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Abstract

Crowdfunding, Internet websites, and health care are only a few ex-
amples of markets in which agents make decisions not only on the basis
of their own investigations and knowledge, but also on the basis of in-
formation from a "central planner" about other agents’ actions. While
such reciprocal learning can be welfare-improving, it may reduce agents’
incentives to conduct their own investigations, and may lead to harmful
cascades. We study the planner’s optimal policy regarding when to pro-
vide information and how much information to provide. We show that
the optimum policy involves a delicate balance of hiding and revealing
information.
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Introduction
In many industries, agents often make decisions not only on the basis of

their own investigations and knowledge, but also on the basis of information
provided by some “central planner” about other agents’ decisions. Examples
include crowdfunding platforms that observe investors’ decisions, Internet rec-
ommendation websites that follow consumers’ choices, and medical directors of
large health care organizations who record doctors’ prescriptions. Usually, these
planners can act strategically in deciding how much information to reveal to each
agent about other agents’ decisions — and when to reveal such information.
In making such decisions, the planners, who often act, essentially, as social-

welfare maximizer, face the following trade-off: on the one hand, disclosing
information can increase the aggregated knowledge and improve agents’ deci-
sions, but, on the other hand, disclosing information may serve as a disincentive
for agents’ to conduct their own (worthwhile) research, and may even unleash
harmful cascades. The main purpose of this paper is to characterize the plan-
ner’s optimal information dissemination policy in such situations. We show that
the optimal policy involves a delicate balance of hiding and revealing valuable
information.
Crowdfunding platforms provide a telling example of the way in which these

trade-offs come into play. Such platforms, which pool investors’ money to fund
projects, challenge the traditional banking system not only in the way they raise
funds to finance investment projects but also in the way they gather and dis-
seminate information to potential investors. Instead of relying on the knowledge
of only few experts, crowdfunding platforms aggregate many pieces of informa-
tion simply from monitoring individual investors’ decisions on whether or not to
invest in the projects that they (the platforms) offer. These investors, moving
sequentially, make their decision on the basis of two sources of information: (i)
their own (often costly) research and exploration and (ii) information provided
to them by the platform about previous investors’ decisions.1

Crowdfunding is not the lone example to emerge in the Internet economy;
online reputation systems that collect, maintain and disseminate information,
all face the same trade-offs. Moreover, such trade-offs are not confined to de-
cision makers in the so-called "new economy." Consider a director of a large
health care organization deciding how much information about the history of
doctors’ treatment choices to provide to doctors under his supervision. If the
medical director chooses not to share his information, "too many" doctors will
conduct their own independent and costly research about the most-effective pa-
tient treatment options, and, furthermore, some doctors might even take sub-
optimal actions. The director’s problem, however, is that the more transparent
he chooses to be, the weaker the doctors’ incentives are to conduct such research.
An inefficient cascade may emerge as a result.
These cases (and many more) share certain characteristic features: (i) While

the planner can observe agents’ decisions, he cannot base his recommendation

1There are by now many platforms competing for investors. Those who do not choose the
strategy that maximizes expected agents’ payoffs will be driven out of the market.
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on the outcome of such decisions, either because the planner simply cannot
observe these outcomes, or because these outcomes may require a very long
time to be realized. (ii) The planner cannot see how much research the agents
have conducted before making their final decisions. Our analysis takes into
account these important features.
To study these types of markets we consider a model in which there are

two states of nature A and B and two possible actions a and b. Action a is
optimal in state A while b is optimal in state B. There is a sequence of agents,
each of whom needs to choose an action without knowing the state (the same
one for all agents and in all periods) of the world. Agents do not observe the
choices that their predecessors have made. However, they can learn about these
previous choices from a social planner, who observes all agents’ decisions, and
chooses how much of this information to share with each agent. After receiving
the information provided by the planner and before deciding between the two
actions, each agent can purchase imperfect information (a signal) about the state
of the world. We assume that the cost of purchasing a signal is low enough so
that, in the absence of any information about his predecessors’ decisions, each
agent is better off purchasing a signal and choosing an action according to its
realization. The agent’s decision regarding whether to purchase a signal (as well
as the realization of such a signal) is unobservable by the other agents and by
the planner. Thus, the only information available to the planner is the agent’s
final decision a or b. The social welfare-maximizing planner commits, ex ante to
a mechanism that specifies how much information to reveal to each agent, as a
function of the history of choices he has observed.
The fact that agents are rational and understand the planner’s strategy

makes the planner’s task difficult. Suppose, for example, that the planner’s
policy is to remain silent and, by so doing, to induce agents to purchase a signal
and act according to it, until he (the planner) becomes sufficiently confident
about the state of nature. Suppose, further, that the probability that the plan-
ner becomes confident that the state is B, say, after a fixed number of periods,
is significantly higher than the probability that he becomes confident that the
state is A. In such a case, if the planner is silent, the agent will update his
beliefs in favor of state A. This may lead the agent to take the action a without
acquiring a signal, contrary to the planner’s interest.

We show that, without loss of generality, one can focus on "recommendation
mechanisms". In such a mechanism, at the beginning of every period, the
planner recommends the agent either to acquire a signal and follow it or to take
a specific action without acquiring a signal. The optimal policy is shown to
consist of three phases. In the first phase no conflict of interest exists between
the planner and the agents. That is, in a world of complete information, the
agents would find it optimal to acquire a signal exactly for the same histories
(of previous agents’ decisions) that the planner recommends. Indeed, we show
that in this phase a policy of full disclosure is adopted. The situation changes
dramatically in the second phase. If the agents could observe the planner’s
information, they would prefer to take one of the two actions without acquiring
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a signal. The planner, however, for some histories, is still not confident enough
about the state, and, thus, wants more signals. To overcome this difficulty the
planner adopts a policy wherein he recommends to some agents, with some
positive probability, to acquire a signal not only in cases where acquiring a
signal is socially desirable, but also for histories in which this is not the case.
By applying such a policy, the planner is able to keep the agents sufficiently in
the dark, and, for the agent, acquiring a signal becomes incentive compatible.
Such a strategy is obviously costly, from the planner’s perspective, as it involves
wasteful exploration by some agents, as well as some of them choosing the wrong
action, given the information that the planner already has but does not share
with them. The third stage starts when the planner finds it too costly to hide
information from the agents, relative to the potential benefits of inducing them
to explore. In this phase, the planner discloses all the information to the agents,
and they all choose the same action.
A nice feature of the optimal mechanism is that it can be viewed as a first-

best solution to a modified problem where the cost of exploration incorporates
also the additional costs that the planner must incur in order to induce agents
to acquire a signal against their will. This feature enables us to derive a clear
characterization of the optimal mechanism and, in particular, to solve for the
length and the exact recommendation policy in each phase . We show that
the amount of information that is accumulated is smaller than the amount of
information that would have been accumulated in a first-best case in which the
planner could simply decide whether each agent should acquire a signal.
An interesting and important property of the optimal mechanism is that it

is not necessary for the planner to exchange private messages with the agents
and he can simply make do by publicly announcing, at the beginning of every
period, what is the action that he recommends to the agent who is supposed to
move during this period, to take.
The paper is organized as follows: Section 2 provides a short literature

review. Section 3 presents the model. Section 4 presents the first-best solution.
Section 5 formally defines a recommendation mechanism. Section 6 provides
the main theorem The optimal mechanism described in this section is a private
mechanism in the sense that messages from the planner are known only to the
agent they are sent to. Guaranteeing privacy is not always possible and in
Section 8 we show how to modify the optimal mechanism so that the same
outcome is achieved when messages are public. We conclude in Section 9 by
proving that the restriction to a recommendation mechanism is without loss of
generality.

