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Abstract 

This paper analyses the behaviour of contestants in one of the most popular TV 
gameshows ever to estimate risk aversion. This gameshow has a number of features that 
makes it well suited for our analysis: the format is extremely straightforward, it involves 
no strategic decision-making, we have a large number of observations, and the prizes are 
cash and paid immediately, and cover a large range – from £100 up to £1 million. Our 
data sources have the virtue that we are able to check the representativeness of the 
gameshow participants. Even though the CRRA model is extremely restrictive we find 
that a coefficient or relative risk aversion which is close to unity fits the data across a 
wide range of wealth remarkably well. 
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1. Introduction 

The existing empirical literature that addresses the degree of risk aversion is 

distinguished by both the breadth of its estimates and the sparseness of evidence relating 

to large gambles. This paper analyses the behaviour of TV gameshow contestants to 

estimate an EU model. This gameshow has a number of features that makes it well suited 

for our analysis: the format is straightforward and it involves no strategic decision-

making; we have a large number of observations; and the prizes are immediately paid in 

cash and cover a large range – up to £1 million. We use the data to estimate the degree of 

risk aversion, and how it varies by the size of the gamble, and by gender. Even though the 

CRRA model is extremely restrictive we find that it fits the data remarkably well and 

yields very plausible parameter values. However, we do find that it is rejected in favour 

of a generalization that allows variable RRA, although the economic significance of the 

departure from CRRA is small. 

Our data comes from what has probably been the most popular TV gameshow of all 

time, “Who wants to be a millionaire?” (hereafter WWTBAM). Notwithstanding that 

gameshow data has a number of drawbacks for the purpose of estimating attitudes to risk, 

this particular game has a number of design features that make it particularly well-suited 

to our task. In this gameshow the contestant is faced with a sequence of 15 multiple-

choice questions. At each stage she can guess the answer to the current question and 

might double her current winnings but at the risk of losing a question-specific amount, or 

she can quit and leave the game with her winnings to date. The mechanism of the game is 

well known and very simple. There is no strategic element, contestants simply play 

against the house. It is, however, a game where skill matters and this complicates our 

analysis.  

At each stage of the game contestants are reminded that their winnings so far belong 

to them - to risk, or walk away with. The prizes start at a modest level but, in many 

countries, reach very high levels. This wide spread of possible outcomes makes 

WWTBAM a considerable challenge for a simple expected utility CRRA model. The 

sequential nature of the game gives rise to a further important complication – in all but 

the last stage of the game, answering a question correctly gives an option to hear the next 
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question and this itself has a value, over and above the value of the addition to wealth 

associated with the question. This option value depends on the stage of the game, the 

contestant’s view about the difficulty of subsequent questions, and the degree of risk 

aversion.  

The data was transcribed from the original videotapes of the population of 

contestants. We established the representativeness of the data by surveying the population 

of potential contestants (individuals who were invited to appear on each show and from 

which actual contestants were selected) to obtain information about their characteristics, 

which we then compare with population surveys such as the Labour Force Surveys. 

The paper is structured as follows. In section 2 we outline the existing evidence, 

including other work that relies on gameshow data. Section 3 explains the operation of 

the game in more detail. In section 4 we provide a simple model of the game that captures 

its formal structure so we can show the mechanics of the game in a straightforward way. 

In section 5 we present the econometric details and the likelihood. In section 6 we give 

some summary details of the UK data and explain how we estimate risk aversion using 

this data. In section 7 we present some results and consider possible shortcomings of the 

work. In section 8 we draw together some conclusions. 

2.  Existing Evidence 

There are several distinct strands to the empirical literature. Firstly, considerable 

attention has been given to the estimation of Euler equations derived from lifecycle 

models of consumption and savings (see Hall (1988) and Attanasio and Weber (1989)) 

where the coefficient on the interest rate in a log-linearised model is the elasticity of 

substitution. If utility is time separable and exhibits CRRA then this interest rate 

coefficient is also the inverse of the degree of relative risk aversion, . The typical result 

in such analyses, usually based on macro data, is that consumption and savings are 

relatively insensitive to interest rates so the elasticity of intertemporal substitution is 

small. Thus, the macro-econometric literature largely suggests that the degree of risk 

aversion is large. Some of this literature1 considers two assets and backs out risk aversion 

                                                 
1 Notable contributions to this area are Epstein and Zin (1989, 1991). 
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from the excess returns on equities. Since individual portfolios are typically highly 

concentrated in relatively safe assets this work implies that the degree of risk aversion is 

implausibly large. Indeed, the survey of the “equity premium puzzle” by Kocherlakota 

(1996) suggest estimates of the degree of relative risk aversion that exceed 502.   

However, this method, which relies on portfolio allocations, has only ever been 

applied to micro-data in a handful of studies. Attanasio, Banks and Tanner (2002) provide 

a very plausible estimate  of just 1.44 using a large UK sample survey (for the sub-

sample at an interior solution i.e. of shareholders).  

Jianakopolos and Bernasek (1998) use US survey data on household portfolios of 

risky assets to examine gender differences. They find that single women are more 

relatively risk averse than single men - a  close to 9 compared to 6.  Further differences 

by age, race, and number of children were also found.  Palsson (1996) uses Swedish 1985 

cross-section data on portfolios drawn from income tax registers for more than 7,000 

households. This study also recognizes the existence of real as well as financial assets and 

accounts for the gains from diversification that arises when real assets and financial assets 

are both held. The estimated risk aversion was found to be even higher than Jianakopolos 

and Bernasek but, in this case, it is not systematically correlated with characteristics apart 

from finding that risk aversion increases with age. 

If utility is intertemporally separable then the extent to which utility varies with 

income is related not just to consumption and savings, but also to labour supply. This idea 

has been exploited by Chetty (2003) who derives estimates of risk aversion from 

evidence on labour supply elasticities. He shows that , in the atemporally separable case, 

depends on the ratio of income and wage elasticities and that the typical estimates in the 

labour supply literature implies a  of about 1. Indeed, Chetty (2003) shows that under 

weak separability a positive uncompensated wage elasticity is sufficient to bound  to be 

below 1.25. 

A second, albeit small, strand of the empirical literature exploits data on the purchase 

of insurance cover. Szpiro (1986) is an early example which estimates  from time series 

                                                 
2 A number of ideas have been put forward to reconcile the equity premium with estimates of risk aversion 
obtained by other methods – most plausibly, that the premium is correlated with labour income risk. 
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data on insurance premia and the amount of domestic insurance cover purchased, and 

finds  to be close to 2. Cicchetti and Dubin (1994) consider a large microdataset on 

insurance for domestic phone wiring. This paper acknowledges that this insurance is 

expensive relative to the expected loss (a monthly premium of $0.45 on average 

compared to just a loss of just $0.26 on average) and yet they found that 57% of 

customers were enrolled in the insurance scheme. They estimate a hyperbolic absolute 

risk aversion model and estimate, on average, a rather small degree of ARA. The implied 

estimate of  is of the order of 0.6. 

A third, more substantial, strand to the literature takes an experimental approach 

where participants are offered either real or hypothetical gambles. The best example that 

uses hypothetical questions is Barsky et al (1997) where respondents to the US Health 

and Retirement Survey were asked if they would accept or reject huge gambles (a 50% 

chance of doubling lifetime income together with a 50% chance of reducing it by one-

fifth/one-third/one-half). Two further distinctive features of this work are that it suggests 

that there is considerable variation in relative risk aversion, around the mean of about 12, 

and that relative risk aversion is correlated with risk related behaviour in the data such as 

smoking, insurance and home ownership.  

Donkers et al (2001) is a further good example that uses data on preferences over 

hypothetical lotteries in a large household survey to estimate an index for risk aversion. 

Their econometric method is semi-parametric, it allows for generalisations of expected 

utility, and they make weak assumptions about the underlying decision process.  They go 

on to estimate a structural model based on Prospect Theory (see Kahneman and Tversky 

(1979)). They strongly reject the restrictions implied by expected utility theory and they 

find that both the value function and the probability weighting function vary significantly 

with age, income, and the wealth of the individual. 

Another example of this strand of the literature is Hartog et al (2000) which uses 

questionnaire evidence on reservation prices for hypothetical lotteries to deduce 

individual risk aversion. They use three different datasets and find that the mean values of 

 are extremely large (more than 20) in each, which might suggest that the questionnaire 

method is contaminated by response bias. However recent work by Holt and Laury 
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(2002) compares estimates from hypothetical lotteries with the same lotteries where the 

prize is really paid.  The authors check whether preferences differ across real and 

hypothetical lotteries and find that they are similar only for small gambles. The analysis 

features prizes that range up to several hundreds of dollars which they feel allows them to 

address the critique raised in Rabin and Thaler (2001) and Rabin (2000). They estimate 

an expected utility function, using real payoffs, that allows for non-constant RRA. 

Consistent with Rabin, they find small degrees of RRA (around 0.3) at low prize levels 

and higher (around 0.9) at high prize levels which, together, fit the data well. However, 

even the largest payouts considered in Holt and Laury (2002) are small compared to 

WWTBAM.  

The present paper belongs to a final strand of the empirical literature that relies on 

data generated by gameshow contestants. The earliest example, by Metrick (1993), uses 

the television gameshow Jeopardy! as a natural experiment to estimate a non-linear 

probit of play that depends on the expected value of the gamble from which the degree of 

risk aversion can be deduced (other examples are Gertner (1993) and Beetsma and 

Schotman (2001)). Only small stakes are involved and the implied preferences3  are not 

significantly different from risk neutral. 

Similarly, Hersch and McDougall (1997) use data from the Illinois Instant Riches 

television gameshow, a high stakes game based on the Illinois State Lottery, to regress 

the probability of accepting a bet on the bet’s expected value and (a proxy for) household  

income. The estimated structural model is used to infer , and the data again suggests that 

contestants are nearly risk neutral.  

