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1 Introduction

The problem of testing the presence of unit roots in panels of data has received a great deal of attention
over the past decade; see for instance Quah (1994), Maddala and Wu (1999) and more recently Im,
Pesaran, and Shin (2003) (IPS). These panel unit root tests combine information from the time-series
dimension with that from the cross-section dimension, such that fewer time observations are required
for these tests to have power. A critical assumption underlying these tests is that of cross sectional
independence. Failing to account for potential cross-sectional dependence leads to over-rejection of the
unit root test statistics, the extent of which is related to the degree of this dependence.

In this paper we examine the time series properties of a panel of data that consists of three di-
mensions, which were first looked at by Ghosh (1976) and subsequently by Baltagi (1987). Empirical
examples of three dimensional panels are still relatively rare, but are starting to appear in the literature,
see for example, Goldberg and Verboven (2005), who assembled a large three dimensional panel (using
make of car, countries and time) to investigate market integration and convergence in the European
car market, and Davies and Lahiri (1995) who analyse forecasts of inflation available for different indi-
viduals, across varying time horizons over the period from 1977 through to 1992. Within the context
of a three-dimensional (3D) panel, N might denote countries or industries and M might be regions or
firms within that country or industry. With such panels there is the possibility of an error covariance
matrix in which there is different correlation across the N units compared to across the M units.

This paper uses Monte Carlo simulation to investigate the small sample properties of the IPS test,
for a 3D panel of data that allows for cross-sectional correlation over both the NV and M dimensions.
The simulation results show a severe size distortion of the IPS test, and we consider two alternative
procedures to account for potential cross-sectional dependency, namely, an extended version of the
cross-sectionally augmented IPS (CIPS) test statistic put forward by Pesaran (2006), and a procedure
based on a bootstrap of the residuals of the IPS test. In this paper we tabulate a new set of critical
values that are required to apply the Pesaran (2006) test in a 3D setup.

The plan of the paper is as follows. Section 2 briefly reviews the IPS approach to unit root test-
ing in panels with two cross-sectional dimensions. Section 3 presents the design of the Monte Carlo

simulations. Section 4 discusses the main results.

2 IPS unit root test and basic framework

IPS presented a method to test for the presence of unit roots in dynamic heterogeneous panels, which
is based on averaging individual ADF unit root test statistics. Extending the IPS unit root testing

procedure to the context of a 3D panel, we assume that the stochastic process y;;; is generated by a



first-order autoregressive process:
P
Ayije = aij + bijyije—1 + Z Cijr DNYiji—r + Eijit (1)
r=1
wherei=1,...,N, j=1,...M, t=1,...,T. In this setting the null hypothesis to test the presence
of a unit root becomes Hy : b;; = 1 for all 4, j, against the alternative that at least one of the individual
series in the panel is stationary, that is Hy : b;; < 1 for at least one 1, j.
The IPS test averages the ADF statistics obtained in equation (1) across the NM cross-sectional
units of the panel, denoted as:
- N M
tbar Ny = (NM)_l Z Z tij T,
i=1 j=1
where fij;p is the ADF test for the ijth cross-sectional unit. IPS show that a suitable standardisation

of the tbar ~NMT statistic, denoted as Z Frml follows a standard normal distribution.

3 Monte Carlo simulation design
We assume that the stochastic process y;;; is generated by a first-order autoregressive process:
Yijt = (1 - é%) Wij T Gij¥ige—1 + Eijts

where i = 1,...,N, j=1,..,M, t=1,....T, p;; ~ N(0,1), g4 ~ N <o,a§j), 02 ~ U[0.5,1.5] and
U stands for a uniform distribution. Under the null hypothesis ¢;; =1 for all ¢, j, while ¢;; = 0.9 for
all 4,7 under the alternative hypothesis. All of the parameter values such as p;; or O'?j are generated
independently of ¢;j; once, and then fixed throughout replications. Simulations are carried out for
N =5,10,20,25, M = 2,5,10 and T" = 10, 20, 25,40. The number of replications is set to 2,000 and
the first 50 observations are discarded. We allow the cross-sectional dependence to differ across the i,
j cross-sectional units, of the form:
E(gikts cinr) = { Z:l ];;jéll y E(epjt, €qjt) = { (j:q ];jéqq )

where, following O’Connell (1998), we set wy; = 0.3,0.5,0.7,0.9, and restrict the cross-sectional correla-
tion over ¢ to be a constant proportion of that over j, that is, w,q = 0wy, where = 0.0, 0.25,0.5,0.75, 1.0.

