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Abstract

Is conformity amongst similar individuals consistent with self-interested be-
havior? We consider a model of incomplete information in which each player
receives a signal, interpreted as an allocation to a role, and can make his ac-
tion choice conditional on his role. Our main result demonstrates that ‘near
to’ any correlated equilibrium is an approximate correlated equilibrium ‘with
conformity’ — that is, an equilibrium where all ‘similar players’ play the same
strategy, have the same probability of being allocated to each role, and receive
approximately the same payoff; in short, similar players ‘behave in an identical
way’ and are treated nearly equally. To measure ‘similarity’ amongst players
we introduce the notions of approximate substitutes and a (δ,Q)-class games
— a game with Q classes of players where all players in the same class are
δ-substitutes for each other.

∗This paper is a major revision of Cartwright and Wooders (2003a). The main results of that
paper were presented at the the 2002 General Equilibrium Conference held in Athens in May 2002
and at Northwestern University in August 2002. We thank the participants for their interest and
comments.
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1 Introduction

The concept of correlated equilibrium was introduced in Aumann (1974,1987). In
contrast to Nash equilibrium, correlated equilibrium allows strategies of players to
be statistically dependent. More precisely, before playing a game, a player receives a
signal on which he can condition his choice of action. If the signals are independent
across players then a correlated equilibrium is a Nash equilibrium of the original
game. Since the signals may, however, be correlated across individuals the set of
correlated equilibria is generally larger than the set of Nash equilibria. Correlated
equilibria have many appealing properties, as discussed by Aumann (1974, 1987). See
also Hart (2005) for a discussion of recent work on how adaptive learning leads to
correlated equilibrium play.
An interpretation of correlated equilibrium is to imagine a ‘referee’ or ‘device’ dis-

tributing instructions to players on what action to play. The probability distribution
with which instructions are allocated is common knowledge. A correlated equilibrium
is a probability distribution over instructions such that it is in each player’s interest
to obey the instructions. One appealing aspect of this interpretation of correlated
equilibrium is that each player uses a pure strategy. In particular, each player has
a pure strategy mapping instructions into actions of the form ‘if told to play ac-
tion x then play action x’. Randomization or mixing results from the distribution
of instructions and not from the actions of players themselves. A second aspect of
correlated equilibrium is that all players use the same pure strategy and ‘obey’ the
instructions they are given. This suggests that one could connect the concept of
correlated equilibrium with conformity to a norm of behavior; every players ‘fit into
the role’ that the device or referee allocates to him. The objective of this paper is
to begin to explore the extent to which correlated equilibrium can be connected with
the concept of behavioral conformity.
Taking a normal form game as given, we assume that roles are allocated to players

by some device. The set of roles is equivalent to the set of actions and so the allocation
of a role can be seen as an instruction to play a particular action. A correlated
equilibrium is a probability distribution over the allocation of roles such that each
player’s best response is to ‘take on his role’. Alternatively, in ‘the game with roles’
(where nature allocates roles) it is a Nash equilibrium to play the action corresponding
to role allocated. As suggested above, the notion of a correlated equilibrium already
builds in some notion of conformity. In general, however, we may question the level
of actual conformity if the probability distribution over roles is asymmetric. That is,
if different players have different probabilities of being allocated to each role we may
begin to question the extent to which players could be said to conform or ‘behave in
a similar way’. If the distribution over roles is symmetric then it is easier to argue
that there is conformity in behavior; each player has the same probability of being
allocated each role and each player behaves in the same way once allocated a role:
‘similar players behave identically’.
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Our main result shows that ‘near to’ any correlated equilibrium is a ‘symmetric’
correlated equilibrium The equilibrium is symmetric in the sense that ‘players who are
similar’ are treated identically by the device allocating roles. A symmetric correlated
equilibrium has the additional property that similar players receive similar expected
payoffs. It is therefore also an equilibrium that one could argue is ‘fair’. It has
been widely observed that individuals are motivated by conditions of fairness where
fairness equates to equality of outcome or opportunity amongst ‘similar people’.
To illustrate consider the familiar 2-person example of Aumann (1973):

A B
A 6, 6 2, 7
B 7, 2 0, 0

This game has two pure strategy Nash equilibria (A,B) and (B,A). Neither of these
equilibria could be thought as demonstrating conformity or fairness. There exists a
correlated equilibrium where the device allocates roles (A,A), (A,B) and (B,A) with
probability 1

