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Abstract

Theoretical models of multi-unit, uniform-price auctions assume that the price is given by
the highest losing bid. In practice, however, the price is usually given by the lowest winning
bid. We derive the equilibrium bidding function of the lowest-winning-bid auction when there
are k objects for sale and n bidders with unit demand, and prove that it converges to the
bidding function of the highest-losing-bid auction if and only if the number of losers n � k
gets large. When the number of losers grows large, the bidding functions converge at a linear
rate and the prices in the two auctions converge in probability to the expected value of an
object to the marginal winner.

Journal of Economic Literature Classi�cation Numbers: D44, D82.

Keywords: Auctions, Lowest-Winning Bid, Highest-Losing Bid, k-th Price Auction, (k+1)-st
Price Auction.

1 Introduction

Uniform-price auctions have been extensively used for the sale of homogeneous goods in

several countries (e.g., in the sale of Treasury bills and electrical power). In these auctions, the

price is usually given by the lowest winning bid. Theoretical models of multi-unit, uniform-

price auctions, on the other hand, assume that the price is given by the highest losing bid (e.g.,

1We would like to thank an anonymous referee for useful comments. Claudio Mezzetti thanks the Univer-
sity of Leicester, his home institution when this project was started. Ilia Tsetlin is grateful to the Centre for
Decision Making and Risk Analysis at INSEAD for supporting this project.
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Milgrom, 1981, Weber, 1983, Pesendorfer and Swinkels, 1997, 2000, Milgrom and Weber,

2000, Kremer, 2002, Jackson and Kremer, 2004, 2006, and Mezzetti, Pekeµc and Tsetlin,

2007). When bidders have unit-demand, highest-losing-bid, multi-unit auctions behave very

much like the second-price auction with a single item for sale. In particular, in a symmetric

equilibrium, each bidder bids his expected value for an object conditional on being tied with

the price setter. This simplicity is the main reason for their use by theorists. A natural

question then is: do lowest-winning-bid auctions behave very di¤erently from highest-losing-

bid auctions? Do the two auction formats yield similar behavior and prices as the number

of bidders increases? An a¢ rmative answer to both questions would provide justi�cation for

the theorists�focus on the analytically simpler highest-losing-bid auctions.

First, we derive the equilibrium bidding function of the lowest-winning-bid auction in the

general a¢ liated value model with unit demand introduced by Milgrom and Weber (1982);

as far as we know, we are the �rst to study such auctions. Then we show that the bidding

functions of the lowest-winning-bid and the highest-losing-bid auction converge as the number

of losing bidders grows large. More precisely, letting n be the number of bidders and k the

number of objects sold, we show that the two bidding functions converge if and only if n� k

goes to in�nity. As n � k grows, the bidding functions converge at a linear rate. We also

show that the prices in the two auctions converge in probability when n� k goes to in�nity.

They converge to the expected value of an object to the marginal winner; hence, the two

auctions become perfectly competitive markets as n� k grows.

It is worth to point out two other properties of the lowest-winning bid auction. As it

is well known, in the general a¢ liated model, the second-price auction and its generaliza-

tion, the highest-losing-bid auction, have a continuum of undominated asymmetric equilibria

(Milgrom, 1981, Bikhchandani and Riley, 1991). The �rst-price auction and, we conjecture,

the lowest-winning-bid auction, do not su¤er from this problem (McAdams, 2006). Sec-

ond, it is easy to extend the arguments �rst introduced by Robinson (1985) for the �rst

and second-price auction, and show that collusive agreements are easier to sustain in the

highest-losing-bid than in the lowest-winning-bid auction. In a highest-losing-bid auction,
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cartel members have no incentive to deviate from an agreement in which only one of the

highest value members submits a meaningful bid. On the contrary, cartel members will

want to deviate from such an agreement in a lowest-winning bid auction. The robustness to

collusion and equilibrium multiplicity may help to explain the prevalence in practice of the

lowest-winning-bid auction. That its equilibrium converges to the symmetric equilibrium of

the highest-losing-bid auction makes us feel con�dent that the latter is a good approximation

of the uniform auctions used in practice, at least when the number n� k of losing bidders is

large.