Recently, Pesaran (2006) suggested modifying the IPS test by including auxiliary terms into equation
(1) In particular, he augments equation (1) with the cross section averages of lagged level and lagged
first-differences of the individual series in the panel. In a standard two-dimensional (2D) panel the test
of the unit root hypothesis would be based on the following p”* order cross-sectionally augmented ADF

regressions:

p p
Ayir = ai +byig1+ Y cieSNyir—r + diTle1 + Y fir ATy + €0t (2)

r=1 r=0



where g; is the cross section mean of y;;, defined as gy = (N )_1 Zf\i 1 Yit- The corresponding cross-

sectionally augmented version of the IPS (CIPS) test statistic is:

N
CADF = (N)' > t;,
=1

where t; is the cross-sectionally ADF statistic for the i** unit. The critical values of the CADF statistic
are tabulated by Pesaran (2006) for models without intercepts or trends (Case I), with intercepts only
(Case II), and with intercepts and trends (Case III).

Pesaran (2006) (p.27) suggests the CIPS test could be generalised "... for a richer pattern of cross
dependence". For a 3D panel the CIPS test is be based on the following p* order cross-sectionally
augmented ADF regressions:

P P P
Ayiji = aij +bijyiji—1 + Z Cijr DNYijt—r + dijYi—1 + Z Jijir AYt—r + 9ijYit—1 + Z hijr AGit—r +€ijt, (3)
r=1 r=0 r=0
where 7; is the cross-sectional mean of y;;¢, defined as g, = (N]M)_1 Zfil Z]J\/il Yijt, and g4 is the
cross-sectional mean formed over the M individuals of group i, that is g;+ = (M )_1 Z]Ail Yijt- The
corresponding 3D-CIPS test, would then be:

N M

CADF = (NM)™' ) ) "t

i=1 j=1
where t;; is the cross-sectionally ADF statistic for the ¢ 5t cross-sectional unit.

The critical values of the 3D-CIPS test are tabulated via a Monte Carlo simulation (based on 20,000
replications) in Table 1 for different values of N, M and T, for models without intercepts or trends (Case
I), with intercepts only (Case II), and with intercepts and trends (Case III). It should be noticed that
these critical values are larger in absolute terms than the corresponding values tabulated by Pesaran
(2006).

As an alternative procedure to test the presence of unit roots in panels that exhibit cross-sectional
dependency, Maddala and Wu (1999) and more recently Chang (2004) have considered bootstrapping
unit root tests. In order to implement this procedure, we start off by resampling the restricted residuals
Ayijt = Yijt — Yijt—1 = €ij,t after centring, since y;;; has a unit root under the null hypothesis; this is
what Li and Maddala (1996) refer to as the sampling scheme S3 which is appropriate in the unit root
case. To preserve the cross-correlation structure of the error term within each cross section ¢, j, and

following Maddala and Wu (1999), we resample the restricted residuals with the cross-section index

*

fixed. Also, in order to ensure that initialisation of E5j. 0 1€ the bootstrap samples of ¢;;¢, becomes

unimportant, we follow Chang (2004) who advocates generating a large number of g say T'+Q

*

values and discard the first Q values of €7, (in our simulations we choose @) equal to 50). Lastly, the

bootstrap samples of y7;, are calculated by taking partial sums of €7; ;, that is v, = yj; o + Sy E5i ks

3



where y;“j’o is set equal to zero. These Monte Carlo simulation results are based on 2,000 replications

each of which uses 100 bootstrap repetitions. This bootstrapped IPS test will be denoted as BIPS.

4 Main results

The results for the empirical size of the 3D-CIPS and BIPS tests (while not reported, are available
from the authors upon request) show that both tests are approximately correctly sized, although the
empirical size of the BIPS test tends to be too low when w is small and N and/or M are large.

