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Abstract

Theoretical models of multi-unit, uniform-price auctions assume that the price is given by
the highest losing bid. In practice, however, the price is usually given by the lowest winning
bid. We derive the equilibrium bidding function of the lowest-winning-bid auction when there
are k objects for sale and n bidders with unit demand, and prove that it converges to the
bidding function of the highest-losing-bid auction if and only if the number of losers n — k
gets large. When the number of losers grows large, the bidding functions converge at a linear
rate and the prices in the two auctions converge in probability to the expected value of an
object to the marginal winner.

Journal of Economic Literature Classification Numbers: D44, D82.
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1 Introduction

Uniform-price auctions have been extensively used for the sale of homogeneous goods in
several countries (e.g., in the sale of Treasury bills and electrical power). In these auctions, the
price is usually given by the lowest winning bid. Theoretical models of multi-unit, uniform-

price auctions, on the other hand, assume that the price is given by the highest losing bid (e.g.,
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Decision Making and Risk Analysis at INSEAD for supporting this project.



Milgrom, 1981, Weber, 1983, Pesendorfer and Swinkels, 1997, 2000, Milgrom and Weber,
2000, Kremer, 2002, Jackson and Kremer, 2004, 2006, and Mezzetti, Peke¢ and Tsetlin,
2007). When bidders have unit-demand, highest-losing-bid, multi-unit auctions behave very
much like the second-price auction with a single item for sale. In particular, in a symmetric
equilibrium, each bidder bids his expected value for an object conditional on being tied with
the price setter. This simplicity is the main reason for their use by theorists. A natural
question then is: do lowest-winning-bid auctions behave very differently from highest-losing-
bid auctions? Do the two auction formats yield similar behavior and prices as the number
of bidders increases? An affirmative answer to both questions would provide justification for
the theorists’ focus on the analytically simpler highest-losing-bid auctions.

First, we derive the equilibrium bidding function of the lowest-winning-bid auction in the
general affiliated value model with unit demand introduced by Milgrom and Weber (1982);
as far as we know, we are the first to study such auctions. Then we show that the bidding
functions of the lowest-winning-bid and the highest-losing-bid auction converge as the number
of losing bidders grows large. More precisely, letting n be the number of bidders and k the
number of objects sold, we show that the two bidding functions converge if and only if n — k
goes to infinity. As n — k grows, the bidding functions converge at a linear rate. We also
show that the prices in the two auctions converge in probability when n — k goes to infinity.
They converge to the expected value of an object to the marginal winner; hence, the two
auctions become perfectly competitive markets as n — k grows.

It is worth to point out two other properties of the lowest-winning bid auction. As it
is well known, in the general affiliated model, the second-price auction and its generaliza-
tion, the highest-losing-bid auction, have a continuum of undominated asymmetric equilibria
(Milgrom, 1981, Bikhchandani and Riley, 1991). The first-price auction and, we conjecture,
the lowest-winning-bid auction, do not suffer from this problem (McAdams, 2006). Sec-
ond, it is easy to extend the arguments first introduced by Robinson (1985) for the first
and second-price auction, and show that collusive agreements are easier to sustain in the

highest-losing-bid than in the lowest-winning-bid auction. In a highest-losing-bid auction,



cartel members have no incentive to deviate from an agreement in which only one of the
highest value members submits a meaningful bid. On the contrary, cartel members will
want to deviate from such an agreement in a lowest-winning bid auction. The robustness to
collusion and equilibrium multiplicity may help to explain the prevalence in practice of the
lowest-winning-bid auction. That its equilibrium converges to the symmetric equilibrium of
the highest-losing-bid auction makes us feel confident that the latter is a good approximation
of the uniform auctions used in practice, at least when the number n — k of losing bidders is
large.

The paper is organized as follows. The next section introduces the model and derives
the bidding function of the k-th price (i.e., the lowest-winning bid) auction for k& objects.
Section 3 studies the convergence properties of the k-th and (k+ 1)-st price auctions. Section

4 concludes. An appendix contains the proofs omitted from the main text.