The paper is organized as follows. The next section introduces the model and derives

the bidding function of the k-th price (i.e., the lowest-winning bid) auction for k objects.

Section 3 studies the convergence properties of the k-th and (k+1)-st price auctions. Section

4 concludes. An appendix contains the proofs omitted from the main text.

2 The Model and Bidding Functions

We consider a sequence of auctions fArg1r=1, where the r-th auction has nr bidders and

kr objects, with 1 � kr < nr < nr+1. Each bidder is risk neutral and only demands one

object. Bidder i, i = 1; 2; : : : ; nr, observes the realization xi of a signal Xi. Denote with

s = (x1; :::; xnr) the vector of signal realizations. Let s_ s0 be the component-wise maximum

and s ^ s0 be the component-wise minimum of s and s0. Signals are real random variables

drawn from a distribution with a joint pdf fr(s), which satis�es the a¢ liation property

(Milgrom and Weber, 1982):

fr(s _ s0)fr(s ^ s0) � fr(s)fr(s0) for all s 6= s0: (1)

The support of fr is [x; x]nr , with �1 < x < x < +1.

We make the standard assumption that the random variables X1; X2; : : : are symmetric.

More precisely, the in�nite sequence X = (X1; X2; :::) is exchangeable; that is, for all �nite

n the joint distribution of (X�1 ; � � � ; X�n) is the same as that of (X1; � � � ; Xn) for all permu-
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tations �. By de Finetti�s exchangeability theorem (e.g., see Kingman, 1978, for a simple

exposition) there exists a real random variable � with distribution H(�) and a conditional

distribution function G(�j�) such that, for all n, the joint distribution of the random variables

X1; X2; � � � ; Xn is:

P (X1 � x1; X2 � x2; � � � ; Xn � xn) =
Z +1

�1
G(x1j�)G(x2j�) � � �G(xnj�)dH(�): (2)

We will make the following uniform boundedness assumption. There exists �0 > 0 such

that, for all x, x0, and �:2

�0 <
g(xj�)
g(x0j�) <

1

�0
; (3)

where g(�j�) is the density of G(�j�):

The value V ir = ur(Xi; fXjgj 6=i) of an object to bidder i is a function of all signals.3

The function ur(�) is non-negative, di¤erentiable, strictly increasing in Xi, increasing and

symmetric in the other bidders�signals Xj, j 6= i:

In studying the symmetric equilibrium bidding function in a given auction, it is useful to

take the point of view of one of the bidders, say bidder 1 with signal X1 = x, and to consider

the order statistics associated with the signals of all other bidders. We denote with Y jr the

j-th highest signal of bidders 2; 3; :::; nr (i.e., all bidders except bidder 1). De�ne

vjr(x; y) = E
�
V 1r jX1 = x; Y

j
r = y

�
: (4)

A¢ liation implies that vjr(x; y) is increasing in both x and y, and hence di¤erentiable almost

everywhere (Milgrom and Weber, 1982, Theorem 5). We also assume that there exist real

2This assumption implies that a bidder�s signal only conveys a bounded amount of information about the
other bidders�signals. Pesendorfer and Swinkels (1997) make a similar assumption in the context of pure
common values.

3Milgrom and Weber (1982) also allowed the function ur to depend on other signals which are not observed
by the bidders. Since we never use the unobserved signals, we have omitted them. This is with no loss of
generality. For example, the case of an unobserved common value corresponds in our model to a function
ur which is symmetric in all signals and equals the expected value of the object conditional on the signals
observed by all the bidders.
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numbers a > 0 and b <1 such that, for all r:

a <
dvkrr (x; x)

dx
< b: (5)

In a (kr + 1)-st price (or highest-losing-bid) auction, the kr bidders with the highest

bids win at a price equal to the (kr + 1)-st highest bid. Milgrom (1981) showed that the

bidding function in such an auction is vkrr (x; x). Bidder 1 bids his expected value of an object

conditional on his own signal, X1 = x, and on his signal being just high enough to guarantee

winning (i.e., being equal to the kr-th highest signal of all other bidders).

