem so that the aggregate proportion  of type 1 depositors
can be any one element from a set f1  g and at  = 0 there is a common
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probability distribution over f1  g. However, at  = 1, the realized value
of  is commonly observed. In such a case, the e¢cient risk-sharing allocation
will be contingent on  2 f1  g and all the preceding results, after appro-
priate reformulation, continue to apply. In this sense, our results don’t require
but can be extended to scenarios with exogenous uncertainty. With exogenous
uncertainty, the class of random contracts studied here, introduce noise that is
independent of fundamentals in the banking process.

Remark 4 So far we have assumed that the bank’s payo¤s are non-contractible
and cannot be attached or con…scated by an outside agent (a court). Indeed, one
consequence of this assumption is that in any banking contract designed by the
representative depositor, transfers to the bank have to be non-negative. We drop
this assumption here. We examine the case where a proportion  of the bank’s
non-contractible payo¤s can be seized directly by the social planner. Assume
that a proportion , 0 ·  · 1, of the bank’s private payo¤s can be seized by
the social planner. For simplicity, assume that all the other assumptions made
in section 2 continue to hold. When  is large enough, i.e. when 

  
,

it immediately follows that there is a banking contract which will implement the

allocation ¤. Indeed, consider the banking contract
³
̂ ̂ ̂

´
augmented by a

commitment by the social planner to con…scate 
 if banking continues to

 = 2 and should the planner observe that the public return is consistent with
  1. In such case, it is easily checked that at  = 0, the bank will choose  = 1
and it will be a dominant action for type one depositors to withdraw at  = 1
and type two depositors to withdraw at  = 2. Of course, when 

  
, the

positive probability of equilibrium bank runs will be required to satisfy the bank’s
incentives. In this case, appropriately designed random banking contracts Pareto
improve on autarchy.

2.5 Monitoring conditional on a bank run

So far all the monitoring scenarios we have studied have the feature that at
time  = 0, it becomes common knowledge that the representative depositor
invested in the monitoring technology. Here, in contrast, we study a monitoring
scenario when all monitoring takes place conditional on there being a bank run.
The sequence of events involved in such interventions is as follows. Initially,
temporary bailout measures are put in place, followed by a discovery phase
when the books of the bank are examined and …nally, there is a restructuring
phase when the a decision is made to either liquidate the bank or leave the
bank’s status unchanged13 , (see, for instance, Hoggarth and Reidhill (2003)).

As noted in the introduction, there is also a third option which involves
depositor protection and either replacing the existing management of the bank

13 This timing of events is consistent with the sequential service constraint which requires
that the return obtained by a depositor depends only on her position in the queue of depositors
wishing to withdraw. That a depositor can announce a desire withdraw, then await the signal
and decide not to withdraw is equivalent to assuming that she can leave the queue when she
changes her mind.
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or a takeover (via merger) by a another bank or nationalization. This third
scenario isn’t studied in this paper as we have assumed that no other agent
has the human capital to replace the bank to take over the operation of either
illiquid asset at  = 1.

In what follows, we characterize the structure of second-best intervention in
sequential monitoring scenarios where no other agent can replace the bank at
 = 1.

In this part of the paper, we will assume that conditional on a bank run it
becomes common knowledge that the representative depositor has invested in
a monitoring technology with a resource cost . In keeping with the timing of
events, we will assume that the resource cost is paid at  = 1. By investing in
the monitoring technology, conditional on  being chosen by the bank at  = 0,
the representative depositor observes a signal , de…ned over subsets of [0 1]
so that  =  with probability ̂  0 while  = [0 1] with probability 1 ¡ ̂.
Conditional on monitoring at  = 1, the resource constraint is

 ¸ 

¡
1

1 + (1 ¡ )2
1 +

¢
+

¡
1

2 + (1 ¡ )2
2

¢
.

For simplicity of exposition we focus on the case when there is an allocation,
denoted by , which is a solution to (1), (2), (5) and the preceding inequality.

Let  = f1  2 g and  = f1  2 g be a randomization scheme, de…ned
independently, of the randomization scheme 0 0 studied in section 23. Let
 2 f0 1g where  = 0 indicates a situation without monitoring and  = 1
indicates a situation with monitoring. Let  (   ) be a function de…ned
from 0 £ f0 1g £ ­ £  to <2

+ and let  (  ) be function de…ned from
0 £ f0 1g £ ­ £  to [0 1].

