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1 Introduction

The solution concept of Nash equilibrium in voting games has the drawback
of admitting predictions that seem unreasonable. For example, in voting
games with more than three candidates even if every voter has the same
preferences, the least preferred alternative might win in a Nash equilibrium.

Indeed, this is true not only with plurality rule! but with any scoring rule?.

The reason this problem arises with Nash equilibria is that it allows any
possible beliefs on the part of voters, as long as they are consistent. For
example, suppose that it is common knowledge that a candidate, A is worst
for all voters. Nevertheless, there is a Nash equilibrium where every voter
votes for A because he believes that all other voters will vote for A. One
easy way of eliminating this equilibrium is to require voting strategies to be
weakly undominated. Unfortunately this requirement is not sufficient to give
a unique prediction. This problem was motivated first in a preceding article
(Dhillon and Lockwood, 1999) for the case of Plurality Rule only.

However, all the problems that arise with Nash equilibria in plurality rule
games also arise in other scoring rule games. We therefore study the applica-
tion of the iterated elimination of weakly dominated strategies to all scoring
rules. A game that yields a unique result after the iterated elimination of
dominated strategies is called Dominance Solvable (DS). Farquarson (1969)
called this procedure “sophisticated voting”, and he called a voting game

“determinate” if sophisticated voting led to a unique outcome.

Why study Dominance Solvability? If we consider the fact that most of
the scoring rules we consider (except Negative Plurality Rule) choose the

Condorcet winner whenever the sufficient conditions for the game to be DS

Voters can vote for only one candidate and the candidate with the maximum votes

wins the election.
2 A scoring rule is a voting rule which specifies the vote vectors that voters can use, and

then assigns a score to each candidate based on the total number of votes that a candidate

gets. The candidate(s) with the highest score wins the election.



are satisfied, we could interpret Dominance Solvability of the scoring rule
voting game as being linked to the manipulability of a voting game. Thus,
whenever the sufficient conditions for the game to be DS are satisfied, the
outcome includes (except for Negative Plurality Rule) the Condorcet Winner,
i.e. the outcome is the same as if voters voted sincerely. In this sense we are

comparing different scoring rules in terms of this criterion of manipulability.

Iterated Admissibility or iterated elimination of weakly dominated strate-
gies has been criticised by a number of authors, as a strong theoretical justi-
fication for it has been elusive. A number of recent articles however provide
both learning and common knowledge justifications for it (see e.g. Marx

(1999) and Gilli (2002)).

We restrict ourselves to the more realistic case of three candidates or
three alternatives. Experimental studies (see for example Ho, Camerer and
Weigelt, (1998)) have pointed out that although iterated dominance is one
of the most basic principles in game theory, in general “...at the risk of
overgeneralising across games that are too different experimental results show
that subjects rarely violate dominance but usually stop after one— three levels
of iteration.” For reasons that will become obvious, the number of iterations
in scoring rule voting games are closely linked to the number of candidates.
Thus, we feel it is more relevant to study the case of three alternatives. The
flavour of the results would be qualitatively the same with more alternatives?.
The scoring rules we study in this paper are: Negative Plurality Rule (NPR),
Approval Voting (AV), Borda Rule (BR) and Relative Utilitarianism (RU).
We also compare the results on PR (Dhillon and Lockwood, 1999) to the

results of the three other scoring rules.

Our main results are: (1) A generalisation of the results on Plurality Rule
voting (Dhillon and Lockwood, 1999), in the sense that we derive sufficient

conditions for scoring rule voting games to be DS in terms of one statistic

3Buenrostro has separately proved generalisations for some of the scoring rules studied

in this paper.



of the game: the degree of agreement on the best or the worst alternative,
(2) A classification of scoring rule voting games based on the strength of the
conditions required for DS shows that Approval Voting performs quite well
relative to other rules. Intuitively, this is because it is the least restrictive in
terms of the strategies allowed to voters and (3) When the game satisfies the
sufficient conditions for Dominance Solvability we investigate if the unique
outcome is also the Condorcet Winner. The scoring rule games for which the
Condorcet Winner is not chosen by the iterated elimination of dominated
strategies even when it exists and the sufficient conditions for Dominance

Solvability are satisfied are not very desirable rules according to this criterion.