In a kr-th price (or lowest-winning-bid) auction, the kr bidders with the highest bids

win an object at a price equal to the kr-th highest bid. In studying equilibrium of such an

auction, it is useful to consider another bidder besides bidder 1, say bidder 2 with signal

X2 = y. Denote the signals of bidders 3; : : : ; nr, ordered descendingly, by Z1r ; : : : ; Z
nr�2
r .

Let fX2r (yjX1 = x; Zkr�1r > y > Zkrr ) be the density of X2 conditional on X1 = x and

Zkr�1r > y > Zkrr ; let F
X2
r (yjX1 = x; Zkr�1r > y > Zkrr ) be the corresponding cumulative

distribution function.4 De�ne the functions

Qr(y; x) = (nr � kr)
fX2r (yjX1 = x; Z

kr�1
r > y > Zkrr )

FX2r (yjX1 = x; Zkr�1r > y > Zkrr )
; (6)

Lr(z) = e
�
R x
z Qr(t;t)dt: (7)

The following lemma is proved in the appendix.

Lemma 1 The increasing symmetric equilibrium of the lowest-winning-bid auction for kr

objects with nr bidders is:

br(x) = v
kr
r (x; x)�

Z x

x

Lr(z)dv
kr
r (z; z); (8)

where vkrr (�) is de�ned by (4) and Lr(z) is de�ned by (7).
4If kr = 1, we let Zkr�1r = x; in such a case the kr-th price auction is the �rst-price auction.

5



In the lowest-winning-bid auction, a bidder bids his expected value of the object, con-

ditional on being tied with the marginal (or highest bidding) loser, minus a shading factor.

This is similar to the equilibrium bidding function of a �rst-price auction when there is a

single object for sale.

3 Convergence

We now study the convergence of the bidding function br(x) of the lowest-winning-bid auction

to the bidding function vkrr (x; x) of the highest-losing-bid auction, as r grows large.

Theorem 1 The bidding function of the lowest-winning-bid auction, br(x) given by (8), con-

verges to the bidding function of the highest-losing-bid auction, vkrr (x; x) given by (4), if and

only if the number of losing bidders nr � kr goes to in�nity. When nr � kr goes to in�nity,

br(x) converges to vkrr (x; x) at a linear rate.

Proof. By (8) and (6):

br(x)� vkrr (x; x) = �
Z x

x

Lr(z)dv
kr
r (z; z)

= �
Z x

x

e�
R x
z Qr(t;t)dtdvkrr (z; z)

= �
Z x

x

e
�(nr�kr)

R x
z

f
X2
r (tjX1=t;Z

kr�1
r >t>Z

kr
r )

F
X2
r (tjX1=t;Z

kr�1
r >t>Z

kr
r )

dt
dvkrr (z; z):

By the mean value theorem, there exists t0 such that:

fX2r (tjX1 = t; Z
kr�1
r > t > Zkrr )

FX2r (tjX1 = t; Zkr�1r > t > Zkrr )
=

fX2r (tjX1 = t; Z
kr�1
r > t > Zkrr )

(t� x)fX2r (t0jX1 = t; Zkr�1r > t > Zkrr )
:

Since fr(xi; x�i) =
R +1
�1 g(x1j�)g(x2j�) � � � g(xnr j�)dH(�), it is simple to show that the

boundedness assumption (3) implies that, for all r, xi, x0i, and x�i = (x1; � � � ; xi�1; xi+1; � � � ; xnr):

�0 <
fr(xi; x�i)

fr(x0i; x�i)
<
1

�0
: (9)

6



It follows from (9) that

�0 <
fX2r (tjX1 = t; Z

kr�1
r > t > Zkrr )

fX2r (t0jX1 = t; Zkr�1r > t > Zkrr )
<
1

�0
;

and hence

�
Z x

x

e�(nr�kr)�0
R x
z

1
(t�x)dtdvkrr (z; z) � br(x)� vkrr (x; x) � �

Z x

x

e
�(nr�kr) 1�0

R x
z

1
(t�x)dtdvkrr (z; z);

(10)

with the inequalities being strict for x 6= x.