2 Related Literature
Our paper is related to the literature on informational cascades that originated
with the work of Bikhchandani, Hirshleifer, and Welch (1992) and Banerjee
(1992). An informational cascade occurs when it is optimal for an individual who
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has observed the actions of those ahead of him to follow their behavior without
regard to his own information. In our model such a cascade will take place if,
for example, the planner adopts a policy of full disclosure. In a similar setup,
Sgroi (2002) evaluates, from the perspective of a social planner, the strategy of
forcing a subset of agents to make their decisions early .
This paper belongs to the literature on mechanism design without monetary

transfers. One such model that shares the sequential feature of our model is that
of Gershkov and Szentes (2009) who analyze a voting model in which there is no
conflict of interest between voters, and information acquisition is costly. In the
optimal mechanism the social planner asks voters randomly and one at a time
to invest in information and to report the resulting signal. As in our model, the
planner does not observe whether the agent invests in acquiring information,
but unlike in our model there is only one decision taken by the planner and
all agents share the same payoff. The interest in this type of exercise extends
far beyond voting. For example, Martimort and Aggey (2006), consider the
problem of communication between a principal and a privately informed agent
when monetary incentives are not available.
Other related papers are those of Kremer, Mansour, and Perry (2014) and

Che and Horner (2014). These papers also consider a mechanism-design prob-
lem in which the planner wishes to aggregate information. However, our paper
describes a very different scenario and the resulting optimal policies are also very
different. The first difference is that in Kremer, Mansour, and Perry (2014) and
Che and Horner (2014) the payoffs are realized and observed by the planner
immediately after an action is taken — thus, making it a multi-arm bandit prob-
lem with selfish agents. A second important difference is that unlike the papers
mentioned above, the present paper focuses on the acquisition of costly informa-
tion. These two differences require a very different analysis and yield different
results.
Three recent papers that examine disclosure of information in a dynamic

setup that is very different from ours are Ely, Frankel, and Kamenica (2013),
Horner and Skrzypacz (2012), and Ely (2015). Also relevant are the papers by
Kamenica and Gentzkow (2011) and Rayo and Segal (2010). These last two
papers consider optimal disclosure policies in a static environment in which a
principal wishes to influence the choice of an agent by sending the right message.

3 The Model

3.1 The Agents

There are infinitely many periods, denoted by t = 1, 2, 3, .... In every period
a new agent has to choose between two actions a or b. There are two possible
states of the world, A and B. In state A, the optimal action is a and in state
B, it is action b. The optimal action yields a payoff of 1 and the other action
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yields a payoff of zero. The state of the world is unknown and is determined
once and for all before the beginning of period 1. Agents know their place in
line but cannot observe the actions taken by (nor the utility of) the agents who
moved before them. Agents’ (common) prior beliefs that the state is A is p1.
Each agent is interested only in his own payoff from choosing the right action.
Hereafter, we will refer to the agent who moves in period t as "agent t."
Before making his choice, agent t can obtain, at a cost c > 0, an informative

signal about the state of the world (in Section 4.1 we discuss why in the case of
c = 0 the problem analyzed in this paper becomes uninteresting). We denote
the choice of obtaining a signal by e (for "explore"). The signal can receive
one of two values, sa or sb. If the information structure is fully symmetric in
the sense that both states are equally likely and the signals carry the same
amount of information, then the planner’s problem becomes rather trivial (see
more on this in Section 4.1). To make the problem interesting we assume an
asymmetric structure. That is, if the state is A, the signal receives the value
sa with probability 1 and if the state is B, the signal receives the value sb with
probability q, and the value sa with probability 1 − q. Thus the signals are
informative in the sense that, absent any other information, upon observing the
signal si, i ∈ {a, b}, an agent’s posterior that the optimal action is i increases.
Notice that signal sb fully reveals that the state is B. We say that an agent
follows the signal if he chooses a after observing the signal sa and if he chooses
b after observing the signal sb.

3.2 The Planner

We assume the existence of a planner who observes only the choices, a or b,made
by each agent. The planner cannot observe whether an agent has acquired a
signal (and, hence, the realization of such a signal) nor the agent’s payoff. The
planner’s objective is to maximize the discounted present value of all agents’
payoffs, taking into account also the costs of acquiring a signal. We let δ ∈ (0, 1)
denote the planner’s discount rate. The planner can commit to a mechanism
that specifies the messages to be conveyed to each agent as a function of the
history (to be defined formally shortly). The mechanism chosen by the planner
is known to all agents.
Let pt denote the planner’s belief, at the beginning of period t, that the

state is A. Before the arrival of agent 1, the planner is as informed as the agents
about the state of the world and, hence, his prior belief that the state is A is
p1. At later stages, pt will depend on the information the planner possesses at
the beginning of the period. If, at the beginning of period t, on the basis of the
information he possesses, the planner believes that la agents observe the signal
sa and lb observe the signal sb, then his belief will be

pt =

⎧⎨⎩
0 if lb ≥ 1

p1
p1+(1−p1)(1−q)la otherwise

⎫⎬⎭ . (1)

Note that for all t, either pt = 0 or pt ≥ p1.
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3.3 The Agents’ Strategy

Recall that agent t does not observe the actions taken by the agents who moved
before him and the only information available to him, before taking any action,
is (i) his place in line, (ii) his prior belief, (iii) the mechanism in place, and
(iv) the information transmitted to him by the planner. Let μt denote agent t’s
belief that the state is A, on the basis of the information he has received from
the planner. The first agent and the planner share the same belief μ1 = p1;
however, this is not necessarily true for the other agents who know less than
the planner (unless the planner has revealed to them all the information he
possesses). Note, however, that for all t, either μt = 0 or μt ≥ p1.
Consider some agent t whose belief is μt. Agent t

0s expected payoff from
taking action a without acquiring a signal is μt and his expected payoff from
the action b is 1−μt. Assume that no further communication between the agent
and the planner takes place after an agent has observed a signal. Then the
following claim (the proof of which is omitted) holds:

Claim 1 If no further information is revealed to the agent after acquiring a
signal, the agent will find it optimal to incur the cost of acquiring a signal only
if he plans to follow it.

Assume hereafter that the premises of the above claim hold. (This is formally
proved in Section 9.) Thus, if an agent acquires a signal (i.e., when μt ≥ p1) he
will surely take the optimal action if the state is A (the probability of observing
the signal sa when the state is A is 1) and the probability that he will take the
optimal action is q if the state is B (the probability of observing the signal sb).
Hence, if agent t0s belief is μt, his expected payoff from acquiring a signal is:

μt + (1− μt)q − c = μt + q − μtq − c.

