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Abstract

This paper analyses the behaviour of contestants in one of the most popular TV
gameshows ever to estimate risk aversion. This gameshow has a number of features that
makes it well suited for our analysis: the format is extremely straightforward, it involves
no strategic decision-making, we have a large number of observations, and the prizes are
cash and paid immediately, and cover a large range — from £100 up to £1 million. Our
data sources have the virtue that we are able to check the representativeness of the
gameshow participants. Even though the CRRA model is extremely restrictive we find
that a coefficient or relative risk aversion which is close to unity fits the data across a
wide range of wealth remarkably well.
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1. Introduction

The existing empirical literature that addresses the degree of risk aversion is
distinguished by both the breadth of its estimates and the sparseness of evidence relating
to large gambles. This paper analyses the behaviour of TV gameshow contestants to
estimate an EU model. This gameshow has a number of features that makes it well suited
for our analysis: the format is straightforward and it involves no strategic decision-
making; we have a large number of observations; and the prizes are immediately paid in
cash and cover a large range — up to £1 million. We use the data to estimate the degree of
risk aversion, and how it varies by the size of the gamble, and by gender. Even though the
CRRA model is extremely restrictive we find that it fits the data remarkably well and
yields very plausible parameter values. However, we do find that it is rejected in favour
of a generalization that allows variable RRA, although the economic significance of the

departure from CRRA is small.

Our data comes from what has probably been the most popular TV gameshow of all
time, “Who wants to be a millionaire?” (hereafter WWTBAM). Notwithstanding that
gameshow data has a number of drawbacks for the purpose of estimating attitudes to risk,
this particular game has a number of design features that make it particularly well-suited
to our task. In this gameshow the contestant is faced with a sequence of 15 multiple-
choice questions. At each stage she can guess the answer to the current question and
might double her current winnings but at the risk of losing a question-specific amount, or
she can quit and leave the game with her winnings to date. The mechanism of the game is
well known and very simple. There is no strategic element, contestants simply play
against the house. It is, however, a game where skill matters and this complicates our

analysis.

At each stage of the game contestants are reminded that their winnings so far belong
to them - to risk, or walk away with. The prizes start at a modest level but, in many
countries, reach very high levels. This wide spread of possible outcomes makes
WWTBAM a considerable challenge for a simple expected utility CRRA model. The
sequential nature of the game gives rise to a further important complication — in all but

the last stage of the game, answering a question correctly gives an option to hear the next



question and this itself has a value, over and above the value of the addition to wealth
associated with the question. This option value depends on the stage of the game, the
contestant’s view about the difficulty of subsequent questions, and the degree of risk

aversion.

The data was transcribed from the original videotapes of the population of
contestants. We established the representativeness of the data by surveying the population
of potential contestants (individuals who were invited to appear on each show and from
which actual contestants were selected) to obtain information about their characteristics,

which we then compare with population surveys such as the Labour Force Surveys.

The paper is structured as follows. In section 2 we outline the existing evidence,
including other work that relies on gameshow data. Section 3 explains the operation of
the game in more detail. In section 4 we provide a simple model of the game that captures
its formal structure so we can show the mechanics of the game in a straightforward way.
In section 5 we present the econometric details and the likelihood. In section 6 we give
some summary details of the UK data and explain how we estimate risk aversion using
this data. In section 7 we present some results and consider possible shortcomings of the

work. In section 8 we draw together some conclusions.

2. Existing Evidence

There are several distinct strands to the empirical literature. Firstly, considerable
attention has been given to the estimation of Euler equations derived from lifecycle
models of consumption and savings (see Hall (1988) and Attanasio and Weber (1989))
where the coefficient on the interest rate in a log-linearised model is the elasticity of
substitution. If utility is time separable and exhibits CRRA then this interest rate
coefficient is also the inverse of the degree of relative risk aversion, p. The typical result
in such analyses, usually based on macro data, is that consumption and savings are
relatively insensitive to interest rates so the elasticity of intertemporal substitution is
small. Thus, the macro-econometric literature largely suggests that the degree of risk

aversion is large. Some of this literature” considers two assets and backs out risk aversion

! Notable contributions to this area are Epstein and Zin (1989, 1991).
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from the excess returns on equities. Since individual portfolios are typically highly
concentrated in relatively safe assets this work implies that the degree of risk aversion is
implausibly large. Indeed, the survey of the “equity premium puzzle” by Kocherlakota

(1996) suggest estimates of the degree of relative risk aversion that exceed 507,

However, this method, which relies on portfolio allocations, has only ever been
applied to micro-data in a handful of studies. Attanasio, Banks and Tanner (2002) provide
a very plausible estimate p of just 1.44 using a large UK sample survey (for the sub-

sample at an interior solution i.e. of shareholders).

Jianakopolos and Bernasek (1998) use US survey data on household portfolios of
risky assets to examine gender differences. They find that single women are more
relatively risk averse than single men - a p close to 9 compared to 6. Further differences
by age, race, and number of children were also found. Palsson (1996) uses Swedish 1985
cross-section data on portfolios drawn from income tax registers for more than 7,000
households. This study also recognizes the existence of real as well as financial assets and
accounts for the gains from diversification that arises when real assets and financial assets
are both held. The estimated risk aversion was found to be even higher than Jianakopolos
and Bernasek but, in this case, it is not systematically correlated with characteristics apart

from finding that risk aversion increases with age.

If utility is intertemporally separable then the extent to which utility varies with
income is related not just to consumption and savings, but also to labour supply. This idea
has been exploited by Chetty (2003) who derives estimates of risk aversion from
evidence on labour supply elasticities. He shows that p, in the atemporally separable case,
depends on the ratio of income and wage elasticities and that the typical estimates in the
labour supply literature implies a p of about 1. Indeed, Chetty (2003) shows that under
weak separability a positive uncompensated wage elasticity is sufficient to bound p to be

below 1.25.

A second, albeit small, strand of the empirical literature exploits data on the purchase

of insurance cover. Szpiro (1986) is an early example which estimates p from time series

% A number of ideas have been put forward to reconcile the equity premium with estimates of risk aversion
obtained by other methods — most plausibly, that the premium is correlated with labour income risk.



data on insurance premia and the amount of domestic insurance cover purchased, and
finds p to be close to 2. Cicchetti and Dubin (1994) consider a large microdataset on
insurance for domestic phone wiring. This paper acknowledges that this insurance is
expensive relative to the expected loss (a monthly premium of $0.45 on average
compared to just a loss of just $0.26 on average) and yet they found that 57% of
customers were enrolled in the insurance scheme. They estimate a hyperbolic absolute
risk aversion model and estimate, on average, a rather small degree of ARA. The implied

estimate of p is of the order of 0.6.

A third, more substantial, strand to the literature takes an experimental approach
where participants are offered either real or hypothetical gambles. The best example that
uses hypothetical questions is Barsky et al (1997) where respondents to the US Health
and Retirement Survey were asked if they would accept or reject huge gambles (a 50%
chance of doubling lifetime income together with a 50% chance of reducing it by one-
fifth/one-third/one-half). Two further distinctive features of this work are that it suggests
that there is considerable variation in relative risk aversion, around the mean of about 12,
and that relative risk aversion is correlated with risk related behaviour in the data such as

smoking, insurance and home ownership.

Donkers et al (2001) is a further good example that uses data on preferences over
hypothetical lotteries in a large household survey to estimate an index for risk aversion.
Their econometric method is semi-parametric, it allows for generalisations of expected
utility, and they make weak assumptions about the underlying decision process. They go
on to estimate a structural model based on Prospect Theory (see Kahneman and Tversky
(1979)). They strongly reject the restrictions implied by expected utility theory and they
find that both the value function and the probability weighting function vary significantly

with age, income, and the wealth of the individual.

Another example of this strand of the literature is Hartog et a/ (2000) which uses
questionnaire evidence on reservation prices for hypothetical lotteries to deduce
individual risk aversion. They use three different datasets and find that the mean values of
p are extremely large (more than 20) in each, which might suggest that the questionnaire

method is contaminated by response bias. However recent work by Holt and Laury



(2002) compares estimates from hypothetical lotteries with the same lotteries where the
prize is really paid. The authors check whether preferences differ across real and
hypothetical lotteries and find that they are similar only for small gambles. The analysis
features prizes that range up to several hundreds of dollars which they feel allows them to
address the critique raised in Rabin and Thaler (2001) and Rabin (2000). They estimate
an expected utility function, using real payoffs, that allows for non-constant RRA.
Consistent with Rabin, they find small degrees of RRA (around 0.3) at low prize levels
and higher (around 0.9) at high prize levels which, together, fit the data well. However,
even the largest payouts considered in Holt and Laury (2002) are small compared to

WWTBAM.

The present paper belongs to a final strand of the empirical literature that relies on
data generated by gameshow contestants. The earliest example, by Metrick (1993), uses
the television gameshow Jeopardy! as a natural experiment to estimate a non-linear
probit of play that depends on the expected value of the gamble from which the degree of
risk aversion can be deduced (other examples are Gertner (1993) and Beetsma and
Schotman (2001)). Only small stakes are involved and the implied preferences3 are not

significantly different from risk neutral.

Similarly, Hersch and McDougall (1997) use data from the [l/inois Instant Riches
television gameshow, a high stakes game based on the Illinois State Lottery, to regress
the probability of accepting a bet on the bet’s expected value and (a proxy for) household
income. The estimated structural model is used to infer p, and the data again suggests that

contestants are nearly risk neutral.

