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Abstract

We demonstrate that if any realization of a strategy for a Bayesian
game is, with high probability, an approximate (¢) Nash equilibrium of
the induced game of complete information, then there is a purification
of that strategy that is an approximate («) equilibrium of the original
Bayesian game. We also provide two examples demonstrating, amongst
other things, that the bound a we obtain on the distance of the purification
from satisfying the requirements for an exact equilibrium is tight.



1 Ex-post Nash equilibrium and purification of
Bayesian equilibrium

First let us briefly recall some common terminology. In a Bayesian game each
player is randomly assigned a type and, having been informed of his type but
not those of the other players, each player chooses an action. A composition
profile lists an assignment of types to players and an action choice for each
player. Thus a composition profile represents a possible outcome in the game
once all uncertainty is resolved. Ex-ante, a strategy vector induces a probability
distribution over composition profiles.

Following Kalai (2002), we define a composition profile as e-Nash if no player
could gain by more than ¢ by changing his action. Given ¢ > 0 and p > 0 a
strategy vector o is (e, p) ex-post Nash if the probability that it yields an e-Nash
composition profile is at least 1 — p.

Given a > 0, a strategy vector o is a Nash a-equilibrium if, ex-ante, taking
the strategy choices of the other players as given, no player can expect to improve
upon his payoff by more than « from changing his strategy. An a-purification
of a strategy o is a pure strategy vector s that constitutes a Nash a-equilibrium
and has support contained in the support of o.!

In this paper we demonstrate that for any (e, p) ex-post Nash strategy vector
o, in the support of o there is a pure strategy vector s that is a Bayesian Nash
a-equilibrium where o < (1 — p)e + pD and D is an upper bound on payoffs.
Note that, for this result, it is not required that the game has many players or
that the game be semi-anonymous.

Recall that Kalai (2002) demonstrates that given e > 0, with probability
p, which can be made arbitrarily close to zero for games with sufficiently many
players, every Nash equilibrium o of a semi-anonymous Bayesian game T is (g, p)
ex-post Nash. Our result implies, following the results of Kalai (2002), that for
any sufficiently large semi-anonymous game and for any Nash equilibrium of
that game there exists an « purification. Importantly, we note that our result
requires « > ¢; this implies that a strategy vector might not be a Nash e-
equilibrium even if, with very high probability, it yields composition profiles
that are e-Nash. We demonstrate this possibility with two examples.

2 A Bayesian game

There exists a finite set of actions A and finite set of types 7. We denote the
set of possible player compositions by C = A x T . A Bayesian game is given
by a tuple (N, T, p, A, u) where:

N ={1,...,n} is a finite player set.

T= TV is a set of type profiles.

LFor other purification results see, for example, the review in Khan and Sun (2002) and,
for more recent results, Cartwright and Wooders (2003).



Function p : T — [0,1] is a prior probability function where p(t) is the proba-
bility of type profile t € T" and

A= AN is a set of actions profiles.

The players utility functions are described by vector u = (uy, ..., u,). Letting
C= C" denote the set of feasible composition profiles each u; takes the
form w; : C'— [0, D]. Note that D gives an upper bound on player payoffs.

The game is played as follows: According to the prior probability function
p each player 7 is assigned a type t;. Informed of his type (but not the types of
the other players) each player chooses an action (possible using some random-
ization).

A strategy of player i is given by a vector o; = (0i(ai[t1), ..., oi(ailt|7)))
where ;(a;|t;) is the probability player ¢ would play action a; if of type t;. Let
¥ denote the set of strategies. A strategy vector o € XV details the strategy of
each player. We say that a strategy vector s is a pure strategy vector if and only
if for each player i and each ¢; there exists some a; such that s;(a;|t;) = 1. Let
S denote the set of pure strategy vectors. We say that a set of pure strategy
vectors {s!,...,sM} C S constitute a support for strategy vector o if and only if
there exists real numbers 34, ..., 3, where

1. 1> 3, >0 for all m,

2. >, Bn=1and
3. Ui(ai|ti) = Zm mszn(az\tz) for all i, a; and ti.
Clearly every strategy vector ¢ € 3 has a support.