Table 2 reports the power probabilities for both the 3D-CIPS and the BIPS tests for 8 = 0.0, 0.25,
0.75, 1.00. The power of both the BIPS and the 3D-CIPS tests increase with increases in either the
number of cross-sectional units, N or M, or with increases in T'. However, while the power of the BIPS
test falls as the degree of cross-sectional correlation (in either wg; or #) increases, the power of the
3D-CIPS test is largely invariant to the degree of cross-sectional correlation.

In comparing the power of the two tests for # = 0.0 (a case in which there is cross-correlation over
j=1,..., M, but none over i = 1,..., N), the BIPS test unambiguously dominates the 3D-CIPS test
for all values of wy;; for example for N = 20, M = 10, T" = 20 and wy; = 0.3, the BIPS test has power of
95.85% compared to just 16.75% for the 3D-CIPS test. For the case when 6 = 0.0, aggregating the data
over the 7 = 1,... M units to produce a 2D panel removes the cross-sectional dependency, although
at the cost of reducing the number of cross-sectional units from NM to N. In this case, the standard
IPS test applied over the 2D aggregated data is correctly sized, and its power is better than that of
the 3D-CIPS test, but remains inferior to that of the BIPS test. Note, however, that even for relatively
small values of 6 aggregation over the 7 = 1,... M units yields incorrectly sized tests as correlation
remains over the ¢ = 1,..., N units and is therefore inappropriate.

In general, the BIPS test has greater power compared to the 3D-CIPS test for all values of
considered, when wy; < 0.5. For wg; > 0.5 the power of the 3D-CIPS test is occasionally greater than
that of the BIPS test, with the dominance of the 3D-CIPS over the BIPS test more likely when 6 is
bigger and N, M or T are larger; for example for § = 0.75 (§ = 1.00), N = 25, M = 10 and T' = 40
the power of the 3D-CIPS test is 76.2% (75.2%) compared to 30.1% (16.0%) for the BIPS test.

It should be noted that when 6 = 1.00, as the correlation over ¢ and j is identical, the CIPS test as
outlined in equation (2) can be applied. In these cases the empirical size results for the CIPS test is
correct and the power of this test is greater than that of the 3D-CIPS test; for example, in the case of
6 = 1.00 reported above, the CIPS test has power of 82.0%.
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Table 2. Empirical power of the 3D-CIPS and bootstrapped IPS (BIPS) tests

3D-CIPS (6 = 0.0) BIPS (0 = 0.0) 3D-CIPS (6 = 0.25) BIPS (0 = 0.25)
N M T Wkl Wkl Wkl Wkl
0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

5 2 10 5.9 5.6 5.2 4.7 1106 10.5 10.1 9.6 5.9 6.1 5.7 5.0 | 10.8 10.0 9.5 9.0
5 5 10 5.3 5.3 5.3 55 | 141 123 10.9 9.3 5.0 5.5 5.8 5.6 | 142 129 11.0 9.4
5 10 10 6.5 6.3 6.4 6.6 | 158 13.8 125 114 7.2 6.6 6.8 6.4 (159 131 114 10.2
7.1 6.7 5.7 5.3 | 13.7 129 11.9 10.8 6.9 7.2 6.3 5.7 1 13.2 121 10.6 10.2
10 5 10 6.1 6.5 6.5 6.2 | 178 15.0 13.8 11.9 7.1 7.3 6.1 6.3 | 17.5 139 127 10.9
10 10 10 6.9 7.4 7.2 711213 184 154 12.7 8.0 7.7 7.2 7.8 | 208 169 134 11.6
20 2 10 5.1 4.6 4.7 6.0 | 16.6 159 16.1 15.2 6.0 6.1 6.2 5.8 | 16.8 155 14.1 129
20 5 10 6.5 7.3 7.2 6.6 | 22.8 20.2 178 154 6.4 7.4 7.4 72210 180 146 13.2
20 10 10 8.4 7.9 7.5 8.4 1295 238 189 149 8.1 8.0 7.5 75262 202 163 13.7
25 2 10 6.2 6.3 6.2 5.8 | 195 187 171 16.1 5.7 5.8 6.1 6.3 | 18.0 164 151 12.5
25 5 10 7.8 7.4 8.1 7.9 1249 21.7 187 16.3 7.4 7.4 8.1 8.0 | 221 173 149 123
25 10 10 8.4 8.3 8.5 82 1335 259 192 159 7.7 7.4 7.3 7.5 ] 281 200 156 129