Consider the banking contract, subject to a sequential service constraint,
described by a vector (0 0     ) such that:

(i) for all  2 f0 1g,  2 ­ and  2 ,

1 (0
1 fg  fg  ) = 1¤

1

per unit deposited at  = 0, and

 (0
1 fg  fg  ) = 

2 (0
1 fg  fg  ) = 2¤

2

per unit deposited at  = 0 and not withdrawn at  = 1,
(ii) for all  2 ­ , 2 ,

1 (0
2 f0g  fg  ) = 1

per unit deposited at  = 0, and

 (0
2 f0g  fg  ) = 1

2 (0
2 f0g  fg  ) = 0

per unit deposited at  = 0 and not withdrawn at  = 1,
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(iii) for all  2 ,

1 (0
2 f1g  f1g  ) = 1

1

per unit deposited at  = 0, and

 (0
2 f1g  f1g  ) = 

2 (0
2 f1g  f1g  ) = 1

1

per unit deposited at  = 0 and not withdrawn at  = 1,
(iv) when 0 = 0

2
14 ,

1 (0
2 f1g  fg  ) = 1 ¡

per unit deposited at  = 0, and

 (0
2 f1g  fg  ) = 1

2 (0
2 f1g  fg  ) = 0

per unit deposited at  = 0 and not withdrawn at  = 1,
(v) when 0 = 0

2,

1 (0
2 f1g  f[0 1]g  1 ) = 1

1

per unit deposited at  = 0,

 (0
2 f1g  f[0 1]g  1 ) = 

2 (0
2 f1g  f[0 1]g  1 ) = 2

2

per unit deposited at  = 0 and not withdrawn at  = 1,
(vi) when 0 = 0

2,

1 (0
2 f1g  f[0 1]g  2 ) = 1 ¡

per unit deposited at  = 0,

 (0
2 f1g  f[0 1]g  2 ) = 1

2 (0
2 f1g  f[0 1]g  2 ) = 0

per unit deposited at  = 0 and not withdrawn at  = 1. The contract also
speci…es the bank’s asset portfolio where  = 1.

The sequence of events is as follows. At  = 0, the representative depositor
o¤ers the contract (0 0     ). Conditional on such a contract
being accepted by the bank, depositors’ endowments are mobilized by the bank
who, then, allocates funds across the two assets. At  = 1, a state  2 0

is selected according to the probability distribution 0 and a proportion 0 of

14 We assume that 0    ̂  1 where ̂ is su¢ciently small so that farsighted depositors
always have an incentive to participate in banking.
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depositors choose to withdraw their deposits. If 0 · , there is no monitoring
and each depositor  who chooses to withdraw a fraction  of her deposits
obtains a return of 1¤

1 per unit deposited at  = 0 while a depositor  who
withdraws a fraction 1 ¡  of her deposits obtains a return of 2¤

2 per unit

deposited at  = 0 and not withdrawn at  = 1. If on the other hand, 0  ,
there is a temporary suspension of convertibility for all depositors, and the
representative depositor operates the monitoring technology at a …xed cost .
Conditional on monitoring taking place, a state  2  is chosen according
to the probability distribution . Conditional on  2 0, the signal  and the
state of the world , the suspension of convertibility threshold is set according
to . At this point, each depositor who has chosen to withdraw a positive
fraction her deposits can leave the queue of depositors. If a depositor  remains
in the queue, and continues to choose to withdraw a fraction  of her deposits,
then, subject to a sequential service constraint, she obtains a return of 1 per
unit deposited at  = 0 while a depositor  who leaves the queue obtains a return
of 2 per unit deposited at  = 0 and not withdrawn at  = 1.

Using arguments symmetric to the ones used in establishing proposition 2,
for each  2 0, it is a dominant action for type one depositors to withdraw,
while it is a dominant action for type two depositors not to withdraw at  = 1
if the realized state is 0

1, and for type two depositors to withdraw at  = 1 if
the realized state is 0

2. Therefore, there is no monitoring at  = 1 if the realized
state is 0

1 while monitoring is triggered if the realized state is 0
2. Conditional

on monitoring, it is a dominant action for type one depositors to not to leave
the queue of depositors. If  = 1 or  = [0 1] and conditional on monitoring,
the realized state is 1 , then it is a dominant action for type one depositors to
not to leave the queue of depositors but if   1 or  = [0 1] and conditional
on monitoring, the realized state is 2 , then it is a dominant action for type
two depositors not to leave the queue and continue to want to withdraw their
deposits at  = 1. Let ¹ = 0