More recently Fullenkamp et al (2003) uses the Hoosier Millionaire television
gameshow to analyze decision-making. Unlike earlier gameshows this involves relatively
high stakes. They use a large sample of simple gambling decisions to estimate risk-

aversion parameters. However, with this game the prizes are annuities and so their value

3 They also model the ability of contestants to choose strategic best-responses. The results suggest that
failure to choose the best-response increases as the complexity of the bet increases. Consistent with much
psychological experimental literature, he also finds that the choices that contestants make are affected by
the “frame” of the problem.



to contestants will depend on time preference. They find that, assuming a discount rate of

10%, contestants display risk-aversion with the mean p ranging from 0.64 to 1.76.

Finally, a new gameshow Deal or No-deal! has been analysed in two recent papers —
Post et al (2006) which considers Australian and Dutch data, and Bombardini and Trebbi
(2005) which considers Italian data. This game involves a number of potential prizes,
varying from the very small up to very large amounts, which are won essentially by
chance. Contestants simply make a sequence of draws to eliminate prizes. On up to nine
occasions during this process the contestant is made financial offers to quit and so needs
to compare the offer made with the certainty equivalent of remaining prizes. While there
is no skill involved contestants need to take a view about what the level of future offers to
quit might be if they are to appropriately value the option of rejecting a current offer.
Unfortunately, it is not clear what the process is that generates offers so this has to be
estimated along with the risk aversion parameters. Post et al (2006) provide estimates on
the degree of relative risk aversion in the range 1 to 2. Using the whole range of data
Bombardini and Trebbi (2005) estimate the degree of risk aversion to be unity — i.e.
utility is logarithmic, and they go on to estimate degrees of risk aversion with the low

stake observations that are indeed close to zero.

3. The WWTBAM Gameshow

WWTBAM has proved to be the most popular TV gameshow ever. The game has
been licensed to more than one hundred countries and has been played in more than 60.
The structure is well known to contestants who are likely to have watched the experience
of many previous contestants. The game features a sequence of fifteen “multiple-choice”
questions with associated prizes that, in the UK, carry prizes that start at £100 and
(approximately) double with each correctly answered question so that the final question
results in overall winnings of £1m. After being asked each question the contestant has the
choice of quitting with her accumulated winnings or gambling by choosing between the
four possible answers given. If the chosen answer is correct the contestants doubles her
existing winnings and is asked another question. If the chosen answer is incorrect she gets
some “fallback” level and leaves the game. The design is such that the difficulty of

questions rise, on average, across the sequence of questions, and the fall back level of
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winnings also rises (in two steps). Contestants are endowed with three “lifelines” which
are use-once opportunities to improve their odds — so, when faced with a difficult
question, contestants may use one or more lifelines to improve their odds. The contestant
has the choice between the following lifelines: fifty-fifty (“50:50” hereafter), which
removes two of the three incorrect answers; ask-the-audience (“ATA”), which provide
the contestant with the distribution of opinion in the audience concerning the correct
answer in the form of a histogram; and phone-a-friend (“PAF”), which allows the
contestant to call on a friend for a limited amount of time (30 seconds). At least in the UK
questions are chosen randomly from a sequence of question banks and there is no attempt

to manipulate the fortunes of individual contestants during play.

Contestants are not randomly selected onto the show. The details of how this is
done varies across countries but in the UK aspiring contestants ring a premium rate phone
number and are asked a question of medium difficulty. If correct, their name is entered
into a draw to appear in the studio. Ten names are drawn for each show (plus two
reserves). Aspiring contestants can improve their odds of appearing by ringing many
times so having many entries in the draw. Once at the recording studio, aspiring
contestants compete with each other to provide the fastest correct answer to a single

question and the winner is selected to enter the main game.

During play the compere is careful, at least in the UK game, to ensure that
contestants are sure they want to commit themselves at every stage — contestants have to
utter the trigger phrase “final answer” to indicate commitment. At each of the two
fallback stages, the compere hands a cheque to the contestant for that level of winnings
and ensures that the contestant understands that this money is now theirs and cannot be
subsequently lost. The compere makes every effort to ensure that contestants behave
rationally — he strongly discourages quitting at the question corresponding to the fallback
levels (where there is no downside risk), and quitting with unused lifelines. He is also
careful to ensure that contestants understand the magnitude of the risks that they face
during the game. Neither compere, nor the game format, seem to encourage cautious or

hesitant contestants to take undue risks.



4. A simple model

4.1. Dynamic aspects of the game

The model of participation we present accounts for the dynamic structure of the
game. We focus initially on a simplified version of the game in which contestants are risk
neutral and hence are expected income maximisers. We postpone consideration of the
“lifelines” to section 4.3 and, for the moment, assume that questions are selected by

independent random draws from a pool of questions of identical difficulty.

Let p denote the probability that the contestant (of some given ability) is able to
answer correctly a question, where p is a realisation of the random variable P whose cdf

is F':[0,1] — [0,1] (we provide, in the next section, a model for this distribution).

Rounds of the game are denoted by the number of questions remaining, i.e. n = N,...... 1.
Let a, be the accumulated winnings after the contestant has successfully completed N-n

questions and there are n questions remaining. In the televised game N=15 and the prizes

are given by the sequence {a,}"° ={1000,500,250,125,64,32,16,8,4,2,1,0.5,0.3,0.2,0.1,0} .

Similarly, let b, be the value of the fallback level of winnings, i.e. the winnings

that can be kept in the event of an incorrect answer. In the televised game the sequence of

fallback prizes is given by, {b,} =1{32,32,32,32,32,1,1,1,1,1,0,0,0,0,0}.

Now consider the decision problem at the start of the game when the contestant is

faced with the first of 15 questions. The value of playing the game is given by

Vis(p)=max{a,.p(f,,—bs)+bs} where f,=E[V,(P)] is value of continuing

optimally and, at this stage a;s = b5 = 0. This is the first stage of a recursion, such that

when there are n questions to go and the question asked can be answered successfully

with probability p, the value of the game is
Vn(p):max{anﬂ’p(ﬁl—l_bn)+bn}’ (1)

where f,_ = E[Vw1 (P)] and we set fy=a,. Note that the decision to quit or not to quit is

made after the question has been asked.



At any round of the game, there exists a critical value of  p,

7, =(a,.—b,)/(f,.—b,), such that if p<p, the individual quits the game and
therefore V,(p)=a,.,. Otherwise p>p, and the individual offers an answer to the
question and the value of the game is ¥, (p) = p(f,_, —b,)+b,. Note that the immediate

value of answering correctly is «,,, and the expected difference, p( f,_;—b,).,

represents the “option value” of continuing. These dynamic programming equations lead

to the following relationship for { f, } :

fur= Sy =(ha =) [, F(p)dp. o)

To obtain the likelihood we need to evaluate the probability of winning. The probability
of continuing to participate through offering an answer to the n™ question, but prior to

seeing the next question, is
Pr["Play"|=1-F(p,)=F(p,)- 3)

The probability of giving a correct answer, having decided to answer, is given by

Pr["Win"|"Play"]= Jpar() = gg; .

P,
: — = 4)
1-F ( D, )
Hence the probability of answering correctly is simply Pr["Win"]=G(7,).

Thus, the likelihood of a contestant reaching round k& and then quitting (i.e.

refusing to give an answer to question k) is
L(k0)={1-F(p)} [] G(B.)- (5)
n=k+1
The probability of a contestant reaching round k and then giving an incorrect answer is
L(k,1)={F(p)-G(p)} T[] G(pn)- (6)
n=k-+1

Finally, the probability of a contestant reaching round 1 and then winning (£1m) is :



L(L)=]]G(p)- (7

The model can be adapted easily to allow for risk averse behaviour, indeed prizes simply

need to be measured in utility terms, i.e. for some concave increasing utility function

u(x), we would have {dn},l'il = {u(an)}il and {15n}15 ={u(b )}:

i=1 n
4.2. Questions, Answers and Beliefs

The purpose of this section is to propose a model for the distribution of the beliefs
that an individual holds each time she is confronted with a question and a list of possible
answers (in the real game, four) of which just one is correct. In this section, and in the
next, we take as given that the contestant chooses (if she decided to participate) the
answer with the highest subjective probability of being correct. Hence once the
distribution of that probability is defined it becomes, in principle, straightforward to
describe the probability distribution of the maximum belief and, more generally, of the

order statistics.

The process of generating questions (and corresponding answers) that we have in
mind can be described as follows. A question, and a list of possible answers, is drawn
uniformly (at each stage of the game) from a pool of questions (assuming just one pool
for the moment). The question and its possible answers (in a randomized order) are
presented to the contestant who is then endowed with a draw from the belief distribution
concerning the likelihood of each answer being correct. The formation of beliefs for all
contestants is assumed to follow this process in an identical and independent manner.
Hence, given a particular question, two otherwise identical individuals can hold distinct
beliefs concerning the likelthood of each answer. Furthermore, all individuals are
assumed to be able to evaluate the distribution of possible beliefs over the population of

questions involved at any given stage of the game.

Formally, suppose that X is an n-dimensional random vector on the simplex

A, ={X:xl. ZOVizl..n,in :1}.

i=1
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We assume that X has the probability density function y, (x) and we require it to exhibit

the following symmetry property: if x, Xe A , such that X is obtained from x by a

no

permutation of its components, then v, (x) =y, (X).