More recently Fullenkamp et al (2003) uses the Hoosier Millionaire television 

gameshow to analyze decision-making. Unlike earlier gameshows this involves relatively 

high stakes. They use a large sample of simple gambling decisions to estimate risk-

aversion parameters. However, with this game the prizes are annuities and so their value 

                                                 
3 They also model the ability of contestants to choose strategic best-responses. The results suggest that 
failure to choose the best-response increases as the complexity of the bet increases. Consistent with much 
psychological experimental literature, he also finds that the choices that contestants make are affected by 
the “frame” of the problem. 
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to contestants will depend on time preference. They find that, assuming a discount rate of 

10%, contestants display risk-aversion with the mean  ranging from 0.64 to 1.76.  

Finally, a new gameshow Deal or No-deal! has been analysed in two recent papers – 

Post et al (2006) which considers Australian and Dutch data, and Bombardini and Trebbi 

(2005) which considers Italian data. This game involves a number of potential prizes, 

varying from the very small up to very large amounts, which are won essentially by 

chance. Contestants simply make a sequence of draws to eliminate prizes. On up to nine 

occasions during this process the contestant is made financial offers to quit and so needs 

to compare the offer made with the certainty equivalent of remaining prizes. While there 

is no skill involved contestants need to take a view about what the level of future offers to 

quit might be if they are to appropriately value the option of rejecting a current offer. 

Unfortunately, it is not clear what the process is that generates offers so this has to be 

estimated along with the risk aversion parameters. Post et al (2006) provide estimates on 

the degree of relative risk aversion in the range 1 to 2.  Using the whole range of data 

Bombardini and Trebbi (2005) estimate the degree of risk aversion to be unity – i.e. 

utility is logarithmic, and they go on to estimate degrees of risk aversion with the low 

stake observations that are indeed close to zero. 

3. The WWTBAM Gameshow 

WWTBAM has proved to be the most popular TV gameshow ever. The game has 

been licensed to more than one hundred countries and has been played in more than 60. 

The structure is well known to contestants who are likely to have watched the experience 

of many previous contestants. The game features a sequence of fifteen “multiple-choice” 

questions with associated prizes that, in the UK, carry prizes that start at £100 and 

(approximately) double with each correctly answered question so that the final question 

results in overall winnings of £1m. After being asked each question the contestant has the 

choice of quitting with her accumulated winnings or gambling by choosing between the 

four possible answers given. If the chosen answer is correct the contestants doubles her 

existing winnings and is asked another question. If the chosen answer is incorrect she gets 

some “fallback” level and leaves the game. The design is such that the difficulty of 

questions rise, on average, across the sequence of questions, and the fall back level of 
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winnings also rises (in two steps). Contestants are endowed with three “lifelines” which 

are use-once opportunities to improve their odds – so, when faced with a difficult 

question, contestants may use one or more lifelines to improve their odds. The contestant 

has the choice between the following lifelines: fifty-fifty (“50:50” hereafter), which 

removes two of the three incorrect answers; ask-the-audience (“ATA”), which provide 

the contestant with the distribution of opinion in the audience concerning the correct 

answer in the form of a histogram; and phone-a-friend (“PAF”), which allows the 

contestant to call on a friend for a limited amount of time (30 seconds). At least in the UK 

questions are chosen randomly from a sequence of question banks and there is no attempt 

to manipulate the fortunes of individual contestants during play.  

Contestants are not randomly selected onto the show. The details of how this is 

done varies across countries but in the UK aspiring contestants ring a premium rate phone 

number and are asked a question of medium difficulty. If correct, their name is entered 

into a draw to appear in the studio. Ten names are drawn for each show (plus two 

reserves). Aspiring contestants can improve their odds of appearing by ringing many 

times so having many entries in the draw. Once at the recording studio, aspiring 

contestants compete with each other to provide the fastest correct answer to a single 

question and the winner is selected to enter the main game.  

During play the compère is careful, at least in the UK game, to ensure that 

contestants are sure they want to commit themselves at every stage – contestants have to 

utter the trigger phrase “final answer” to indicate commitment. At each of the two 

fallback stages, the compère hands a cheque to the contestant for that level of winnings 

and ensures that the contestant understands that this money is now theirs and cannot be 

subsequently lost. The compère makes every effort to ensure that contestants behave 

rationally – he strongly discourages quitting at the question corresponding to the fallback 

levels (where there is no downside risk), and quitting with unused lifelines. He is also 

careful to ensure that contestants understand the magnitude of the risks that they face 

during the game. Neither compère, nor the game format, seem to encourage cautious or 

hesitant contestants to take undue risks. 
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4.  A simple model 

4.1.    Dynamic aspects of the game 

The model of participation we present accounts for the dynamic structure of the 

game. We focus initially on a simplified version of the game in which contestants are risk 

neutral and hence are expected income maximisers. We postpone consideration of the 

“lifelines” to section 4.3 and, for the moment, assume that questions are selected by 

independent random draws from a pool of questions of identical difficulty. 

Let p denote the probability that the contestant (of some given ability) is able to 

answer correctly a question, where p is a realisation of the random variable P whose cdf 

is [ ] [ ]: 0,1 0,1F  (we provide, in the next section, a model for this distribution). 

Rounds of the game are denoted by the number of questions remaining, i.e. n = N,……1.  

Let an be the accumulated winnings after the contestant has successfully completed N-n 

questions and there are n questions remaining. In the televised game N=15 and the prizes 

are given by the sequence 
16

1
1000,500, 250,125,64,32,16,8, 4, 2,1,0.5,0.3,0.2,0.1,0n n

a .  

Similarly, let bn be the value of the fallback level of winnings, i.e. the winnings 

that can be kept in the event of an incorrect answer. In the televised game the sequence of  

fallback prizes is given by, 
15

1
32,32,32,32,32,1,1,1,1,1,0,0,0,0,0n n

b .   

Now consider the decision problem at the start of the game when the contestant is 

faced with the first of 15 questions. The value of playing the game is given by  

15 16 14 15 15max ,V p a p f b b  where 14 14Ef V P  is value of continuing 

optimally and, at this stage 16 15 0a b . This is the first stage of a recursion, such that 

when there are n questions to go and the question asked can be answered successfully 

with probability p, the value of the game is  

1 1max ,n n n n nV p a p f b b ,      (1) 

where 1 1En nf V P and we set  f0=a1. Note that the decision to quit or not to quit is 

made after the question has been asked. 
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At any round of the game, there exists a critical value of  p, 

1 1n n n n np a b f b , such that if np p  the individual quits the game and 

therefore 1n nV p a . Otherwise np p  and the individual offers an answer to the 

question and the value of the game is 1n n n nV p p f b b . Note that the immediate 

value of answering correctly is 1na  and the expected difference, 1n np f b , 

represents the “option value” of continuing. These dynamic programming equations lead 

to the following relationship for nf  : 

 
1

1 1
n

n n n n
p

f f f b F p dp .      (2) 

To obtain the likelihood we need to evaluate the probability of winning. The probability 

of continuing to participate through offering an answer to the nth question, but prior to 

seeing the next question, is  

Pr "Play" 1 n nF p F p .       (3) 

The probability of giving a correct answer, having decided to answer, is given by 

1

Pr "Win" | "Play"
1

np n

n n

p dF p G p

F p F p
.     (4) 

Hence the probability of answering correctly is simply Pr "Win" nG p .  

Thus, the likelihood of a contestant reaching round k and then quitting (i.e. 

refusing to give an answer to question k) is  

15

1

,0 1 k n

n k

k F p G pL .     (5) 

The probability of a contestant reaching round k and then giving an incorrect answer is  

( ) ( ) ( ){ } ( )
15

1

,1 k k n

n k

k F p G p G pL
= +

= .               (6) 

Finally, the probability of a contestant reaching round 1 and then winning (£1m) is : 
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( ) ( )
15

1

1,. n

n

G pL
=

= .                 (7) 

The model can be adapted easily to allow for risk averse behaviour, indeed prizes simply 

need to be measured in utility terms, i.e. for some concave increasing utility function 

u x , we would have  
1616

1 1n ni i
a u a  and 

15 15

11
n n ii

b u b .  

4.2. Questions, Answers and Beliefs 

The purpose of this section is to propose a model for the distribution of the beliefs 

that an individual holds each time she is confronted with a question and a list of possible 

answers (in the real game, four) of which just one is correct. In this section, and in the 

next, we take as given that the contestant chooses (if she decided to participate) the 

answer with the highest subjective probability of being correct. Hence once the 

distribution of that probability is defined it becomes, in principle, straightforward to 

describe the probability distribution of the maximum belief and, more generally, of the 

order statistics. 

The process of generating questions (and corresponding answers) that we have in 

mind can be described as follows. A question, and a list of possible answers, is drawn 

uniformly (at each stage of the game) from a pool of questions (assuming just one pool 

for the moment). The question and its possible answers (in a randomized order) are 

presented to the contestant who is then endowed with a draw from the belief distribution 

concerning the likelihood of each answer being correct. The formation of beliefs for all 

contestants is assumed to follow this process in an identical and independent manner. 

Hence, given a particular question, two otherwise identical individuals can hold distinct 

beliefs concerning the likelihood of each answer. Furthermore, all individuals are 

assumed to be able to evaluate the distribution of possible beliefs over the population of 

questions involved at any given stage of the game. 

Formally, suppose that X is an n-dimensional random vector on the simplex 

 
1

: 0 1.. , 1
n

n i i

i

x i n xx . 
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We assume that X has the probability density function n x  and we require it to exhibit 

the following symmetry property: if , nx x , such that x  is obtained from x  by a 

permutation of its components, then n nx x . 