Observe that �
R x
z

1
(t�x)dt = ln

z�x
x�x ; it then follows from (10) that

�
Z x

x

�
z � x
x� x

�(nr�kr)�0 dvkrr (z; z)
dz

dz � br(x)�vkrr (x; x) � �
Z x

x

�
z � x
x� x

�(nr�kr) 1�0 dvkrr (z; z)
dz

dz:

(11)

Since dvkrr (z;z)
dz

is uniformly bounded by assumption (5), the left and right hand side of (11)

converge linearly to zero if and only if nr�kr goes to in�nity. This shows that br(x) converges

to vkrr (x; x) if and only if nr�kr goes to in�nity, and that convergence is at a linear rate.

The intuition behind Theorem 1 is the following. In a kr-th price auction for kr objects, a

bidder bids the expected value of the object, conditional on his bid being tied with the bid of

the marginal loser, minus a shading factor. As the number of losers in the auction increases,

the shading factor decreases linearly, re�ecting increased competition for the last object. In

the limit, the bid in the kr-th price auction coincides with the bid in the (kr + 1)-st price

auction: the expected value of the object conditional on being tied with the marginal loser.

In a (kr + 1)-st price auction, the marginal loser is the price setter.

We now show that the prices in the two auctions converge in probability, and they converge

to the expected value of an object to the marginal winner. This is because the kr-th and the

(kr + 1)-st order statistic converge in probability as nr � kr grows large.

Let Xj
r be the j-th highest signal among all bidders in auction Ar. Consider the marginal

winner in auction r, the bidder with the kr-th highest signal; his expected value for an object

7



conditional on his signal being x is E
�
vkrr (x;X

kr+1
r )jXkr

r = x
�
:

Theorem 2 The prices of the lowest-winning-bid auction and the highest-losing-bid auction

converge in probability when nr � kr goes to in�nity; they converge to the expected value of

an object to the marginal winner.

Proof. It su¢ ces to show that the (kr + 1)-st order statistic (i.e., Xkr+1) converges

to the kr-th order statistic in probability when nr � kr grows large. To see this note �rst

that the price in a kr-th price auction is br(Xkr), while the price in a (kr + 1)-st price

auction is vkrr (X
kr+1
r ; Xkr+1

r ): By Theorem 1, the prices converge when the order statistics

converge. Second, the expected value of an object to the marginal winner with signal x,

E
�
vkrr (x;X

kr+1
r )jXkr

r = x
�
, converges to vkrr (x; x) if the order statistics converge.

Fix an arbitrary " > 0: By (2), the probability that the di¤erence between the kr-th and

the (kr + 1)-st order statistic is more than ", conditional on the kr-th order statistic being

equal to x, is given by

Pr(X
kr
r �Xkr+1

r > "jXkr
r = x) (12)

=

R +1
�1

�
G(x�"j�)
G(xj�)

�nr�kr
(1�G(xj�))kr�1 g(xj�)G(xj�)nr�krdH(�)R +1

�1 (1�G(xj�))kr�1 g(xj�)G(xj�)nr�krdH(�)
:

The boundedness assumption (3) implies that there is a real number c such that 0 < c <

g(xj�) for all x and �. This implies that, for all x and �:

G(x� "j�)
G(xj�) � max

�
G(xj�)� "c
G(xj�) ; 0

�
� max f1� "c; 0g :

It follows that

Pr(X
kr
r �Xkr+1

r > "jXkr
r = x) � (max f1� "c; 0g)nr�kr ;
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and hence Pr(Xkr
r �Xkr+1

r > ") goes to zero as nr � kr goes to in�nity. This concludes the

proof.5

De�ne an auction as being competitive if the price converges to the value of an object

to the marginal buyer as the number of losers grows. Theorem 2 shows that the kr-th and

(kr + 1)-st uniform-price auction are competitive.6

4 Conclusions

This paper provides a link between the highest-losing-bid auctions, which have been exten-

sively studied by theorists, and the lowest-winning-bid auctions that are used in practice.