Given a strategy vector ¢ and a prior probability function p a probability
distribution over the set of composition profiles C' is induced. Thus, the expected
payoff of a player can be calculated. Let U; : ¥V — [0, D] be the expected utility
function of a player i where U;(0) = E(u;(c)).

2.1 Equilibrium concepts

Given a > 0, a strategy vector o is a Bayesian Nash a-equilibrium if and only
if:
Ui((fi, U,i‘ti) Z Ui(Ug, O',i|ti) —
for all 0/, € 2, all t; € T and for all i € N.2. We say that a Bayesian Nash «
equilibrium s is a Bayesian Nash a-equilibrium in pure strategies if s is a pure
strategy vector.
Given € > 0, a composition profile is e incentive compatible for player i if

ui(c) > wiaj, ti,c—;) — ¢

2More formally we only require for t; € 7 where there is a positive probability that player
i may be of type t;.



for every action a; € A. A composition profile is ¢ Nash if it is € incentive
compatible for every player. Finally, a strategy profile is (e, p) ex-post Nash if
the probability that it yields an ¢ Nash composition profile is at least 1 — p.

3 A purification Theorem for Bayesian games

First, we provide our main theorem. While we explicitly treat only the case
of finite type spaces and finite action sets, the Theorem also holds when these
spaces are countable, as in Cartwright and Wooders (2003).

Theorem: Take as given a Bayesian game I' and small positive real numbers
¢ and p (both less than 1). If a strategy profile o is (g, p) ex-post Nash then
in the support of o there is a pure strategy vector s that is a Bayesian Nash
a-equilibrium where o < (1 — p)e + pD.

Proof: Let o be (g, p) ex-post Nash and let P = {s!, ..., s} be a support of
o*. We proceed by contradiction. Thus, suppose that there exists no s™ € P
such that s™ is a Bayesian Nash a-equilibrium for o = (1 — p)e + pD.?

We introduce some notation: Let C* denote the set of ¢ Nash composition
profiles of game T'. Given a strategy vector o’ let y(c, 0’) denote the probability
of composition profile ¢ occurring. 2

Take any s™ € P. By our supposition, s is not a Bayesian Nash « equi-
librium. Given that s is not a Bayesian Nash a-equilibrium it must be that the
probability of a composition profile ¢ ¢ C* occurring is greater than p; that is,

> yles™) > p. 1)

cgC*

Suppose otherwise: with probability at least 1—p an ¢ Nash composition profile
arises; if a composition profile ¢ ¢ C* arises then each player can gain at most
D by changing his action; thus, ex-ante the maximum a player can gain by
changing his strategy is (1 — p)e + pD leading to the desired contradiction.

The set P = {s',...,sM} is a support for strategy vector o and thus there
exists real numbers 34, ..., 8, where (1)1 > §,, > 0 for all m, (2) >, G,, =1
and (3) o} (aslt;) =, Bmsi*(ai|t;) for all i, a; and t;. Thus,

y(e,0") = Zﬁmy(c, s™) (2)

for all ¢ € C. Thus,

S yer) = 3 [Zﬁmy(c, >] Yy, (z e sm>) )

cgC* cgC* L m cgC*

3Note that if s™ is not a Bayesian Nash a-equilibrium then it cannot be a Bayesian Nash
' equilibrium for any o’ < a.



Note, however that o* is (e, p) ex-post Nash which by definition implies,

> yleo™) <p. (4)
cgC*
Clearly (1), (3) and (4) are incompatible if )~ 3,, = 1. This gives the desired
contradiction.ll

A corollary of this result and results due to Kalai (2002) is that, given any
e > 0, for any sufficiently large semi-anonymous game and for any equilibrium o
of that game there exists a Nash e-equilibrium in pure strategies in the support
of o.

4 Example 1: The bound on « is tight

In this section we provide an example to demonstrate that the bound obtained
in Theorem 1 is tight. As a consequence, we show that the existence of an
(e, p) ex-post Nash strategy vector where p is arbitrarily small but greater than
zero does not guarantee the existence of a Bayesian Nash ¢ equilibrium in pure
strategies.