For our purposes we may limit our investigation to the cases where 4n . We 

construct a family of distributions of beliefs by starting with a probability density 

function  on 0,1  that is symmetric, i.e. such that 1x x  for all x  in 0,1 .  

Note that ’s symmetry implies  

1

0

1
1

2
x x dx    and    

1 12 2

2
0 0

1 1x x dx x x dx     (8) 

where 2  is the second moment of . If denotes the distribution function 

corresponding to , it is straightforward to show that 1 1z z . 

Our construction of a class of distributions of beliefs is based on . In the three 

cases of interest, we consider the following 

 2 1 2 1 2

1
,

2
x x x x ,                (9) 

 
3

3 1 2 3

, ,

1
, , ,

3 1

j

k

i j k k

x
x x x x

xP

               (10) 

 
4

4 1 2 3 4

, , ,2

1
, , , ,

12 1 1

jk
l

i j k l l l k

xx
x x x x x

x x xP

            (11) 

where, for any n, nP  is the set of all permutations of 1,..., n , and 
1

2

2
0

x x dx . 

In each case the role of the summation of the set of permutations arises because of 

the unobserved random (uniform) order in which the contestant answers are presented to 

the participant. Because  is itself symmetric and 
1

1
n

i

i

x , some (more or less obvious) 

simplifications are possible, we have 

 2 1 2 1, ,x x x                      (12) 
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32 1
3 1 2 3 2 2 3

1 2 3

2
, , ,

3 1 1 1

xx x
x x x x x x

x x x
    (13) 

4 1 2 3 4

, 1,...,42

1
, , , ,

6 1 1

jk
l

l k l l k
k l

xx
x x x x x

x x x
.  (14) 

These simplifications are useful in practice since the number of terms involved is halved. 

Note that in each case it can be verified that the integral of n  over n  is unity, and that 

n  satisfies the symmetry property required above. In all cases, if  is the density of the 

uniform distribution between 0 and 1, then n  is the uniform distribution over n . 

This specification of the beliefs distribution is of course restrictive even among 

the distributions satisfying the imposed symmetry property. It leads, however, to simple 

specifications for the distribution of the order statistics and for the distribution of the 

maximum amongst 1,..., nx x . See appendices A1 and A.4. 

4.3. Lifelines 

Contestants are endowed with three lifelines, described earlier, that can each be 

played once at any time in the game. Two, or even all three, lifelines may be used on one 

question. Let us first consider the game with only one remaining lifeline. To clarify the 

difference the lifeline makes, Figure 1 presents the decision trees at stage n without or 

without the lifeline. To account for the lifeline, the state space clearly has had to be 

extended.  We write ;nW p  for the expected value of the game to a contestant faced 

with a question with belief vector p, when 0  if the lifeline has been used and 1  if 

it is still available. Whether to use a lifeline or not may depend on all components of p so 

the value is a function of the whole vector of subjective probabilities.  However, 

max i ip p  is a sufficient statistic for p in the contestant’s decision problem with no 

lifeline left and we will write this value function as ;0nV p . 

In what follows we assume that the lifeline amounts to a draw of a new belief, say 

q , given p , the current belief. For example, the use of 50:50 reduces two components of 

the belief vector to 0. For the other lifelines the audience and/or one (among several) 
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friends will provide some information which is then combined with the initial belief p . 

The new belief is the outcome of this process and q  is then used instead of p  in the 

decision problem. We therefore assume that the conditional distribution function of q  

given p  is well defined for each lifeline. Finally we define  

|E ,0 |n nk V qq pp p ,                 (15) 

to be the value of playing the lifeline at stage n where max i iq q . 

The values ,1nW p  and ,0nV p  are then related according to the updated 

dynamic programming equations below. When no lifeline is left we have the familiar 

equation: 

1 1,0 max , 0n n n n nV p a p f b b ,               (16) 

where 0 E ;0n nf V P . When the lifeline remains the contestant will choose the 

largest of the three options in the first choice line in Figure 1b (quit, use the lifeline, or 

play), where : 

 1 1,1 max , , 1n n n n n nW a k p f b bp p ,              (17) 

and 1 11 E ,1n nf W P  and 0 0 11 0f f a . 

Note that contestants will never strictly prefer to quit with a lifeline left unused. 

However, it is still possible that, for some p, a contestant may be indifferent between 

quitting and using the lifeline if she would subsequently choose to quit for any realisation 

of q contingent on p. For example, a contestant for whom 1 1 1 1
4 4 4 4, , ,p  will have 

q=1/2 no matter which two incorrect answers are removed if she were to play “50:50” 

(which two answers are discarded is decided when the question is constructed). This may 

fall short of the initial value of answering the question. A contestant who would reject 

such a “50:50” gamble would place no value on the lifeline. Except in these 

circumstances, the lifeline will be used if 1n na k p , otherwise the contestant will 

answer and retain the lifeline for future use. 



 14

The treatment of contestants with more than one remaining lifeline is a 

straightforward extension of this approach. Details are given in appendix A.2. 

5. Econometric specification and estimation 

5.1.   Specification of the belief distribution 

The distribution of the beliefs is one of the main elements of the model since it 

describes the distribution of the unobservables in the model. Under the assumptions we 

make below (see section 5.2) the joint density 4  can be constructed from some 

symmetric density  over the unit interval. We assume that x  is the density of a 

symmetric Beta random variable, ,B  on [0,1], i.e.: 

 
11

2

2
1x x x ,                   (18) 

with  some positive parameter, and where .  is the gamma function. Any random 

variable distributed according to ,B  has expectation ½ and second moment 

2

1 1

2 2 1
. 

In what follows, it will prove convenient to use draws from the joint distribution 

of ordered statistics of the belief distribution. Because of the symmetry assumptions that 

we impose on 4 , the joint density function of the order statistics (i.e. the vector of 

beliefs in decreasing order)  is simply 44! p , where p  is a vector of values ordered in 

decreasing order.  

Since it is straightforward to rank four numbers in decreasing order, the only 

remaining issue is to draw from a multidimensional random variable with joint density 

4 .  In Appendix A.3 we show how this can be achieved using three independent 

draws from Beta distributions with parameters , 2 , , 1  and , , 

respectively4.  

                                                 
4 We assume that the value of the parameter of the Beta distribution which generates the beliefs at each 
stage of the game varies with the number of questions left in the following manner:  
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5.2. Likelihood 

The contribution of an individual history to the likelihood is the product of the 

probabilities of success, and of the particular pattern of use for the lifelines for that 

individual history, up to and including the penultimate question, multiplied by the 

probability that for her last question she wins a million, loses or quits and the observed 

use of the lifelines for this last question.   

We assume that the expected utility function takes the CRRA form 

1
1U c c  where initial wealth, , is treated as a parameter to be estimated.  

Hence the contribution of contestant i’s history, which ends at stage *

in , to the 

likelihood has the general form 

 

*
**

* *

1
, ,

, , ,
, ,1

1

, , , ; , , , ; ,
i

ii

i i

n
LL k i LL n in

S i ll k i k
ll n i nk

k

L LL k i ll k i ,             (19) 

where ,LL k i  indicates the number and nature of the lifelines available to the contestant 

i at stage k, and ,ll k i  selects the relevant probability depending on the lifeline used by 

contestant i at stage k. Hence , , ,  is the vector of parameters of interest, i.e.  is 

the parameter of the belief distribution,  is the coefficient of relative risk aversion,  is 

a scaling factor in the utility function, and  is the probability that the friend knows the 

correct answer when the PAF lifeline is used5. Finally ,  are the independent 

estimates of the parameters of the density of the updated belief which results from the use 

of “Ask the Audience” –  see Appendix A2.3 for further details. 

                                                                                                                                                  

        

3 3

1 2
0.1  + 1- + 1-

10 10 10 10

n n n n
, 

where 
1
 and 

2
 are two additional parameters we estimate. This specification allows for a relatively 

flexible association between the stage of the game and the distribution of beliefs at the cost of a small 

number of additional parameters. For example if 
1

1.25  and 
2

-1.725  the relationship is decreasing 

and close to linear, if instead 
2

-3.427  the relationship is decreasing and convex , and decreasing and 

concave if 
2

0 .  
5 In the absence of any reliable information on the quality of the friend’s opinion, we allow the data to 
decide on the value of . 
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6. Data 

The operator, Celador PLC, selected 10 names at random from a (large) list of 

entrants, for each show broadcasted, who had successfully answered a simple screening 

question over a premium rate phone line. These 10 individuals attended the recording 

session for their show where they would compete against each other to be quickest to 

correctly answer a general knowledge question in a simple first round game known as the 

“Fastest Finger”. The winner of this initial round then competes, against the house, in the 

second round sequence of multiple choice questions. Typically each show would have 

time for two or three second round contestants. Contestants still playing at the end of the 

show would continue at the start of the next show. 

Our data comes from two sources. We have data that has been extracted from 

videotapes of the broadcast shows, kindly made available to us by Celador. These tapes 

cover all shows in the eleven series from its inception in September 1998 to June 2003. 

This gives us information on the behaviour of 515 contestants6 who played the second 

round sequence of multiple choice questions. However, a major concern about the 

findings of the gameshow literature is that the data is generated by selected samples7. To 

investigate this issue a questionnaire was sent to all of the 2374 potential contestants 

(except one) who had ever been invited to the studio for all UK shows in the first eleven 

series of shows broadcast. The questionnaire was designed to identify differences 

between contestants and the population as a whole. The questions aimed to provide data 

that was comparable to that available from official social surveys of large random 

samples of the population8. 