3
each. This probability distribution is symmetric and results in expected

payoffs of 5 for both players.
It is important for our results to measure the similarity between players. We do

this by defining the concepts of δ-substitutes and a (δ,Q)-class game. If two players
i and j are δ-substitutes and they swap strategies then (i) i’s payoff would be within
δ of the payoff j previously received and (ii) the payoff of any other player l would
change by at most δ. If δ = 0 then we can think of players as being identical in terms
of the game. A game is (δ,Q)-class game if the player set can be partitioned into
Q subsets or classes where any two players in the same class are δ-substitutes. Any
game can be classified as a (δ,Q)-class game for any Q and some δ. It is thus a useful
tool to measure the similarity of players in an arbitrary game.
A second example illustrates why it is important to measure the similarity of

players. Consider the 3-person game where, in this example and the next two, player
1 picks a row, player 2 picks a column and player 3 picks a matrix.:

A B
A B C

A 0, 0, 5 0, 0, 0 0, 0, 0
B 0, 0, 0 0, 0, 0 0, 0, 0
C 0, 0, 0 0, 0, 0 0, 0, 0

A B C
A 2, 2, 3 0, 0, 0 0, 0, 0
B 0, 0, 0 0, 0, 0 0, 0, 0
C 0, 0, 0 0, 0, 0 2, 2, 3

C
A B C

A 0, 0, 0 0, 0, 0 0, 0, 0
B 0, 0, 0 0, 0, 0 0, 0, 0
C 0, 0, 0 0, 0, 0 0, 0, 5
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There is no strict Nash equilibrium in pure strategies in which all players play the
same strategy and get the same payoff.1 One correlated equilibrium is to allocate
roles (A,A,B), (C,C,B) with equal probability; essentially players 1 and 2 toss a
coin to decide top left or bottom right but player 3 does not get to see the result of
this coin toss. Is this equilibrium symmetric and fair? If we compare all three players
then it is clearly neither fair (player 3 gets a higher payoff) or symmetric (player 3
is allocated role B and players 1 and 2 are never allocated role B). The equilibrium
is, however, both fair and symmetric if we compare ‘similar players’. It can be seen
that players 1 and 2 are 0-substitutes. Player 3, by contrast, is ‘dissimilar’ to players
1 and 2 (e.g. if all play A their payoffs differ by 5). Given players 1 and 2 are treated
equally, the equilibrium can be seen as fair and symmetric.
One interesting aspect of the above example of correlated equilibrium is that there

is no correlation amongst classes of players. That is, if we think of players 1 and 2 as
a class, then they jointly correlate their actions but they do not correlate their actions
with those of player 3 (who belongs to a different class). We refer to this a correlated
equilibrium with class independence. We may interpret correlation of roles (or coor-
dination of the allocation of roles) as viable within classes but not between classes.
But, in general, it turns out that there need not exist a correlated equilibrium that
is symmetric and satisfies class independence ‘near to’ every correlated equilibrium.
We demonstrate, however, that in any game there does exist a correlated equilibrium
satisfying symmetry and class independence. This is most easily illustrated by con-
sidering a 2-player game where the 2 players are not 0-substitutes. It may, though,
be more instructive to consider the following 3-player example:

A B
A B C

A 5, 5, 4 0, 0, 0 0, 0, 0
B 0, 0, 0 0, 0, 0 0, 0, 0
C 0, 0, 0 0, 0, 0 0, 0, 0

A B C
A 2, 2, 3 0, 0, 0 0, 0, 0
B 0, 0, 0 0, 0, 0 0, 0, 0
C 0, 0, 0 0, 0, 0 2, 2, 3

C
A B C

A 0, 0, 0 0, 0, 0 0, 0, 0
B 0, 0, 0 0, 0, 0 0, 0, 0
C 0, 0, 0 0, 0, 0 5, 5, 4

As in the previous example, players 1 and 2 are 0-substitutes so can be thought
as belong to the same class. Player 3 is in a class by himself. There is a correlated
equilibrium in which roles (A,A,A) and (C,C,C) are allocated with equal probability.