Let ut(μt, d) denote the expected utility of agent t from taking action d ∈
{a, b, e}. Then,

ut(μt, d) =

⎧⎨⎩ μt if d = a
1− μt if d = b

μt + q − μtq − c if d = e

⎫⎬⎭
where ut(μt, e) follows from Claim 1. Based on this we can conclude that

Claim 2 Agent t’s expected utility-maximizing decision is given by:

dt(μt) =

⎧⎨⎩ a if μt > μa
b if μt < μb

e if μb ≤ μt ≤ μa

⎫⎬⎭ (2)

where
μa =

q − c

q
and μb =

1 + c− q

2− q
.

To make the model non-trivial we will make the following assumption.
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Assumption 1: c < q/2 and p1 ∈ [μb, μa].

Remark 3 (i) If the cost of acquiring a signal is above q/2, then there are
no beliefs for which the agent is willing to invest in obtaining a signal (i.e.,
μa < μb) and all agents will choose the action a if p1 > 1/2 and the action b
otherwise. (ii) Our assumption that p1 ∈ [μb, μa] guarantees that an agent with
no information other than the prior belief p1 (e.g., agent 1) will find it optimal
to explore.

4 First-Best Solution
The first-best mechanism refers, in our model, to the planner’s optimal policy
in the (hypothetical) case in which the planner can decide, at the beginning of
every period, whether the agent will take the action a, b, or e. If the planner
decides that the agent will acquire a signal, he (the planner) will not observe
the realization of the signal but he will observe the final action a or b that the
agent has chosen. Recall from (1) that pt is either 0 or above p1 ∈ [μb, μa].
Thus, in the first-best mechanism, e is chosen only when pt ≥ p1 and the agent
will always follow the signal. Hence, under the first-best scheme, the planner
can infer the realization of the signal from the agent’s choice. It also follows
that a solution to the first-best mechanism need only specify the decision to be
taken for pt ≥ p1. As will be shown later, analyzing the first-best mechanism is
interesting not only because it enables us to better understand the social costs
created by the fact that the agents are selfish, but also because it will turn out to
be very useful in characterizing the planner’s optimal (second-best) mechanism
in the case in which it is the agent who decides whether or not to acquire a
signal.
The first-best solution is based on a stopping rule. The planner dictates that

the agents to acquire a signal until one of the following two events takes place:
(i) one agent takes the action b, in which case the planners tells to all agents
thereafter to take the action b without acquiring a signal, or (ii) all agents have
taken the action a and the planner’s posterior, pt, reaches some prespecified level
pa (to be defined formally below), at which point the planner tells all agents
thereafter to take the action a without acquiring a signal. The probability pa,
referred to as the first-best cutoff, has the property of being the lowest posterior
at which the likelihood that the true state is A is high enough that the planner
does not find acquiring a signal worthwhile. The proposition below (the proof
of which is provided in the Appendix) is based on the observation that if, at
some prior, it is not worthwhile for the planner to acquire a signal, then it is
not worthwhile for him to acquire a signal at higher priors.

Proposition 4 The first-best solution is given by a cutoff pa = μa + cδ/q such
that:
(i) if pt ∈ [p1, pa], agent t acquires a signal and follows it;
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(ii) if pt = 0, agent t takes the action b (without acquiring a signal); and
(iii) if pt > pa,agent t takes the action a (without acquiring a signal).

Based on Propositions 4 and 2 we can characterize the potential conflict of
interests between the planner and the agents. Assume that the planner shares
all his information with the agents, i.e., pt = μt for all t. In such a case, when
μa < pt < pa, there is a conflict of interests between the agents, who would like
to choose the action a without acquiring a signal, and the planner, who would
like the agents to explore. It should be stressed, however, that this conflict of
interests between the agents and the planner does not by itself explain why the
first-best mechanism cannot be implemented when the planner cannot dictate
to the agents which action to take. As will be illustrated in the next section, in
the case of symmetry it is easy to overcome this conflict of interest and achieve
the first-best solution.

4.1 Benchmarks: Symmetric Setup and Free Signals

Before solving the model we discuss two benchmarks that provide useful back-
ground. The first one is where the setup is fully symmetric (vis-a-vis the two
states) and the second benchmark occurs when signals are free. In both of these
cases the first-best solution is implementable, and, it is therefore the combina-
tion of costly signals and an asymmetric information structure that makes the
task of the planner challenging.
Consider first the case in which the information setup is fully symmetric.

That is, the prior is that both states are equally likely, i.e., p1 = 0.5, and condi-
tional on the state being A(B), the signal gets the value sa

¡
sb
¢
with probability

q > 0.5. The first-best strategy is based on a threshold p̄ > 0.5. That is, the
planner instructs agents to acquire signal as long as he is uncertain about the
true state and his belief pt ∈ [1− p̄, p̄] . Once he is sufficiently certain about the
true state (pt > p̄ or pt < 1− p̄) he instructs the agents to take an action based
on the more likely state. Note, however, that this strategy will also be incentive
compatible when the planner cannot instruct the agents to acquire a signal. The
reason for this result is that, since the planner’s policy is symmetric, the agents
do not update their beliefs when they receive a recommendation to acquire a
signal but rather simply follow the planner’s recommendation. Similarly, since
the agent benefits less than the planner from acquiring a signal, when the plan-
ner recommends taking an action without acquiring a signal, the agent will be
happy to do so.
Consider now the other benchmark that occurs when the signal is costless

(c = 0) . In this case, because the signal is free, each agent will obtain it. The
planner can simply ask the agent for the realization of the signal, and then reveal
to the agent the information gathered so far. (or alternatively recommend to
him the optimal action based on this information.) This mechanism is incentive
compatible and implements the first-best solution.
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5 The Recommendation Mechanism
Assume now that it is the agent’s decision, in every period, whether to take
the action a or b or to acquire a signal (the realization of which he will then
follow). In this section we focus on a particular class of mechanisms, referred
to as recommendation mechanisms. Section 9 shows that restricting attention
to this class of mechanism is without loss of generality. In a recommendation
mechanism, at the beginning of every period the planner mixes between three
possible recommendations: choose a, choose b, and explore (i.e., choose e). Upon
receiving the planner’s recommendation, the agent decides whether to follow it;
if he chooses to explore he must pay the cost c, after which he observes the
realization of the signal and finally chooses a or b according to the signal. After
the agent has made his final choice a or b, the planner observes this choice and
the game proceeds to the next period.
Let mt ∈ {a, b, e} denote the planner’s recommendation at the beginning

of period t and denote by ht an history, of length t, observed by the planner.
The history ht consists of the planner’s recommendations mt0 in all periods
t0 ≤ t and the actions a or b made by the t agents. Thus, ht is the relevant
history before the planner recommends an action to agent t+1. Given a recom-
mendation mechanism, let Ht denote the set of all possible histories of length
t induced by the mechanism. The planner’s recommendation policy in period
t+ 1 is history dependent, and we write αt+1 : Ht → [0, 1] to denote a function
mapping the possible histories into a probability of recommending the action a.
Similarly βt+1 : Ht → [0, 1] and εt+1 : Ht → [0, 1] are defined for the actions
b and e, respectively. We are now ready to provide the formal definition of a
recommendation mechanism.

Definition 5 A recommendation mechanismM is a sequence of mappings {Mt}∞t=1
that specifies, for every t, the probability with which action i ∈ {a, b, e} is rec-
ommended in period t, as a function of the history ht−1 ∈ Ht−1. Specifically,
we have

Mt = (αt, βt, εt) | αt : Ht−1 → [0, 1], βt : Ht−1 → [0, 1], εt : Ht−1 → [0, 1]
(3)

such that for all ht−1 ∈ Ht−1

αt (ht−1) + βt (ht−1) + εt (ht−1) = 1,

and where Ht−1 is the set of all possible histories induced by Mτ , τ < t.