The layout of the paper is as follows. Section 2 presents the model and
defines concepts and notation that will be used in the rest of the paper for
the one stage voting game with three alternatives. Sections 3,4 and 5 offer a
general classification of scoring rule voting games according to the sufficient
conditions for DS. Section 6 compares some of the well known Scoring Rule
voting games like Plurality Rule, Negative Plurality Rule, Approval Voting.

Section 7 concludes.

2 The Model

In the following analysis we assume there are three alternatives, and an
arbitrary number, n > 3, of voters. This is a simplified case of the general
voting game and it is the simplest case where strategic voting can occur. It is
common in the literature to compare voting systems with three alternatives;
for example, Myerson and Weber (1993), Myerson (2002). Also, often major
political elections have no more than three candidates. We believe that the

results would not be qualitatively different with more candidates.

A scoring rule is characterised by a set C' C IR®, which represents the set
of feasible ballots or vote vectors a voter is permitted to submit (Myerson,

2002). A vote vector, ¢ = (c1, ¢, c3) represents a ballot that gives ¢; points
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to candidate one, ¢y points to candidate two etc. The vote-vectors of all
voters are added up to obtain a total point score for each candidate. The
winning set of candidates is those that get the maximum point score. If
there is a tie, we allow all candidates in the winning set to be chosen with
equal probability. We assume that the set C' is a non empty subset of R?.
Every voter can choose from the same feasible set C' so the scoring rules we
consider are anonymous and neutral. We assume w.l.o.g. scoring rules to
be normalised, 0 < ¢; < 1, for all i. Thus in all feasible vote vectors, the
candidate who is top ranked gets 1 point and the candidate who is worst
ranked gets a point 0. Scoring rules differ only in the number of points that

can be given to the middle ranked candidate.

Examples of scoring rules are: Plurality Rule (PR),Negative Plurality
Rule (NPR), Approval Voting (AV), Borda Rule (BR) and Relative Utilitar-
ianism (RU)(Dhillon and Mertens, 1999).

Among these, PR, NPR, and AV allow ¢; € {0,1} only, while RU al-
lows any ¢; € [0,1]. Thus, for three alternatives, normalisation and no
indifferences imply that permitted vote vectors in any scoring rule r €
{PR, NPR, AV, BR, RU } are all possible permutations of the vector (1, s,., 0)
where s, € S, C [0,1]. The set S, characterises the scoring rule r. Thus
Spr =0, Sxvpr =1, Spr =1/2, Say = {0,1} and Sgy = [0, 1].

The social choice literature usually considers scoring rules which allow
singleton sets S,. Our definition of a scoring rule is more general: we allow
S, to be any subset of [0, 1]. We introduce here the Relative Utilitarian (RU)
scoring rule: RU is a social welfare function that consists of normalising
individual (von-Neumann Morgentern) utilities between 0 and 1 and then
adding them (Dhillon and Mertens, 1999). If interpreted as a scoring rule
RU calls for voters to submit ballots that allow the middle ranked alternative
to be given any point betweeen 0 and 1. We can derive any scoring rule from

RU by suitably restricting the strategy space.

We assume that there are no abstentions. With costless voting, abstention



is weakly dominated and therefore deleted in the first stage for all voters. We
also assume strict preferences, so that vectors of the form (¢, ¢, ..., ¢) are not

permitted in all the voting games we consider.

Let us now define the voting game I, corresponding to scoring rule r.
The strategies of voters are the set of possible vote vectors allowed in any
scoring rule. Let v] € V" represent the vote vectors allowed to individual ¢in
scoring rule r, where r = PR,NPR,AV,BR, RU. The profile of vote vectors,
one for each individual, is denoted v. The score for a particular candidate a,
corresponding to a vector of votes v, is denoted w,(v,) (or just w, when it is
clear which vote vector we are considering). A score profile (corresponding
to a vote vector,v,) is a vector w, = (w1, ws, ws), where w; represents the total
point score of candidate i. €2, denotes the space of scoring vectors w,, for

scoring rule 7.

Let W (v,) denote the set of winning candidates given the vote vector
v.. The payoffs are given by the expected utility over the set of winning

candidates.