                                                 
6 We drop the shows that featured couples (including twins, father/sons, professors/freshers) and celebrities. 
One show, where a contestant was the subject of litigation, was not available to us. We also dropped the 
single observation who quit below £1000.  

7 In fact, Hersch and McDougall (1977) and Fullenkamp et al (2003) do report some comparisons between 
contestants and the population and find no significant differences on observable characteristics except for 
lottery play. This latter difference is unsurprising since all contestants have had to have played the lottery 
and won in order to appear on these shows. In the UK, lottery contestants do seem to have different 
characteristics than non-contestants (see Farrell and Walker, 1999). 

8 To protect confidentiality, we were not able to match the questionnaire data to the gameshow videotape 
information so we ensured that the questionnaire also contained information about play during the game. 
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Questionnaire replies were received in 791 cases, a response rate of 33%, where 

243 (32%) of these cases were Fastest Finger winners and so played the second round 

game. These 243 represent a response rate of 47% of the population of second round 

contestants. Not surprisingly, these second round contestants were more likely to respond 

to the survey because they were well disposed towards Camelot, having had the 

opportunity to win considerable amounts of money. It was immediately obvious that men 

were heavily overrepresented in both datasets. Table 1 shows the means of the data for 

the second round competitors and for the non-competitors. The “Fastest Finger” winner 

who go on to become WWTBAM competitors are more likely to be male, are a little 

younger, and have slightly longer education than those that failed at this first round. The 

rest of the table shows the corresponding information from various social surveys, re-

weighted to match the gender mix in the questionnaire data. 

Once the population datasets are re-weighted the observable differences between 

the questionnaire data and the population survey data tend to be quite small. Two 

variables are particularly worthy of note: the proportion of individuals who report that 

their household’s contents are not insured is similar to the population value (in fact 

slightly smaller suggesting more risk aversion); and the proportion who report being 

regular lottery ticket purchasers is also quite similar. Thus, our questionnaire dataset does 

not suggest that those that play (in the second round of) WWTBAM are heavily selected 

according to observable variables – except gender. Indeed, for those variables which 

might be expected to reflect risk attitudes we find no significant differences with our 

population surveys. 

However, whether the same can be said about the videotape information which is 

the population of WWTBAM contestants depends on the questionnaire respondents being 

representative of this underlying population. Thus, in Table 2, we compare the 

questionnaire data for the sample of 243 contestants who responded to the questionnaire 

with the population of 515 actual contestants. We have no consistent information on the 

characteristics of contestants in the population apart from that which is recorded on the 

videotapes. Thus, Table 2 records only gender and the outcomes of play. There are no 

significant differences in gender and although the outcomes information shows, as might 

be expected, that the questionnaire respondents were bigger winners on average, these 
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differences are not significant. Thus, we can have some confidence that the 

representativeness of contestants (in the questionnaire data) carries over to the population 

data in the videotapes. 

The distribution of winnings, for the second round contestants, depends on 

whether the contestant quit or failed to answer the last question asked. Almost all 

contestants who survived beyond £125,000 quit rather than failed – only one contestant 

failed at £500,000 and so went away with just £32,000 instead of quitting and going away 

with £250,000. Only three contestants failed at a sub £1000 question and went away with 

nothing. Three contestants won the £1m prize. Two-thirds of contestants quit and one-

third failed. “Failures” left the studio with an average of £17,438 (£15,000 for women 

and £18,244 for men) while “quitters” went away with an average of £72,247 (£68,182 

for women and £73,411 for men)9.  

Figure 2 presents a scatter plot of the value of the last question seen against the 

amount actually won. The scales for each axis are logarithmic (i.e. a minor tick on the 

axis indicates an integer multiple of the major tick to the left or below), and the data 

points have been jittered slightly to give an impression of the density around each point. 

The off-diagonal winnings at £1000 and £32000 stand out since these are the only 

amounts that can be reached from questions with a higher value when the contestant 

decides to play and loses. The on-diagonal data points represent individuals who have 

decided to quit when facing a question which they feel is “too difficult”. 

Figure 3 shows the overall distribution (the continuous line) of fails/quits as the 

game progresses from the first relevant question (i.e. when only 10 questions are left to 

play before winning the million pounds) to the last. Note that there are a disproportionate 

number of male contestants and we have represented the same proportions for each 

gender. Men tend to fail less in earlier stages of the game, while women tend to quit 

earlier. Although in some cases the differences are large, the overall pattern is 

comparable across genders. 

Finally, the use of lifelines is an important part of observed behaviour that our 

model attempts to explain. Out of the 515 contestants, 501 played ATA, 488 played 

                                                 
9 Here we categorise those that won the maximum £1m as quitters. 
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50:50, and 484 played PAF. There were no examples of individuals quitting with unused 

lifelines. There was a systematic tendency for lifelines to be played in order. ATA was 

played, on average, with 8.5 questions remaining; 50:50 was played with, on average, 7.0 

questions left; and PAF was used with just 6.9 questions remaining, on average.  

7. Estimation and results 

The estimation of the parameters of the model requires that we first estimate our 

model for the histograms that the lifeline “Ask the Audience” produces. This histogram 

records the percentage of the audience that selects each of the four possible answers. This 

preliminary estimation is used to determine the parameters ( )ˆ ˆ,  of the distribution 

described in Section A.2.3 of the appendix, where further details are given. 

To do so we use the data we have collected on these histograms and on our 

knowledge of the correct answer. Section A.2.3. in the appendix describes formally this 

aspect of the model. These parameter estimates allow us to evaluate the quality of the 

lifeline “Ask the Audience”. The parameter estimates are presented in Table 3. Assume 

that the first contestant answer is the correct one, these estimates imply that on average 

we expect the lifeline “Ask the Audience” to produce the histogram 0.63, 0.12, 0.12, 

0.12,  (i.e. 
ˆ ˆ ˆ ˆ

, , ,
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ3 3 3 3

). Treating these parameters as constants we 

then proceed to estimate the remaining parameters of the model.  

Table 4 presents the estimates of the preference parameters for two different 

specifications of the utility function and for the whole sample as well as for the samples 

of men and women separately. In addition to our preference parameters, Table 4 gives an 

estimate of the probability that the chosen friend, in the case of the PAF lifeline, knows 

the correct answer which, since we have no reliable data on this10, is estimated jointly 

with the preference parameters. 

The first column of Table 4 gives the parameter estimates of the baseline CRRA 

model for the pooled sample of men and women as a whole and assumes that the scale 

                                                 
10 Many friends prove not very helpful and do not even hazard a guess. 
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parameter, , (which one might think of as initial wealth) is constant across individuals. 

Our estimated value for the coefficient of relative risk aversion (first column) is 

remarkably close to 1 (although statistically significantly different from 1). The 

parameter  , which might be interpreted as reference wealth measured in thousands of 

pounds, is significantly estimated at 0.41.  

The remainder of the table relaxes the restrictions that: risk aversion is constant, 

men and women are the same; and that   is a constant. In particular, we present results 

for the generalization of the CRRA and the CARA utility functions known as the Hybrid 

Power-Expo (see for example, Holt and Laury, 2002). This specification depends on three 

parameters (instead of two for CRRA) in the following way: 

1sign
exp

1
u x x . 

It naturally nests both the CRRA (in the limit when 0 ) and the CARA (when 

0 )  specification and is therefore a convenient alternative specification to consider.  

We provide parameter estimates of this specification for the pooled sample and 

for men and women separately. In the pooled sample case, although  is statistically 

significant, the other parameters change little. In the estimation for the separate male and 

female samples, it is clear that the estimates do not exhibit large differences between men 

and women. The final three columns of the table presents estimates for this hybrid 

specification but allowing for some unobserved heterogeneity in . We assume that  is 

independently and identically distributed across individuals and, for the purpose of the 

estimation, we endow  with a discrete (2 mass point) distribution. This clearly rejects 

the one mass point assumption but again the preference parameters are effectively 

identical. 

The estimation of the alternative specification over the whole sample or over the 

samples of men and women separately gives different parameter estimates although these 

differences are again not very large. Even allowing for unobserved heterogeneity does not 

modify our findings dramatically. We interpret these findings as providing support for the 

robustness of the estimates based on the CRRA specification. 
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Two additional parameters which allow for the distribution of the initial belief to 

change with each round of the game are also estimated (not shown). To illustrate how the 

distribution of the beliefs changes as the game progresses we have calculated, in Figure 4, 

the distribution of the maximum belief when 1 question, and 3, 5, 8, and 10 questions, 

remain to be played. Note that the questions get more difficult in the sense that the 

distribution at any stage is stochastically dominated by the distribution at earlier stages. 

Indeed, with ten questions to go, the corresponding probability density function (i.e. the 

slope of the distribution function) increases up to, and is concentrated close to, p=1. 

Whereas, with few questions left the probability density function peaks before 1, and is 

concentrated around p=0.45 for the last question. 

Figure 5 shows the value of playing the game, V, implied by the CRRA estimates 

for the pooled sample, as a function of the number of questions remaining (on the  

horizontal axis) and the number and nature of the lifelines left. As we would expect the 

value of playing rises as the number of remaining questions falls and lifelines add 

positive value to playing. ATA appears to be the most valuable lifeline while 5050 and 

PAF have almost identical values. In fact, the model predicts that the lifeline ATA is 

almost as valuable as having both 5050 and PAF together. 

In Figure 6 we show the predicted probabilities of quitting and failing at each 

question, computed from the CRRA specification estimated over the whole sample, and 

compare these with the observed distributions. There are many fails and no quits when 

there are four more questions to come – i.e. when confronted with the £64,000 question – 

since there is no risk at this point. We broadly capture the peak in quits immediately 

before this point but underestimate the number immediately afterwards. We overpredict 

fails for very easy questions, while we underpredict quits. 