2 (1 ¡ ̂)2 . Anticipating this behavior by
depositors, the bank will choose  =  = 1 if and only if

©
¹ + (1 ¡ ¹)



ª
¸

8
<

:

(0
2̂ + ¹)

+ (1 ¡ (0
2̂ + ¹))

¡


 + (1 ¡ )


¢

¡ ( + (1 ¡ ) )

9
=

;

It follows, using arguments symmetric to the one used in establishing proposi-
tion 2, there exists ~  0, ~  1 such that the bank’s incentive compatibility
constraint is satis…ed i¤  ¸ ~. Therefore, setting  = ~ + , for some
 strictly positive but close to zero makes it a dominant action for the bank to
choose  =  = 1. In this set-up, conditional on  = 1, the probability of
termination is 0

2 (1 ¡ ̂)2  ~: in other words, e¢cient risk-sharing in imple-
mented with higher probability when there is costly but imperfect monitoring
relative to the random contract studied earlier. However, now both bank runs
and monitoring occur with positive probability along the equilibrium path of
play.
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3 Local moral hazard and contagion

3.1 The model

In this section, we extend the model studied in section 2 to allow for multiple
banks and moral hazard in banking along the lines of Allen and Gale (2000).
There are three time periods,  = 0 1 2. In each period there is a single per-
ishable good . There are two regions,  = 1 2. In each region, there is a
continuum of identical depositors in [0 1], indexed by , of mass one, each en-
dowed with one unit of the perishable good at time period  = 0 and nothing at
 = 1 and  = 2. Each depositor has access to a storage technology that allows
him to convert one unit of the consumption good invested at  = 0 to 1 unit of
the consumption good at  = 1 or to 1 unit of the consumption good at  = 2.

Depositors preferences over consumption are as before. The main di¤erence
is that now in each state of nature, there is a proportion  of the continuum
of agents in region  who are of type 1 and conditional on the state of nature,
each agent has an equal and independent chance of being type 1. For simplicity,
it will be assumed that there two states of the world so that  2 f1 2g.
When  = 1, in region  = 1, 1 =  while in region  = 2, 2 =  with
0      1. Symmetrically, when  = 2, in region  = 2, 2 =  while
in region  = 1, 1 =  . It is assumed that ex-ante at  = 0, there is a prior
distribution over f1 2g given by f 1 ¡ g.

In addition, in each region , there is a bank, denoted by . Bank preferences
over consumption is also as before. As before, neither bank has any endowments
of the consumption good at  = 0 but are endowed with two di¤erent asset
technologies,  = , that convert inputs of the perishable good at  = 0 to
outputs of the perishable consumption good at  = 1 or  = 2. As before, we will
assume that the size of either bank is large relative to the size of an individual
depositor.

The asset technology is similar to the case of a monopoly bank in a closed
region. As before, there are two asset technologies. The “public” returns gener-
ated by each asset is as in the case of the monopoly bank. In addition, for each
unit of the consumption good invested in  = 0, asset technology ,  = ,
yields 1 unit of the “private” non-contractible component of the consumption
good if the project is terminated at  = 1, or 

  0 units of the “private”

component of the consumption good at  = 2 if the project continues to  = 215 .
In addition, at  = 0, the bank incurs a direct private utility cost  per unit of
the consumption good invested in asset  at  = 0.

As before, operating either of these two asset technologies requires each bank
to mobilize the endowments of the depositors within its own region: we do not
allow for the possibility that the bank in region 1 is able to mobilize the deposits
of some depositors in region 2 and vice versa.

At  = 0, we assume that mobilizing depositors’ endowments requires a

15 The assumption that within a technology there is no choice as to how much of the in-
vestment goes into the public component and how much into the private component is a
simpli…cation and nothing essential in our results depends on this analysis.
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banking contract in each region that speci…es an allocation for each type of
depositor and an investment portfolio for the bank within that region.

As before, the investment decision of either bank at  = 0 is non-contractible.
Further, depositor preferences and asset returns satisfy assumptions (1)¡(6)
above.

An allocation is a vector (   
 :  = 1 2) where ( ) is

the asset (equivalently, investment) portfolio (chosen at  = 0) and describes
the proportion of endowments invested in the storage technology and asset
technology  (with proportion 1 ¡  ¡  invested in asset technology ),
 = (1

1 
2
1 

1
2 

2
2) is the consumption allocation of the depositors ( is

the consumption of type  depositor in time period  in region   = 1 2 and
 = 1 2) and describes what each type of depositor consumes in each period

and  =
³
1  2

´
describes the consumption allocation to the bank. A con-

sequence of assumptions (4) and (5) is that productive e¢ciency, and hence
social e¢ciency, requires that  = 1.