Every recommendation mechanism determines a set of possible paths along
which the planner’s beliefs, pt, can evolve over time. For i ∈ {a, b} let (ht−1,mt, i)
denote the history ht that is generated from ht−1 and followed, at time t, by the
recommendation mt and the (observable) choice i ∈ {a, b} made by the agent.
Fix an incentive compatible recommendation mechanism M and some history
ht−1, induced by this mechanism. There are only four possible continuing his-
tories of length t along this mechanism: (ht−1, a, a), (ht−1, b, b), (ht−1, e, a), and
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(ht−1, e, b). The history ht−1, observed by the planner, determines a posterior
probability for the planner, pt(ht−1), that the state is A. The law of motion of
the planner’s posterior beliefs can now be fully described:

(i) pt(ht−1, a, a) = pt−1(ht−1),

(ii) pt(ht−1, b, b) = pt−1(ht−1),

(iii) pt(ht−1, e, b) = 0,

(iv) pt(ht−1, e, a) =
pt−1(ht−1)

pt−1(ht−1) + (1− pt−1(ht−1))(1− q)
.

From agent t’s perspective, the planner’s beliefs at the beginning of period
t, are random variables, which we denote by p̃t. Given a mechanism, we let
πt(pt) denote the probability that p̃t = pt. In what follows we use ht−1 and
pt interchangeably whenever there is no risk of confusion. In particular, we
sometimes use the notation αt(pt) to mean the probability that the planner
recommends action a conditional on p̃t = pt. Similarly for βt(pt) and εt(pt).
Knowing the mechanism and understanding the law of motion of the plan-

ner’s beliefs, the agent, after hearing the planner’s recommendation, can form
beliefs about the distribution of pt. Let μt(a) denote the belief of agent t that the
state is A, after hearing the recommendation a and, similarly, let μt(b) and μt(e)
denote the belief of agent t that the state is A,after hearing the recommendation
b and e, respectively. Then,

μt(a) = E(p̃t|mt = a), μt(b) = E(p̃t|mt = b) and μt(e) = E(p̃t|mt = e).

Using Bayes’ rule we can write

μt(a) =

P
αt(pt)πt(pt)ptP
αt(pt)πt(pt)

; μt(b) =

P
βt(pt)πt(pt)ptP
βt(pt)πt(pt)

; μt(e) =

P
εt(pt)πt(pt)ptP
εt(pt)πt(pt)

.

A recommendation mechanism is incentive compatible if:

μt(a) ≥ μa, μt(b) ≤ μb, and μt(e) ∈ [μa, μb] .

6 The Optimal Recommendation Mechanism
Let us start with a few definitions. Consider some history of length t, along
which all agents explore, obtain the signal sa, and choose the action a. Let t̂
denote the first period along such a history for which the planner’s posterior is
strictly above μa. That is,

t̂ = max

∙
t | p1

p1 + (1− p1)(1− q)t−1
≤ μa

¸
. (4)

Thus, t̂ − 1 is the maximal number of (consecutive) sa signals after which
the planner’s posterior is weakly below μa. That is, if agent t̂ knows that all the
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agents before him received the signal sa he will still want to explore, but if he
also receives the signal sa and the history is known to agent t̂ + 1, then agent
t̂+ 1 will want to take the action a without any exploration.
Similarly, let

t̄ = max

∙
t | p1

p1 + (1− p1)(1− q)t−1
≤ pa

¸
(5)

As above, t̄−1 is the maximal number of (consecutive) sa signals after which
the planner’s posterior is weakly below pa. If all the agents who moved before
agent t̄ received the signal sa, the planner will still want agent t̄ to explore; but
if agent t̄ also receives the signal sa, then the planner will want agent t̂+ 1 and
all the agents who move after him to take the action a without any exploration.
Since μa < pa, we know that t̂ ≤ t̄. Hereafter we will assume that t̂ < t̄.
Before we characterize the optimal recommendation mechanism, we find it

useful to discuss in further details exactly why the first-best mechanism fails as
a recommendation mechanism. This discussion illustrates the important role of
the asymmetry between the two actions, a and b, in the failure of the first-best
mechanism as a recommendation mechanism.

7 The Infeasibility of the First-Best Mechanism

Suppose that the planner employs the first-best mechanism as a recommenda-
tion mechanism. That is, the mechanism recommends that the first agent and
all the agents who move after him acquire a signal, as long as one of the fol-
lowing events does not take place: (i) one of the agents chooses b, in which
case the mechanism recommends that all agents thereafter take the action b, or
(ii) t̄ periods have elapsed without any of the agents taking the action b (i.e.,
the planner’s posterior has essentially reached pa), in which case the planner
recommends that all agents thereafter take the action a.
It is easy to see that in the early stages of this mechanism and, in particular,

as long as t ≤ t̂, there is no conflict of interest between the planner and the
agents, and the first-best mechanism is incentive compatible. At these early
periods, if the mechanism’s recommendation that an agent is to take the action
b, the agent will follow the planner’s recommendation, and if the mechanism’s
recommendation to an agent is to explore, the agent will find it optimal to
explore since his prior belief will still be below μa (recall that t ≤ t̂).
However, as soon as more than t̂ periods have elapsed, the first-best mecha-

nism is no longer incentive compatible. If, at some period t > t̂, the mechanism’s
recommendation to the agent is to acquire a signal (as the first-best mechanism
suggests), the agent will conclude that all proceeding agents observed the signal
sa. (Otherwise, the mechanism’s recommendation would have been to take the
action b). Hence, the agent’s posterior will be higher than μa, in which case, in-
stead of following the planner’s recommendation, the agent will take the action
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a. Thus, the main reason why the first-best mechanism cannot be implemented,
as a recommendation mechanism, is that, under the first-best mechanism, as
soon as the planner learns that the true state is B, he will want to reveal this
information to all agents thereafter. However, such a policy implies that if the
planner does not announce that the true state is B, the agents must infer that
all the t ≥ t̂ agents who moved before them got the signal sa and they will
update their prior beliefs accordingly, namely, to be above μa.
Since the first-best outcome cannot be achieved, the planner uses a differ-

ent (second-best) mechanism to maximize social surplus. In what follows, and
mainly in order to simplify the exposition, we first design the optimal mecha-
nism as a fully private mechanism in which the planner’s recommendation to
each agent t are observed only by this agent and are not revealed to any other
agent. We then show in Section 8 how the optimal mechanism can be cast as a
fully public mechanism in which all messages are public.