Figure 7 and 8 illustrate the differences between three possible specification of the 

utility function: lnu x x , the estimated CRRA, and  the estimated hybrid power 

expo specification. The scale and the location of each utility function are normalised in 

Figure 7 such that the comparison in terms of curvature is meaningful. The horizontal 

axis uses a log scale so that the =1 case appears linear. Differences in curvature exist 

although, from inspection of the figure, these differences are quite small. Figure 8 shows 
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the coefficient of relative risk aversion (in terms of x ) for the CRRA and the hybrid 

specification. In keeping with our observation of figure 7 the gradient is modest – it 

seems that a CRRA of unity is adequate to explain behaviour over a wide range11. 

Finally, in Table 5, we compute the certainty equivalents of the gambles at each 

stage of the game for three different types of situations (based again on the CRRA 

specification estimated on the whole sample). The certainty equivalent measures, in 

money terms, the value of being able to play the game and take into account the option 

value of being able to play further if the contestant is successful at the current stage. 

Moreover we present similar calculations for the value of playing the lifeline (again given 

a particular draw).  

The top third of the table corresponds to a situation where the contestant feels she 

is confident that she knows the answer (i.e. with a belief draw such that she feels that the 

first possible answer is the correct one with probability 0.9). The middle third of the table 

corresponds to a situation where the contestant is less confident about the correct answer 

(i.e. she feels that the first possible answer is the likely correct answer but only with 

probability 0.6). While the bottom third corresponds to a situation where the contestant is 

quite unsure about the correct answer (i.e. she feels that the correct answer is the first, but 

without much confidence).  

The table should not be read as a sequence of events for three different types of 

contestant, rather it lists the possible situations which any contestant might find 

themselves in. For example individuals are unlikely to find themselves unsure or certain 

about every single question, rather an individual might be confident about the £16000 

question and so have a certainty equivalent of £47120 at that stage, and then be unsure 

about the £32000 question so that the certainty equivalent of playing has only increases to 

£50560.  

Table 5 also shows the value associated with retaining the lifeline for future use. 

For example a confident candidate for the £32000 question, has a certainty equivalent of 

£89860 if she does not play the “50:50” lifeline, compared to a certainty equivalent of 

                                                 
11 However, note that our smallest prize is £1000. Thus it could be that only at very small gambles does the 
CRRA approach zero and this cannot be captured by our data since there are so few fails and quits in this 
range. 



 23

£73340 if she decides to use it at this stage. That is, the value of exercising the option of 

playing the lifeline at this stage is negative because she is confident about the answer to 

this question and may not be so confident about future questions. Imagine, furthermore, a 

contestant who has reached the £125000 stage and is confident about the answer, then 

playing the lifeline reduces the certainty equivalent of being in that position. If on the 

other hand, in the unlikely event that, she reaches the £250000 stage and is equally 

confident about knowing the correct answer to the question, then the situation is reversed: 

she should use her lifeline since the certainty equivalent is larger.  

Clearly the belief has a substantial effect on the certainty equivalents. Indeed our 

model predicts that if faced with either of the second (p=0.6) or third (p=0.4) belief 

draws, contestants would be prepared to pay sizeable amounts (amounts larger than 

£300,000 in the case of the million pound question) to avoid having to answer the 

question. If EU is logarithmic, contestants will only attempt the £1 million question if 

they are more than 86% confident. 

8. Conclusions  

This paper provides new evidence about the degree of individual risk aversion. 

The analysis is firmly embedded in the expected utility paradigm. Our contribution is to 

the exploit a “field experiment”, based on the popular gameshow, “Who Wants to be a 

Millionaire?”, where the outcomes can vary enormously across contestants, but in a 

known fashion. This provides a check on laboratory experiments where, although no skill 

is involved to complicate the analysis, the expected value of the outcome in such 

experiments is typically small. The range of possible outcomes in WWTBAM is 

substantially larger than for most of the existing gameshow evidence. The downside of 

our data source is that we need to make parametric assumptions concerning the 

distribution of prizes through our assumptions concerning the distribution of beliefs. This 

is usually not required in a laboratory experiment or in field experiments where the 

outcomes are determined only by statistical chance. However, we feel that we are in a 

better position to measure the coefficient of risk aversion than most researchers who use 

observational data sources where the range of outcomes and their distribution is also 

usually unknown and need to be inferred.  
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We also use our data to estimate the value of additional information to contestants 

in this game of skill. Finally, we were also able to get detailed questionnaire information 

that provide some reassurance as to the representativeness of contestants. Once we 

rebalanced the data to account for the disproportionate number of male contestants, our 

data appears to be representative of the UK population, both in terms of observable 

characteristics and in terms of other aspects of risk-taking behaviour. 

Perhaps surprisingly, we find this parsimonious model is broadly effective in 

explaining behaviour in this simple game. Our headline result, that the degree of CRRA 

is approximately 1 with a high degree of precision, is consistent with the results of recent 

work on the “Hooster Millionaire” and “Deal, No deal” gameshows which are the only 

other games which feature, like WWTBAM, such large stakes.  
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Appendix  

A. 1 Distribution of the maximum belief 

The dynamic model outlined involves the distribution, F, of the contestant’s 

assessment of her chance of answering the question successfully. Without lifelines, 

nF F  is the distribution of max
nx

x  if x has the probability density function n x . 

Indeed max
nx

x  measures the individual assessment of her likelihood of answering the 

question correctly when faced with n alternatives. In this section, we describe formulae 

for the distribution of the highest order statistic:   
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n ii
F z X z ,                 (20) 

given that X  is distributed with density function n . In particular we can show that 

 

1
2

1
22

0                 if 

2 1   if 1,

1                 otherwise.

z

F z z z                 (21) 
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The distribution function at higher orders can be obtained from 2F  recursively. Whenever 

0,1z , we have  
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and the relevant density functions, say 3f  and 4f , can be shown to exist and to be 

continuous everywhere inside 0,1 . For example, in the uniform case where 1x  

for 0,1x , and 0 elsewhere, we find that  
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              (25) 

In this latter case it is easy to verify that the density function is continuous and that the 

derivatives match at the boundaries of each segment.  

The distribution functions nF  do depend on the density  in an important fashion. 

We interpret  as a description of the individual’s knowledge. When  is diffuse over 

0,1  (e.g. uniform) all points on the simplex n  are equally likely and in some instances 

the individual will have the belief that she can answer the question correctly while in 

some cases the beliefs will be relatively uninformative, while if  is concentrated around, 

or in the limit at, ½ the individual is always  indecisive. Finally, when ’s modes are 

located around 0 and 1, the individual is always relatively informed about the correct 

answer.  

A. 2 Lifelines 

Extending the model above to allow for the lifelines makes the analysis more 

difficult but also enables us to exploit more aspects of the data. We show how, in the first 

sub-section below, the model can be modified when only one lifeline is allowed for. In a 

second sub-section we show how the model can be modified for all three lifelines. We 

then present the precise assumptions that allow the modelling of each lifeline in 

particular. 

A. 2.1 The complete game 

 

We now assume that the three lifelines are available and that each can be played 

at most once. As above each lifeline generates a new belief q which is used in the 
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decision process instead of the individual’s initial belief. Given the initial belief p, the 

new belief is drawn from a separate distribution for each lifeline, say 1 |H q p  for 

“50:50”, 2 |H q p  for “Ask The Audience” and 3 |H q p  for “Phone A Friend”. 

We write 1 2 3, ,  for the “lifeline state” vector where 0i =  if the i
th 

lifeline has been played and 1 otherwise. We use ;nW p  to denote the optimal 

expected value of the game at stage n, when the probability vector of the current question 

is p and the lifeline state is ( )1 2 3, , . As above, ( )nV p  is used as a shorthand for 

( )( ); 0, 0,0nW p  and ( )nV p  satisfies the recursive dynamic programming equations set 

out in section 5.1 above. Below we write the dynamic programming equations using the 

notation: 

 1 2 3 1 2 3, , E ; , , ,n n nf W P               (26) 

where the expectation is with respect to nP , the distribution of the belief vector p at stage 

n. 

When there are one or more lifeline left, i.e. 1 2 3 1+ + , the contestant has 

three options: (i) quit, (ii) answer the question, (iii) use one of the remaining lifelines. 

The recursive equation is 

1 1; max , , ;n n n n n nW a p f b b kp p              (27) 

where ;nk p  denotes the maximum expected value from using a lifeline when the 

belief is p and the lifeline state vector is . Here, 

 ; max E ; |n n i i
i I

k Wp Q e p                 (28) 

where : jI j e  using ie  to denote the i-th unit vector in 3R  and iQ  is 

distributed according to |iH q p . This formulation does not preclude an individual from 

using more than one lifeline on the same question, a behaviour we observe in some 

contestants. 
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A. 2.2 “50:50” 

This is the simplest lifeline to model. It provides the contestant with “perfect 

information” since two incorrect answers are removed. Ex-ante (i.e. before the lifeline is 

played) the contestant believes that the correct answer is i (=1,…,4) with probability ip . 

The “50:50” lifeline removes two of the incorrect answers, retaining j i , say, with 

equal probability (1/3). By Bayes Theorem, the probability that answers i,j survive this 

elimination process is 3ip . The answers i and j  can also be retained if j is correct and i 

survives elimination. This occurs with probability 3jp . Applying Bayes Theorem gives 

the updated belief vector ,i j
q , where 

 ,

 if ,

 if 

0 otherwise.

i

i j

ji j

k

i j

p
k i

p p

p
k j

p p
q                  (29) 

Hence 1 ;H q p  is a discrete distribution with support ,

, 1,2,3,4

i j

i j
q  and such that  

,

1 ; 3
i j

i jH p pq p , and 0 elsewhere. 