1The example can easily be modified so there is no (not necessarily strict) Nash equilibrium with
these properties.
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This is symmetric but does not satisfy class independence given that player 3’s role
is correlated with that of players 1 and 2. The correlated equilibrium where roles
(A,A,B) and (C,C,B) are allocated with equal probability is symmetric and does
satisfy class independence.
Subjective correlated equilibrium is a generalization of correlated equilibrium:

Having observed a signal (or allocation to a role) a player forms beliefs about the
signals others have received (the true state of the world) and behaves relative to
these beliefs. Correlated equilibrium is typically defined to correspond to the case
where all players have a common prior and so, ex-ante, have the same beliefs about
the state of the world. In this paper we shall make the stronger statement that
correlated equilibrium corresponds to the case where all players have a common prior
and this prior is consistent with the actual distribution with which roles are allocated.
Subjective correlated equilibrium is a generalization whereby different players may
have different priors, or in our framework, may have priors not consistent with the
true mechanism allocating roles.
In a model of bounded rationality it seems of interest to model the case where each

player ‘believes similar players will behave in the same way’. That is, if a player views
two other players as similar he may expect them to behave in a similar way. This
appears a reasonable rule of thumb that a player may adopt and it can be equated
with expecting similar players to have the same probability of being allocated to
roles. We demonstrate (Theorem 3) that ‘near to’ any correlated equilibrium p is a
subjective correlated equilibrium β where similar players are expected to have the
same probability of being allocated roles. Further, β is expected to be fair given
player beliefs. Note that the equilibrium p may or may not be symmetric and may
or may not be fair. Thus, it may be an equilibrium for players to behave according
to the rule of thumb ‘similar players will behave in the same way’ even if they will
not in reality do so. Players may also perceive an outcome as fair even if it is not in
fact the case. We can illustrate with this three player example:

A B
A B C

A 0, 0, 0 0, 0, 0 0, 0, 0
B 0, 0, 0 0, 0, 0 0, 0, 0
C 0, 0, 0 0, 0, 0 0, 0, 0

A B C
A 0, 0, 0 0, 0, 0 2, 6, 2
B 0, 0, 0 0, 0, 0 0, 0, 0
C 2, 6, 2 0, 0, 0 0, 0, 0

C
A B C

A 0, 0, 0 0, 0, 0 0, 0, 0
B 0, 0, 0 0, 0, 0 0, 0, 0
C 0, 0, 0 0, 0, 0 0, 0, 0
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The distribution p(A,C,B) = 1 is a correlated equilibrium. Given that players 1
and 2 are 0-substitutes p is neither fair or symmetric. Suppose all players had the
same subjective beliefs β(A,C,B) = 0.5 and β(C,A,B) = 0.5. This is a subjective
correlated equilibrium that is fair and symmetric (and we shall argue ‘close to’ p).
This example, raises the question of whether it is reasonable for players to have
erroneous beliefs about their own allocation to roles. In this example, it may appear
reasonable for player 3 to have beliefs β but less reasonable for players 1 and 2 to
have beliefs β. If, however, all players have ‘correct beliefs’ about the distribution of
types in their own class then we still obtain a correlated equilibrium. For example, if
the beliefs of player’s 1 and 2 are β1(A,C,B) = β2(A,C,B) = 1 while player 3 has
‘naive beliefs’ β3(A,C,B) = 0.5 and β3(C,A,B) = 0.5 we still obtain a subjective
correlated equilibrium. In general, we see that it can be an equilibrium to behave
and expect similar players to behave in an identical way even if they do not do so in
reality.
We proceed as follows: Section introduces the model, Section 3 defines a (δ,Q)

class game while Section 4 presents a preliminary result. Section 5 contains the main
result. Some extensions are considered in Section 6 and the paper concludes in Section
7. An appendix contains the remaining proofs.

2 A game with roles

A game Γ is given by a triple (N,A, {ui}i∈N) consisting of a finite player set N =
{1, .., n}, a finite set of actions A = {1, ...,K}, and a set of payoff functions {ui}i∈N .
An action profile consists of a vector a = (a1, ..., an) where ai ∈ A denotes the action
of player i. For each i ∈ N the payoff function ui maps AN into the real line.
Take as given a game Γ = (N,A, {ui}i∈N) and let R = {1, ...,K} denote a set

of roles (where we note R is identical to A). A role profile consists of a vector
r = {r1, ..., rn} where ri ∈ R is the role of player i. The set of role profiles is RN .
Note that RN is identical to AN . A probability distribution over role profiles is a
function p where p(r) denotes the probability of role profile r. Let P = ∆(RN)
denote the set of probability distributions over role profiles. We shall denote by pi
the marginal distribution of p where pi(k) denotes the probability that player i is
allocated role k. Formally, pi(k) =

P
r:ri=k

r.
Once roles are randomly allocated to players (according to distribution p) each

player chooses an action. A player can make his action choice conditional on his role.
He is not, however, informed of the roles of the complementary player set. A player’s
payoff does not depend directly on his role or the roles of other players (although it
may do indirectly through the choice of action that a distribution of roles induces).
We shall assume for the present that distribution p is common knowledge and players
have consistent beliefs with respect to the distribution. We relax this assumption in
Section 6.
Given game Γ and probability distribution p ∈ P a game with roles is denoted
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Γp. For each player i ∈ N a strategy in game Γp is a function si mapping the set of
roles R to the set of actions A. In interpretation si(k) is the pure action performed
by player i if of role k. Let S denote the set of strategies and let s∗ ∈ SN denote
the strategy profile for which s∗i (k) = k for all i ∈ N . That is, each player plays pure
action k if allocated role k.
We define payoff function Ui : P → R for each player i ∈ N where

Ui(p) :=
X
a∈AN

p(a)ui(a).