7.1 The Main Theorem
Additional notations and discussion are warranted prior to the presentation of
our main theorem. Let us define a "modified" cost of exploration function c∗(p)
as follows:

c∗(p) = c+
max{0, (p− μa)}

μa
(1 + c− q) . (6)

Observe that for p ≤ μa, where, as discussed above, there is no conflict of
interest between the planner and the agents, c∗(p) = c and, otherwise, c∗(p) is
monotone in p. As will be discussed below and will be shown formally in the
proof of our main theorem, the solution to the second-best problem is, in fact,
the solution to a modified first-best problem in so far as the cost of exploration
is c∗(p) rather than c. Indeed, as we will show shortly, the modified cost of
exploration function, c∗(p), captures not only the real cost of exploration but
also the "implied" cost resulting from the need to make the agent’s exploration
incentive compatible when μa < pt
Using this modified cost function we can define a modified cutoff, p∗a, much

as we defined pa for the original first-best problem. That is, p∗a is the point
at which the planner’s posterior probability is high enough so that exploration
becomes too costly under the modified first-best mechanism when the cost is
c∗(p∗a). Specifically,

p∗a = μa + c∗(pa)δ/q

Similarly we define t∗ by substituting pa with p∗a in the definition of t̄, namely,

t∗ = max

∙
t | p1

p1 + (1− p1)(1− q)t−1
≤ p∗a

¸
. (7)

That is, t∗ − 1 is the maximal number of (consecutive) sa signals after which
the posterior is weakly below p∗a.
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We next provide an informal description of the optimal mechanism, which
set the stage for the proof of the formal theorem.

7.2 The Optimal Mechanism: An Informal De-
scription

The optimal private mechanism consists of the following three phases.
Phase One: This phase starts in period 1 and lasts for t̂ periods. During this

phase, all agents receive recommendation to explore unless one of them takes
the action b. If, during this phase, an agent t0 takes the action b, the mechanism
recommends that all agents t, t0 < t ≤ t̂ , take the action b without acquiring a
signal. Thus, at this phase, the recommendation policy coincides with that of
the first-best mechanism. (Notice, however, that now the recommendations are
private). During this phase, if an agent receives a recommendation to explore, he
must conclude that all the agents who moved before him acquired a signal and
received the signal sa; and if he receives a recommendation to take the action
b, he must conclude that one of the agents who moved before him observed the
signal sb.
It is important to note that for all t in this phase (and, as will be shown

later, in all other phases as well), the planner’s posterior, at the end of period
t, is either 0 or p1/(p1 + (1 − p1)(1 − q)t) > p1. Thus, the distribution of p̃t
consists of two points only.
Phase Two: This phase starts at the beginning of period t̂ + 1 and ends

at the end of period t∗, where, generically, t̂ < t∗ < t̄. (See the definitions in
4, 5 and7). Since t > t̂, the planner, in order to induce the agents to explore,
must hide some information from the agents, for example, by committing to
the following (randomizing) policy: if pt > 0 (i.e., if none of the agents have
yet observed the signal sb), then, with probability 1, the planner recommends
that agent t explore, namely, ε∗t (pt) = 1. If pt = 0, the planner randomizes
between recommending that agent t take the action b and recommending that
he explore, namely, ε∗t (0) = 1 − β∗t (0) > 0. The probability with which action
e is recommended when pt = 0 is chosen in such a way that agent t’s posterior
after receiving the recommendation to explore (i.e., μt(e)) will be exactly μa,
and he will follow the recommendation.
Phase Three: This phase starts in period t∗ + 1 and goes on forever. In

this phase none of the agents acquires a signal. The planner recommends that
all agents take the action a, if none of the agents who moved in Phase One or
Phase Two took the action b; otherwise, he recommends that all agents take the
action b.
In sum, the second-best mechanism is different from the first-best mechanism

in two respects: (i) exploration is conducted in the second phase and the action
amay be taken by some of the agents, even after the planner has already learned
that the true state is B, and (ii) exploration may be terminated because of its
ex ante (wasteful) costs in the second phase and the action a is adopted earlier
than in the first-best case, namely, when pt = p∗a < pa.
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7.3 The Optimal Mechanism: A Formal Statement and
Proof

Recall that we write αt(pt) to denote the probability that the planner recom-
mends that agent t take the action a conditional on p̃t = pt and similarly for
βt(pt) and εt(pt). Let p∗t = p1/[p1 + (1− p1)(1− q)t−1].

Theorem 6 The optimal mechanism M∗ consists of three phases:
Phase 1: For all t ≤ t̂:

β∗t (0) = 1, otherwise ε∗t (pt) = 1.
Phase 2: For all t such that t̂ < t ≤ t∗,

β∗t (0) = 1− ε∗t (0) =
p∗t

p∗t−p1
(μa−p1)

μa
; otherwise ε∗t (pt) = 1.

Phase 3: For all t such that t > t∗,
β∗t (0) = 1; otherwise α

∗(pt) = 1.
While the formal proof is relegated to the Appendix, we now provide the main
idea and intuition behind the proof.

7.4 Informal Proof: Main Idea and Intuition

The logic behind the first phase is based on the fact that in the first few periods
of the mechanism no conflict of interests exists between the planner and the
agents. They all prefer action b if they know that one of the agents has received
the signal sb. They also find it worthwhile to acquire a signal if all agents have
realized a signal sa because their belief is in [μb, μa]. Thus, the optimal policy
is based on full transparency as long as t ≤ t̂. It is important to note that
because messages are private there is no need to worry about the effect of this
transparency on future agents. This is formally established in a series of simple
claims in the Appendix.
The second phase is more interesting because it raises a potential conflict

of interest between the agents and the planner. Following the planner’s policy
in the first phase, the agents know that the belief of the planner, during the
second phase, is either pt = 0 or pt > μa. When pt > μa but small enough,
the planner would like the agents to acquire a signal whereas they would like
to take action a. To overcome this obstacle and make exploration incentive
compatible the planner must, in some histories, recommend exploration even
when he knows that the state is B. This leaves agents with sufficient uncertainty
about the exact history so that their posterior is back in [μb, μa]. This strategy
of the planner is however costly; as it means that agents acquire a costly signal
when the state is already known and, even worse, they may take the (wrong)
action a, when the planner already knows that the true state is B. To minimize
these costs, the mechanism randomizes in such a way that when the agent
receives a recommendation to acquire a signal, his posterior is exactly μa. To be
precise, because agent t knows that the planner’s prior, pt, is either 0 or p1/(p1+
(1− p1)(1− q)t−1 ≡ p∗t , the planner must assign enough weight to exploration
when pt = 0 to make the posterior of the agent, conditional on hearing the
recommendation to explore, equal μa. This weight is exactly

p1
p∗t−p1

(p∗t−μa,)
μa

(see
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the appendix for details). Once we establish that exploration beyond period t̂
implies setting the agent’s posterior μt(e) exactly at μa, it is left to determine
which agents, beyond agent t̂, will receive recommendation to explore and with
what probability.
A key step in the proof is the relationship between the optimal mechanism

and the first-best mechanism in a hypothetical environment in which the cost
of exploration is a function of the planner’s belief, given by c∗(p), as defined in
6. The cost c∗(p) internalizes the extra cost involved in equating the agent’s
posterior, conditional on hearing the recommendation to explore, to μa. In this
hypothetical environment, the more likely the planner is to believe that the
state is A, the more costly it is for him to acquire the signal. In the formal
proof of the theorem above, it is shown that the optimal incentive-compatible
mechanism of our problem can be obtained by solving the first-best problem in
the hypothetical environment described above. The similarity between the two
problems comes from the fact that the "indirect" cost that the planner has to
incur, in our problem, if he wishes agents to explore when pt > μa, appears as
a direct cost in the hypothetical first-best problem. For every pt > μa, the cost
of exploration in the hypothetical first-best environment, c∗(p), equals exactly
the direct cost of exploration plus the indirect cost of inducing agents to explore
in our original problem.
The solution to the modified first-best problem determines the threshold p∗a

and the last agent to explore t∗ in our original problem. Furthermore, this
solution also shows that for p∗t > 0 the optimal policy does not involve any
randomization. The mechanism recommends "explore," for t ≤ t∗, and the
action a, for t > t∗.