Let the set of alternatives be X = {z,y, 2} and the set of voters be N
such that |N| = n.

Define W (v,) = {a € X|w,(v,) > max(wy(v,),we(v,)), Vb, c € X} as the

Winning Set for a given profile v,.

Define L(v,) = {a € X|w, < min(wy,w,.), Vb, c} as the Losing set for a

given profile v,.

We will impose the following regularity condition (Dhillon and Lockwood
1999) which ensures that the order of deletion of weakly dominated strategies
does not matter(see Marx and Swinkels’(1997) Transference of Decisionmaker
Indifference (TDI) condition which is sufficent to ensure that the order of
deletion does not matter: If A.1 is satisfied, then TDI is satisied):

Al. For all v, v s.t. W(v,) # W (), ui(v.) # ui(vl.), i € N



This says that no player is indifferent between any two different winsets®.

Let No(N!) C N with a € {z,y, 2z} represent the set of individuals that
rank a as the worst (best) alternative and let n,(n,) be the number of voters

in this set. Let ¢, = "+ and ¢, = ~=.

In what follows we focus only on pure strategies that survive iterated
deletion of weakly dominated strategies (since we are interested in dominance
solvability). In the rest of the paper we suppress the subscript 7 in v,, w, when
it is clear which scoring rule is being discussed in a a particular section, and
we will use v;,7 € N, to denote the vote vector for voter ¢ under the voting
rule that is being analysed. Let v_; represent the voting profile of all players
except player i. Let w,(v_;) denote the total points that a € X gets in
the profile v_;. Finally, say that in game I', preferences are polarized over
alternative a € X if there is an M C N such that all : € M rank a highest,
and i € N/M rank a lowest. Preferences over alternative a are non-polarized
otherwise. Finally, let I'; denote the reduced game after i rounds of the
elimination of weakly dominated strategies and W denote the outcome

when no further iterated elimination is possible.

Fix a scoring rule, r. Let p,(v) denote the probability that alternative
a is in the winset given profile v. We define a voter ¢ to be pivotal on a set
S C X, if Va € S,3 a strategy v;(a) € V; such that p,(v_;) # p.(v), where
v is the profile (v_;,v;(a)) (note that the order of vote vectors in the profile
does not matter as scoring rule voting games are anonymous), and Va ¢ S,
for all strategies v} € V;, p(a)(v_;) = pa(v'), where v’ = (v_;, v}). We say that
a strategy v; is at least as good as strategy v, for voter 7 if strategy v; does not
decrease the probability that an alternative which is higher ranked by voter
i is in the winset, relative to strategy v/, for any profile of (pure) strategies of
other voters. We denote the set of alternatives which are condorcet winners

as XV and a CW is denoted as a®V € X",

Finally we often use the short form UBR for Unique Best Response.

4A1 implies that no voter is indifferent between any pair of alternatives.



We focus on sufficient conditions that require only ordinal information on
preferences®. In the next section we show that most scoring rules have very
similar sufficient conditions for DS. In particular we show that most scoring
rules can be categorised according to whether the sufficient conditions can be
expressed in terms of sufficient agreement on the best alternative or sufficient

agreement on the worst alternative.

3 A classification of scoring rule voting games

The idea behind strategic voting is that individuals try to differentiate max-
imally between the alternatives that are tied given the vote vectors of all
other voters. This has to be consistent with the type of vote vectors they
are permitted in the scoring rule. We can thus deduce something about the
undominated vectors. In PR, voters have a single vote (i.e. ¢; = 1 for any
i implies ¢; = 0,Vj # 1. ). Thus if they are pivotal over any set involving
the worst ranked alternative, they must give it zero, and if not pivotal on
this alternative they may as well give it zero points. Therefore the search for
sufficient conditions for dominance solvability of the PR voting game is es-
sentially a search for conditions under which we can reduce the set of possible

winning candidates. This idea extends to other scoring rules as well.

For scoring rule r let 5, denote maxs € S,, and s, denote mins € S,.
Obviously if S, is a singleton then s, = s, = s,. Denote X(v,) = w,(v,) +
wy(vy) +w,(v,). Note that for any scoring rule n(1+s,) < X(v,) <n(1+75,).