For our purposes we may limit our investigation to the cases where n<4. We

construct a family of distributions of beliefs by starting with a probability density
function ¢ on [0,1] that is symmetric, i.e. such that ¢(x)=g¢(1—x) for all x in [0,1].

Note that ¢’s symmetry implies

[[(x)(1-x)dr=2 and [ ¢(x)(1-x) de=[ g(1-x)(x) d=ps, (®)

2 0 0
where g, is the second moment of ¢. If ddenotes the distribution function
corresponding to ¢, it is straightforward to show that ®[1-z]=1-®[z].

Our construction of a class of distributions of beliefs is based on ¢. In the three

cases of interest, we consider the following

wz(xl,x2)=%[¢(xl)+¢(xz)], ©)
1 X;
W3(x1,xz,x}>:g{ij,zk}:eyfé(Xk)¢ 1_'xk ) (10)

‘//4(x1’x2’x3’x4): ! Z ¢(x1)¢ al j¢( % j’ (1T)

l-x,—x,
where, for any n, & is the set of all permutations of {1,...,n}, and x, = _[01 xX*¢(x)dx.

In each case the role of the summation of the set of permutations arises because of

the unobserved random (uniform) order in which the contestant answers are presented to

the participant. Because ¢ is itself symmetric and le. =1, some (more or less obvious)
i=1

simplifications are possible, we have

v, (x,x,)=0(x), (12)

11



1//4(x1,x2,x3,x4)=L z ¢(xl)¢(1ka ]¢( ~ J" (14)

These simplifications are useful in practice since the number of terms involved is halved.

Note that in each case it can be verified that the integral of y, over A is unity, and that
v, satisfies the symmetry property required above. In all cases, if ¢ is the density of the

uniform distribution between 0 and 1, then y, is the uniform distribution over A .

This specification of the beliefs distribution is of course restrictive even among
the distributions satisfying the imposed symmetry property. It leads, however, to simple

specifications for the distribution of the order statistics and for the distribution of the

maximum amongst (xl,...,xn ) . See appendices Al and A 4.

4 3. Lifelines

Contestants are endowed with three lifelines, described earlier, that can each be
played once at any time in the game. Two, or even all three, lifelines may be used on one
question. Let us first consider the game with only one remaining lifeline. To clarify the
difference the lifeline makes, Figure 1 presents the decision trees at stage » without or
without the lifeline. To account for the lifeline, the state space clearly has had to be

extended. We write ¥, (p;y) for the expected value of the game to a contestant faced

with a question with belief vector p, when y =0 if the lifeline has been used and y =1 if

it is still available. Whether to use a lifeline or not may depend on all components of p so
the value is a function of the whole vector of subjective probabilities. However,

p =max, p, is a sufficient statistic for p in the contestant’s decision problem with no

lifeline left and we will write this value function as ¥, ( p;0).

In what follows we assume that the lifeline amounts to a draw of a new belief, say

q, given p, the current belief. For example, the use of 50:50 reduces two components of

the belief vector to 0. For the other lifelines the audience and/or one (among several)

12



friends will provide some information which is then combined with the initial belief p.
The new belief is the outcome of this process and q is then used instead of p in the
decision problem. We therefore assume that the conditional distribution function of q

given p is well defined for each lifeline. Finally we define

to be the value of playing the lifeline at stage n where g =max, g, .

The values W, (p,l) and V, ( p,O) are then related according to the updated

dynamic programming equations below. When no lifeline is left we have the familiar

equation:
V,(p.0)=max{a,..p(f, (0)=b,)+b,}, (16)

where £, (0)=E[V,(P;0)]. When the lifeline remains the contestant will choose the

largest of the three options in the first choice line in Figure 1b (quit, use the lifeline, or

play), where :
W, (p.1) = max{a, ..k, (p). p( £, (1)-5,)+5,}. (17)

and f,_ (1)=E[W, (P.1)] and £, (1) = £,(0) = a,.

Note that contestants will never strictly prefer to quit with a lifeline left unused.
However, it is still possible that, for some p, a contestant may be indifferent between
quitting and using the lifeline if she would subsequently choose to quit for any realisation
of q contingent on p. For example, a contestant for whom p=(%, %, %, %) will have
g=1/2 no matter which two incorrect answers are removed if she were to play “50:50”
(which two answers are discarded is decided when the question is constructed). This may
fall short of the initial value of answering the question. A contestant who would reject
such a “50:50” gamble would place no value on the lifeline. Except in these

circumstances, the lifeline will be used if a,,, <k, (p), otherwise the contestant will

answer and retain the lifeline for future use.

13



The treatment of contestants with more than one remaining lifeline is a

straightforward extension of this approach. Details are given in appendix A.2.

5. Econometric specification and estimation
5.1. Specification of the belief distribution

The distribution of the beliefs is one of the main elements of the model since it
describes the distribution of the unobservables in the model. Under the assumptions we

make below (see section 5.2) the joint density w,( ) can be constructed from some
symmetric density ¢ over the unit interval. We assume that ¢(x) is the density of a

symmetric Beta random variable, B(a,a) on [0,1], 1.e.:

B(x)= M (1-x), (18)

with o some positive parameter, and where I'(.) is the gamma function. Any random

variable distributed according to B(a,a) has expectation Y2 and second moment
_1{ a+l
#7520 +1)

In what follows, it will prove convenient to use draws from the joint distribution

of ordered statistics of the belief distribution. Because of the symmetry assumptions that

we impose on w,( ), the joint density function of the order statistics (i.e. the vector of
beliefs in decreasing order) is simply 4!y, (p), where p is a vector of values ordered in

decreasing order.

Since it 1s straightforward to rank four numbers in decreasing order, the only
remaining issue is to draw from a multidimensional random variable with joint density

2:( ). In Appendix A.3 we show how this can be achieved using three independent
draws from Beta distributions with parameters (a,a+2),(a,a+1) and (a,a),

respectively”.

* We assume that the value of the parameter of the Beta distribution which generates the beliefs at each
stage of the game varies with the number of questions left in the following manner:
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5.2. Likelihood

The contribution of an individual history to the likelihood is the product of the
probabilities of success, and of the particular pattern of use for the lifelines for that
individual history, up to and including the penultimate question, multiplied by the
probability that for her last question she wins a million, loses or quits and the observed

use of the lifelines for this last question.

We assume that the expected utility function takes the CRRA form

U(c)=(c+ 7)1_” / (1- p) where initial wealth, y, is treated as a parameter to be estimated.

Hence the contribution of contestant i’s history, which ends at stage n,, to the

likelihood has the general form

n;:—l

Ls. ({(LL (k,i),ll(k,i))}:;1 (e, p)/K)(/AMA/)j = {Hﬁ%i;)fc }ﬁjjnl;l , (19)

k=1

where LL(k,i ) indicates the number and nature of the lifelines available to the contestant
i at stage k, and //(k,i) selects the relevant probability depending on the lifeline used by
contestant i at stage k. Hence (a,p,y.x) is the vector of parameters of interest, i.e. « is

the parameter of the belief distribution, p is the coefficient of relative risk aversion, y is

a scaling factor in the utility function, and « 1is the probability that the friend knows the

correct answer when the PAF lifeline is used”. Finally (:11;) are the independent

estimates of the parameters of the density of the updated belief which results from the use

of “Ask the Audience” — see Appendix A2.3 for further details.

(&) o1 (2)-2)

where 6, and ¢, are two additional parameters we estimate. This specification allows for a relatively

flexible association between the stage of the game and the distribution of beliefs at the cost of a small
number of additional parameters. For example if 6, =1.25 and 6, = -1.725 the relationship is decreasing

and close to linear, if instead 0, = -3.427 the relationship is decreasing and convex , and decreasing and

concave if 6, =0.

> In the absence of any reliable information on the quality of the friend’s opinion, we allow the data to
decide on the value of « .
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6. Data

The operator, Celador PLC, selected 10 names at random from a (large) list of
entrants, for each show broadcasted, who had successfully answered a simple screening
question over a premium rate phone line. These 10 individuals attended the recording
session for their show where they would compete against each other to be quickest to
correctly answer a general knowledge question in a simple first round game known as the
“Fastest Finger”. The winner of this initial round then competes, against the house, in the
second round sequence of multiple choice questions. Typically each show would have
time for two or three second round contestants. Contestants still playing at the end of the

show would continue at the start of the next show.

Our data comes from two sources. We have data that has been extracted from
videotapes of the broadcast shows, kindly made available to us by Celador. These tapes
cover all shows in the eleven series from its inception in September 1998 to June 2003.
This gives us information on the behaviour of 515 contestants® who played the second
round sequence of multiple choice questions. However, a major concern about the
findings of the gameshow literature is that the data is generated by selected samples’. To
investigate this issue a questionnaire was sent to all of the 2374 potential contestants
(except one) who had ever been invited to the studio for all UK shows in the first eleven
series of shows broadcast. The questionnaire was designed to identify differences
between contestants and the population as a whole. The questions aimed to provide data
that was comparable to that available from official social surveys of large random

samples of the population®.

® We drop the shows that featured couples (including twins, father/sons, professors/freshers) and celebrities.
One show, where a contestant was the subject of litigation, was not available to us. We also dropped the
single observation who quit below £1000.