8 A Public Mechanism Is Optimal
The optimal mechanism presented above is fully private. Such a mechanism
makes the planner’s task a lot easier because he does not need to worry about
the effect of the information revealed to one agent on the behavior of future
agents. In reality, however, making the recommendations fully private is often
not feasible. Privacy requires, among other things, that agents not reveal to
other agents either the recommendation they received from the planner or the
signal they observed. Nevertheless, the optimal private mechanism presented
here features a useful property: it can easily be transformed into a fully public
mechanism that will also be optimal.
To see how the optimal mechanism can be modified into a public one, assume

first that agent t̂ is just indifferent between acquiring a signal and taking the
action a without any exploration, namely,

p1

p1 + (1− p1)(1− q)t̂−1
= μa.

Consider now the following slightly modified optimal mechanism in which,
besides the fact that messages are public, the only change is that in Phase Two,
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with probability 1, all agents receive recommendation to explore, regardless of
the information that the planner accumulates during this phase. In particular,
even if the planner learns that the state is B, he will recommend in Phase Two
that the agents explore. Clearly, all the agents in Phase One (i.e., t ≤ t̂) are
unaffected by the public nature of the messages because the private mechanism
is essentially fully revealing for them. Consider now an agent in Phase Two
(t̂ < t ≤ t∗) under the public mechanism. This agent is fully informed about
the history up to (but not including) the action of agent t̂ but completely in the
dark thereafter. Hence, if some agents receive a recommendation of b at some
agent t0 ≤ t̂, then agent t is informed that the state is B and he will choose b.
Otherwise, all he knows is that the first t̂− 1 agents obtained a signal sa and,
hence, his posterior is exactly μa and his optimal choice is to explore. Thus,
all the agents in this phase behave exactly as they would have behaved under a
private mechanism. As for Phase Three, the recommendation to all the agents
in this phase is exactly the same as under the private mechanism.
Consider now the case where

p1

p1 + (1− p1)(1− q)t̂−1
< μa,

The first and third phases of the public mechanism are similar to those of the
private mechanism above (except that messages are now public) and conse-
quently all agents t0 ≤ t̂ take the first-best action. To obtain the same outcome
as in the private mechanism, it must be the case that every agent, in the second
phase, is either informed that the state is B or possesses a posterior equal to
μa. This outcome can be achieved by partially revealing the choice of agent t̂.
(Recall that in the public mechanism above only the choices of the first t̂ − 1
agents were made public.) In particular, conditional on agent t̂ choosing the
action b, after receiving recommendation to acquire a signal (that is, agent t̂
is the first one to observe the signal sb), all agents starting from agents t̂ + 1
onwards are (publicly) recommended, with some positive probability, to choose
the action b and, with the remaining probability, all the agents in Phase Two
are recommended to acquire a signal. If, however, agent t̂ chooses the action
a, all the agents who move in Phase Two receive (public) recommendation to
acquire a signal. The probability with which exploration is recommended to all
agents in Phase Two, after agent t̂ was the first one to choose b, is chosen so that
conditional on receiving the recommendation to explore, the posterior beliefs of
all agents in Phase Two (starting from agent t̂ + 1) are exactly μa. As in the
previous case, all other agents in the second phase get the same recommendation
as agent t̂+ 1.

Proposition 7 There exists an optimal mechanism that is public.
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9 Proof That Recommendation Is without Loss

So far we have restricted our attention to the class of recommendation mech-
anisms, and characterization of the optimal mechanism within that class. A
recommendation mechanism is based on each agent receiving a single incentive-
compatible recommendation. In general, of course, the set of messages could
be larger (indeed, infinitely large). Furthermore, the planner need not restrict
himself to move only once at the beginning of each period; he could also send
another message after the agent has had a chance to explore and report his
signal. The theorem below establishes that the restriction to the recommenda-
tion mechanism is indeed without loss of generality.
We preface the theorem with the following important facts: First observe

that after an agent has taken an action a or b, the planner has nothing to gain
from further communication with the agent. The agent’s choice of a or b reveals
all the private information he might have obtained during the period. Hence, we
can restrict communication to three rounds of messages at most: 1) a message
from the planner to the agent that might convey some information about the
past; 2) a message from the agent to the planner that might be sent to convey
the realization of the signal; and 3) a message from the planner to the agent
sent prior to the agent’s final choice of action.
Next we recall some consequences of Myerson (1986) that are relevant to

our model. We can restrict our attention to incentive compatible mechanisms
in which in the first round the planner randomizes between the following four
recommendations: m1

t ∈ {a, b, e, n}, in which the (new) action n means that the
agent receives a recommendation to avoid taking an action (for now). The agent
then follows the recommendation and if the agent’s action is a or b, his choice is
observed by the planner and the mechanism moves to the next period. If, how-
ever, the recommendation is to acquire a signal (i.e., e), then the agent reports
the realization of the signal truthfully. Finally, the mechanism randomizes be-
tween the recommendations a and b and the agent follows the recommendation.
In the case where the planner recommends to the agent to do nothing (n) in
the first round, he will recommend that the agent take an action, a or b, in the
third round. The theorem below establishes that the second and third rounds
are redundant. It is enough to consider a recommendation mechanism of one
round, in which mt ∈ {a, b, e) and the recommendation e is followed by the
action that agrees with the signal.

Proposition 8 The optimal recommendation mechanism is optimal within the
class of all mechanisms.

Proof. Suppose, by way of contradiction, that there exists a history h̃t−1 after
which the mechanism recommends (with some positive probability) that the
agent acquire a signal; after the agent reports the observed signal, the mecha-
nism randomizes between recommending a or b. Clearly, if the agent observes
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the signal sb he will take the action b regardless of the planner’s recommenda-
tion. Thus, the planner can only send a useful message to the agent after the
agent observes and reports that he has observed the signal sa.
If after reporting sa the planner recommends the action a with probability

1, then his message is of no value to, either the agent or the planner, because
this action will be taken anyway. Thus, for a second message from the planner
to have an impact, some history ĥt−1 must exist after which the mechanism
recommends acquiring a signal. Then, after the agent acquires the signal and
reports sa, the planner recommends the action b. For this strategy to be optimal
the planner must have observes that at least one agent t0 < t took the action b.
Consider a modified mechanism in which after ĥt−1 the mechanism recom-

mends b instead of e. The modified mechanism will still be incentive compatible.
(In particular, the agent will still prefer to acquire a signal in those cases in
which he is recommended to do so.) The modified mechanism will also generate
a higher surplus, both to the agent and to the planner. This modified mecha-
nism eliminates the redundant cost of exploration when the state is known to
be B. Hence, there is no need for a second message by the planner and, thus,
there is no need for a message from the agent to the planner after the agent has
acquired a signal. We therefore conclude that it is without loss of generality to
allow for only one message from the planner to the agent, at the beginning of
the period, from the set of messages {a, b, e}.
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10 Appendix