For simplicity, in this section, we assume that depositors have all the bargain-
ing power. In this case, as all depositors are identical ex-ante, a representative
depositor, acting on behalf of all other depositors, makes a "take-it-or-leave-it"
o¤er of a banking contract to the bank, which the bank can either accept or
reject.

3.2 Inter-bank markets and the …rst-best benchmark

Let ¹ =  + (1 ¡ ) . Clearly, the objective function of the representative
depositor in each region is

() = ¹(1
1) + (1 ¡ ¹)(2

1 + 2
2)

where () is the expected utility of type 1 and type 2 depositors preferences.
When there is no monitoring technology available, the representative depositor
cannot condition transfers to the bank at  = 1 or at  = 2 on the invest-
ment portfolio chosen by the bank at  = 0. In this case, making transfers to
the bank will have no impact on the bank’s incentives. Without a monitoring
technology, in any banking contract written by the representative depositor, no
transfers, over and above the private non-contractible payo¤ the bank receives
by operating either asset technology, will be made to the bank.

Consider the case when 
 ¸ 

 . By assumption,    , and therefore,


 ¡  ¸ 

 ¡ . In this case, we claim that the representative depositor
can design a banking contract that implements the ex-ante e¢cient risk-sharing
without bank runs. In each region, the representative depositor solves the fol-
lowing maximization problem (labelled () for later reference):

max
f

g
()

subject to
(1)  ¸ 

¡
¹1

1 +
¡
1 ¡ ¹

¢
2
1

¢
+

¡
¹1

2 +
¡
1 ¡ ¹

¢
2
2

¢

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(2)  ¸ 0  = 1 2  = 1 2
(3) 

¡
1
1

¢
¸ 

¡
2
1

¢


(4) (2
1 + 2

2) ¸ (1
1 + 1

2)
The solutions to () satisfy the equations
(100) 2¤

1 = 1¤
2 = 0

(200) 0(1¤
1) = 

0(2¤
2)

(300)  = ¹
1¤
1 +

¡
1 ¡ ¹

¢
2¤
2

while for the bank
(400) ¤

 = 1
(400) ¤

1 = 0
(400) ¤

2 = 
 

Allocations characterized by (100) ¡ (400) correspond to the …rst-best alloca-
tions. Clearly ¤

 = ¤
0  ¤

 = ¤
0  ¤ = 0¤,  0 = 1 2. Moreover, ¹1¤

1  1.
It follows that 2¤

2 = 2¤
2  1¤

1 = 1¤
1 while 1¤

1  1 while 2¤
2  .

In what follows, we assume that 
1¤
1  1. In this case, note that without

a ex-ante interbank market, in the region with the high liquidity shock, there
will be ine¢ciently early liquidation of the long-term asset. It follows that a
combination of a regional banking contract (along the lines of Diamond-Dybvig
(1983)) with an ex-ante inter-bank market (along the lines of Allen and Gale
(2000)) are both required to implement the ex-ante optimal risk-sharing alloca-
tion.

Ex-ante, in the interbank market, each bank exchanges claims to half of
the deposits mobilized within its own region. Suppose conditional on the re-
alization of the liquidity shock, region 1 faces a high liquidity shock so that
proportion of type traders in region is  . In this case, the bank in region
1 liquidates its claims against the bank in region 2 to meet its own extra
liquidity needs which amount to

¡
 ¡ ¹

¢
1¤

1 . Moreover, by computation,£
 +

¡
 ¡ ¹

¢¤
1¤

1 = ¹1¤
1  1 so that the bank in region 2 doesn’t have

to liquidate all of its asset either. To prevent bank runs driven by depositor
coordination failure, the suspension of convertibility threshold has to be set at
 . At  = 2, the bank in region 1 makes a payout of

¡
¹¡ 

¢
2¤

2 to the bank
in region 2. The details of such a contract follows closely the speci…cation of
the banking contract in section 2.2 and is omitted. Taken together, the inter-
bank market and suspension of convertibility implements …rst-best risk sharing
between depositors.

The above discussion can be summarized as the following result:

Proposition 5 When 
 ¡   

 ¡ ,  = 1 2, the …rst-best allocation
is implemented by combining trade in the inter-bank market with an approprite
banking contract embodying suspension of convertibility.