It can be observed that Ui(p) denotes the expected payoff of player i if roles are
allocated according to p and players behave according to s∗. We say that p is a
correlated ε-equilibrium of game Γ if and only if

Ui(p) ≥
X
a∈AN

p(a)ui(si(ai), a−i)− ε

for all si ∈ S. Thus, no player would wish to deviate from the role he is allocated.
If p is a correlated ε-equilibrium of game Γ then we can equivalently say that s∗ is
a Nash ε-equilibrium of game Γp (where approximate Nash equilibrium is defined in
the standard way).

3 Approximate substitutes

Given a game Γ = (N,A, {ui}i∈N) we consider partitioning the player set N into
groups with the property that any two players in the same group can be viewed as
approximate substitutes for each other.2 This requires us to formulate a metric by
which to compare players. We consider two different ways of measuring the distance
between players. Informally, we say that two players i and j are interaction substitutes
if i and j are seen as similar by those with whom they interact; so, if the actions of
i and j are interchanged, then the payoffs to other players are only slightly affected.
In contrast, we say that players i and j are individual substitutes if they have similar
payoff functions. Combining both measures together, we refer to players i and j as
approximate substitutes if they are both interaction and individual substitutes.

Approximate substitutes: Let j, l ∈ N be any two players and a1, a2 ∈ AN be any
two pure action profiles where (1) a1i = a2i for all i 6= j, l, (2) a1j = a2l and (3) a

1
l = a2j .

We say that j and l are δ-interaction substitutes if¯̄
ui(a

1)− ui(a
2)
¯̄ ≤ δ

n
(1)

2We remark that the idea of defining approximate substitutes for a given cooperative game,
without any reference to an underlying topological space of player types, appears in several papers
due to Kovalenkov and Wooders, cf. their 2003 Journal of Economic Theory paper and references
therein.
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for any player i ∈ N , i 6= j, l. We say that j and l are δ-individual substitutes if¯̄
uj(a

1)− ul(a
2)
¯̄ ≤ δ. (2)

We say that j and l are δ-substitutes (or informally approximate substitutes) if they
are both δ-interaction substitutes and δ-individual substitutes.

A partition {N1, ..., NQ} of player set N is a δ-substitute partition if for any set Nq

in the partition and any two players j and l with j, l ∈ Nq, j and l are δ-substitutes.
Given δ ≥ 0 and an integer Q, a game Γ is a (δ,Q) class game if there is a δ-substitute
partition of N into Q subsets.
Some trivial observations are: First, the partition into singletons {{1}, ..., {n}}

is a 0-substitute partition. Essentially, each player is a 0-substitute for themselves.
Also, for any game Γ and any Q ≤ N , for some finite δ ≥ 0 there exists a δ-substitute
partition. Finally, if Γ is a (δ,Q) class game then Γ is a (δ0, Q0) class game for any
δ0 ≥ δ and and Q0 ≥ Q. In general, the closer the approximation (the smaller is δ)
the larger the number of classes required for Γ to be a (δ,Q) class game.

4 Permutation of action profiles

Take as given a (δ,Q)-class game Γ with a partition into classes {N1, ..., NQ}. For
any pure action profile a let h(a, k, q) denote the number of players in class Nq who
play pure action k. Given a pure action profile a we say that action profile a0 is
a permutation of a if h(a, k, q) = h(a0, k, q). That is, players within the class have
exchanged strategies amongst each other. For any action profile a let P(a) denote the
set of action profiles that are permutations of a. Given that we can talk of role and
action profiles interchangeably we shall also talk of role profile r0 as a permutation of
r if r0 ∈ P(r)
We now state an important preliminary result, the proof of which is contained in

an Appendix.

Lemma 1: Let Γ be a (δ,Q)-class game, i and j any two players who are δ-substitutes
and a any pure action profile. If a0 ∈ P(a) and a0j = ai then

|uj(a0)− ui(a)| ≤ δ +
n− 2
n

δ.