For notational simplicity, let there be 2n + 1 players where n is an odd
number. There are four types of player Rich (R), Poor (P), High (H) or Low
(L). Only player 1’s type is, however, random We refer to player 1 as nature
Player 1 has type H with probablhty and type L with probability 1 — =
Players 2,3,...,n + 1 (called rich players) have type R with probability 1 and
players n + 2, n+3,...,2n+1 (called poor players) have type P with probability
1. Let h denote the type profile in which player 1 has type H, all rich players
have type R and all poor players have type L. Let [ denote the type profile
where player 1 has type L, all rich players have type R and all poor players
have type L. The prior probability distribution has the property that p(h) = %
and p(l) = 1 — +. Thus, half the players are always rich, half are always poor
and nature is elther type L or, with some small probability, type H.

Players choose one of two actions B or G. Given an action profile a and
action a’ let w(R,a’) be the number of players with type R who choose action
a'. Thus, for example, w(R, B) denotes the number of players who are rich and
choose action B. Similarly, let w(P,a’) be the number of players with type P
who choose action a’. The payoff function of each player is depends upon his
type and the type of player 1. Let D > 1 be some integer. A rich player i has
payoff function,

wilonal) = p— 0w
n
ui(aisa—ih) = Oifw(P,ai)>g.

4Note that it is sufficient to only detail the payoff of a player for type profiles (or compo-
sition profiles) that have positive probability.



Thus, if nature is L the payoff of a rich player depends negatively on the propor-
tion of poor players who choose the same action as himself. If nature is H then
his payoff is either D or 0 depending on whether or not half of the poor players
have chosen the same action as himself. A poor player i has payoff function,
ui(ai, a,i,t) = M
n

Thus, the payoff of a poor player depends positively on the proportion of rich
players who choose the same action as himself. The payoff of a poor player does
not depend on the type of nature. Finally, the payoff of nature is 1 for any
composition profile.

First, consider the existence of a Bayesian Nash ¢ equilibrium in pure strate-
gies. Given a strategy vector in which all rich players or all poor players play
the same strategy there must exist at least one player who can gain by 1 or
more by changing strategy. Thus, assume there is at least one rich player and
one poor player playing G and one rich player and one poor player playing B.
Given that n is odd there must always be a distinct number of poor players
choosing action B as opposed to action G. It follows that ex-ante, given any
pure strategy vector s, there must be at least one rich player ¢ who can expect

to gain at least
Ho-Hantotil(po2),
n n n o non n

from changing strategy. Thus, there cannot exist a Bayesian Nash ¢ equilibrium
in pure strategies for any e < %—i—% (D — %) In particular, there does not exist
a Bayesian Nash ¢ equilibrium for ¢ = 4

e

Consider now the existence of a strategy vector that is ex-post stable. Let

s denote the strategy vector where "Tfl rich players choose action B and "TH

choose action G and similarly 25+ poor players choose action B and "—'2"—1 choose
action G. With probability 1—%2 strategy vector s’ will yield composition profile
[ that is % incentive compatible for each player and is thus % Nash. It follows
that ¢ is (1, 1) ex post Nash.

This example demonstrates that the bound obtained in Theorem 1 is tight.
As a consequence, it also demonstrates how the existence of a strategy vector s
that is (g, p) ex post Nash for arbitrarily small p does not guarantee the existence
of a Bayesian Nash ¢ equilibrium in pure strategies. The example does, however,
draw on a strong discontinuity in the payoff function: (1) The type of nature
can have a significant influence on payoffs and (2) A poor player can, through
his choice of action, have a significant influence on the payoff of a rich player.
Our second example, in the next section, does not exhibit such discontinuity in

the payoff function.



5 Example 2: (¢, p) ex post Nash does not imply
¢ purification

There are 3n players where n is odd. There are four types of player Poor
(R), Rich (R), High (H) and Low (L). Players 1,2, ...,n (called rich) have type
R with probability 1. Players n + 1,n + 2,...,2n (called poor) have type P
with probability 1. Players 2n + 1, ..., 3n (called managers) have type H with
probability % and type L with probability (1 — %) Managers are assigned types
independently.