A. 2.3 “Ask the Audience” 

Modeling the “Ask the Audience” lifeline requires more than simply applying 

Bayes’ rule to the current belief draw. In particular we must allow the contestant to learn 

from the information provided by the lifeline, i.e. here the proportions of the audience’s 

votes in favour of each alternative answer. The difficulty here is to understand why and 

how should a “perfectly informed” rational individual revise his/her prior on the basis of 

someone else’s opinion?  The route we follow here was proposed by French (1980) in the 

context of belief updating after the opinion of an expert is made available. French 

suggests that the updated belief that some event A is realised after some information inf 

has been revealed should be obtained from the initial belief, Pr A ,  the marginal 

probability that a given realisation of the information is revealed, Pr inf , and the 
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individual’s belief about the likelihood that the information will arise if A subsequently 

occurs, Pr[inf | ]A  according to the following rule, related to Bayes theorem: 

Pr | inf Pr inf | Pr[ ]/ Pr[inf]A A A .                (30) 

In this expression Pr[inf | ]A  is understood as another component of the individual’s 

belief - her assessment of the likelihood of the signal given that the relevant event 

subsequently occurs. 

Introducing A , A’s alternative event, this is rewritten as 

 
Pr inf | Pr[ ]

Pr | inf
Pr inf | Pr[ ] Pr inf | Pr[ ]

A A
A

A A A A
.              (31) 

In our context we understand the asking the audience as an appeal to an expert, and 

assume that the events of interest are the four events “answer k is correct”, k=1,2,3,4. We 

assume that contestants “learn” some information about the quality of the expert in 

particular the distribution of the quantities 

1 2 3 4Pr , , , | answer  is correct kq q q q kq ,                (32) 

where kq  is the proportion of votes allocated to the kth alternative. Following French’s 

proposal, the kth component of the updated belief  given the information q is: 

 
4

1

k k k j j

j

p p .                  (33) 

Let us assume for now that each contestant knows the joint distribution of the 

vector 1 2 3 4, , , . In fact the above expression implies that, without loss of 

generality, we can normalise the k  to sum to one. Denote I  the density function of 

 given some initial belief p. Given p, the density of the updated belief 2 ;H p  can be 

calculated as: 

 

44 4
1

2

11

; ; k k k

kk

H I p pp p ,              (34) 
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with 
4

1 1

1

;i i i k k

k

p pp . The term 

4
4 4

11

k
k

kk k

p
p

 arises because of the 

change of variable from  to . 

The quantities 1 2 3 4Pr , , , | answer  is correct kq q q q kq  represent the added 

information obtained from using the lifeline and are estimable from the data provided we 

assume a form of conditional independence. In particular we require that the contestant’s 

choice to ask the audience does not influence the audience’s answer. Furthermore, we 

assume that there is no information contained in the position of the correct answer, hence 

we expect the following symmetry restrictions to hold : 

1 2 3 4 11 2 3

11 2 3

11 2 3

Pr , , , | answer 1 is correct Pr , , , | answer 2 is correct

Pr , , , | answer 3 is correct

Pr , , , | answer 4 is correct ,

q q q q q q q q

q q q q

q q q q

q q

q

q

 

where 1 , 2 , 3 , 1 , 2 , 3   and 1 , 2 , 3   are some 

permutations of 2,3,4 . The symmetry restrictions, the conditional independence 

assumption, and the uniform random allocation of the correct answer among four 

alternative answers allow us to estimate the likelihood of the information given the 

position of the correct answer, and therefore provide empirical estimates for 

1 2 3 4Pr , , , | answer  is correctq q q q kq . 

In practice we assume that, given answer k is correct, information q has a 

Dirichlet density ; ,kD q  , k=1…4, defined over 4  such that 

 
4

1

3
1

3
; , ,k i k

i

D q qq   

where the symmetry assumption is imposed through the parameter vector  

,k ke  with ke  is a vector of zeros with a 1 in position k. This vector of 

parameters for the Dirichlet density depends on two free parameters only,  and . 

These two parameters can be estimated (independently from the other parameters of the 

model) by maximum likelihood from the observation of the information obtained from 
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the audience (i.e. the histograms) whenever the lifeline is used, and the observation of 

which answer is the correct answer12. For completeness note that k can be defined in 

terms of the elements of q as  
4

1

k k j

j

q q . The information density which the 

contestant expects is therefore the mixture ; , ,D q p  of the previous densities 

; ,kD q  , k=1…4, conditional on a given answer being correct, we have: 

44 4
1

3
1 11

3
; , , ; , ,i i i i i

i ii

D p D q p qq p q             (35) 

where the mixing weights are the initial beliefs , 1...4ip i . 

A. 2.4 “Phone a Friend” 

To use this lifeline the contestant determines, ahead of the game, six potential 

experts (“friends”) and when she plays the lifeline she chooses one from this list of six. 

We imagine that the contestant engages in some diversification when drawing up the list 

(i.e. the range and quality of “expert knowledge” of the friends on the list is in some way 

optimised), and at the time of playing the lifeline the contestant chooses the expert to call 

optimally.  

There is however little information available to us about this process. As a 

consequence our model for this particular lifeline is somewhat crude. We assume that the 

entire process can be modelled as an appeal to an expert who  knows the answer with 

some probability , and is ignorant with the probability 1 . We assume that the expert 

informs the contestant of his confidence13. Hence either the contestant knows the answer 

and her opinion “swamps” the contestant’s belief, or the expert is ignorant and conveys 

no information and the contestant’s belief is left unchanged. The density of the updated 

belief is therefore: 

3 1,0,0,0
; 1H

p
p 1 1 .               (36) 

                                                 
12 Even when the contestant chooses an incorrect answer, the compere always reveals the correct one. 

13 In practice, contestants invariably ask the friend how confident they feel – although the answer is usually 
not quantitative. 
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A. 3 Proposition (factorisation of 4 1 2 3 4, , ,x x x x ): 

The joint density: 2 3
4 1 2 3 4 1

2 1 1 2

2
, , ,

1 1

x x
x x x x x

x x x
, with 

1 2 3 4, , ,x x x x  such that 
4

1

1i
i

x , 0ix  for all i, can be factorised as follows: 

1 2 1 3 1 24 1 2 3 4 1 | 2 1 | , 3 1 2, , , ; ; ,U U U U U Ux x x x f x f x x f x x x ,  

with 
1Uf u , 

2 1| ;U Uf v u ,  
3 1 2| , ; ,U U Uf w u v , (conditional) densities such that 

 
1

2

0 1
2

1
U u

u u
f u 1 , with 

1 2
2

0
1 x x dx , 

 
2 1| 0 12

1
; 2

11
U U v u

u v v
f v u

uu
1 , 

 
3 1 2| , 0 1

1
; ,

1 1
U U U w u v

w
f w u v

u v u v
1 . 

Proof: It is easy to verify, by simple integration for 
1Uf u , 

2 1| ;U Uf v u ,  and by 

construction for 
3 1 2| , ; ,U U Uf w u v , all three are well defined densities over the relevant 

ranges. Moreover their product is equal to ( )
4 . .  

This implies that if 1 2,U U  and 3U  are three random variables each distributed 

with densities 
1Uf u , 

2 1| ;U Uf v u ,  and 
3 1 2| , ; ,U U Uf w u v , then the random vector 

1 1 2 1 2 3 1 2 3P U U U U U U U U U , with 1i iU U  for all i=1..3, is distributed with 

joint density: 2 3
4 1 2 3 4 1

2 1 1 2

2
, , ,

1 1

x x
x x x x x

x x x
. Note that by 

construction ' 1P e , and 0P . 

Since 4 x  and 4 x  share the same joint density for the order statistics, i.e. 

44! x  where x  is such that its element are sorted in descending order, to sample from 

44! x  we propose to sample first from 4 .  and then to sort the resulting vector in 

descending order. 
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A.4  Probabilities and Simulated Likelihood 

In this section we describe the evaluation of some of the probabilities that lead to 

the log likelihood. A complete description of the calculations can be obtained from the 

authors online14. 

Calculating the probabilities when only one lifeline is available. 

When the contestant has used all her lifelines, the events of interest are the 

occurrences of the contestant quitting or losing, and for the last question the event that the 

contestant wins the million prize. The probabilities of these events can be calculated 

directly from the analytical expressions given in section 5.1 using the formulation for F 

we derive in section 5.3.  

When one or more lifelines are available the calculations are made more 

complicated because of the information which is gained when the lifeline is used and 

which allows the contestant to update her belief. Hence, given the initial draw of the 

belief we determine whether this particular draw leads to the use of the lifeline and, if the 

lifeline is played, then whether the updated belief, or the original belief, if the lifeline is 

not played, is informative enough to lead the contestant to attempt an answer. Finally we 

evaluate the probability that the answer is correct (under the original or the updated 

belief).  

We will write ,

ijk

k n p  as the probability that given p at stage n event k (which is 

defined precisely below) is observed, given that the contestant is in the lifeline-state ijk, 

where i, (respectively j or k)  is one if the first (respectively second or third)  lifeline is 

yet to be played and zero otherwise. Let, ,

ijk

k n  be the expected value of ,

ijk

k n p  over all 

possible realisations of p, i.e. , ,Eijk ijk

k n k n P . Finally ,

,

ijk i j k

k n p  stand for the 

probability that given p at stage n event k is observed given that the contestant starts the 

question in the lifeline-state ijk and transit to lifeline-state i’j’k’. We consider below 

representative events for each lifeline.  

 

                                                 
14 http://www.qub.ac.uk/schools/SchoolofManagementandEconomics/Staff/LanotGauthier/ 
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“50:50” is the only lifeline available at stage n.  