7 In fact, Hersch and McDougall (1977) and Fullenkamp ez al (2003) do report some comparisons between
contestants and the population and find no significant differences on observable characteristics except for
lottery play. This latter difference is unsurprising since all contestants have had to have played the lottery
and won in order to appear on these shows. In the UK, lottery contestants do seem to have different
characteristics than non-contestants (see Farrell and Walker, 1999).

¥ To protect confidentiality, we were not able to match the questionnaire data to the gameshow videotape
information so we ensured that the questionnaire also contained information about play during the game.
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Questionnaire replies were received in 791 cases, a response rate of 33%, where
243 (32%) of these cases were Fastest Finger winners and so played the second round
game. These 243 represent a response rate of 47% of the population of second round
contestants. Not surprisingly, these second round contestants were more likely to respond
to the survey because they were well disposed towards Camelot, having had the
opportunity to win considerable amounts of money. It was immediately obvious that men
were heavily overrepresented in both datasets. Table 1 shows the means of the data for
the second round competitors and for the non-competitors. The “Fastest Finger” winner
who go on to become WWTBAM competitors are more likely to be male, are a little
younger, and have slightly longer education than those that failed at this first round. The
rest of the table shows the corresponding information from various social surveys, re-

weighted to match the gender mix in the questionnaire data.

Once the population datasets are re-weighted the observable differences between
the questionnaire data and the population survey data tend to be quite small. Two
variables are particularly worthy of note: the proportion of individuals who report that
their household’s contents are not insured is similar to the population value (in fact
slightly smaller suggesting more risk aversion); and the proportion who report being
regular lottery ticket purchasers is also quite similar. Thus, our questionnaire dataset does
not suggest that those that play (in the second round of) WWTBAM are heavily selected
according to observable variables — except gender. Indeed, for those variables which
might be expected to reflect risk attitudes we find no significant differences with our

population surveys.

However, whether the same can be said about the videotape information which is
the population of WWTBAM contestants depends on the questionnaire respondents being
representative of this underlying population. Thus, in Table 2, we compare the
questionnaire data for the sample of 243 contestants who responded to the questionnaire
with the population of 515 actual contestants. We have no consistent information on the
characteristics of contestants in the population apart from that which is recorded on the
videotapes. Thus, Table 2 records only gender and the outcomes of play. There are no
significant differences in gender and although the outcomes information shows, as might

be expected, that the questionnaire respondents were bigger winners on average, these
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differences are not significant. Thus, we can have some confidence that the
representativeness of contestants (in the questionnaire data) carries over to the population

data in the videotapes.

The distribution of winnings, for the second round contestants, depends on
whether the contestant quit or failed to answer the last question asked. Almost all
contestants who survived beyond £125,000 quit rather than failed — only one contestant
failed at £500,000 and so went away with just £32,000 instead of quitting and going away
with £250,000. Only three contestants failed at a sub £1000 question and went away with
nothing. Three contestants won the £1m prize. Two-thirds of contestants quit and one-
third failed. “Failures” left the studio with an average of £17,438 (£15,000 for women
and £18,244 for men) while “quitters” went away with an average of £72,247 (£68,182

for women and £73,411 for men)g.

Figure 2 presents a scatter plot of the value of the last question seen against the
amount actually won. The scales for each axis are logarithmic (i.e. a minor tick on the
axis indicates an integer multiple of the major tick to the left or below), and the data
points have been jittered slightly to give an impression of the density around each point.
The off-diagonal winnings at £1000 and £32000 stand out since these are the only
amounts that can be reached from questions with a higher value when the contestant
decides to play and loses. The on-diagonal data points represent individuals who have

decided to quit when facing a question which they feel is “too difficult”.

Figure 3 shows the overall distribution (the continuous line) of fails/quits as the
game progresses from the first relevant question (i.e. when only 10 questions are left to
play before winning the million pounds) to the last. Note that there are a disproportionate
number of male contestants and we have represented the same proportions for each
gender. Men tend to fail less in earlier stages of the game, while women tend to quit
earlier. Although in some cases the differences are large, the overall pattern is

comparable across genders.

Finally, the use of lifelines is an important part of observed behaviour that our

model attempts to explain. Out of the 515 contestants, 501 played ATA, 488 played

% Here we categorise those that won the maximum £1m as quitters.
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50:50, and 484 played PAF. There were no examples of individuals quitting with unused
lifelines. There was a systematic tendency for lifelines to be played in order. ATA was
played, on average, with 8.5 questions remaining; 50:50 was played with, on average, 7.0

questions left; and PAF was used with just 6.9 questions remaining, on average.

7. Estimation and results

The estimation of the parameters of the model requires that we first estimate our
model for the histograms that the lifeline “Ask the Audience” produces. This histogram

records the percentage of the audience that selects each of the four possible answers. This

preliminary estimation is used to determine the parameters ():,19) of the distribution
described in Section A.2.3 of the appendix, where further details are given.

To do so we use the data we have collected on these histograms and on our
knowledge of the correct answer. Section A.2.3. in the appendix describes formally this
aspect of the model. These parameter estimates allow us to evaluate the quality of the
lifeline “Ask the Audience”. The parameter estimates are presented in Table 3. Assume
that the first contestant answer is the correct one, these estimates imply that on average

we expect the lifeline “Ask the Audience” to produce the histogram 0.63, 0.12, 0.12,

A
A A

: A 1 v 1% .
0.12, (.e. [ - ]). Treating these parameters as constants we

A+30 A+30 A+30 A+3
then proceed to estimate the remaining parameters of the model.

Table 4 presents the estimates of the preference parameters for two different
specifications of the utility function and for the whole sample as well as for the samples
of men and women separately. In addition to our preference parameters, Table 4 gives an
estimate of the probability that the chosen friend, in the case of the PAF lifeline, knows
the correct answer which, since we have no reliable data on thislo, is estimated jointly

with the preference parameters.

The first column of Table 4 gives the parameter estimates of the baseline CRRA

model for the pooled sample of men and women as a whole and assumes that the scale

' Many friends prove not very helpful and do not even hazard a guess.
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parameter, y, (which one might think of as initial wealth) is constant across individuals.
Our estimated value for the coefficient of relative risk aversion (first column) is
remarkably close to 1 (although statistically significantly different from 1). The

parameter ¥ , which might be interpreted as reference wealth measured in thousands of

pounds, is significantly estimated at 0.41.

The remainder of the table relaxes the restrictions that: risk aversion is constant,
men and women are the same; and that y is a constant. In particular, we present results
for the generalization of the CRRA and the CARA utility functions known as the Hybrid
Power-Expo (see for example, Holt and Laury, 2002). This specification depends on three
parameters (instead of two for CRRA) in the following way:

u(x)=_Sig—n(a)exp(—1a

o

on?).

It naturally nests both the CRRA (in the limit when o — 0) and the CARA (when

p =0) specification and is therefore a convenient alternative specification to consider.

We provide parameter estimates of this specification for the pooled sample and
for men and women separately. In the pooled sample case, although a is statistically
significant, the other parameters change little. In the estimation for the separate male and
female samples, it is clear that the estimates do not exhibit large differences between men
and women. The final three columns of the table presents estimates for this hybrid
specification but allowing for some unobserved heterogeneity in y. We assume that y is
independently and identically distributed across individuals and, for the purpose of the
estimation, we endow y with a discrete (2 mass point) distribution. This clearly rejects

the one mass point assumption but again the preference parameters are effectively

identical.

The estimation of the alternative specification over the whole sample or over the
samples of men and women separately gives different parameter estimates although these
differences are again not very large. Even allowing for unobserved heterogeneity does not
modify our findings dramatically. We interpret these findings as providing support for the

robustness of the estimates based on the CRRA specification.
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Two additional parameters which allow for the distribution of the initial belief to
change with each round of the game are also estimated (not shown). To illustrate how the
distribution of the beliefs changes as the game progresses we have calculated, in Figure 4,
the distribution of the maximum belief when 1 question, and 3, 5, 8, and 10 questions,
remain to be played. Note that the questions get more difficult in the sense that the
distribution at any stage is stochastically dominated by the distribution at earlier stages.
Indeed, with ten questions to go, the corresponding probability density function (i.e. the
slope of the distribution function) increases up to, and is concentrated close to, p=1.
Whereas, with few questions left the probability density function peaks before 1, and is

concentrated around p=0.45 for the last question.

Figure 5 shows the value of playing the game, V, implied by the CRRA estimates
for the pooled sample, as a function of the number of questions remaining (on the
horizontal axis) and the number and nature of the lifelines left. As we would expect the
value of playing rises as the number of remaining questions falls and lifelines add
positive value to playing. ATA appears to be the most valuable lifeline while 5050 and
PAF have almost identical values. In fact, the model predicts that the lifeline ATA is

almost as valuable as having both 5050 and PAF together.

In Figure 6 we show the predicted probabilities of quitting and failing at each
question, computed from the CRRA specification estimated over the whole sample, and
compare these with the observed distributions. There are many fails and no quits when
there are four more questions to come — i.e. when confronted with the £64,000 question —
since there is no risk at this point. We broadly capture the peak in quits immediately
before this point but underestimate the number immediately afterwards. We overpredict

fails for very easy questions, while we underpredict quits.