It is worth emphasizing that Lemma 1 is not immediate from the definition of a
δ-substitute partition. In particular, when defining a δ-substitute partition consid-
eration is only given to the effect on payoffs when two players exchange strategies.
Lemma 1 treats a permutation whereby all players may change strategy and where
there need not be a ‘simple exchange’ of strategies. It is possible, for instance, that
a0i 6= aj.
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5 Conformity

We define a symmetry condition on the probability distribution over roles. Take as
given a game Γ and a partition Π = {N1, ..., NQ} of the player set into classes.

Within class anonymity: A probability distribution over roles p satisfies within
class anonymity (WCA) if the distribution p treats players from the same class iden-
tically. Formally, given any two role profiles r and r0, if r0 ∈ P(r) then:

p(r) = pj(r
0).

One might think of within class anonymity as an ‘equal opportunity’ condition within
classes; it implies, for instance that if i, j ∈ Nq then pi(k) = pj(k) for all k ∈ A.
A correlated equilibrium p where p satisfies WCA could be interpreted as an

equilibrium where similar players behave identically: they play the same strategy
and have the same probability of being allocated each role. Informally, the following
Theorem states that near to any correlated equilibrium is an approximate correlated
equilibrium satisfyingWCA and where players in the same class receive approximately
the same payoff.

Theorem 1: Let Γ be a (δ,Q)-class game, let Π = {N1, ..., NQ} be a a partition of
the player set into classes and let p∗ be a correlated equilibrium of Γ. Then there
exists a correlated ε equilibrium p0 of Γ satisfying WCA, where ε ≤ 4δ and¯̄̄̄

¯̄ 1|Nq|
X
j∈Nq

Uj(p
∗)− Ui(p

0)

¯̄̄̄
¯̄ ≤ 2δ (3)

for all i ∈ Nq and all Nq ∈ Π.

Proof: Recall that p∗(a) denotes the probability of role profile a. Let p0 denote a
function mapping RN into the unit interval [0, 1] where

p0(a) =

P
a0∈P(a) p

∗(a0)

|P(a)| (4)

for all a ∈ RN . We conjecture that p0 satisfies the desired conditions. This requires
us to check four things: (1) p0 is a probability distribution over roles, (2) p0 satisfies
WCA, (3) p0 is a correlated equilibrium and (4) (3) holds. We verify each in turn.
First, note that a ∈ P(a). Also, if a0 ∈ P(a) then P(a0) = P(a) for all a0, a ∈ AN .
Thus, the set of action profilesAN can be partitioned into a finite set of sets of actions
profiles Ψ1,Ψ2, ...,ΨL where a, a0 ∈ ªl if and only if a ∈ P(a0).
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(1) By construction, p0(a) = p0(a0) for any a, a0 ∈ Ψl andX
a∈Ψl

p0(a) =
¯̄P(al)¯̄ p0(al) =X

a∈Ψl

p∗(a) (5)

where al ∈ Ψl. Thus, p0 is a probability distribution over role profiles.

(2) Observe that,

p0i(k) =
X
ψl

X
a∈Ψl:ai=k

p0(a) =
X
Ψl

¯̄©
a ∈ Ψl : ai = k

ª¯̄
p0(al). (6)

If i, j ∈ Nq for some Nq then by definition
¯̄©
a ∈ Ψl : ai = k

ª¯̄
=
¯̄©
a ∈ Ψl : aj = k

ª¯̄
and thus, by (6) p0i(k) = p0j(k) and WCA is satisfied.

(3) Given that p∗ is a correlated equilibriumX
a∈AN :ai=k

p∗(a)ui(k, a−i) ≥
X

a∈AN :ai=k

p∗(a)ui(k0, a−i) (7)

for all i ∈ N and k0 ∈ A. For any i ∈ Nq and k ∈ A, if p0i(k) > 0 then by construction
there exists some j ∈ Nq such that p∗j(k) > 0. If i, j ∈ Nq and a0 is a permutation of
a and a0j = ai then, from Lemma 1,

|uj(a0)− ui(a)| ≤ 2δ. (8)

From (5) and (8) we getX
a∈AN :ai=k

p0(a)ui(k, a−i) ≥
X

a∈AN :ai=k

p0(a)ui(k0, a−i)− 4δ

for all i ∈ N and k0 ∈ A. Thus, p0 is a correlated 4δ equilibrium.