Given a type profile t let h(t) denote the proportion of managers who are
type high. If player 7 is rich then his payoff is given by,

ui(0i; a-5,t) = D—@ifh(t)é%
wleamet) = b @ S (h(t)% §> w(f{ai) if A(t) > 2(5)

Thus, the payoff of a rich player depends negatively on the proportion of poor
players playing the same action as himself. As the proportion of managers who
have type H increases above % then his payoff is influenced more by the actions
of the poor players. If player ¢ is poor then his payoff function is given by,

R .

wilai, a i, t) = w(R, a;) )

n
Thus, the payoff of a poor player depends positively on the proportion of rich
players who choose the same action as himself. Let the payoff of a manager be
1 independent of the composition profile.?

As in the previous example we take there to be at least one rich player and
one poor player playing G and one rich player and one poor player playing B.
As n is odd the number of poor players playing G is distinct to the number
playing B. Given that Pr[h(t) > 2/3] > 0, for any pure strategy vector s there
must be at least one rich player ¢ who can expect, ex-ante, to gain by strictly
more than % if he changes strategy. Thus, there does not exist a Bayesian Nash
€ equilibrium in pure strategies for any ¢ < %

Let s’ be the pure strategy vector whereby "Tfl rich players choose action B
and &2|-_1 choose action G and similarly ”T_l poor players choose action B and
&2|-_1 choose action G. With some probability 1 — p’ strategy vector s’ will yield
a composition profile ¢ where h(t) < 2/3. When this occurs ¢ is - Nash. Thus,

s'is (1, p’) ex post Nash. We shall now show that p’ — 0 as n — co. Assuming,

- - - - . .

°Intuitevely it may be that if managers have type H they prefer some policy or action
that makes the payoff of rich players more sensitive to the actions of poor players. This is,
however, not neccessary for the example.



for simplicity that n is divisible by 3, we obtain,’
1
vy —
F’U] ,V2 S —n‘|

X (6 5) ety

where I, ., is the F' distribution with parameters v; and vy and where v, = %n
and vy = %n + 2. Note that,

Wi

+

n —

vy _
n(l-3)

Also note that vy,vy — oo as n — oo. It follows that p” — 0 as n — oco. An
alternative, if less formal, way of obtaining the same result is to note that if we
let p denote the probability that a manager has type H then as n — oo, p — 0
but np = 1. Thus, as n becomes large the binomial distribution determining
the number of managers who have type H can be approximated by a Poisson
distribution with parameter 1. It follows that the Prlz > 2n] — 0 as n — occ.

— 0 asn — oco.

ol
ot 31

This example shows that the existence of a strategy vector s’ that is (e, p’)
ex post Nash is not sufficient for the existence of a Nash e equilibrium in pure
strategies. Note that this example does not rely on discontinuity in the payoff
function. Indeed it is a semi-anonymous Bayesian game as defined by Kalai
(2002).

6 Some concluding remarks

In this paper, we show that if a strategy profile o for a Bayesian game is (e, p)
expost Nash, then there is a pure strategy profile s, with support contained
in the support of o, that is an a-equilibrium of the Bayesian game, where
a < (1 —p)e + pD, that is, there is an « purification of o. Along with Kalai’s
(2002) result that every Bayesian Nash equilibrium of a semi-anonymous game
with finite type and action sets is (g, p) expost Nash,” our result implies that
under the same conditions every equilibrium of the game has an a-purification.
We remark that Cartwright and Wooders (2003) obtain a purification result
in situations with a countable set of (Harsanyi) taste types, a countable set of
actions and a compact metric space of crowding types where the crowding type

6A known result (see p110 of Johnson, Kotz qnd Kempis 1993) is that,

n
Z (n)pzqniz =Pr |:F'U17'U2 < %}
=z v1q

where Fy, v, is the F distribution with parameters v1 = 2r and v9 = 2(n —r 4+ 1).

"We note that Kalai’s result follows from the law of large numbers. For our Theorem above
and for those of Cartwright and Wooders (2003), the law of large numbers will not yield the
results since we demonstrate that there is an approximate equilibrium in pure strategies where
every player’s action is close, in payoff, to a best response.



of a player describes those attributes or ‘external’ characteristics of a player that
directly influence other players. As noted above, the Theorem of this paper also
holds when both the set of types and the action sets are countable.
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