10.1 Proof of the First-Best Policy (Proposition 4)

When the planner does not face incentive constraints his expected payoff, in
every period, depends only on his prior belief at that period, pt. Hence, the first-
best solution can be viewed as a dynamic optimization where the state variable
is pt. In principle, the planner could randomize, at least in some periods, over the
three alternatives, a, b, and e, but such a randomization will never be necessary.
If the planner randomizes between, say, two actions, then his expected payoff
is simply the average of the payoffs obtained from following each of these two
actions. Thus, we can conclude that the first-best mechanism is deterministic.
By assumption, it is optimal for the first agent to explore and, hence, it is

also optimal for the planner to do so in the first period. Also by assumption,
since the signal sb reveals the state to be B, we know that if at some period
t the planner observes agent t taking the action b (after obtaining a signal), it
is optimal for all agents, thereafter, to take the action b. The only remaining
question is what should the planner do in a given period, if in all previous periods
in which agents chose to explore, the realization of the signal was sa (i.e., all
agents took the action a)? Since c > 0, we know that there exists a posterior
probability pt large enough, so that it will not be optimal for the agent to acquire
a signal, even if the signal was fully informative (i.e., q = 1). Thus (recall the
updating rule 1), there exists a period t̄ large enough so that if all agents observe
the signal sa in all periods t ≤ t̄, it will be optimal for the planner to choose
the action a in all periods t > t̄. It remains to be shown that if for some t < t̄
the first-best mechanism chooses the action a without exploration, then it will
choose the action a without exploration in all subsequent periods. This last
claim follows immediately from the fact that if at period t the action a is taken,
then pt+1 = pt and, therefore, the optimal action in t+ 1 is also a.
Notice that pa is the solution to the following equation:

p

(1− δ)
=

p

(1− δ)
+ (1− p)

q

(1− δ)
− c.

The LHS of the equation above is the planner’s payoff from taking the action
a in the current period and in all periods thereafter, whereas the RHS is the
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planner’s payoff from exploring one more time and following the signal in all
periods thereafter, when the prior is p. If p < pa the RHS is greater than the
LHS and, hence, the planner is better off exploring at least one more time. It is
left to show that if p > pa, the optimal action is a. Assume, by contradiction,
that there exists some p0 > pa at which the optimal action is to acquire a signal.
Since we know that there exists a prior large enough so that at this prior it is
optimal for the mechanism to choose a, there must be p00 ≥ p0 at which it is
optimal for the planner to acquire only one more signal and to follow it in all
periods thereafter. This, however, leads to a contradiction since the LHS of the
equation above is increasing with p at a higher rate than the RHS and hence it
must be the case that it is better to terminate exploration a period earlier.

10.2 Proof of Main Theorem (Theorem 6)

The proof is done by proving several claims that, taken together, characterize
the optimal recommendation mechanism M∗. Hereafter we refer only to pt for
which, given the mechanism in place, there is a positive probability that the
planner has this belief, i.e., π∗t (pt) > 0. Note that given Assumption 1, every
incentive-compatible mechanism must recommend that agent 1 explore, simply
because this is what he is going to do anyway. The first claim says that for t
small enough, when it is common knowledge that there is no conflict of interests
between agent t and the principal, a policy of full revelation is adopted and the
agent is recommended to take the best action for himself.

Claim 9 For all t ≤ t̂, if the planner’s prior at t is strictly positive (i.e., pt > 0),
then ε∗t (pt) = 1; otherwise β

∗
t (0) = 1.

Proof. By the definition of t̂, for all t ≤ t̂, it is common knowledge that
Pr(p̃t ∈

£
μb,μa

¤
∪{0}) = 1 and, hence, the agent’s optimal choice is e if he knows

that p̃t 6= 0, and b otherwise. This is also the first-best choice. Consequently, if
the agent is fully informed, he will follow the first-best choice strategy. Assume,
by a way of contradiction, that the optimal IC mechanism is such that there
exists some agent t

0 ≤ t̂ who is not fully informed about the moves of all
preceding agents and as a result of this he does not take the action that is optimal
for him. Consider a modified mechanism under which agent t

0
is informed about

the moves of his predecessors and in all periods thereafter the planner (ignores
the extra information obtained in period t

0
and) follows the original mechanism.

Clearly, this modified policy yields a higher social welfare. A contradiction.

A consequence of Claim 9 is that in the first t̂ periods, the optimal mechanism
essentially reveals pt to agent t and unless sb is observed by one of the agents,
all agents t ≤ t̂ acquire a signal. The corollary below follows directly from
Lemma 9 together with the posterior’s law of motion and the assumption that
p1 ∈

£
μb,μa

¤
.
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Corollary 10 For t ≤ t̂, Pr(p̃∗t ∈
£
μb,μa

¤
∪ {0}) = 1 and for t > t̂, Pr(p̃t =

0) > 0 and Pr(p̃t ∈ (0, μa)) = 0.

Claim 9 and Corollary 10 above allow us to restrict our search for the optimal
recommendation mechanism to histories at which pt = 0 and pt > μa.

Claim 11 For all t the planner never recommends the action a if he knows that
the state is B, i.e., α∗t (0) = 0, and, for pt > μa, the planner never recommends
the action b, i.e., β∗t (pt) = 0.

Proof. Suppose that at some t we have α∗t (0) > 0. Consider the modified
mechanism such that α0t(0) = 0 and β0(0) = β∗(0) +α∗t (0). Such a modification
will certainly increase agent t’s utility and will not affect the other agent’s payoff
as the posterior beliefs in all periods thereafter will not change. A similar proof
can be carried out to show that β∗t (pt) = 0 for all pt > μa.

An immediate consequence of Corollary 10 is that for t > t̂, agent t knows
that some agents (and, in particular, agent 1), who moved before him, chose e
and with some positive probability received the signal sb. Thus, agent t knows
that either the planner has learned that p̃t = 0, i.e., the state is B, or the
planner’s posterior is p̃t > μa. While we know from Claim 11 that α∗t (0) = 0,
this does not imply that β∗t (0) = 1.

Claim 12 Consider period t > t̂. If ε∗t (pt) > 0 for pt > μa, then ε∗t (0) > 0 and
μ∗t (e) = μa.

Proof. If π∗t (pt) > 0, for some pt > μa, then from Claim 9 we know that
Pr(p̃t ∈ (0, μa)) = 0. The proof of the first part of the claim follows immediately
from the fact that in order for the mechanism to be IC it must be the case
that the agent’s posterior conditional on the recommendation to explore, i.e.,
μ∗t (e), is such that μ

∗
t (e) ∈

£
μb,μa

¤
. Now assume by way of contradiction that

μ∗t (e) < μa. It is then possible to decrease ε
∗
t (0) by a small amount and increase

β∗t (0) by the same amount. This increases the utility of agent t without affecting
the distribution of p̃∗t for all τ > t.