Figure 7 and 8 illustrate the differences between three possible specification of the
utility function: u(x)=1In(x+y), the estimated CRRA, and the estimated hybrid power
expo specification. The scale and the location of each utility function are normalised in
Figure 7 such that the comparison in terms of curvature is meaningful. The horizontal

axis uses a log scale so that the p=1 case appears linear. Differences in curvature exist

although, from inspection of the figure, these differences are quite small. Figure 8 shows
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the coefficient of relative risk aversion (in terms of x+ y ) for the CRRA and the hybrid

specification. In keeping with our observation of figure 7 the gradient is modest — it

seems that a CRRA of unity is adequate to explain behaviour over a wide range'".

Finally, in Table 5, we compute the certainty equivalents of the gambles at each
stage of the game for three different types of situations (based again on the CRRA
specification estimated on the whole sample). The certainty equivalent measures, in
money terms, the value of being able to play the game and take into account the option
value of being able to play further if the contestant is successful at the current stage.
Moreover we present similar calculations for the value of playing the lifeline (again given

a particular draw).

The top third of the table corresponds to a situation where the contestant feels she
is confident that she knows the answer (i.e. with a belief draw such that she feels that the
first possible answer is the correct one with probability 0.9). The middle third of the table
corresponds to a situation where the contestant is less confident about the correct answer
(i.e. she feels that the first possible answer is the likely correct answer but only with
probability 0.6). While the bottom third corresponds to a situation where the contestant is
quite unsure about the correct answer (i.e. she feels that the correct answer is the first, but

without much confidence).

The table should not be read as a sequence of events for three different types of
contestant, rather it lists the possible situations which any contestant might find
themselves in. For example individuals are unlikely to find themselves unsure or certain
about every single question, rather an individual might be confident about the £16000
question and so have a certainty equivalent of £47120 at that stage, and then be unsure
about the £32000 question so that the certainty equivalent of playing has only increases to

£50560.

Table 5 also shows the value associated with retaining the lifeline for future use.
For example a confident candidate for the £32000 question, has a certainty equivalent of

£89860 if she does not play the “50:50” lifeline, compared to a certainty equivalent of

""'However, note that our smallest prize is £1000. Thus it could be that only at very small gambles does the
CRRA approach zero and this cannot be captured by our data since there are so few fails and quits in this
range.
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£73340 if she decides to use it at this stage. That is, the value of exercising the option of
playing the lifeline at this stage is negative because she is confident about the answer to
this question and may not be so confident about future questions. Imagine, furthermore, a
contestant who has reached the £125000 stage and is confident about the answer, then
playing the lifeline reduces the certainty equivalent of being in that position. If on the
other hand, in the unlikely event that, she reaches the £250000 stage and is equally
confident about knowing the correct answer to the question, then the situation is reversed:

she should use her lifeline since the certainty equivalent is larger.

Clearly the belief has a substantial effect on the certainty equivalents. Indeed our
model predicts that if faced with either of the second (p=0.6) or third (p=0.4) belief
draws, contestants would be prepared to pay sizeable amounts (amounts larger than
£300,000 in the case of the million pound question) to avoid having to answer the
question. If EU is logarithmic, contestants will only attempt the £1 million question if

they are more than 86% confident.

8. Conclusions

This paper provides new evidence about the degree of individual risk aversion.
The analysis is firmly embedded in the expected utility paradigm. Our contribution is to
the exploit a “field experiment”, based on the popular gameshow, “Who Wants to be a
Millionaire?”, where the outcomes can vary enormously across contestants, but in a
known fashion. This provides a check on laboratory experiments where, although no skill
is involved to complicate the analysis, the expected value of the outcome in such
experiments is typically small. The range of possible outcomes in WWTBAM is
substantially larger than for most of the existing gameshow evidence. The downside of
our data source is that we need to make parametric assumptions concerning the
distribution of prizes through our assumptions concerning the distribution of beliefs. This
is usually not required in a laboratory experiment or in field experiments where the
outcomes are determined only by statistical chance. However, we feel that we are in a
better position to measure the coefficient of risk aversion than most researchers who use
observational data sources where the range of outcomes and their distribution is also

usually unknown and need to be inferred.
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We also use our data to estimate the value of additional information to contestants
in this game of skill. Finally, we were also able to get detailed questionnaire information
that provide some reassurance as to the representativeness of contestants. Once we
rebalanced the data to account for the disproportionate number of male contestants, our
data appears to be representative of the UK population, both in terms of observable

characteristics and in terms of other aspects of risk-taking behaviour.

Perhaps surprisingly, we find this parsimonious model is broadly effective in
explaining behaviour in this simple game. Our headline result, that the degree of CRRA
is approximately 1 with a high degree of precision, is consistent with the results of recent
work on the “Hooster Millionaire” and “Deal, No deal” gameshows which are the only

other games which feature, like WWTBAM, such large stakes.
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Appendix
A. 1 Distribution of the maximum belief

The dynamic model outlined involves the distribution, F, of the contestant’s

assessment of her chance of answering the question successfully. Without lifelines,

F =F, is the distribution of max(x) if x has the probability density function y, (x).

XeA,

Indeed max(x) measures the individual assessment of her likelihood of answering the

XeA,
question correctly when faced with » alternatives. In this section, we describe formulae

for the distribution of the highest order statistic:

F,(z)=Pr| (Y X, <} |, (20)

given that X is distributed with density function y, . In particular we can show that

0 ifz<Y
Fz(z): 2(D[z]—1 if ,<z<1, 21
1 otherwise.

. . 1 . .
and, as a consequence, the density function f, (z) has support [E,l} where is satisfies

/s (Z) = 2¢[z] . (22)

The distribution function at higher orders can be obtained from F, recursively. Whenever

ze (0,1) , we have

F(z)=2 fﬁ[ijycff(y)dy, (23)
1 z

F(z)=—[ F|Z](y)dy. 24

(2) e (y]y $(y)dy (24)
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and the relevant density functions, say f; and f,, can be shown to exist and to be
continuous everywhere inside (0,1). For example, in the uniform case where ¢(x) =1

for x e [0, 1] , and O elsewhere, we find that

0 if0<z<Y
(4z-1) if <z<K

)= a2 w602~ 24243 it Y<z<Y =
1-4(1-z)’ if p<z<I1

In this latter case it is easy to verify that the density function is continuous and that the

derivatives match at the boundaries of each segment.

The distribution functions F, do depend on the density ¢ in an important fashion.
We interpret ¢ as a description of the individual’s knowledge. When ¢ is diffuse over
[0,1] (e.g. uniform) all points on the simplex A, are equally likely and in some instances
the individual will have the belief that she can answer the question correctly while in
some cases the beliefs will be relatively uninformative, while if ¢ is concentrated around,
or in the limit at, ¥2 the individual is always indecisive. Finally, when ¢’s modes are

located around O and 1, the individual is always relatively informed about the correct

answer.

A. 2 Lifelines

Extending the model above to allow for the lifelines makes the analysis more
difficult but also enables us to exploit more aspects of the data. We show how, in the first
sub-section below, the model can be modified when only one lifeline is allowed for. In a
second sub-section we show how the model can be modified for all three lifelines. We
then present the precise assumptions that allow the modelling of each lifeline in

particular.
A. 2.1 The complete game

We now assume that the three lifelines are available and that each can be played

at most once. As above each lifeline generates a new belief q which is used in the
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decision process instead of the individual’s initial belief. Given the initial belief p, the

new belief is drawn from a separate distribution for each lifeline, say H, (qlp) for

“50:50”, H,(qlp) for “Ask The Audience” and H,(q!p) for “Phone A Friend”.

We write ¥ =(7;,72,73) for the “lifeline state” vector where v; = 0 if the "
lifeline has been played and 1 otherwise. We use Wn(p;y) to denote the optimal

expected value of the game at stage n, when the probability vector of the current question

is p and the lifeline state is (7;,72,73 ). As above, V,, (p) is used as a shorthand for
W, (p;(0,0,0)) and V,, (p) satisfies the recursive dynamic programming equations set

out in section 5.1 above. Below we write the dynamic programming equations using the

notation:
S ((71572:73)) = E[W, (Pys (71, 72,73)) ], (26)

where the expectation is with respect to P, , the distribution of the belief vector p at stage

n.

When there are one or more lifeline left, i.e. v; + v + v3 > 1, the contestant has

three options: (i) quit, (ii) answer the question, (iii) use one of the remaining lifelines.

The recursive equation is
W, (i) =max{a, ,p(f,1 (1) = b, )+ by ke, (P37)} 27)

where &, (p;y) denotes the maximum expected value from using a lifeline when the

belief is p and the lifeline state vector is 7y . Here,

k, (p:v) = max (E[W, (Q;:v-¢)Ip ]} (28)

iel(y)
where I(y):{j:eij} using e, to denote the i-th unit vector in R’ and Q, is

distributed according to H, (q I p) . This formulation does not preclude an individual from

using more than one lifeline on the same question, a behaviour we observe in some

contestants.
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A. 2.2 “50:50”

This is the simplest lifeline to model. It provides the contestant with “perfect
information” since two incorrect answers are removed. Ex-ante (i.e. before the lifeline is

played) the contestant believes that the correct answer is i (=1,...,4) with probability p,.
The “50:50” lifeline removes two of the incorrect answers, retaining j =i, say, with

equal probability (1/3). By Bayes Theorem, the probability that answers i,j survive this

elimination process is p,/3. The answers i and j can also be retained if j is correct and i

survives elimination. This occurs with probability p,/3. Applying Bayes Theorem gives

the updated belief vector q/', where

P ifp=i
p+D,

af ! =1Ltk = (29)
ptp;
0 otherwise.