—_
o
[\
—_
o

5 2 20 6.4 6.2 6.6 7.0 186 176 16.3 15.1 5.9 5.9 6.0 6.7 | 182 176 155 13.2

5 5 20| 10.0 10.0 9.8 9.7 | 319 264 21.1 169 | 10.2 9.8 9.6 9.8 | 30.8 259 20.3 15.8

5 10 20| 113 117 119 121 | 442 336 248 171 | 114 113 122 11.8 | 425 32.0 23.1 16.2
10 2 20 8.7 8.4 8.8 8.6 | 304 30.0 268 23.0 8.6 8.9 8.7 8.7 1292 276 237 19.7
10 5 20| 131 125 131 12.8 | 494 40.0 33.1 245 | 125 125 128 128 | 46.5 36.0 29.1 20.7
10 10 20 | 155 16.0 154 16.4 | 63.3 478 346 24.0| 151 152 15,5 15.5 | 59.7 433 302 21.1
20 2 20 9.8 102 10.0 10.6 | 46.8 448 41.7 364 9.9 10.1 100 104 | 431 381 31.7 26.3
20 5 20| 155 148 150 14.8 | 69.5 572 453 357|149 145 144 147 | 63.5 492 373 274
20 10 20 | 16.8 16.6 16.8 174 | 8.9 709 552 40.1 | 177 179 181 176 | 76.9 58.2 433 329
25 2 20| 10.8 10.3 9.8 10.3 | 53.6 51.5 459 395 | 11.0 109 10.7 11.0 | 50.9 43.8 36.2 29.8
25 5 20| 147 153 153 16.0 | 77.3 66.1 539 41.7 | 155 154 156 16.0 | 69.5 54.0 40.0 30.2
25 10 20| 18.2 186 182 178|911 7v7.0 60.1 468 | 174 181 179 185 | 82.1 619 456 34.3

5 2 25 9.1 8.6 8.7 8.8 | 276 248 216 19.2 9.1 8.8 8.2 8.4 | 273 239 212 184

5 5 25| 140 146 133 14.0 | 46.1 36.5 282 222|137 139 129 138 | 443 347 275 204

5 10 251|169 179 17.0 17.0 | 61.5 47.0 350 257 | 172 18.0 17.8 16.5 | 59.0 445 326 23.1
10 2 251109 105 102 10.0 | 43.8 41.3 36.6 31.5 | 10.6 10.0 10.3 9.9 | 43.0 38.7 328 264
10 5 251|174 169 169 18.0 | 66.9 56.7 458 34.8 170 169 171 178 | 649 52.7 40.6 30.2
10 10 25 | 242 236 226 233 | 84.0 68.0 498 354 | 231 227 225 219|794 612 435 313
20 2 251|143 145 146 152 | 68.7 64.7 609 526 | 14.2 150 152 149 | 63.6 556 46.5 379
20 5 25 (208 21.1 21.6 21.2|89.2 80.7 66.8 529|219 220 216 213|834 688 545 424
20 10 25 | 270 272 270 265|974 880 721 535|273 269 26.7 259|921 76.7 585 42.3
25 2 25| 145 141 142 150 | 749 721 67.7 598 | 142 14.7 139 149 | 70.7 61.4 523 425
25 5 25245 247 242 250|941 86.0 741 59.7 | 245 23.7 23.7 248 | 87.2 723 572 442
25 10 25 | 283 275 272 28.0 | 989 936 817 634|270 285 281 280|945 813 64.7 48.1

5 2 40 | 11.7 12,7 12,5 13.0 | 55.2 51.8 46.3 41.2 | 11.9 123 125 134 | 55.1 498 442 375

5 5 40 | 285 285 275 28.7 | 86.5 76.0 61.4 451 | 283 285 279 280 | 84.3 71.8 555 405