It is quite intuitive that with three alternatives, voters would never give
less than s, to their best alternative and never give more than s, to their

worst alternative. This is what the next proposition shows.

Proposition 1 In the game T, the only strategies that are undominated for

a voter i are those that give c; > 'S, to his top ranked alternative j € X and

% Although we shall see later that this is not quite true for Borda Rule.



cr < s, to his worst ranked alternative k € X.
See Appendix Section A.1 for the proof.

Thus the first stage of iterated elimination leads to the reduced game
denoted by I'y,. for scoring rule r, where the strategies are of the form (5, 1, 0),
(1,s,,0) and (1,0, s,).

Our sufficient conditions for DS revolve around finding the conditions
under which we can reduce the set of possible candidates that can win the
election. This could happen in two ways: either we can eliminate the can-
didate who is worst ranked by most voters or we can say something about
the candidates who cannot lose if there is sufficient agreement on the best
and then use that to reduce the possible outcomes. We call these two sets
of sufficient conditions Agreement on the Worst and Agreement on the Best
respectively. We show that if s, < 1/2, then a scoring rule voting game is
DS if there is “sufficient” agreement on the worst and if 5, > 1/2 then a
scoring rule voting game may be DS if there is sufficient agreement on the
best. The conditions for Agreement on the best and Agreement on the worst
are not symmetric—- the reason is that agreement on the best only helps us
to eliminate candidates in the Losing Set while we are interested in reducing

the possible winning outcomes.

4 Agreement on the worst:

4.1 Scoring rules with s, < 1/2

W.l.o.g let z be the candidate that most voters rank worst®. Recall that n.
is the number of voters who rank z worst. In what follows we will drop the

subscript r from v, and use W synonymously with W (v), L synonymously

6This is uniquely defined if z is a Condorcet Loser. Whenever our sufficient conditions

are satisfied, this is indeed the case.



with L(v). This makes the notation simpler.

In the next theorem we derive the sufficient conditions for Dominance
Solvability of Scoring Rule voting games with s, < 1/2. We know from
Proposition 1 that voters will give a minimal score to their worst candidate in
the undominated game. Consider a voter ¢ who has z as his worst candidate.
If there are sufficiently many voters who rank z worst, then z can get at most
n.s,+(n—n.). Nowif s, < 3, this means that z can never be in the winning
set, so that even the voters who do not have z as the worst candidate will
not waste their votes on z. Thus the gameis reduced to a game between x

and y and the CW must win. This is what we show in this section.

Theorem 1 (A) If s, < 1/2, then the game T, is DS if n, > g((f:f’“)) (B)Also

whenever the sufficient conditions for DS are satisfied, (i) W contains at

most two alternatives, (i) if n is odd, a unique CW, a®V exists and W™ =
{a®V}; (i) if n is even, at least one CW exists and W = XV,

Before we prove this theorem we need a few lemmas. Proofs of all lemmas

are in the Appendix.

Lemma 2: Assume s, < 1/2. If n, > g((f:i)) then W C {{z},{y},{zy}}.

Corollary to Lemma 2: If s, = %, and n, = n then W(v) € {{z}, {z,y}, {y},
{z,y,2}}, for allve V.

Lemma 3: Consider a voter i € N, such that x =; y >=; z. Assume
W c {{z},{y},{zy}}. Then either (i) the strategy (1,0,s,) weakly dom-
inates strategies (1,s,,0) and (5,,1,0) for s, >0, or (ii)all strategies of i are

equivalent.

Lemma 4: Consider a voter ¢ ¢ N, such that z >=; x =; y. Assume W C
{{z},{y},{zy}}. Then either (i) the strategy (1,0,5,) (denoted v;) weakly
dominates strategies (0, s,, 1) (denoted v) and (s,,0,1) (denoted v') for s, >

)y Er

0, or (ii) all strategies of i are equivalent.

Proof of Theorem 1 (A): Consider i € N,. W.l.o.g assume = >; y >; z. By

10



Proposition 1, his undominated strategies (or his strategies in the game I'y,
are of the form (5,,1,0), (1,s,,0) and (1,0, s,). Consider a voter j ¢ N, such
that z >=;  >; y. By Proposition 1, his undominated strategies are (1,0, 5,),
(0,s,,1) and (s,,0,1) By Lemma 2, we know that W C {{z}, {y},{z,y}}.