Hence H, (q;p) is a discrete distribution with support {q{""" }} and such that

{i.j}e{1.2,3.4}
H, (q{u} ;p) =(p,+p,) /3 , and 0 elsewhere.

A. 2.3 “Ask the Audience”

Modeling the “Ask the Audience” lifeline requires more than simply applying
Bayes’ rule to the current belief draw. In particular we must allow the contestant to learn
from the information provided by the lifeline, i.e. here the proportions of the audience’s
votes in favour of each alternative answer. The difficulty here is to understand why and
how should a “perfectly informed” rational individual revise his/her prior on the basis of
someone else’s opinion? The route we follow here was proposed by French (1980) in the
context of belief updating after the opinion of an expert is made available. French
suggests that the updated belief that some event A is realised after some information inf

has been revealed should be obtained from the initial belief, Pr[4], the marginal

probability that a given realisation of the information is revealed, Pr[inf], and the
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individual’s belief about the likelihood that the information will arise if A subsequently

occurs, Pr[inf | 4] according to the following rule, related to Bayes theorem:
Pr[A I inf] = Pr[inf I A]Pr[A]/Pr[inﬂ . (30)

In this expression Pr[inf | 4] is understood as another component of the individual’s
belief - her assessment of the likelihood of the signal given that the relevant event
subsequently occurs.

Introducing A, A’s alternative event, this is rewritten as

Pr[inf | A]Pr[A]
Pr[inf | A]Pr{ A]+Pr[inf | 4 |Pr{ 4]

Pr[Alinf]= 31

In our context we understand the asking the audience as an appeal to an expert, and
assume that the events of interest are the four events “answer £k is correct”, k=1,2,3,4. We
assume that contestants “learn” some information about the quality of the expert in

particular the distribution of the quantities
Pr[q=(4,.9,-9;.9,) answer k is correct |= 6, , (32)

where ¢, is the proportion of votes allocated to the K" alternative. Following French’s

proposal, the k™ component of the updated belief 7 given the information q is:
4
ﬂ-k = Hkpk Zejpj . (33)
=

Let us assume for now that each contestant knows the joint distribution of the

vector 0=(6,,6,.6,,6,). In fact the above expression implies that, without loss of
generality, we can normalise the ¢, to sum to one. Denote /(6) the density function of
6 given some initial belief p. Given p, the density of the updated belief H, (7;p) can be
calculated as:

Hz(rr;p)zI(G(n;p))(f[pkj[gnkpk1J4, (34)

k=1
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4
4 4
with Q( =7, p, / Zﬂ'k p.'. The term ( pkj[zﬂJ arises because of the
k=1

k=1 Py

change of variable from 6 to = .

The quantities Pr[q=(g,.q,.4;.q,)!answer k is correct | =6, represent the added
information obtained from using the lifeline and are estimable from the data provided we
assume a form of conditional independence. In particular we require that the contestant’s
choice to ask the audience does not influence the audience’s answer. Furthermore, we
assume that there is no information contained in the position of the correct answer, hence

we expect the following symmetry restrictions to hold :

Pr [q = (q1 1q5:95,9, ) lanswer 1 is correct:l = Pr[q = (%(1) 245 95(2)90(3) ) lanswer 2 is correct}

= Pr[q

(qa,(]),qg,(z),q1 o) ) | answer 3 is correct}

= Pr[q = (qan(l) s9o(2)>9o7(3)%1 ,) lanswer 4 is correct},

where (o(1),0(2),0(3)), (c'(1),6'(2),6'(3)) and (o"(1),6"(2),0"(3)) are some
permutations of (2,3,4). The symmetry restrictions, the conditional independence

assumption, and the uniform random allocation of the correct answer among four
alternative answers allow us to estimate the likelihood of the information given the

position of the correct answer, and therefore provide empirical estimates for

Pr[q =(4,.9,-95-9, )| answer k is correct] )

In practice we assume that, given answer k is correct, information q has a

Dirichlet density D(q;y,(4.v)) , k=1...4, defined over A, such that

D(q:7, ()= T@Bv+a) (H‘] J ’

F(Z)F(v

where the symmetry assumption is imposed through the parameter vector
7. (Av)=v+e (A-v) with e, is a vector of zeros with a 1 in position k. This vector of
parameters for the Dirichlet density depends on two free parameters only,4 and v.
These two parameters can be estimated (independently from the other parameters of the

model) by maximum likelihood from the observation of the information obtained from
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the audience (i.e. the histograms) whenever the lifeline is used, and the observation of

which answer is the correct answer'”. For completeness note that 6, can be defined in

4
terms of the elements of g as 6, =¢,*”" / > g, . The information density which the

J=1

contestant expects is therefore the mixture D(q;p,4,v) of the previous densities

D(q; 7 (/1,1/)) , k=1...4, conditional on a given answer being correct, we have:

4 ) 4 4
D(q:p,4.v) =Y pD(q7,(Av))= M(H %”J(Z P4’ j (35)

P r(A4)r(v)
where the mixing weights are the initial beliefs p,,i=1...4.

A. 2.4 “Phone a Friend”

To use this lifeline the contestant determines, ahead of the game, six potential
experts (“friends”) and when she plays the lifeline she chooses one from this list of six.
We imagine that the contestant engages in some diversification when drawing up the list
(i.e. the range and quality of “expert knowledge” of the friends on the list is in some way
optimised), and at the time of playing the lifeline the contestant chooses the expert to call

optimally.

There is however little information available to us about this process. As a
consequence our model for this particular lifeline is somewhat crude. We assume that the
entire process can be modelled as an appeal to an expert who knows the answer with
some probability « , and is ignorant with the probability 1—x . We assume that the expert
informs the contestant of his confidence'®. Hence either the contestant knows the answer
and her opinion “swamps” the contestant’s belief, or the expert is ignorant and conveys
no information and the contestant’s belief is left unchanged. The density of the updated

belief is therefore:

H,(m;p)= K000 +(1—K’)1[”=p]. (36)

"2 Even when the contestant chooses an incorrect answer, the compere always reveals the correct one.

" In practice, contestants invariably ask the friend how confident they feel — although the answer is usually
not quantitative.
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A. 3 Proposition (factorisation of y, (x;,x,,x3,x4)):

The joint density: g4 (%0 %5.%s ) = —(x1) | —2— ¢ —2— ), with
H 1-x l-x—-x

4

(x1,X2,x3,X4 ) such that in =1, x; > 0 for all i, can be factorised as follows:
i=1

o (X1,%0,%3,X4 ) = fU1 (x )fUlel (x25% )fU3IU1,U2 (X35%1,% ),

with fi (u), fuu, (i), fu,u,0, (Wsu,v), (conditional) densities such that

—Uu 2 u
fo () = LDy vt g = [ (1 (),

l-u-v
Ju,iw, (viu) = 2((1—u)2 )¢(ll}uj1[OSvS1—u]7

w

1
fU3|U1,U2(W;u’V):1_ _v¢(

u

jl[OSwsluv] .

l-u—-v
Proof: It is easy to verify, by simple integration for fy (u), fy,u, (v;u), and by

construction for fy, ;. v, (w;u,v), all three are well defined densities over the relevant

ranges. Moreover their product is equal to x4 (..
This implies that if U;,U; and U are three random variables each distributed
with densities fy;, (u), fy,u, (viu), and fyu v, (wiu,v), then the random vector

P=(U UU, UUU; UU,U;), with U; =1-U; for all i=1..3, is distributed with

.. . 2 X X
joint density: ;(4(x1,x2,x3,x4)=E¢(x1)¢(1_2x1)¢(1_x13_x2j. Note that by

construction P'e=1,and P > 0.

Since y,(x) and y4(x) share the same joint density for the order statistics, i.e.
4!y, (X) where X is such that its element are sorted in descending order, to sample from
41y, (X) we propose to sample first from y,(.) and then to sort the resulting vector in

descending order.
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A.4 Probabilities and Simulated Likelihood

In this section we describe the evaluation of some of the probabilities that lead to
the log likelihood. A complete description of the calculations can be obtained from the

authors online'*.
Calculating the probabilities when only one lifeline is available.

When the contestant has used all her lifelines, the events of interest are the
occurrences of the contestant quitting or losing, and for the last question the event that the
contestant wins the million prize. The probabilities of these events can be calculated
directly from the analytical expressions given in section 5.1 using the formulation for F

we derive in section 5.3.

When one or more lifelines are available the calculations are made more
complicated because of the information which is gained when the lifeline is used and
which allows the contestant to update her belief. Hence, given the initial draw of the
belief we determine whether this particular draw leads to the use of the lifeline and, if the
lifeline is played, then whether the updated belief, or the original belief, if the lifeline is
not played, is informative enough to lead the contestant to attempt an answer. Finally we
evaluate the probability that the answer is correct (under the original or the updated

belief).

We will write QZ{; (p) as the probability that given p at stage n event k (which is

defined precisely below) is observed, given that the contestant is in the lifeline-state ijk,

where i, (respectively j or k) is one if the first (respectively second or third) lifeline is

k
n

yet to be played and zero otherwise. Let, Q7 be the expected value of Q’,ﬁkn (p) over all

possible realisations of p, ie. QF :E[Qj{f‘n(P)]. Finally Q7" (p) stand for the

probability that given p at stage n event k is observed given that the contestant starts the
question in the lifeline-state ijk and transit to lifeline-state i’j’k’. We consider below

representative events for each lifeline.