The above claims, taken together, summarize the IC constraints within which
the optimization is carried out. Starting with the prior p1 ∈ [μb, μa], the random
variable p̃t is either zero or above p1. When p̃t = 0, the planner recommends
either b or e; similarly, when p̃t > μa, the planner recommends either a or e;
and when p̃t ∈ [μb, μa], the planner recommends e. Moreover, whenever the
recommendation is e, it must be that μt(e) ∈ [μb, μa] (where μt(e) is the agent’s
posterior following the recommendation e). When t > t̂, the agent knows that
Pr((p̃t > μa) ∪ (p̃t = 0)) = 1. The expected value μt(·) is over all possible pts
given the mechanism in place, and so to provide agent t > t̂ with incentives to
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explore when p̃t > 0, the mechanism must also recommend exploration when
p̃t = 0 in order to bring down μt(e) to the region where the agent is willing to
explore, i.e., [μb, μa]. Recommending exploration when p̃t = 0 is costly, firstly
because of the redundant cost of exploration when the state is already known
(to the planner), and secondly because the agent may obtain a signal of sa and
choose the wrong action. To minimize these "costs," when p̃t = 0 exploration is
recommended with the minimal probability needed, which implies bringing the
agent’s posterior down to no lower than μa (i.e., μt(e) = μa).
With this in mind, we can now solve for the optimal mechanism by solving

a modified first-best problem in which the cost of acquiring a signal is not only
c but also the implied cost involved in keeping the agent’s posterior μt(e) at μa.
As we next show, this cost is monotone in p, and, hence, we can employ the
same technique used in the solution to the original first-best problem to establish
that for t > t̂ and pt > μa, the optimal solution is deterministic, namely, either
ε∗t (pt) = 1 or α∗(pt) = 1. Before proving this result formally, the following
discussion will be helpful.
Let t(p) = πt(p)εt(p) denote the "ex- ante" probability of exploration at p

in period t. As discussed above, the efficient way to satisfy the IC constraints
implies that

μ∗t (e) =

P
p̃t
p t(p)P

p̃ t(p)
=

P
p̃t>0

p t(p)

t(0) +
P

p̃t>0 t(p)
= μa,

which can be written as

t(0) =

P
p̃t>0

p t(p)− μa
P

p̃t>0 t(p)

μa
.

Thus, if for some p > 0, exploration at p ( t(p)) is increased by one unit, this
has a direct cost of c and an indirect cost of

H(p) =
p− μa
μa

[c+ (1− q)],

which is the cost involved in increasing exploration when the state is already
known to be B.,Observe that H(p) is increasing in p.
Based on this we will show that the optimal mechanism can be viewed as

the solution to a modified first-best problem where the cost of exploration is

c∗(p) = c+H(p).

Using the same line of reasoning as we applied when solving for the (original)
first-best mechanism, we denote by p∗a the solution to the following equation:

p = μa + c∗(p)δ/q,

We note that:
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(i) since c∗(p) is non-decreasing, p∗a is uniquely defined by the above equation,
and (ii) μa < p∗a < pa. We can, therefore, conclude that the first-best solution
to the modified cost function is given by

αt (p) = 1 for p > p∗a,

εt (p) = 1 for 0 < p < p∗a (8)

βt(0) = 1 for t ≤ t̂ and for t > t0.

We will now prove this formally.

Claim 13 For every τ > bt the optimal mechanism must satisfy the following
maximization problem (hereafter referred to as the SB problem):

Max
{αt(p)}∞t=τ ,{βt}∞t=τ

Vτ =

P
p>μa

πτ (p) (ατ (p)p+ (1− ατ (p)) (p+ (1− p) q − c))+πτ (0)(βτ+(1−βτ )(q−c))+δVτ+1

subject to:

(I) Vt =
P

p>μa

πt(p) (αt(p)p+ (1− αt(p)) (p+ (1− p) q − c))+πt(0)(βt+(1−βt)(q−c))+δVt+1,

for t = τ + 1, τ + 2, τ + 3, ...

(II) πt(p) = πt−1(p)αt−1(p)+πt−1(p
−1
t−1(p))(1−αt−1(p−1t−1(p)))(p−1t−1(p)+(1−p−1t−1(p))(1−q)),

for p > μ and t = τ + 1, τ + 2, τ + 3, ...

(III)
P
[

p>μa

(μa−p)πt(p)(1−αt(p)]+πt(0)(1−βt)μa = 0,

for t = τ , τ + 1, τ + 2, τ + 3, ... and

(IV ) πt(0) = 1−
P

p>μa

πt(p), αt(p) ∈ [0, 1] , βt ∈ [0, 1] ,

for t = τ , τ + 1, τ + 2, τ + 3, ...

where:
(i) πτ (p) is the distribution of possible beliefs at period t, given the mecha-

nism.
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(ii) p−1t (p) is the inverse of the function

p(pt) =
pt

pt + (1− pt)(1− q)
,

which is the probability that the posterior is p given that the prior was pt and
the agent explored and received the signal sa.
(iii) The function Vt, specifies the expected present value to the planner,

given a mechanism M for all t > τ.
(iv) The second constraint specifies the evolution of the distribution of the

random variable p̃t, given the mechanism M.
(v) The third constraint specifies the incentive-compatible constraint, guar-

anteeing that agent t’ s posterior is exactly μa when the mechanism recommends
e.

Proof. From the IC constraint (III) we obtain that, for every t ≥ bt,
πt(0)(1− βt) =

P
p>μa

(p− μa)

μa
πt(p)(1− αt(p)). (9)

Plugging (9) into Vt, for all t ≥ bt, we obtain that
Vt =

P
p>μa

πt(p) (αt(p)p+ ((1− αt(p)) (p+ (1− p) q − c∗(p)) + πt(0) + δVt+1,

where

c∗(p) = c+
(p− μa)

μa
(1 + c− q).

Thus, the SB problem can be simplified as follows (thereafter referred to as the
SB0 problem):

Max
{αt(p)}∞t=τ

Vτ =P
p>μa

πτ (p) (ατ (p)p+ ((1− ατ (p)) (p+ (1− p) q − c∗(p)) + πτ (0) + δVτ+1,

subject to:

(I) Vt =
P

p>μa

πt(p) (αt(p)p+ ((1− αt(p)) (p+ (1− p) q − c∗(p))+π1(0)+δVt+1,

for t = τ + 1, τ + 2, τ + 3, ...,

(II) πt(p) = πt−1(p)αt−1(p) +

πt−1(p
−1
t−1(p))(1− αt−1(p

−1
t−1(p)))(p

−1
t−1(p) + (1− p−1t−1(p))(1− q))

for p > μ and t = τ + 1, τ + 2, τ + 3, ..., and
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(III) πt(0) = 1−
P

p>μa

πt(p), αt(p) ∈ [0, 1] , βt ∈ [0, 1] ,

for t = τ , τ + 1, τ + 2, τ + 3, ....

To complete the proof of the theorem we can now show that the {αt(p)}∞t=τ
that solves the SB0 problem above also solves a modified first-best problem
where the cost of exploration is c∗(p). Notice that for every period τ > bt, the
solution to the modified first-best problem is given by the solution to our orig-
inal SB problem with the following adjustments: c is replaced everywhere by
c∗(p), the IC constraint (III) is deleted, and βt(0) = 1 in all periods. It fol-
lows that the solution to the modified first-best problem is identical to the
solution of the SB0 problem. Thus, the optimal mechanism (i.e., the solu-
tion to the original SB problem) does not randomize at pt > μa and either
εt (p) = 1 (for 0 < p < p∗a) or αt (p) = 1 (for p > p∗a).
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