2 The Model and Bidding Functions

We consider a sequence of auctions {4,}°°;, where the r-th auction has n, bidders and
k. objects, with 1 < k. < n, < n,;1. Each bidder is risk neutral and only demands one
object. Bidder 7, i = 1,2,...,n,, observes the realization z; of a signal X;. Denote with
s = (x1, ..., x,,) the vector of signal realizations. Let sV s’ be the component-wise maximum
and s A s’ be the component-wise minimum of s and s’. Signals are real random variables
drawn from a distribution with a joint pdf f.(s), which satisfies the affiliation property
(Milgrom and Weber, 1982):

fr(sV ) fr(sNs) > fr(s)f(s) for all s # s’ (1)

The support of f, is [z, Z]"", with —0co < z < T < +00.
We make the standard assumption that the random variables X, X, ... are symmetric.
More precisely, the infinite sequence X = (X, Xs,...) is exchangeable; that is, for all finite

n the joint distribution of (X ,, -, Xy, ) is the same as that of (X, -+, X,,) for all permu-



tations . By de Finetti’s exchangeability theorem (e.g., see Kingman, 1978, for a simple
exposition) there exists a real random variable ¢ with distribution H({) and a conditional
distribution function G(-|¢) such that, for all n, the joint distribution of the random variables

Xl,XQ,"' 7Xn 1S:

P(Xy <21, Xy < g, Xy Sap) = /_+OO G(21|Q)G(22[C) - - - G(an|Q)dH(C).  (2)

o0

We will make the following uniform boundedness assumption. There exists 1, > 0 such

that, for all x, 2/, and (:?

glz|l() 1
T = 9@1e) "

where ¢(-|¢) is the density of G(-|().

(3)

The value V! = u,(X;, {Xj}, ;) of an object to bidder i is a function of all signals.?
The function wu,(-) is non-negative, differentiable, strictly increasing in X, increasing and
symmetric in the other bidders’ signals X, j # 1.

In studying the symmetric equilibrium bidding function in a given auction, it is useful to
take the point of view of one of the bidders, say bidder 1 with signal X; = x, and to consider
the order statistics associated with the signals of all other bidders. We denote with Y the

j-th highest signal of bidders 2,3, ..., n,. (i.e., all bidders except bidder 1). Define
vi(z,y) = E VX1 =2,V =y]. (4)

Affiliation implies that v/(z,y) is increasing in both z and y, and hence differentiable almost

everywhere (Milgrom and Weber, 1982, Theorem 5). We also assume that there exist real

2This assumption implies that a bidder’s signal only conveys a bounded amount of information about the
other bidders’ signals. Pesendorfer and Swinkels (1997) make a similar assumption in the context of pure
common values.

$Milgrom and Weber (1982) also allowed the function u, to depend on other signals which are not observed
by the bidders. Since we never use the unobserved signals, we have omitted them. This is with no loss of
generality. For example, the case of an unobserved common value corresponds in our model to a function
u, which is symmetric in all signals and equals the expected value of the object conditional on the signals
observed by all the bidders.



numbers a > 0 and b < oo such that, for all r:

dvkr
_ (@, 2)

“ dx

<b. (5)
In a (k. + 1)-st price (or highest-losing-bid) auction, the k, bidders with the highest

bids win at a price equal to the (k. + 1)-st highest bid. Milgrom (1981) showed that the

kr
s

bidding function in such an auction is v~ (x, z). Bidder 1 bids his expected value of an object
conditional on his own signal, X; = x, and on his signal being just high enough to guarantee
winning (i.e., being equal to the k,-th highest signal of all other bidders).

In a k,-th price (or lowest-winning-bid) auction, the k, bidders with the highest bids
win an object at a price equal to the k.-th highest bid. In studying equilibrium of such an
auction, it is useful to consider another bidder besides bidder 1, say bidder 2 with signal
X, = y. Denote the signals of bidders 3,...,n,, ordered descendingly, by Z!, ..., Z" 2.
Let fi*(y| X, = z,Z%1 > y > ZF) be the density of X, conditional on X; = z and
ZF=l > gy > Zk et FX2(y| X, = 2,271 > y > Z*) be the corresponding cumulative

distribution function.* Define the functions

eylXo =, ZF 1t >y > ZF)

r\Y,T) = nr_kr y
Qrly:2) = (7 = k) oo N 2T 5 g > 2

L(z) = e [ @0, (7)
The following lemma is proved in the appendix.

Lemma 1 The increasing symmetric equilibrium of the lowest-winning-bid auction for k,

objects with n, bidders is:

boe) = ot (0,0 = [ L)l (2,2), ®)

where v¥ (+) is defined by (4) and L,(z) is defined by (7).

f k. =1, we let Zfr_l = T; in such a case the k,-th price auction is the first-price auction.



In the lowest-winning-bid auction, a bidder bids his expected value of the object, con-
ditional on being tied with the marginal (or highest bidding) loser, minus a shading factor.
This is similar to the equilibrium bidding function of a first-price auction when there is a

single object for sale.

3 Convergence

We now study the convergence of the bidding function b, (z) of the lowest-winning-bid auction

to the bidding function v*(z, ) of the highest-losing-bid auction, as r grows large.