(4) By Lemma 1, for any Nq and Ψl and a, a0 ∈ Ψl¯̄̄̄
¯̄X
j∈Nq

uj(a)−
X
j∈Nq

uj(a
0)

¯̄̄̄
¯̄ ≤ 2δ |Nq| . (9)

For each Nq and Ψl pick some a ∈ Ψl and let

ujl =
X
j∈Nq

uj(a).
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Now, by (9),¯̄̄̄
¯̄X
j∈Nq

Uj(p
0)−

X
j∈Nq

Uj(p
∗)

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄X
Ψl

X
j∈Nq

X
a∈Ψl

uj(a)[p
0(a)− p∗(a)]

¯̄̄̄
¯̄

≤
¯̄̄̄
¯X
Ψl

ujl
X
a∈Ψl

[p0(a)− p∗(a)]

¯̄̄̄
¯+ |Nq| 2δ

= |Nq| 2δ.
From (8) and the construction of p0 we have |Ui(p

0)− Uj(p
0)| ≤ 2δ for all i, j ∈ Nq.

Thus, if i ∈ Nq, ¯̄̄̄
¯̄ 1|Nq|

X
j∈Nq

Uj(p
∗)− Ui(p

0)

¯̄̄̄
¯̄ ≤ 4δ. (10)

This completes the proof.¥

An immediate corollary of Theorem 1 is that near to any correlated equilibrium p∗

is a correlated equilibrium p0 satisfying WCA where |Ui(p
0)− Uj(p

0)| ≤ 4δ for all
i, j belonging to the same class. Also note that the set of correlated ε-equilibrium
satisfying WCA is convex.

6 Remarks and extensions

6.1 Class independence

As discussed in the introduction it is of interest to question when there exists a
correlated equilibrium for which is there no correlation of roles between classes. Take
as given a game Γ and a partition Π = {N1, ..., NQ} of the player set into classes.
Class independence: Let i and j be any two players belonging to different classes.
Let pi(k|rj) denote the probability player i has role k given that player j has role rj. A
probability distribution over roles satisfies class independence (CI) if pi(k) = pi(k|rj)
for all k, rj ∈ R.

The following result demonstrates the existence of an approximate correlated equi-
librium satisfying both CI and WCA.

Theorem 2: Let Γ be a (δ,Q)-class game and let Π = {N1, ..., NQ} a partition of the
player set into classes. Then there exists a correlated ε equilibrium p0 of Γ satisfying
WCA and CI where ε ≤ 4δ
Proof: By the standard existence theorems game Γ has a Nash equilibrium α∗ ∈
∆(A)N . Denote by α∗i (k) the probability that player i plays action k. Let p∗ be a
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probability distribution over roles where roles are stochastically independent across
players and p∗i (k) = α∗i (k) for all i ∈ N . Clearly p∗ is a correlated equilibrium (and
satisfies CI). Using the notation from the Proof of Theorem 1, let p0 be a probability
distribution over roles where,

p0(a) =

P
a0∈P(a) p

∗(a0)

|P(a)| (11)

for all a ∈ RN . From the Proof of Theorem 1 we see that p0 is a correlated ε
equilibrium satisfying WCA (for some ε < 4δ). It is clear that p0 also satisfies CI.
[Note that p0 need not be ‘fully’ independent across players. For example (with
three pure actions) α∗ may have the property that α∗1 = (0.5, 0.5, 0), α∗2 = (0, 0, 1);
suppose that players 1 and 2 constitute a class; p0 will be such that p01(3) = 0.5 but
p01(3|r2 = 1) = 1.]¥

6.2 Subjective Beliefs

We have assumed to this point that all agents have objective beliefs with respect to
some known probability distribution p. A more general possibility is that each player
has their own subjective beliefs about the probability distribution over roles. The
concept of subjective correlated equilibrium was defined by Aumann (1974) and has
been treated and refined elsewhere (e.g. Brandenberger and Dekel 1987). Subjective
beliefs are natural in thinking about correlated equilibrium: a player receives a signal
and interprets the signal as an indication of what others will do; it is not implausible
that a player interprets a signal ‘incorrectly’ or that different players ‘interpret signals
differently’; this can be modelled with subjective beliefs. It is well known that once
subjective beliefs are allowed it becomes difficult to tie down the set of correlated
equilibria (Aumann 1974, 1987, Brandenburger and Dekel 1987). We thus focus on a
particular form of ‘naive belief’; namely we suppose that a player expects δ-substitutes
to ‘behave in an identical way’ or more precisely to have the same probability of being
allocated each role. Before defining this precisely we need some definitions.
Let βi ∈ P denote the beliefs of player i. Thus, βi(r) denotes the probability that

player i places on the role profile being r. We say that set of beliefs {βi}i∈N are a
subjective correlated ε equilibrium ifX

a∈AN
βi(a)ui(a) ≥

X
a∈AN

βi(a)ui(si(ai), a−i)− ε

for each i ∈ N and si ∈ S. This revises the definition of a correlated equilibrium by
using the subjective beliefs of i.
Let Γ be a (δ,Q) class game and Π = {N1, ..., NQ} be a partition of the player set

into classes. We say that beliefs have a common prior determined by p (CP( p)) if .