5 10 40| 45.7 463 46.0 469 | 953 83.6 645 44.1 | 45.1 44.8 46.1 46.7 | 93.9 80.1 60.1 40.6
10 2 40| 179 185 197 198 | 825 793 739 652|181 19.0 19.6 19.1 | 81.2 T73.6 650 52.1
10 5 40 | 42.8 42,7 433 442|982 925 82.0 673 | 43.0 439 441 448 | 96.1 877 727 577
10 10 40 | 60.6 60.6 588 59.1 | 99.8 973 87.7 70.3 | 59.7 59.5 59.9 60.1 | 99.2 934 79.7 60.6
20 2 40 | 285 283 282 28.6 | 985 975 949 89.8 | 276 283 279 289 | 96.7 90.5 81.7 715
20 5 40 | 59.9 59.8 603 59.7 | 100 99.8 97.7 91.0 | 59.0 59.8 60.1 59.0 | 99.5 96.1 875 754
20 10 40 | 747 743 741 741 | 100 100 99.0 92.7 | 742 746 738 73.01] 998 983 91.1 77.1
25 2 40 | 35.0 344 352 351|994 99.0 97.7 949 | 342 335 340 345|976 943 864 76.9
25 5 40 | 63.7 634 62.8 62.4 | 100 99.9 98.7 949 | 629 63.0 634 645 | 99.7 974 903 794
25 10 40 | 75.8 75.5 758 76.0 | 100 100 999 969 | 75.5 76.3 76.0 74.7 | 99.9 984 934 825




Table 2 (cont’d). Empirical power of the 3D-CIPS and bootstrapped IPS (BIPS) tests

3D-CIPS (6 = 0.75) BIPS (0 = 0.75) 3D-CIPS (6 = 1.0) BIPS (0 = 1.0)
N M T Wkl Wkl Wkl Wkl
0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

5 2 10 5.3 5.6 5.7 5.9 | 10.2 8.7 7.6 7.3 5.2 5.7 5.3 5.4 9.4 8.3 8.2 7.5
5 5 10 5.2 6.0 6.0 59 | 124 10.8 9.2 7.8 5.8 5.7 6.1 6.2 | 11.3 9.2 7.6 7.0
5 10 10 6.6 7.3 6.9 6.9 | 13.7 11.4 10.0 8.0 6.2 6.4 6.0 6.6 | 11.9 8.7 8.4 7.2
6.7 5.8 5.8 4.9 | 11.8 9.9 9.1 7.7 6.5 5.9 5.7 5.8 | 11.1 9.5 8.0 7.6
10 5 10 6.5 6.4 7.0 6.4 | 13.6 10.6 9.1 8.1 7.1 6.8 7.5 7.6 | 11.9 8.7 8.4 7.2
10 10 10 8.0 8.1 7.1 6.7 | 15.6 11.3 9.2 8.1 7.7 7.2 7.2 7.0 | 12.3 8.7 7.6 7.3
20 2 10 6.6 6.5 6.6 6.6 | 12.1  10.3 9.2 7.5 6.8 6.4 6.3 6.4 | 11.1 9.1 8.3 7.7
20 5 10 7.0 7.5 7.6 7.2 | 158 10.7 8.3 7.8 7.3 6.7 6.6 7.2 | 12.3 8.7 7.6 7.3
20 10 10 8.4 8.9 8.8 84 ] 16.3 12.1 103 9.0 8.8 9.1 9.1 8.1 | 145 10.6 9.5 7.5
25 2 10 5.8 6.4 6.9 6.3 | 13.7 10.6 9.0 7.3 6.0 6.4 6.1 6.1 | 11.9 8.7 8.4 7.2
25 5 10 7.5 7.2 6.4 721146 104 8.8 7.2 7.9 7.4 7.1 7.3 | 13.0 10.0 8.4 7.0
25 10 10 7.5 6.8 6.7 7.0 | 16.7 11.7 8.9 8.2 7.8 7.0 7.6 8.0 | 12.1 9.0 6.7 6.7
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5 2 20 5.9 5.9 5.9 6.3 | 16.8 15.0 13.2 10.8 5.7 5.4 5.6 6.1 | 16.3 13.3 114 8.4