Theorem 1 The bidding function of the lowest-winning-bid auction, b,(x) given by (8), con-
verges to the bidding function of the highest-losing-bid auction, vy (z,x) given by (4), if and
only if the number of losing bidders n, — k. goes to infinity. When n, — k. goes to infinity,

b.(x) converges to v¥ (x,x) at a linear rate.

PrOOF. By (8) and (6):

T

L.(2)dv¥ (2, 2)

e Qr(t,t)dtdvfr(z, 2)

Xo kp—1 k
T z f t| X1=t,Z," " " >t>Z,."
—(np—ky) [7 I (X T )

e -
e 2 RS2t X =t,2Fr e zbr) dvfr(az)‘

Il
— —

By the mean value theorem, there exists ¢’ such that:

Xy =620 >t > ZF) [ Xy =t 2 >t > 2k

Xy =t, Zkt >t > Zk)  (t—2) 2| X, =t, 2k >t > Zk)

Since fr(z;,z_;) = f_t: g(x1|Q)g(x2|C) - - - g(xn, |C)dH(C), it is simple to show that the

boundedness assumption (3) implies that, for all r, z;, 2}, and x _; = (zq,- -+ , 21, Ty, , Tn, )
felws, o) 1
Ny < —F—F—% < —. 9)
0 fr(xgv x—i) Mo



It follows from (9) that

et Xy =t 20 >t > ZF) _ 1
7:X2<t/‘X1 = t,Zfol >t > ijr) Mo

770 )

and hence

= x
_/ e~k L gk (2 2) < by() — o (2, 1) < _/ e )i I ma gt (2, 2),

Z

Z

(10)
with the inequalities being strict for x # z.
Observe that — [ ﬁdt = In Z==; it then follows from (10) that
x (nr—kr)ng k x (nr—Fkr) 7= k
z—x dvyr(z, 2) X z—x o dvir(z, 2)
— = — - Ldz < —uor < — — —az.
/aC (:c —E) e dz < b.(x)—v,"(z,x) < /x (:c — g) 7 dz
(11)
b (2,2)

Since =—7** is uniformly bounded by assumption (5), the left and right hand side of (11)
converge linearly to zero if and only if n, — k, goes to infinity. This shows that b,(z) converges
to v¥(x, ) if and only if n, — k, goes to infinity, and that convergence is at a linear rate. |

The intuition behind Theorem 1 is the following. In a k,-th price auction for k, objects, a
bidder bids the expected value of the object, conditional on his bid being tied with the bid of
the marginal loser, minus a shading factor. As the number of losers in the auction increases,
the shading factor decreases linearly, reflecting increased competition for the last object. In
the limit, the bid in the k,-th price auction coincides with the bid in the (k, + 1)-st price
auction: the expected value of the object conditional on being tied with the marginal loser.
In a (k. 4+ 1)-st price auction, the marginal loser is the price setter.

We now show that the prices in the two auctions converge in probability, and they converge
to the expected value of an object to the marginal winner. This is because the k.-th and the
(k. + 1)-st order statistic converge in probability as n, — k. grows large.

Let X7 be the j-th highest signal among all bidders in auction A,. Consider the marginal

winner in auction r, the bidder with the k,-th highest signal; his expected value for an object



conditional on his signal being = is F [v,’f’" (z, XErt1)| Xk = x] )

Theorem 2 The prices of the lowest-winning-bid auction and the highest-losing-bid auction
converge in probability when n, — k. goes to infinity; they converge to the expected value of

an object to the marginal winner.

PrOOF. It suffices to show that the (k, + 1)-st order statistic (i.e., X* 1) converges
to the k,-th order statistic in probability when n, — k, grows large. To see this note first
that the price in a k,-th price auction is b,(X*"), while the price in a (k, + 1)-st price
auction is v¥r (X1 XF+1) By Theorem 1, the prices converge when the order statistics
converge. Second, the expected value of an object to the marginal winner with signal x,
B [vfr (z, XEt1) | XFr = 2], converges to vf"(z, z) if the order statistics converge.