»=Ery

Consider voter ¢ above. By lemma 3, if strategy (1,0, s,) weakly dom-
inates any of the strategies (1,s,,0) and (S,,1,0) for s, # 0, then we can
remove all such strategies . Similarly for voter j above if strategy (1,0,5,)
weakly dominates strategies (0,s,,1) and (s,,0,1) for some s, then we can

remove these strategies in the second round of iterated deletion to reach the

reduced game I'y,.

In the game I'y,., either some voters have only one strategy remaining and
this is the one that gives 1 to the best candidate out of =,y and 0 to the
other, or all remaining strategies for all remaining voters are equivalent. This
means that we can choose the strategy that gives 1 to the best candidate out
of x,y and 0 to the other for all voters (since whichever strategy we choose
the outcome is the same for all voters). Thus all voters have only one strategy
left and the game is DS. [J

Proof of Theorem 1(B): For the second part, observe that there z is the
unique Condorcet Loser in these voting games. Hence there must be a CW,
which is unique if n is odd. By the proof of theorem 1, we know that all

voters vote sincerely between x and y in the reduced game I'y,, while z gets

3
min(w,) > 5. If n is even and both z and y are CW then w, = w, =

n(s,) votes. Thus max(w,) < % while if there is a unique CW (say x) then

,
n
5
Hence the winning set is the set of CW’s.

O
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1

4.2 Scoring Rules with s, = 3

Let, w.l.o.g, n, be the largest number of voters who have the same worst
alternative. As in Dhillon and Lockwood (1999) we say that i € N has
dominated middle alternative (DMA) preferences if he prefers a lottery with

equal probabilities over all three alternatives to his middle-ranked alternative.

1
2

agreement required on the same worst alternative increases. The reason is

This section essentially shows that when s, increases to 5 the degree of
that our sufficient conditions are conditions that ensure that z will never be

in the winning set if voters use iteratively undominated strategies.

Theorem 2 (A)If s, = 3, the game T, is DS if n. = n and either (i) n is
odd, (ii) n is even and n, # n,, or (iii) all voters have DMA preferences. (B)

If the conditions in (A) hold then at least one CW exists and W includes
Xew,

Proof of Theorem 2(A) Using the Corollary to Lemma 2, W(v) € {{z} {z,y}{v}.{z, vy, z}},
forallve V.

Note that if n, = n Proposition 1 implies that max(w.(v)) = 5.

Suppose that 3 v such that W (v) = {z,y,2}. This implies that w,(v) =

wy(v) = w.(v). Such a profile exists iff all i € N give £ to z. Butifalli € N

1
2

alternative and 0 to the second ranked.Since w,(v) = wy(v) = w,(v) it must

give = to z, they must all be using the strategy which gives 1 to the best

be that n), = n; = 7 and therefore n is even.

Thus if n is odd, or nj # n;, no such profile exists, and {z,y,2} &
W (v),for any v € V. Then the result follows using Lemmas 3 and 4 and the
game is DS (following the same proof as for the case s, < 1/2.). We now

consider the case when n is even and n), = nj, = 3.

Let ¢ € N, be such that (wlo.g) z =; y >; z.. By Proposition 1 the
remaining strategies for such a player in the game I'y, are: v; = (1,0,1/2),

v; = (1,s,0) and v; = (5,,1,0). It is sufficient to show that v; weakly

12



dominates the two other strategies in the case W (v) = {z,y, 2z} (since the

rest follows from the proof of Theorem 1.).

Now assume that n is even, nj, = n; and all the voters have DMA pref-
erences. Let v_; be such that W (v) = {z,y, 2}, this implies that w,(v_;) +
1 = wy(vey) = we(v_y) + % Therefore, the only possible outcome for v is
W (v) = {y} and since i has DMA preferences strategy v; is at least as good
as v;. Analogously, the only possible outcome for v is W (v) = {y} and since

1 has DMA preferences strategy v; is at least as good as v;.