βi(r) =
1

|P(r)|
X

r∈P(r)
p(r) (12)
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for all i and r. Note that if beliefs satisfy CP then βi(r) = βi(r0) for any r0 ∈ P(r) and
any r. Thus, players expect players in the same class to have the same probability
of being allocated each role; it is expected that players in the same class will behave
identically. Beliefs may satisfy CP(p) but not be ‘consistent’ with the distribution
p through which roles are actually allocated in game with roles Γp; in particular if
pj(k) 6= pl(k) for some j, l ∈ Nq then the subjective beliefs are not consistent with
p (i.e. not objectively correct) because players in the same class will not, in fact,
behave identically.
It can be observed that if beliefs satisfy CP a player may have erroneous beliefs

about his own probability of being allocated each role. We define the concept of a
quasi-common prior determined by p where this is no longer the class. Recall that
h(r, k, q) denotes the number of players in class Nq who have role k. Given a class Nq

and role profile r, let Pq(r) denote the set of role profiles where r0 ∈ Pq(r) if and only
if h(r0, k, q0) = h(r, k, q0) for all q0 6= q and r0i = ri for all i ∈ Nq. Thus, all players
within Nq have the same role but the role of players in other classes can be permuted.
We say that beliefs have a quasi-common prior determined by p (QCP( p)) if

βi(r) =
1

|Pq(r)|
X

r∈Pq(r)
p(r)

for all i ∈ Nq, all Nq and all r. We observe that if beliefs satisfy QCP(p) then a player
has ‘correct beliefs’ about the probability of role allocations within his own class but
potentially erroneous beliefs about the role allocations in other groups. Each player
still expects players in other classes to behave identically.
The following result demonstrates that given any correlated equilibrium p it is

an approximate subjective correlated equilibrium if players have beliefs CP(p) or
QCP(p). Thus, it is an equilibrium for players to expect similar players to behave in
an identical fashion even if they will not do so in reality.

Theorem 3: Let Γ be a (δ,Q)-class game, Π = {N1, ..., NQ} a partition of the player
set into classes and p a correlated equilibrium of game Γ. If beliefs satisfy CP(p) or
QCP(p) then {βi}i∈N is a subjective correlated ε equilibrium where ε < 4δ.

Proof: We need to show thatX
a∈AN

βi(a)ui(a) ≥
X
a∈AN

βi(a)ui(si(ai), a−i)− ε− 4δ (13)

for all i ∈ N and si ∈ S. Given that p is a correlated ε equilibriumX
a∈AN

p(a)ui(a) ≥
X
a∈AN

p(a)ui(si(ai), a−i)− ε (14)

for all i ∈ N and si ∈ S. If βi(a) > 0 and i ∈ Nq then from (12) there exists j ∈ Nq

such that pj(ai) > 0. It then follows from Lemma 1 and (14) that (13) holds.¥
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Theorem 3 demonstrates that ‘near to’ any correlated equilibrium is a subjective
correlated equilibrium where beliefs are satisfy CP. The converse need not hold as
illustrated by returning to the 2-person game:

A B
A 6, 6 2, 7
B 7, 2 0, 0

Both players are 0-substitutes. Suppose p(A,A) = 1
2
and p(A,B) = 1

2
. This dis-

tribution is not a correlated equilibrium. If beliefs satisfy CP(p) we get β1(A,A) =
1
3
, β1(A,B) = 1

3
and β1(B,A) = 1

3
(with the same for player 2). This is a subjective

correlated equilibrium.