Fix an arbitrary ¢ > 0. By (2), the probability that the difference between the k,-th and
the (k. + 1)-st order statistic is more than e, conditional on the k,-th order statistic being

equal to x, is given by

PXy = X7 > X = a) (12)
[ (Set0) " (1= Glal () glalQ)lalC) I (Q)
S22 (1= Gl 0)* ! glx]Q) G w[¢)m+dH () '

The boundedness assumption (3) implies that there is a real number ¢ such that 0 < ¢ <

g(x|¢) for all z and ¢. This implies that, for all x and (:

Gla—elg) - [Gzlg) —ec e {1 — cc
cat < S0 S max i =0y

It follows that

Pr(XFr — X > g| XF = 2) < (max {1 — ec,0})" ",



and hence P,(X* — XF*1 > ¢) goes to zero as n, — k, goes to infinity. This concludes the
proof.” 1

Define an auction as being competitive if the price converges to the value of an object
to the marginal buyer as the number of losers grows. Theorem 2 shows that the k,.-th and

(k. + 1)-st uniform-price auction are competitive.®

4 Conclusions

This paper provides a link between the highest-losing-bid auctions, which have been exten-
sively studied by theorists, and the lowest-winning-bid auctions that are used in practice.
We have shown that the symmetric equilibrium bidding function of the lowest-winning-bid
auction converges to the bidding function of the highest-losing-bid auction if and only if the
number of losing bidders gets large. When the number of losers grows large, the two bidding
functions converge at a linear rate and prices in the two auctions converge in probability to
the willingness to pay of the marginal bidder (his expected value for an object).

In a pure common value model with signals that are independent conditional on the
common value, Pesendorfer and Swinkels (1997) showed that the (k + 1)-st price auction
aggregates information (i.e., the price converges to the common value in probability) if and
only if the number of objects & and the number of losers n — k go to infinity. The results in
this paper, specialized to such a pure common value model, imply that the k-th price auction

aggregates information under the same conditions. In particular, if n — &k goes to infinity, but

’Note that the k,-th and the (k, + 1)-st order statistic converge even if n, — k, does not go to infinity,
provided that n, converges to infinity. If n, goes to infinity, but n, — k, does not, then k, must converge to
infinity. We can then write an expression for P.(XFr — Xkr+1 > | Xk+1 = z) similar to (12):

I3 (%)k (1= G(z|O)* g(z|Q)G(x|¢)m—Fr—LdH(C)
fjo(f (1= G(z|O) g(2|O)G(x|¢)r—*r—1dH(C)

which converges to zero uniformly as &, goes to infinity.

6Qur definition of a competitive auction is different from the definition in Kremer (2002). In a model with
pure common values, he calls an auction competitive if the expected price converges to the expected value
of the object. Our definition conforms more closely with the standard definition of a competitive market by
economists and applies beyond the common-value setting.

Po(Xpr — Xt > g Xt = 1) =

)



k stays finite, then the expected value of an object to the marginal winner does not converge,

in probability, to the object’s common value.

10



Appendix

In this appendix we prove Lemma 1, which gives us the equilibrium bidding function of the

k.-th price auction. We begin with two auxiliary lemmas.
Lemma 2 Q,(y, ), defined by (6), is increasing in x.

PRrROOF. The proof is essentially the same as the proof of Lemma 1 in Milgrom and Weber

(1982). By affiliation, for any 3’ < y and 2’ < =z,

P = 2T >y > Z4y) X = 4T >y > )
SNy = 2B sy > 2 T R (X =0, 2L >y > 2k

Cross multiplying and integrating with respect to 3’ over the range x < 1y < y yields the
result. |

Let f7(y;]X1 = x) be the marginal density of Y,/ conditional on X; = x.
Lemma 3 Q,.(y, ), defined by (6), can equivalently be defined as follows:

£ (ylz)

Qr(yv l’) - PT(Y;!CT < y < }/;kr*1|x)7

where P,(YFr < y < Yk=1|z) is the probability that, conditional on X, = =, Y is below y

and Y* =1 is above y.

PROOF. Because of the symmetry of the (n, — 1) signals X,,..., X, , it is

fir(y| Xy = )

= (n,—1 (k 1) / / (/ / foly, 21, 2n,—o| Xy = x)d2zy - - - de,.—l) dzg, - - dzp, o,
- Yy Yy

11



and

P.(YF <y <Yk~ 1]X1—:c

ny — 1 z z
<k - 1) </ / Fr(s - yn, 1| Xn = x)dyl--dykrl) Ay, --AYn,—1
y
Ny — 1 T T
= (k 1) / / / </ / Jr(@a, 21, s 2n, 2| X1 = x)dzl..dzkr_l) dz, ..dzy, —odxs.
T z Jz z y y

As a result, it is

fF(y| X1 =)
P. (Yl <y <YF-1X) =1)

(nr — (nT_Z) fy fz (fj fffr(y’ 21,0 s Zn—a| X1 = x)dzy - - dzkr—l) Az, -+ - dzp,—2