3.3 Bank runs and contagion with local moral hazard

Suppose for some , for concreteness  = 1, 1
  1

 . As long as 1
 ¡  ¸

1
 ¡ , nothing essential in the preceding argument changes and e¢cient

risk-sharing without bank runs conditional on a liquidity shock can still be
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implemented. To …x ideas, consider what happens when the two banks seek
to implement the …rst-best risk allocation (¤

 
¤
 :  = 1 2). When 1

 ¡  

1
 ¡ 

16 , we argue that the ex-ante optimal allocation can no longer be
implemented. Note that implementing the e¢cient allocation requires that the
existence of an inter-bank market where banks exchange claims to each others
long term assets. When 1

 ¡   1
 ¡ , with a zero probability of a bank

run, bank 1 will choose 1 = 0. Anticipating this possibility, bank 2 will be
unwilling to hold any of bank 10 long-term assets. Thus, the inter-bank market
will break down and the e¢cient allocation can no longer be implemented.

As    and 1 ¡   1 ¡ , provided there is enough chance of a bank
run (equivalently, asset liquidation)17 at  = 1, so that technology  gets to
generate a higher private utility return to bank 1 than technology , one might
get the bank 1 to invest all available resources at  = 0 in asset technology .
So a run is clearly necessary to implement any allocation with   0. That it
is su¢cient and may involve contagion is proved below.

Let ¹1 be the ex-ante (before the realization of any liquidity shocks) prob-
ability of early liquidation for bank 1. Given ¹1, for each 1 2 [0 1], bank 10
payo¤ is

1(¹1 1) = ¹1 + (1 ¡ ¹1)
³
1

1
 + (1 ¡ 1)

1


´
¡ [1 + (1 ¡ 1) ]

We want to ensure that given ¹1, 1 = 1 maximizes 1(¹1 1). This is equivalent
to requiring that the following inequality holds for all 1 2 [0 1]

¹1 + (1 ¡ ¹1)
1
 ¡  ¸

(
¹1 + (1 ¡ ¹1)

³
1

1
 + (1 ¡ 1)

1


´

¡ [1 + (1 ¡ 1) ]

)

When ¹1 = 0, as 1
  1

 , the preceding inequality will always be violated
for all 1 2 [0 1]. On the other hand when ¹1 = 1, as 1 ¡   1 ¡ , the
preceding inequality will hold as a strict inequality for all 1 2 [0 1]. Further,
both sides of the inequality are continuous in ¹1 and 1

  1, the expression

¹1 + (1 ¡ ¹1)
1
 is also decreasing in ¹1 at the rate 1 ¡ 1

 ; moreover, as

1
  1, for each 1 2 [0 1], the expression ¹1+(1 ¡ ¹1)

³
1

1
 + (1 ¡ 1)

1


´

is also decreasing in ¹1 at the rate 1 ¡
³
1

1
 + (1 ¡ 1)

1


´
. It follows that

16 Taken together, the inequalities    and 1
 ¡   1

 ¡  , imply that in region
1 from the bank 1’s perspective the project with higher net private utility return at  = 2 is

also the one with the higher e¤ort cost at  = 0. When 1
 ¡   1

 ¡  , as    ,
the long-run interests of the depositors in region 1 and bank 1 are no longer aligned.

17 By assumption, no other agent can replace the bank to take over the operation of either
illiquid asset from the bank at  = 1 which, in turn, implies that the second-best banking
contract studied below is renegotiation proof.
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for each 1 2 [0 1], as 1
  1

  1,

¯
¯
¯1 ¡1



¯
¯
¯

=
¯
¯
¯1

 ¡ 1
¯
¯
¯


¯
¯
¯
³
1

1
 + (1 ¡ 1)

1


´
¡ 1

¯
¯
¯

=
¯
¯
¯1 ¡

³
1

1
 + (1 ¡ 1)

1


´¯
¯
¯

and therefore, there exists a unique threshold ~1, 0  ~1  1, such that for
all ¹1  ~1, ¹1  1, the moral hazard constraint for bank 1 holds as a strict
inequality for all 1 2 [0 1]. By computation, note that

~1 = 1 ¡
 ¡ 

1
 ¡1





Note that the decision of a depositor to withdraw is made only after she ob-
serves her own type. Therefore, necessarily, a bank run on bank 1 can only
be implemented after the realization of the liquidity shock. For a bank run on
bank 1 not to involve contagion, it must be the case that the bank run occurs
conditional on 2 when 1 =  and 2 = . However, if (1¡)  ~1, even if a
bank run on bank 1 occurs with probability one conditional on 2, the incentive
constraint of bank 1 cannot be satis…ed. In such cases, there must be a positive
probability of a bank run on bank 1 conditional on 1 which necessarily implies
contagion.