We have shown that the symmetric equilibrium bidding function of the lowest-winning-bid

auction converges to the bidding function of the highest-losing-bid auction if and only if the

number of losing bidders gets large. When the number of losers grows large, the two bidding

functions converge at a linear rate and prices in the two auctions converge in probability to

the willingness to pay of the marginal bidder (his expected value for an object).

In a pure common value model with signals that are independent conditional on the

common value, Pesendorfer and Swinkels (1997) showed that the (k + 1)-st price auction

aggregates information (i.e., the price converges to the common value in probability) if and

only if the number of objects k and the number of losers n� k go to in�nity. The results in

this paper, specialized to such a pure common value model, imply that the k-th price auction

aggregates information under the same conditions. In particular, if n�k goes to in�nity, but
5Note that the kr-th and the (kr + 1)-st order statistic converge even if nr � kr does not go to in�nity,

provided that nr converges to in�nity. If nr goes to in�nity, but nr � kr does not, then kr must converge to
in�nity. We can then write an expression for Pr(Xkr

r �Xkr+1
r > "jXkr+1

r = x) similar to (12):

Pr(X
kr
r �Xkr+1

r > "jXkr+1
r = x) =

R +1
�1

�
1�G(x+"j�)
1�G(xj�)

�kr
(1�G(xj�))kr g(xj�)G(xj�)nr�kr�1dH(�)R +1

�1 (1�G(xj�))kr g(xj�)G(xj�)nr�kr�1dH(�)
;

which converges to zero uniformly as kr goes to in�nity.
6Our de�nition of a competitive auction is di¤erent from the de�nition in Kremer (2002). In a model with

pure common values, he calls an auction competitive if the expected price converges to the expected value
of the object. Our de�nition conforms more closely with the standard de�nition of a competitive market by
economists and applies beyond the common-value setting.
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k stays �nite, then the expected value of an object to the marginal winner does not converge,

in probability, to the object�s common value.
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Appendix

In this appendix we prove Lemma 1, which gives us the equilibrium bidding function of the

kr-th price auction. We begin with two auxiliary lemmas.

Lemma 2 Qr(y; x), de�ned by (6), is increasing in x.

Proof. The proof is essentially the same as the proof of Lemma 1 in Milgrom and Weber

(1982). By a¢ liation, for any y0 < y and x0 < x,

fX2r (yjX1 = x
0; Zkr�1r > y > Zkrr )

fX2r (y0jX1 = x0; Zkr�1r > y > Zkrr )
� fX2r (yjX1 = x; Z

kr�1
r > y > Zkrr )

fX2r (y0jX1 = x; Zkr�1r > y > Zkrr )
:

Cross multiplying and integrating with respect to y0 over the range x � y0 < y yields the

result.

Let f jr (yjjX1 = x) be the marginal density of Y jr conditional on X1 = x.

Lemma 3 Qr(y; x), de�ned by (6), can equivalently be de�ned as follows:

Qr(y; x) =
fkrr (yjx)

Pr(Y krr < y < Y kr�1r jx) ;

where Pr(Y krr < y < Y kr�1r jx) is the probability that, conditional on X1 = x, Y krr is below y

and Y kr�1r is above y.