(Z:j) fz f; . f; (fy . fffr(l'g, 21y ey Zn,—2| X1 = 2)dz dzkr_1> dzy, ..dzp, 2dxs
ok )fTX?(y|X1 =227 >y > ZY)
RS X =, 2 >y > 2

where the last equality follows from (6). 1

Consider bidder 1 observing signal . Bidding according to the function b*(-) corresponds

to a symmetric Nash equilibrium if and only if the expected payoff of the bidder who observes

signal x is maximized at b = b*(z), when all other bidders follow b*(-)
Define

o (@ Y -1, k) = EVX =2, Y =y 0, Y =y )

12



The expected payoff I1(b; ) of bidder 1, who observes signal = and bids b, while all other
bidders follow b*(-), is:”

T

M(b;x) = E[(V =0 (Y1) Lo yor—1y | X1 = 2] + E[(V! —b) Ly 3 ory e (vior—1y | X1 = ]

— BBV bR

r b*(YT’“T’l)<b’X17YrkTil”Xl = ]

FEE(V ~b) 1. e | X0, YL YE|X = af

Yy <b<b
— Bl(oF (X, YN — bt (YY) Ly ypr—1y | X1 = ]

+E[(of M (X0, VL YY) < D) Ly (v cpte (v —1) | X1 = 7]

—1

b* o (b)
= / (oM@, yy—1) = b Wko—1)) S (-1 X1 = @)dye, -

1

O
+/ / X (0Fr =22 (2, g1, Y ) — ) FEr R (g, 1,y | X0 = @) dyi,—1dy,
z b*77(b)

where fEr=UFr(y, 1y | X1 = x) is the joint density of Y1 and Y** conditional on X; = z.

Let

IL(bz) = (Ufﬁl(%ykrl) — b (Yr,—1)) 5 1| Xy = x)dyg, 1,

b (b)
(b 2) = / / . (=% (@, Yy =1, ) = B) FE 7 (=1, U | X1 = @)y, —1dlyi,
z b7 (b)
so that
II(b; ) = II;(b; z) 4 TIa(b; x).
The derivative of II; (b; z) with respect to b is

1

M(bi2) = o=y (b b @) = b) S 6 ()X = ),

" Iye(yrr—1y<p is an indicator function: it equals one if b*(Y*~!) < b and zero otherwise.

13



and the derivative of II5(b; z) with respect to b is

1 €T
Ty (b: -+ (qu,kr Y1, b
w9 = gy Sy (7 e

—1

1 v kr—1,k -1 kr—1,k -1
- T Lyr * _ r—L,Rr * X —
b*/(b* 1 (b)) / <Ur (.Z’, b (b)v yk'r) b) fr (b (b)7 ykr' 1 x)dykr

b1 (b)
/ /_1 Yro—1s Yio [ X1 = @) dype, 1y,
- (v% 5 (0) —b) £l @)X = o)

gy (7 ) =) £ 0l = )

) T
—/ / T (g [ X = @) dy,ady, -
x v )

—1

(5) = b) £ (g, 1,6 ()X = )y,

Therefore, the derivative of II,(b; x) with respect to b is

(vl (b7 (8) = b) i (7 (D)1 X = )
RGN0

i) m
—/ / FEt (g 1y | X = @) dyg, 1 dyg,-
z b=t (b)

I, (b; ) =

Note that the expression — [” ff Jhe=Lbr (g oy | Xy = 2)dyg, _1dyr,  is equal to
P.(YF <y < Y1 X, = z), the probability that Y* is below y and Y*~! is above v,
conditional on X; = x. Therefore, by setting II;(b, )|p=p+(») = 0, the differential equation for

the candidate for an increasing symmetric equilibrium is

(vF (z,2) = b*(2)) fr (2| X1 =2) — P(Y) <2z <Y}l Xy=2) =0,

or

V) = (ol ) = 07(0)) e (1)

14



By Lemma 3, we can then write (14) as

b () = [ (2,2) 1" (2)] @u(x, ) (15)

(t,)d

Using the integrating factor e~ /= @D and the boundary condition b* (z) = vFr(z, 1), the

solution of this differential equation is:

b () = v (g, g)e J QDY +/ vk (2,2)Qu (2, 2)e I 0%y,

8

Integrating by parts and using (7) yield (8).
It only remains to show that deviations from (8) are not profitable. From (13), by setting

b (b) =y, we get

My(h) = s (oh(o9) =B (0) £ (010 = ) = RV < < V21130 =)
_ WX =) (o ey D)
R (T( ) =) Q7<y,:c>)'

By Lemma 2, Q. (y, z) is increasing in x, so II,(b; x) is positive for z > y and negative for
x < y, which implies that setting b = b*(z) = b,(z) maximizes the expected payoff of bidder 1.
|

15
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