The contestant uses “50:50”, plays and wins (moves to the next stage or wins the million 

prize). 

First, define the probability that the contestant uses “50:50”, plays and wins given 

a draw (ordered in decreasing order) p from the belief distribution: 

100

1,

1 100,000

1 1 1,

Pr use "50:50" plays wins | stagen ,

,0,0,0 1,0,0 ,

n

n n n n nk p f b b

p p

1 p p
               (37) 

where  
3 4

100,000

1, 1 1

1 1

1
0,0,0

3
n j jk n n n n

j k j

p f b b ap 1 p ,  with j

jk

j k

p

p p
. 

This last expression is the probability that, given p, the contestant answers correctly after 

using the lifeline. Hence the unconditional probability satisfies 

100

1,

1 100,000

1 1 1, 4

Pr use "50:50" plays wins | stagen

,0,0,0 1,0,0 ,

n

n n n n nk p f b b d1 p p p p
4

             (38) 

where 4  is the subset of the 4-simplex where 1 2 3 4 0p p p p .  

In order to determine the probabilities we have used the fact that a contestant with 

a lifeline available will either use it (and perhaps then quit), or play. It is straightforward 

to verify that the five expressions above sum to unity; in particular the sum of the first 

three expressions is the probability that the contestant uses the lifeline and this is the 

complement of the sum of the last two probabilities.  

Each term of the sum that determines 100

1 p  (and similarly 100

2 p and 100

3 p ) 

is the product of the probability that a given two of the four options remain after the 

lifeline is played,  with probability 
1

3
j kp p , multiplied by the probability that the 

remaining alternative with the largest updated belief is correct, with probability 

j

jk

j k

p

p p
p  with j kp p , multiplied by the indicator that, given the updated belief, 

the contestant decides to play. 
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“Ask the Audience” is the only lifeline left at stage n. 

The contestant uses “Ask the Audience”, plays and loses, 

010

2,

010

2, 4

Pr use "Ask the Audience" plays loses | stage n

,

n

n dp p p
4

             (39) 

where  010 2 010,000

2, 1 1 2,,0,0,0 0,1,0n n n n n nk p f b bp 1 p p ,  

and 010,000

2, 1 1 1 11 ; ; 0,0,0 ; , ,n n n n nf b b a D dp q p 1 q p q p q
4

  

where ;q p  stands for the revised belief after information vector q  is made available 

and 1 ;q p  is the largest element in ;q p .  

“Phone a Friend” is the only lifeline left at stage n. 

The contestant uses “Phone a Friend” and quits, 

001 001

3, 3, 4Pr uses "Phone a Friend" quits | stagen ,n n dp p p
4

  

where 001 3 001,000

3, 1 1 3,,0,0,0 0,0,1n n n n n nk p f b bp 1 p p   

and 001,000

3, 1 1 11 0,0,0n n n n np f b b ap 1 . 

General Case: all the lifelines are available 

When more than one lifeline is available at a given stage, the number of 

elementary events of interest increases, since not only can the contestants decide to play 

one lifeline among many but the contestant can play more than one lifeline to answer a 

single question. Hence while there are only five elementary events of interest when only 

one given lifeline is left there are nine such events when two lifelines are available and 

seventeen when all three lifelines are available, ignoring the order in which the contestant 

uses the lifeline and not counting events with zero probability ex-ante (for example 

observing an event such as quitting while the three lifelines are available)15. In this 

                                                 
15 In the case of two lifelines left : 1) Uses the two lifelines, plays and wins; 2) Uses the two lifelines, plays 
and loses; 3) Uses the two lifelines, plays and loses; 4) Uses one of two lifelines, plays and wins; 5) Uses 
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section we present the relevant expressions needed to obtain the probabilities of few 

selected elementary event, all other probabilities can be obtained in a similar fashion. 

The contestant uses the three lifelines (in any order), plays and loses. 

111

2,

1 2 3 111,011

1 1 2,

2 1 3 111,101

1 1 2,

3

Pr uses all life lines plays loses | stagen

,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0

,1,0,1 max 1,1,1 , ,0,1,1 , ,1,1,0

,

n

n n n n n n n

n n n n n n n

n

k p f b b k k

k p f b b k k

k

1 p p p p

1 p p p p

1 p
1 2 111,110

1 1 2,

4

1,1,0 max 1,1,1 , ,0,1,1 , ,1,0,1

.

n n n n n np f b b k k

d

p p p

p p

4

 (40) 

where 
3 4

111,011 011

2, 2, , ,

1 1

1
, ,0,0

3
n n j k k j

j k j

p p p ,              (41) 

111,101 101

2, 2, ; ; , ,n n D dp q p q p q
4

,               (42) 

111,110 110 110

2, 2, 2,1,0,0,0 1n n np p .               (43) 

Inspection of these expressions reveals that the probabilities of events in which 

more than one lifeline is available, here 111

2,n , can be defined recursively in terms of the 

conditional probability of events with one fewer lifeline, given the initial belief draw, 

here 011

2,n p ,  101

2,n p  and 110

2,n p . In turn, each of these conditional probabilities can be 

calculated from conditional probabilities involving only one lifeline, i.e. 001

2,n p ,  

100

2,n p  and 010

2,n p  . This property is a consequence of the recursive definition of the 

value function over the lifeline part of the state space (see section 5.4.b).  

Recall, however, that the number of events of interest when the three lifelines are 

available is larger than when only two or less are available. Hence the definition of 17 

                                                                                                                                                  
one of two lifelines, plays and loses; 6) Uses other lifeline, plays and wins; 7) Uses other lifeline, plays and 
loses; 8) Does not use any lifeline, play and win; 9) Does not use any lifeline, play and loses; …. 
In the case of three lifeline left: 1) Uses the three lifelines, plays and wins; 2) Uses the three lifelines, plays 
and loses; 3) Uses the three lifelines, plays and loses; 4) Uses  “50:50” and “Phone a Friend”, plays and 
wins; 5) Uses “50:50” and “Phone a Friend”, plays and loses; 6) Uses another “50:50” and “Ask the 
Audience”, plays and win; 7) Uses “50:50” and “Ask the Audience”, plays and loses;… ; 10) “Uses 
“50:50”, plays and win; 11) Uses “50:50”, plays and loses; …16) Does not use any lifeline, play and win; 
17) Does not use any lifeline, play and loses; 
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probabilities with three lifeline at stage n, i.e. 111

,m n , m=1…17, will involve the 27 

conditional probabilities with two lifelines, i.e. 011

,m n p , 101

,m n p  and 110

,m n p , m=1…9. 

In turn each of these conditional probabilities will depend on the 15 probabilities with 

one lifeline as defined in the previous section, i.e. 100

,m n p ,  010

,m n p  and 001

,m n p  

m=1…5. 

The three lifelines are available, the contestant uses “50:50” , plays and wins. 

111

10,

1 2 3 111,011

1 1 10, 4

Pr uses "50:50" only among 3 life lines plays wins | stagen

,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0 .

n

n n n n n n nk p f b b k k d1 p p p p p p
4

           

with  
3 4

111,011 011

10, 8, , ,

1 1

1
, ,0,0

3
n n j k k j

j k j

p p p  where 011

8,n p  is the probability that 

with “Ask the Audience” and “Phone a Friend” available, for some belief p, the 

individual plays and wins. 

Three lifelines are available, the contestant does not use any, plays and loses. 

111

17,

1 2 3

1 1 1 4

Pr does not use any of the 3 life lines plays loses | stagen

1,1,1 max ,0,1,1 , ,1,0,1 , ,1,1,0 1 .

n

n n n n n np f b b k k k p d1 p p p p p
4

 

Simulation and smoothing  

The evaluation of the probabilities ,

rst

m n p , n=1..15, m=1..1716,  
3

, , 0,1r s t  

and of the conditional expectations , , ,j

nk r s tp , n=1..15, j=1..3, and 
3

, , 0,1r s t   

requires the use multidimensional integration techniques. Simulation methods (as 

described in Gouriéroux and Monfort (1996) and Train (2003)) are well suited and have 

been applied successfully in similar context (see the examples discussed in Adda and 

Cooper, (2003)). 

Clearly the specification of the belief lends itself to a simulation based likelihood 

methodology since simulations of Beta variates are obtained simply from Gamma 

variates (see for example Poirier (1995)). In turn, Gamma variates can be obtained 

                                                 
16 If ,

rst

m n  is not defined for some m, and some r,s,t  we assume , 0rst

m n . 
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directly, using the inverse of the incomplete Gamma function. Numerically accurate 

methods to evaluate the inverse of the incomplete Gamma function are detailed in 

Didonato and Morris (1996)17. The main advantage of their results is that it allows for 

simulations that are continuous in the parameters of the Gamma distributions. Evaluation 

by simulation of an integral involving the density of a 4 dimensional Dirichlet random 

vector, ; , ,D q p , is obtained directly by the simulation of each of its component. For 

example  

1
1 1

100 100 100,000

1, 1, 4 1, 4,0,0,0 1,0,0
,

n n n n
n n nk p f b b

d d
p

p p p 1 p p p
4 4

     (44)  

can be approximated by 

1
1, 1

100
100 100,000

1, 1, 1,,0,0,0 1,0,0
1 1

1 1
,

n s s n n n

S S

n n s n sk p f b b
s s

S
S S p

p 1 p             (45) 

where sp  is one of S (the number of simulations) independent draws from the distribution  

of the order statistics of the belief,   4 . . In fact the accuracy of this simulated 

probability (and of all others which involve draws from 4 .  ) can be improved upon 

through antithetic variance reduction techniques which involve the permutations of the 

gamma variates used to generate each individual beta variate18 (as explained for example 

in Davidson and McKinnon (2004) or in Train (2003)).  Moreover, the quantity  

1 2 3
1 1

111 111,011

10, 10, 4,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0
.

n n n n n n
n nk p f b b k k

d
p p p

1 p p p
4

            (46) 

can be evaluated using the simpler formula 

                                                 
17 This is implemented in Gauss in the procedure gammaii (contained in the file cdfchic.src). 

18 For example, to simulate a draw from a , 2 , one can draw two independent realisations of a 

random variable distributed according to a , say 
1

z  and 
2

z ,  and one realisation from a 2 , say 
3

z .  