5 5 20| 10.2 10.0 9.0 9.8 1269 200 144 109 9.7 9.5 9.2 9.9 | 240 16.7 12.2 8.9

5 10 20| 112 106 111 116 | 342 236 152 11.7 | 115 11.6 11.1 11.8 | 28.8 184 134 10.1
10 2 20 9.0 9.1 9.2 8.8 | 246 19.0 14.7 118 9.2 9.3 9.9 9.5 (216 151 11.2 9.0
10 5 20| 127 131 123 11.8 | 350 23.8 17.0 13.1 | 129 134 135 13.2 | 288 184 134 10.1
10 10 20| 144 143 144 146 | 41.3 251 175 136 | 149 150 146 152 | 329 205 13.9 9.7
20 2 20 99 101 101 103|312 221 155 123 | 10.1 103 108 11.1 | 264 172 12.1 9.4
20 5 20| 145 141 138 140 | 419 258 181 139 | 143 14.0 145 144 | 329 20.5 139 9.7
20 10 20| 183 187 183 176 | 474 281 196 134 | 186 183 184 179 | 358 20.2 13.6 10.7
25 2 20111 113 113 11.0 | 357 244 170 139 | 114 10.8 10.8 11.1 | 28.8 184 134 10.1
25 5 20| 145 151 148 16.1 | 423 26.0 171 126 | 144 149 152 155 | 325 19.0 13.0 9.3
25 10 20 | 17.8 175 179 178 | 49.6 282 19.7 154 | 184 177 179 184 | 383 20.7 13.7 10.1

5 2 25 9.1 8.9 8.5 84 |254 208 17.0 1338 9.3 8.8 8.3 8.4 (236 183 14.2 109

5 5 25| 131 127 126 127 | 36.6 27v.1 19.1 139 | 127 12.7 13.0 129 | 33.2 221 143 10.0

5 10 25| 174 171 173 180 | 482 31.1 223 162|174 174 170 173 | 41.0 243 166 114
10 2 251|106 10.6 10.7 9.2 | 340 254 191 134 | 11.2 10.6 9.6 94 | 30.1 205 14.6 10.7
10 5 25| 174 177 179 181 | 487 328 220 149 | 173 175 180 175 | 41.0 243 16.6 114
10 10 25 | 242 232 226 218|574 351 226 159 | 245 234 226 227|470 258 15.6 9.7
20 2 251|143 143 147 145 | 455 303 209 14.7 | 141 143 139 138 | 384 21.8 14.0 9.7
20 5 25219 216 212 212|574 361 238 163|219 216 209 21.1 | 470 258 15.6 9.7
20 10 25| 26.7 275 277 263 | 627 373 236 155|270 274 271 264 | 478 259 151 9.9
25 2 25| 141 135 13.8 14.8 | 503 33.8 225 173 | 141 143 141 143 | 41.0 243 16.6 114
25 5 251248 238 240 244|583 359 249 176 | 243 23.8 228 233|469 268 172 113
25 10 25| 274 278 284 271|662 411 259 176 | 278 270 273 26.6 | 520 281 18.1 104

5 2 40 | 123 123 12,6 125 | 49.6 39.7 31.7 240 | 12.2 122 124 119 | 453 343 25.0 17.2

5 5 40 | 281 28.2 285 28.1 | 72.0 522 357 234|281 285 282 282 | 64.5 422 253 16.2

5 10 40| 455 46.0 449 46.0 | 81.3 581 372 23.6 | 44.7 46.6 459 455 | 73.4 441 259 14.7
10 2 40| 18.2 189 19.1 19.1 | 66.2 494 345 247|191 188 187 18.6 | 584 377 241 154
10 5 40 | 43.7 435 439 429 | 82.7 585 40.2 263 | 444 445 444 442 | 734 441 259 14.7
10 10 40| 594 589 57.8 584 | 87.1 624 40.8 26.6 | 59.2 57.8 572 57.6 | 76.3 448 269 15.2
20 2 40 | 275 26.8 28.0 28.2 | 79.6 582 40.2 276 |28.0 273 277 276|696 434 257 158
20 5 40 | 60.0 586 59.1 58.1 | 874 61.8 40.1 27.8 | 59.7 588 585 585 | 76.3 448 269 152
20 10 40 | 729 731 726 721|916 678 454 292|729 723 719 726|815 496 284 16.1
25 2 40 | 34.8 350 352 34.0 | 835 60.7 403 259|353 356 349 359|734 441 259 147
25 5 40| 63.3 63.8 63.7 64.6 | 89.4 648 446 31.0 | 639 636 641 63.8 | 783 489 300 16.6
25 10 40 | 775 76.7 76.7 76.2 | 918 679 459 30.1 | 772 77.1 76.1 752 | 80.2 50.6 29.6 16.0