With beliefs CP(p) a player has naive beliefs about the distribution of roles within
his class while with QCP(p) a player has correct beliefs about the distribution of roles
within his class. An intermediate possibility is that a player has ‘correct beliefs’ only
about his own allocation to roles. Suppose that a player then expects players in
his own class to behave in the same way as himself. Formally we say beliefs βi are
introspectively consistent if βi(r) = 0 whenever pi(ri) = 0 and βi(r) = βi(r0) for any
r0 ∈ P(r) and any r. Here the close relationship between subjective and ‘objective’
correlated equilibrium may be broken as we can illustrate with the previous example.
The distribution p(A,B) = 1 is a correlated equilibrium. If beliefs are introspectively
consistent we get β1(A,A) = 1 and β2(B,B) = 1 which is not a subjective correlated
equilibrium. Conversely if we consider a two person coordination game we see that
the distribution p(A,B) = 1 is not a correlated equilibrium while beliefs that are class
indiscriminate and introspectively consistent are a subjective correlated equilibrium.

7 Conclusions

A number of questions remain for future research:

• Where does the ’exogenous’ probability distribution over roles come from? It
may be interesting to consider an extended game where players get to propose
p or choose a p. This might motivate the notion of class independence as may
be difficult to get consensus on correlation across classes.

• In a model of learning, or adaptive learning (Hart 2005), does play resemble
the type of correlated equilibria we have been looking at here? Suppose there
is imitation or social influence/concerns for fairness, does play converge to a
particular correlated equilibria?
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• What happens if the p can evolve or if we have subjective beliefs and players
update their beliefs somehow about p? If it is expected that similar people do
similar things does it evolve that the correlated equilibrium is for similar people
to do similar things or is it beliefs that change?

8 Appendix

Proof of Lemma 1: Given that a0 is a permutation of a there exists a one-to-one
(not necessarily unique) function β mapping N to N where β(l) ∈ Nq if l ∈ Nq and
a0l = aβ(l) for all l ∈ N . That is, player l plays the action under profile a0 that β(l)
plays under profile a.
We construct a series of action profiles a1, a2, ..., an and functions β2, β3, ..., βn

using the following iterative procedure:

• a11 = aβ(1) and a1β(1) = a1 while a1z = az for all other z ∈ N

• β2(β−1(1)) = β(1) while β2(z) = β(z) for all other z.

• all = al−1
βl(l)

and al
βl(l)

= al−1l while alz = al−1z for all other z.

• βl+1(βl
−1
(l)) = βl(l) while βl+1(z) = βl(z) for all other z.

First note that a1 is a permutation of a0 and al is a permutation of al−1; this is
immediate given that the only change in the action profile is an exchange of actions
of players l and βl(l).
Next, observe there for any l ≥ 1 there can be no z ∈ N for whom βl+1(z) = l.3

This follows from the construction of βl+1 and that β is a one-to-one mapping. Thus,
βl+1(l + 1) 6= l and consequently there can be no z ∈ N for whom βl+2(z) = l.
Continuing this argument we see that there can be no y ≥ l + 1 or z ∈ N such that
βy(z) = l. It follows that if all = a0l then anl = a0l.
We next conjecture that anl = a0l for all l ∈ N . Clearly, a11 = a01 and so [using

the argument of the proceeding paragraph] an1 = a01. To complete the proof of the
conjecture we show, by induction, that al−1

βl(z)
= aβ(z) for all 2 ≤ l ≤ n and all z ≥ l.

Let l = 2. As β is a one-to-one mapping there exists a unique player z∗ = β−1(1).
For any z 6= β−1(1) we have β2(z) = β(z) and so clearly a1

β2(z)
= aβ(z). Now, for

z∗ = β−1(1) we have β2(z∗) = β(1). Thus,

a1β2(z∗) = a1β(1) = a1 = aβ(z∗).

3The one exception is if β(l) = l.
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This completes the l = 2 case. Now suppose the conjecture holds for l > 2. Thus,
al−2
βl−1(z) = aβ(z) for all z ≥ l. There exists a unique player z∗ = βl−1

−1
(l − 1). For

all z 6= z∗ we have βl(z) = βl−1(z) and so al−1
βl(z)

= al−2
βl−1(z) = aβ(z). For z∗ we have

βl(z∗) = βl−1(l − 1) implying
al−1
βl(z∗) = al−1

βl−1(l−1) = al−2l−1 = al−2
βl−1(z∗) = aβ(z∗).

Without loss of generality let j = 1 [or ‘re-index players’ so that j = 1]. Note
that i = β(j). Given that i and j are δ substitutes¯̄

uj(a
1)− ui(a)

¯̄ ≤ δ.

Given that a2j = a1j and players 2 and β1(2) are δ substitutes we have

¯̄
uj(a

2)− uj(a
1)
¯̄ ≤ δ

n
.

Iterating this argument and using an = a0 we obtain

|uj(a0)− ui(a)| ≤ δ +
n− 2
n

δ

completing the proof.¥
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