Then both 1 1 2 3z z z z  and 2 1 2 3z z z z  are draws from a , 2 , furthermore they are 

negatively correlated, so that the variance of their mean is smaller than the variance of the mean of two 

uncorrelated draws from a , 2 . In fact the relative efficiency, measured by the ratio of the 

variances, is 

2
3 2 3 3

1
4 2 3 4

 for 0 . 
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1 2 3
1, 1

111 111,011

10, 10,,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0
1

1ˆ
n s s n n n n s n s

S

n n sk p f b b k k
s

S
S p p p

1 p ,            (47) 

or any improvement of it. Similarly 111,101 101

2, 2, ; ; , ,n n D dp q p q p q
4

 can be 

evaluated by 
4

111,101 101

2, 2, ,

1 1

1ˆ ; ;
S

n i n s i

i s

S p
S

p q p , where ,s iq  is one of S independent 

draws from ; ,iD q .  

Finally all quantities 
2

2

|, , , E , , , |n nk r s t W r s t
p

p p  which involve a multi 

dimensional integral and the joint density ; , ,D q p  can be obtained in a similar 

fashion: for example, using 
4

2

,

i=1 1

1ˆ , , , ; = , , ,
S

S

n i n s i

s

k r s t S p W r s tp q , where ,s iq  is one of 

S independent draws from ; ,iD q . In practice these expression are modified in 

order to smooth out the discontinuities that are created by the indicator terms. Hence, the 

indicator functions 1 2 3 4max , , ,v v v v1  1 2 3max , ,v v v1  or 1 2 ,v v1  are replaced 

by their smoothed versions, 
2 1 3 1 4 1

1
,

1 exp exp expv v v v v v
 

2 1 3 1

1

1 exp expv v v v
, and 

2 1

1

1 exp v v
 respectively, where  is a 

smoothing constant. In the limit as   the smoothed versions tend to the indicators. 
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Table 1 Questionnaire Sample and Population Data 

 
Population survey 

data* 
WWTBAM 
competitors 

WWTBAM 
non-competitors 

 Mean Std Dev Mean Std Dev Mean Std Dev 

Male 0.52 0.40 0.76 0.43 0.66 0.48 
Age 44.41 10.21 43.14 9.36 47.86 11.67 
Married 0.80 0.44 0.79 0.41 0.76 0.43 
Education years 13.88 4.10 13.71 3.99 12.82 3.22 
Smoker ++ 0.25 0.42 0.22 0.41 0.26 0.44 
Renter 0.25 0.33 0.144 0.35 0.177 0.38 
Contents uninsured + 0.09 0.26 0.07 0.27 0.06 0.31 
House value (£k) ** ++ 178.9 157 190.8 127 184.8 188 
Employed 0.652 0.44 0.638 0.48 0.593 0.49 
Self-employed 0.155 0.38 0.193 0.40 0.189 0.39 
Not working 0.194 0.40 0.160 0.37 0.195 0.40 
Gross earnings (£k pa) *** 27.08 23.0 31.17 24.0 28.67 22.7 
Regular lottery player +++ 0.67 0.40 0.63 0.41 0.65 0.41 

Observations various 243 548 
Notes: * the survey datasets have been re-weighted to reflect the gender mix in the WWTBAM data. 
Population data comes from the 2002 Labour Force Survey with the exception of:  + from Family 
Expenditure Survey 2002 data, ++ from British Household Panel Study 2001 wave, and +++ from the 
Gambling Prevalence Survey 2002.   ** if owner occupier. *** if employed. 

Table 2 Questionnaire Contestant Sample and Population of Contestants 

 
Questionnaire sample of 

contestants 
Population of contestants on 

videotapes 

 Mean Std Dev Mean Std Dev 

Male 0.76 0.43 0.77 0.43 
Winnings £,000 61.96 104.1 54.26 105.9 
% quit last Q 0.68 0.47 0.67 0.47 

N 243 515 
Note: We categorise players who won the maximum £1m as quitters. 

 
 
Table 3 Maximum Likelihood Estimates of the Parameters of the Distribution of 

Histograms (ATA) 

Parameter Estimate Std. err. 

 4.754 0.210 

 0.914 0.030 

Number of observations 501 
Log-Likelihood 1526.41 

 Note: These results are based on 501 observations for which the use of ATA is observed.
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Table 4 Maximum Likelihood Estimates  

 
1

1

x
u x  1sign

exp
1

u x x  

  Homogenous  Heterogenous  (2 groups) 

Parameters All All men Women all Men women 

 1.018 
(0.001) 

1.0567 
(0.018) 

1.0469 
(0.049) 

1.0778 
(0.047) 

1.0985 
(0.028) 

1.0783 
(0.027) 

1.1811 
(0.093) 

1  
0.410 

(0.077) 
0.3138 
(0.109) 

0.3056 
(0.141) 

0.3879 
(0.214) 

0.0454        
(0.087) 

0.0425 
(0.102) 

0.0380 
(0.212) 

2  - - - - 
1.1238        
(0.321) 

0.9654 
(0.356) 

1.8072 
(0.899) 

Prob[ 1 ] - - - - 0.1416 0.1564 0.0958 

 - 
-0.0309 
(0.006) 

-0.0377 
(0.019) 

-0.0278 
(0.006) 

-0.0343 
(0.003) 

-0.0345 
(0.005) 

-0.0411 
(0.019) 

 
0.419 

(0.027) 
0.354 

(0.024) 
0.364 

(0.029) 
0.320 

(0.045) 
0.529 

(0.024) 
0.534 

(0.028) 
0.484 

(0.048) 
        
Mean log-lik -9.28661 -9.28661 -9.35367 -9.03649 -8.82529 -8.89011 -8.57972 
Number of Obs.  515 515 396 119 515 396 119 
Note: Two further parameters are estimated. These parameters specify the dependence of the belief distribution on the question round. 
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Table 5 Certainty Equivalents (£ ,000) 

  50:50 PAF ATA 

1na  nb  CE CE of LL CE CE of LL CE CE of LL

p=(0.9,0.05,0.03,0.02)       

500 32 701.85 848.12 701.85 912.84 701.85 845.07 

250 32 409.16 435.58 604.16 484.06 522.76 438.82 

125 32 232.61 225.51 335.19 241.31 282.85 229.18 

64 32 139.39 121.47 187.43 120.31 157.20 123.14 

32 32 89.86 73.34 114.35 74.13 91.43 73.95 

16 1 47.12 46.08 54.37 53.63 46.91 47.35 

8 1 26.08 19.72 35.06 22.49 26.44 20.22 

4 1 14.04 11.05 19.70 12.15 13.88 11.30 

2 1 8.95 7.22 12.70 7.69 9.30 7.35 

1 1 6.46 5.38 8.78 5.64 6.78 5.46 

0 0 4.35 4.04 5.62 4.29 4.47 4.15 

p= (0.6,0.2,0.15,0.05)       

500 32 174.40 544.80 174.40 789.05 174.40 719.35 

250 32 130.14 282.30 160.81 438.58 148.67 360.24 

125 32 95.63 152.25 116.75 222.49 106.42 180.99 

64 32 72.21 92.07 84.96 114.14 77.14 93.78 

32 32 56.70 61.84 64.76 72.74 57.24 62.56 

16 1 9.29 22.75 10.06 46.06 9.27 31.15 

8 1 6.66 11.19 7.87 18.06 6.71 14.05 

4 1 4.68 7.01 5.68 10.83 4.65 7.33 

2 1 3.60 4.97 4.41 7.44 3.68 5.10 

1 1 2.97 3.91 3.56 5.31 3.06 4.00 

0 0 1.19 2.31 1.41 4.05 1.21 2.41 

p= (0.4,0.3,0.2,0.1)       

500 32 123.81 499.10 123.81 780.24 123.81 719.35 

250 32 98.08 254.91 116.07 396.12 109.05 360.24 

125 32 76.73 133.95 89.95 217.27 83.55 181.05 

64 32 61.33 81.53 69.82 110.96 64.65 93.03 

32 32 50.56 57.46 56.22 72.13 50.94 59.99 

16 1 6.16 18.08 6.57 46.92 6.14 31.15 

8 1 4.70 9.22 5.38 18.65 4.73 14.05 

4 1 3.52 5.73 4.12 10.81 3.50 7.37 

2 1 2.84 4.22 3.35 7.31 2.89 4.64 

1 1 2.43 3.40 2.81 5.29 2.49 3.70 

0 0 0.81 1.80 0.94 3.85 0.82 2.09 

Note: Certainty equivalent CE is calculated as 
1

1n n n
u p f b b , whereas the CE of LL is calculated 

as 
1 ,.,.,.nu k p . 
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Figure 1a Without Lifeline 

 

Figure 1b With Lifeline 
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Figure 2 Distribution of winnings  
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Figure 3 Observed Fails and Quits Frequencies and Rates  
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Figure 4 Distribution of the Maximum Belief 
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Figure 5  Value of playing the game at stage n, given the lifeline state. 
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Figure 6 Observed versus Predicted Frequencies of Fails and Quits 
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Figure 7:  Comparison of utility functions (All observations) 
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Figure 8:  Relative Risk Aversions (All observations) 

 
 

 