Proof. Because of the symmetry of the (nr � 1) signals X2; : : : ; Xnr , it is

fkrr (yjX1 = x)

= (nr�1)
�
nr � 2
kr � 1

�Z y

x

:::

Z y

x

�Z x

y

:::

Z x

y

fr(y; z1; � � � ; znr�2jX1 = x)dz1 � � � dzkr�1
�
dzkr � � � dznr�2;

11



and

Pr(Y
kr
r < y < Y kr�1r jX1 = x)

=

�
nr � 1
kr � 1

�Z y

x

::

Z y

x

�Z x

y

::

Z x

y

fr(y1; ::; ynr�1jX1 = x)dy1::dykr�1

�
dykr ::dynr�1

=

�
nr � 1
kr � 1

�Z y

x

Z y

x

::

Z y

x

�Z x

y

::

Z x

y

fr(x2; z1; ::; znr�2jX1 = x)dz1::dzkr�1

�
dzkr ::dznr�2dx2:

As a result, it is

fkrr (yjX1 = x)

Pr(Y krr < y < Y kr�1r jX1 = x)

=
(nr � 1)

�
nr�2
kr�1

� R y
x
:::
R y
x

�R x
y
:::
R x
y
fr(y; z1; � � � ; znr�2jX1 = x)dz1 � � � dzkr�1

�
dzkr � � � dznr�2�

nr�1
kr�1

� R y
x

R y
x
::
R y
x

�R x
y
::
R x
y
fr(x2; z1; ::; znr�2jX1 = x)dz1::dzkr�1

�
dzkr ::dznr�2dx2

= (nr � kr)
fX2r (yjX1 = x; Z

kr�1
r > y > Zkrr )

FX2r (yjX1 = x; Zkr�1r > y > Zkrr )

= Qr(y; x);

where the last equality follows from (6).

Consider bidder 1 observing signal x. Bidding according to the function b�(�) corresponds

to a symmetric Nash equilibrium if and only if the expected payo¤of the bidder who observes

signal x is maximized at b = b�(x), when all other bidders follow b�(�).

De�ne

vkr�1;krr (x; ykr�1; ykr) = E[V
1
r jX1 = x; Y

kr�1
r = ykr�1; Y

kr
r = ykr ]:

12



The expected payo¤�(b;x) of bidder 1, who observes signal x and bids b, while all other

bidders follow b�(�), is:7

�(b;x) = E[
�
V 1r � b�(Y kr�1r )

�
Ib�(Y kr�1r )<bjX1 = x] + E[

�
V 1r � b

�
Ib�(Y krr )<b<b�(Y kr�1r )jX1 = x]

= E[E[
�
V 1r � b�(Y kr�1r )

�
Ib�(Y kr�1r )<bjX1; Y

kr�1
r ]jX1 = x]

+E[E[
�
V 1r � b

�
Ib�(Y krr )<b<b�(Y kr�1r )jX1; Y

kr�1
r ; Y krr ]jX1 = x]

= E[
�
vkr�1r (X1; Y

kr�1
r )� b�(Y kr�1r )

�
Ib�(Y kr�1r )<bjX1 = x]

+E[
�
vkr�1;krr (X1; Y

kr�1
r ; Y krr )� b

�
Ib�(Y krr )<b<b�(Y kr�1r )jX1 = x]

=

Z b�
�1
(b)

x

�
vkr�1r (x; ykr�1)� b�(ykr�1)

�
fkr�1r (ykr�1jX1 = x)dykr�1

+

Z b�
�1
(b)

x

Z x

b��1 (b)

�
vkr�1;krr (x; ykr�1; ykr)� b

�
fkr�1;krr (ykr�1; ykr jX1 = x)dykr�1dykr ;

where fkr�1;krr (ykr�1; ykr jX1 = x) is the joint density of Y kr�1 and Y kr conditional on X1 = x.