' http://www.qub.ac.uk/schools/SchoolofManagementandEconomics/Staff/LanotGauthier/
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“50:50" is the only lifeline available at stage n.

The contestant uses “50:50”, plays and wins (moves to the next stage or wins the million

prize).

First, define the probability that the contestant uses “50:50”, plays and wins given

a draw (ordered in decreasing order) p from the belief distribution:

Pr [{use "50:50"} A {plays} A {wins} | {stagen} ,p] =0 (p)=

1,n

37)
14, (p.0,0.0)2 p,(/,.,(1,0.0)=b,)+b, |1 (p). (
3 4
where O (p)=13"p, 3 1, (p)(/,(0.0.0)-5,)+b, 2a,., . withz, =—F"—.
' 39 S - Toptp

This last expression is the probability that, given p, the contestant answers correctly after

using the lifeline. Hence the unconditional probability satisfies
Pr [{use "50:50"} A {plays} A {wins} | {stage n}] = Q}f)no =

(33)
J, 1[5 (9.0.0.0)2 p, (£,.,(1,0.0) =5, )+, |21 (p) 7, () dp.

where A, is the subset of the 4-simplex where p, > p, > p, > p, 0.

In order to determine the probabilities we have used the fact that a contestant with
a lifeline available will either use it (and perhaps then quit), or play. It is straightforward
to verify that the five expressions above sum to unity; in particular the sum of the first
three expressions is the probability that the contestant uses the lifeline and this is the
complement of the sum of the last two probabilities.

Each term of the sum that determines ©,* (p) (and similarly Q3" (p)and Q) (p))

is the product of the probability that a given two of the four options remain after the
lifeline 1s played, with probability %( p;+ pk), multiplied by the probability that the

remaining alternative with the largest updated belief is correct, with probability

7, (p)= Pi__ with p; 2 p,, multiplied by the indicator that, given the updated belief,
" Pt D '

the contestant decides to play.
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“Ask the Audience” is the only lifeline left at stage n.

The contestant uses “Ask the Audience”, plays and loses,

Pr[ {use "Ask the Audience"} A {plays} A {loses}|{stagen} |=QJ") =

J‘ Qom )dp, (39)

where Q)7 (p)=1[ £} (p.0,0,0)> p,(£,,(0,1,0)—b,)+b, | Q™ (p),

and Q)" (p)=L4(1—7ZI (q;p))l[;z1 (q;p)(fH(O,O,O)—bn)+bn > M] (a;p.4.v)dq

where 7(q;p) stands for the revised belief after information vector q is made available

and 7, (q;p) is the largest element in 7z (q;p).

“Phone a Friend” is the only lifeline left at stage n.

The contestant uses ‘“Phone a Friend” and quits,

Pr [{uses "Phone a Friend"} A {quits} | {stagen} ] QY = I 0% ()7, (p)dp,
where 2 (0) 112000002 (1, 001)-4,) 4]0 )
and Q" (p)=(1-x)1] p,(£,,(0,0,0)=b,)+b, <a,, |.

General Case: all the lifelines are available

When more than one lifeline is available at a given stage, the number of
elementary events of interest increases, since not only can the contestants decide to play
one lifeline among many but the contestant can play more than one lifeline to answer a
single question. Hence while there are only five elementary events of interest when only
one given lifeline is left there are nine such events when two lifelines are available and
seventeen when all three lifelines are available, ignoring the order in which the contestant
uses the lifeline and not counting events with zero probability ex-ante (for example

observing an event such as quitting while the three lifelines are available)"”. In this

"> In the case of two lifelines left : 1) Uses the two lifelines, plays and wins; 2) Uses the two lifelines, plays
and loses; 3) Uses the two lifelines, plays and loses; 4) Uses one of two lifelines, plays and wins; 5) Uses
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section we present the relevant expressions needed to obtain the probabilities of few

selected elementary event, all other probabilities can be obtained in a similar fashion.

The contestant uses the three lifelines (in any order), plays and loses.

stagen ] Q) =

)45,k (p,1,0,1),5 (p,1 1,0)}]922’0”(1))

Pr[ uses all life lines} A {plays} A {loses} I {
{p(f,.(L11)=b,
[kZ( 1,0,1) max{pl £ (LL1) b)+bn,kn 0.L1), 2 (p,1,1,0)} |4/ (p) + (40)
{p (/i

1]/, (p.0.1.1) = max {p,(/,., (1.L1)

LL1)=b,)+b,.k, (p.0.L1).&; (p,1,0,1)}]912{;“° (p)

1/74(p)dp-
3 4
where QU1 (p _éz > 0 (7, (p).7,., (p).0.0)). 1)
J=1k=j+1
Q" (p) =], @ ((a:p))D(a:p.2.v)da (42)
Q,," (p) =2, (1,0,0,0)+ (1-x)€ (p) - (43)

Inspection of these expressions reveals that the probabilities of events in which

more than one lifeline is available, here le'nl, can be defined recursively in terms of the

conditional probability of events with one fewer lifeline, given the initial belief draw,

here Q)" (p), Q) (p) and Q. (p). In turn, each of these conditional probabilities can be
calculated from conditional probabilities involving only one lifeline, i.e. Q7 (p),
Q) (p) and Q3(p) . This property is a consequence of the recursive definition of the

value function over the lifeline part of the state space (see section 5.4.b).

Recall, however, that the number of events of interest when the three lifelines are

available is larger than when only two or less are available. Hence the definition of 17

one of two lifelines, plays and loses; 6) Uses other lifeline, plays and wins; 7) Uses other lifeline, plays and
loses; 8) Does not use any lifeline, play and win; 9) Does not use any lifeline, play and loses; ....

In the case of three lifeline left: 1) Uses the three lifelines, plays and wins; 2) Uses the three lifelines, plays
and loses; 3) Uses the three lifelines, plays and loses; 4) Uses “50:50” and “Phone a Friend”, plays and
wins; 5) Uses “50:50” and “Phone a Friend”, plays and loses; 6) Uses another “50:50” and “Ask the
Audience”, plays and win; 7) Uses “50:50” and “Ask the Audience”, plays and loses;... ; 10) “Uses
“50:50”, plays and win; 11) Uses “50:50”, plays and loses; ...16) Does not use any lifeline, play and win;
17) Does not use any lifeline, play and loses;
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probabilities with three lifeline at stage n, i.e. Q! , m=1...17, will involve the 27

m,n %

conditional probabilities with two lifelines, i.e. Q"'

. (p). @ (p) and Q. (p). m=1...9.
In turn each of these conditional probabilities will depend on the 15 probabilities with

one lifeline as defined in the previous section, i.e. Q°(p), Q.°(p) and Q)" (p)

m,n m,n

m=1...5.

The three lifelines are available, the contestant uses “50:50” , plays and wins.

Pr[ uses "50:50" only among 3 life lines} A {plays} A {wins} | {stagen}} Q)

= [, [ (p.0.L1) 2 max {p, (£, (1L1) =5, ) + b, & (p.1.0.1). k! (p.LLO)} 241" (p)7. (p)dp.

with Q""" (p Z Z Q! (( ), 7T j(p),0,0)) where Q' (p) is the probability that

3 Jj=1k=j+1
with “Ask the Audience” and “Phone a Friend” available, for some belief p, the

individual plays and wins.

Three lifelines are available, the contestant does not use any, plays and loses.

111

Pr[ {does not use any of the 3 life lines} A {plays} A {loses} | {stagen} |=Q,}',

J. |: n -1 1 1’1)_bn)+bn Zmax{kli (p’o’l’l)’kn2 (p’l’o’l)’kj (p’l’l’o)}](l_pl)l/;4 (p)dp
Simulation and smoothing

The evaluation of the probabilities Q7 (p), n=1..15, m=1..17"%, (r,s,t)e{0,1}’

and of the conditional expectations &/ (p,r,s,t), n=1..15, j=1.3, and (r,s,t)e{0,1}’
requires the use multidimensional integration techniques. Simulation methods (as
described in Gouriéroux and Monfort (1996) and Train (2003)) are well suited and have

been applied successfully in similar context (see the examples discussed in Adda and

Cooper, (2003)).

Clearly the specification of the belief lends itself to a simulation based likelihood
methodology since simulations of Beta variates are obtained simply from Gamma

variates (see for example Poirier (1995)). In turn, Gamma variates can be obtained

1 t t
®If Q™ is not defined for some m, and some 7,5,/ we assume Q” =0.

m.,n
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directly, using the inverse of the incomplete Gamma function. Numerically accurate
methods to evaluate the inverse of the incomplete Gamma function are detailed in
Didonato and Morris (1996)17. The main advantage of their results is that it allows for
simulations that are continuous in the parameters of the Gamma distributions. Evaluation
by simulation of an integral involving the density of a 4 dimensional Dirichlet random

vector, D(q;p,4,v), is obtained directly by the simulation of each of its component. For

example
Q= )7 ()P =] 10000y 2 (P)7: (R)dp,  (44)

can be approximated by

~100

O (5) = 20 () =52, s 10y 2 (B.), 43

s=1

where p, is one of S (the number of simulations) independent draws from the distribution
of the order statistics of the belief, (/74(.). In fact the accuracy of this simulated
probability (and of all others which involve draws from ,(.) ) can be improved upon

through antithetic variance reduction techniques which involve the permutations of the
gamma variates used to generate each individual beta variate'® (as explained for example

in Davidson and McKinnon (2004) or in Train (2003)). Moreover, the quantity

Qlll Qlll,()ll(p)V;4 (p)dp (46)

10, _.[ k (p 0.L1)2max{ py( f,1(LL1)=b, )+b, &2 (p.1,0.1)k3 (p.L1 0)}] 10,1

can be evaluated using the simpler formula

' This is implemented in Gauss in the procedure gammaii (contained in the file cdfchic.src).