Assume (1 ¡ )  ~1. Consider a randomization scheme ( ) where
 = f1 2g and  () = f1 ()  2 ()g is a probability distribution over  such
that 1 (1) = ~1¡(1¡)+ (where  is small positive number), 1 (2) = 1 and
2 () = 1 ¡ 1 (),  2 f1 2g. The randomization scheme works as follows:
at  = 0, no agent, including the bank, observes  while at  = 1, before any
choices are made and after  has been observed and each depositor privately
observes her own type, the realized value of  is revealed to all agents. Ex-
ante, in the interbank market, each bank exchanges contingent claims to half of
the deposits mobilized within its own region where claims are made contingent
on f1 2g £ f1 2g. Clearly, claims contingent on (2 2) are not exchanged
as the contingency (2 2) has a zero probability. The returns on claims con-
tingent on (1 ),  2 f1 2g, are zero while each unit of a claim contingent
on (2 1) yields a

¡
 ¡ ¹

¢
1¤

1 at  = 1 with a payout of
¡
¹¡ 

¢
2¤

2 at
 = 2. The suspension of convertibility threshold is also made contingent on
f1 2g£f1 2g so that it is set at zero for all contingencies except for (2 1)
when its is set at  . The details of such a contract follows closely the speci-
…cation of the banking contract in section 2.4 and is omitted. Taken together,
the inter-bank market and suspension of convertibility implements …rst-best risk
sharing between depositors.

Therefore, in a second-best contract where the incentive compatibility con-
straint of bank 1 binds, there is trade in the inter-bank market even allowing
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for the possibility of bank runs and contagion after the realization of liquidity
shocks.

We summarize the above discussion with the following proposition:

Proposition 6 When 1
 ¡  1

 ¡, the second-best allocation is imple-
mented by a combination of trade in the inter-bank market alongwith contagion
induced by the random banking contract.

4 Conclusion

We interpret the signi…cance of our results in three distinct ways. First, our
results show that with moral hazard, bank runs and contagion are necessary
elements in second-best banking scenarios and the randomness introduced by
banking contracts studied here is uncorrelated with fundamentals driven purely
by incentives. In this sense our results provide a theoretical foundation for
the doctrine of "creative ambiguity". Second, we show that global contagion
can result with even local moral hazard. Third, our result shows that in low
asset economies, where productive agents like banks or …rms with little or no
collateral, appropriately designed random demandable debt contracts Pareto
improve on autarky.

Extending our result to examine episodes of twinned bank runs and currency
crises is a topic for future research.
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Proof of proposition 1
Consider the banking contract

³
̂ ̂ ̂

´
as speci…ed in section 22. The

payo¤ to per unit of deposit withdrawn at  = 1, which depends on the fraction
of deposits serviced before agent ,  , is given by the expression

̂1(  ̂1 ̂) =

½
 (̂1)    · ̂

 (0)    ̂

while the period 2 payo¤ per unit deposit withdrawn at  = 2, which depends
on total fraction of deposits withdrawn in period 1, , is given by the expression

̂2( ̂1) =

½
 (̂2)   1  ̂1

0 

At  = 1, the above contract induces a noncooperative game between depos-
itors where each depositor chooses what fraction of their deposits to with-
draw. Suppose depositor  withdraws a fraction  . Then, a type 1 deposi-

tor obtains a payo¤  ̂1(  ̂1 ̂) while a type 2 depositor obtains a payo¤ of

 ̂1(  ̂1 ̂) +
¡
1 ¡ 

¢
̂2( ̂1). Remark that for a type 1 depositor,  = 1

strictly dominates all other actions. As ̂ = , ̂1 = 1¤
1 and ̂2 = 2¤

2 , it follows
that ̂2( ̂1)  ̂1(  ̂1) and for type 2 depositors,  = 0 strictly dominates

all other actions and therefore,  = ̂ = . The bank’s payo¤s are

̂ () = 
 + (1 ¡ )

 ¡ ( + (1 ¡ ) )

There is only one subgame at  = 1 (as depositors don’t observe the bank’s

choice of ). As 
 ¸ 

, and   , at  = 1, 1¡ ̂̂1  0, choosing  = ̂
is a strictly dominant choice for the bank. ¥
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