Let

�1(b;x) =

Z b�
�1
(b)

x

�
vkr�1r (x; ykr�1)� b�(ykr�1)

�
fkr�1r (ykr�1jX1 = x)dykr�1;

�2(b;x) =

Z b�
�1
(b)

x

Z x

b��1 (b)

�
vkr�1;krr (x; ykr�1; ykr)� b

�
fkr�1;krr (ykr�1; ykr jX1 = x)dykr�1dykr ;

so that

�(b;x) = �1(b;x) + �2(b;x):

The derivative of �1(b;x) with respect to b is

�1b(b;x) =
1

b�0(b��1(b))

�
vkr�1r (x; b�

�1
(b))� b

�
fkr�1r (b�

�1
(b)jX1 = x);

7Ib�(Y kr�1)<b is an indicator function: it equals one if b�(Y kr�1) < b and zero otherwise.
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and the derivative of �2(b;x) with respect to b is

�2b(b;x) =
1

b�0(b��1(b))

Z x

b��1 (b)

�
vkr�1;krr (x; ykr�1; b

��1(b))� b
�
fkr�1;krr (ykr�1; b

��1(b)jX1 = x)dykr�1

� 1

b�0(b��1(b))

Z b�
�1
(b)

x

�
vkr�1;krr (x; b�

�1
(b); ykr)� b

�
fkr�1;krr (b�

�1
(b); ykr jX1 = x)dykr

�
Z b�

�1
(b)

x

Z x

b��1 (b)

fkr�1;krr (ykr�1; ykr jX1 = x)dykr�1dykr

=
1

b�0(b��1(b))

�
vkrr (x; b

��1(b))� b
�
fkrr (b

��1(b)jX1 = x)

� 1

b�0(b��1(b))

�
vkr�1r (x; b�

�1
(b))� b

�
fkr�1r (b�

�1
(b)jX1 = x)

�
Z b�

�1
(b)

x

Z x

b��1 (b)

fkr�1;krr (ykr�1; ykr jX1 = x)dykr�1dykr :

Therefore, the derivative of �b(b;x) with respect to b is

�b(b;x) =

�
vkrr (x; b

��1(b))� b
�
fkrr (b

��1(b)jX1 = x)

b�0(b��1(b))
(13)

�
Z b�

�1
(b)

x

Z x

b��1 (b)

fkr�1;krr (ykr�1; ykr jX1 = x)dykr�1dykr :

Note that the expression
R y
x

R x
y
fkr�1;krr (ykr�1; ykr jX1 = x)dykr�1dykr is equal to

Pr(Y
kr
r < y < Y kr�1r jX1 = x), the probability that Y krr is below y and Y kr�1r is above y,

conditional on X1 = x: Therefore, by setting �b(b; x)jb=b�(x) = 0, the di¤erential equation for

the candidate for an increasing symmetric equilibrium is

1

b�0(x)

�
vkrr (x; x)� b�(x)

�
fkrr (xjX1 = x)� Pr(Y krr < x < Y kr�1r jX1 = x) = 0;

or

b�0(x) =
�
vkrr (x; x)� b�(x)

� fkrr (xjX1 = x)

Pr(Y krr < x < Y kr�1r jx) : (14)
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By Lemma 3, we can then write (14) as

b�0(x) =
�
vkrr (x; x)� b�(x)

�
Qr(x; x): (15)

Using the integrating factor e�
R x
x Qr(t;t)dt, and the boundary condition b�(x) = vkrr (x; x), the

solution of this di¤erential equation is:

b�(x) = vkrr (x; x)e
�
R x
x Qr(t;t)dt +

Z x

x

vkrr (z; z)Qr(z; z)e
�
R x
z Qr(t;t)dtdz:

Integrating by parts and using (7) yield (8).

It only remains to show that deviations from (8) are not pro�table. From (13), by setting

b�
�1
(b) = y, we get

�b(b;x) =
1

b�0(y)

�
vkrr (x; y)� b�(y)

�
fkrr (yjX1 = x)� Pr(Y krr < y < Y kr�1r jX1 = x)

=
fkrr (yjX1 = x)

b�0(y)

�
vkrr (x; y)� b�(y)�

b�0(y)

Qr(y; x)

�
:

By Lemma 2, Qr(y; x) is increasing in x, so �b(b;x) is positive for x > y and negative for

x < y, which implies that setting b = b�(x) = br(x)maximizes the expected payo¤of bidder 1.
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