18 For example, to simulate a draw from a B(a,a + 2) , one can draw two independent realisations of a
random variable distributed according to a y(a) ,say z, and z,, and one realisation from a )/(2) ,say z,.

Then both z / (Z1 +z,+ 23) and z, / (Z1 +z, + 23) are draws from a B(a,a + 2) , furthermore they are

negatively correlated, so that the variance of their mean is smaller than the variance of the mean of two
uncorrelated draws from a B(a,a+2). In fact the relative efficiency, measured by the ratio of the

_ C(3a+2Y(3+3a
variances, 1S <1 for o >0.
4o +2 3+4a
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S
ﬁi(]),ln(‘s):%zl Qm,on(ps)’ (47)

K (B 0.1 1)2max (o (1110, b, 2 (b, 10D K (1 1,0)f | 107

or any improvement of it. Similarly )" (p)zL Q) (7(q:p))D(q:p.4.v)dq can be

2.n

evaluated by Q' (p;S):éipiZS:[Q‘o‘ (;z(qw.;p))], where q,, is one of S independent
i1

2.n
s=1

draws from D(q:7,(4.v)).

Finally all quantities k. (p,r,s,t)= E.. [Wn (ILr,s,2)] p] which involve a multi

dimensional integral and the joint density D(q;p,4,v) can be obtained in a similar

4 S

: N 1 .
fashion: for example, using kn2 (p,r,s,t;S):§ZpiZVK1 (qs,i,r,s,t), where q,, is one of
S independent draws from D(q; yi(/l,v)). In practice these expression are modified in
order to smooth out the discontinuities that are created by the indicator terms. Hence, the

indicator functions 1[v, > max{v,.,v;,v,} ], 1[v, 2max{v,,v,}]. or 1[v, 2v,], are replaced

1

by their smoothed versions,
1+exp(77(v2—vl))+exp(77(v3—vl))+exp(77(v4—vl))

’

1 1 . .
and respectively, where 7 is a

1+exp(77(v2 —vl))+exp(f7(v3 —vl)) ’ 1+CXP(77(V2 _Vl))

smoothing constant. In the limit as 7 — +oo the smoothed versions tend to the indicators.
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Table 1 Questionnaire Sample and Population Data

Population survey WWTBAM WWTBAM
data*® competitors non-competitors
Mean StdDev  Mean StdDev Mean Std Dev
Male 0.52 0.40 0.76 0.43 0.66 0.48
Age 44.41 10.21 43.14 9.36 47.86 11.67
Married 0.80 0.44 0.79 0.41 0.76 0.43
Education years 13.88 4.10 13.71 3.99 12.82 3.22
Smoker ™" 0.25 0.42 0.22 0.41 0.26 0.44
Renter 0.25 0.33 0.144 0.35 0.177 0.38
Contents uninsured * 0.09 0.26 0.07 0.27 0.06 0.31
House value (£k) =~ ** 178.9 157 190.8 127 184.8 188
Employed 0.652 0.44 0.638 0.48 0.593 0.49
Self-employed 0.155 0.38 0.193 0.40 0.189 0.39
Not working 0.194 0.40 0.160 0.37 0.195 0.40

Gross earnings (£k pa) ~ 27.08 23.0 31.17 240  28.67 227
Regular lottery player ™" 0.67 0.40 0.63 0.41 0.65 0.41

Observations various 243 548

Notes: * the survey datasets have been re-weighted to reflect the gender mix in the WWTBAM data.
Population data comes from the 2002 Labour Force Survey with the exception of: + from Family
Expenditure Survey 2002 data, ++ from British Household Panel Study 2001 wave, and +++ from the
Gambling Prevalence Survey 2002. ** if owner occupier. *** if employed.

Table 2 Questionnaire Contestant Sample and Population of Contestants
Questionnaire sample of Population of contestants on
contestants videotapes
Mean Std Dev Mean Std Dev

Male 0.76 0.43 0.77 0.43
Winnings £,000 61.96 104.1 54.26 105.9

% quit last Q 0.68 0.47 0.67 0.47

N 243 515

Note: We categorise players who won the maximum £1m as quitters.

Table 3 Maximum Likelihood Estimates of the Parameters of the Distribution of
Histograms (ATA)
Parameter Estimate Std. err.
A 4.754 0.210
v 0.914 0.030
Number of observations 501
Log-Likelihood 1526.41

Note: These results are based on 501 observations for which the use of ATA is observed.
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Table 4

Maximum Likelihood Estimates

_(x+ 7)” _ —sign (a) _«a 1-p
u(x)= = u(x) . exp[ _p(x+;/) ]
Homogenous y Heterogenous y (2 groups)
Parameters All All men Women all Men women
P 1.018 1.0567 1.0469 1.0778 1.0985 1.0783 1.1811
(0.001) (0.018) (0.049) (0.047) (0.028) (0.027) (0.093)
0.410 0.3138 0.3056 0.3879 0.0454 0.0425 0.0380
4 0.077) (0.109) (0.141) (0.214) (0.087) (0.102) (0.212)
1.1238 0.9654 1.8072
& - ; ] - (0.321) (0.356) (0.899)
Prob[ y, ] - - - - 0.1416 0.1564 0.0958
o i -0.0309 -0.0377 -0.0278 -0.0343 -0.0345 -0.0411
(0.006) (0.019) (0.006) (0.003) (0.005) (0.019)
0.419 0.354 0.364 0.320 0.529 0.534 0.484
K (0.027) (0.024) (0.029) (0.045) (0.024) (0.028) (0.048)
Mean log-lik -9.28661 -9.28661 -9.35367 -9.03649 -8.82529 -8.89011 -8.57972
Number of Obs. 515 515 396 119 515 396 119

Note: Two further parameters are estimated. These parameters specify the dependence of the belief distribution on the question round.
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Table 5

a

n+l

Certainty Equivalents (£,000)
50:50

b,

PAF

ATA

CE CEofLL CE CEofLL CE CEofLL

p=(0.9,0.05,0.03,0.02)

500 32 701.85 848.12 701.85 912.84 701.85 845.07
250 32 409.16 43558 604.16 484.06 522.76 438.82
125 32 232.61 22551 335.19 24131 282.85 229.18
64 32 13939 121.47 187.43 12031 157.20 123.14
32 32 89.86 7334 11435 7413 9143 7395
16 1 47.12  46.08 5437  53.63 4691  47.35
8 1 26.08 1972 35.06 2249 2644 2022
4 1 14.04 11.05 19.70 12.15 13.88 11.30
2 1 8.95 7.22 12.70 7.69 9.30 7.35
1 1 6.46 5.38 8.78 5.64 6.78 5.46
0 0 4.35 4.04 5.62 4.29 4.47 4.15
p=(0.6,0.2,0.15,0.05)
500 32 17440 54480 17440 789.05 174.40 719.35
250 32 130.14 28230 160.81 438.58 148.67 360.24
125 32 95.63 15225 116.75 22249 10642 180.99
64 32 72.21 92.07 8496 114.14 77.14  93.78
32 32 56.70 61.84 64776 72774 5724  62.56
16 1 9.29 22.75 10.06  46.06 9.27 31.15
8 1 6.66 11.19 7.87 18.06 6.71 14.05
4 1 4.68 7.01 5.68 10.83 4.65 7.33
2 1 3.60 4.97 441 7.44 3.68 5.10
1 1 297 391 3.56 5.31 3.06 4.00
0 0 1.19 2.31 1.41 4.05 1.21 241
p=(0.4,0.3,0.2,0.1)
500 32 123.81 499.10 123.81 780.24 123.81 719.35
250 32 98.08 25491 116.07 396.12 109.05 360.24
125 32 76.73 13395 8995 21727 83.55 181.05
64 32 6133 81.53 69.82 11096 64.65 93.03
32 32 5056 5746 5622 7213 5094  59.99
16 1 6.16 18.08 6.57 46.92 6.14 31.15
8 1 4.70 9.22 5.38 18.65 4.73 14.05
4 1 3.52 5.73 4.12 10.81 3.50 7.37
2 1 2.84 4.22 3.35 7.31 2.89 4.64
1 1 243 3.40 2.81 5.29 2.49 3.70
0 0 0.81 1.80 0.94 3.85 0.82 2.09

Note: Certainty equivalent CE is calculated as ™' ( P ( f,—b ) +b, ) , whereas the CE of LL is calculated

as u’' (kn (p,.,.,.)) .
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Figure la Without Lifeline
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Figure 2

Last questions seen, amount k(stlg) (log10)
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Figure 3 Observed Fails and Quits Frequencies and Rates
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Figure 4
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Figure 5

Expected Value of playing the game (utility)
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Figure 6

Frequencies
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Figure 7: Comparison of utility functions (All observations)
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Figure 8:

Relative Risk Aversion
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