If there exists a profile v_; such that strategy (1,0, %) is strictly better
than strategy (1, s,,0) for any s, € S, and there exists a profile such that
(1,0, 3) is strictly better than strategy (s,,1,0), then we can eliminate the
dominated strategies. Otherwise all strategies are equivalent and we can
choose (1,0, 3).

Therefore, if n, = n and either (i), (ii) or (iii) in Theorem 2 hold then the
only strategy that is undominated in I'y, for all voters is the strategy that
gives 1 to the best and 1/2 to the worst alternative.

O

Proof of Theorem 2(B): If the sufficient conditions for DS are satisfied,
there is a Condorcet Loser (z), so clearly there is a unique CW if n is odd
and if n is even then both x and y are CW’s. The proof of part (A) shows
that all voters are left with the strategy that gives 1 to the best and % to z.
Thus, the winning set coincides with the CW if n is odd, and if n is even all
three alternatives get equal votes so the winning set includes the Condorcet

winners.

O
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5 Agreement on the Best

W.lo.g let z be the alternative that a plurality of voters rank best. As
shown by Proposition 1 the reduced game I';, gives a maximum of s, to
the worst alternative and a minimum of 5, to the best alternative. Thus

min(w,) = n’3,.

Recall n(1+s,) < X(v) < n(147,). Recall too that the strategies that sur-
vive in I'y,. for i such that x >=; y >; z are of the form (1,0, s,.); (1, s,,0); (5., 1, 0).

When a sufficiently large number of voters agree that x is the best can-
didate, then we might conjecture that x is always in the winning set, and
the only question is whether it is uniquely in the winning set or not. This is
indeed the case: consider Negative Plurality Rule which is the worst scoring
rule in the sense that s, = 1. Even if all voters agree that x is the best
each voter still has two undominated strategies remaining, so that the out-
come could be {z,y} or {z,2}. Indeed, this is true even if all voters have
exactly the same preferences. The co-ordination problem is particularly bad
with NPR. We derive some sufficient conditions for NPR in Section 6. On the
other hand when s, < 1, there is some hope that the game is DS if sufficiently
many voters agree on the same best alternative. The exact conditions are
derived below. If s, is less than %, then even if all voters agreed on the same
best candidate, we still could not ensure that that candidate would always
be in the winning set. That is why we need 5, > %, to be able to derive

sufficient conditions based on agreement on the best.

5.1 Scoring Rules when 5, > % ;

Theorem 3:(A) Let 5, > 1/2 and s, < 1. If n, > max[23) 2] 4nd

35, 0 2-s,
S, > s, then the Scoring rule game is DS and x is the unique winner. (B) If

the sufficient conditions are satisfed, the unique C'W is x.

Before we prove this theorem, we need a few lemmas. We assume from

14



now on that 5, > 1/2.

Lemma 5: If n, > n(HS’) then L € {{y},{z}. {v,z}}.

Comment 1: Thus we can deduce that w, > min(w,,w,) for all profiles v.

Corollary 1 to Lemma 5: If nl, > ”(HST then W (v) € {{z},{y}, {z}, {=, y}{z, 2}}, Vo.

The proof is obvious using Comment 1 above: {y, z} and {x,y, z} cannot be

in the winning set for any profile v.
Corollary 2 to Lemma 5: If5, = § andnl, = n then L € {{y},{z}.{z, vy, 2}.{y, 2} }.

Lemma 6: Let i € N., such that x =; y »=; z. If L C {{y},{z},{v,2}},
then either (a) strategies v; = (5,,1,0) and v} = (1,s,,0) are both weakly

dominated by strategy v; = (1,s,,0) or (b) all strategies are equivalent for i.

If strategy v; weakly dominates strategy v; (v}) then we can eliminate v;(v}).

Otherwise, the two are equivalent and we can choose ;.

Thus the reduced game I'y, is the game where all i € N have strategies

(1,0,s,) and (1,s,,0) remaining.

I =r

Lemma 7: In the game Iy, if 5, < 1, and nl, > 5

then the Scoring rule

Sy

game is DS and x is the unique winner.

Corollary to Lemma 7: In the game 'y, if s, < , then if n!, > 22 the game

1s DS and x 1s the unique winner.

Proof of Theorem 3: Denote n/. = (1+s’“

shows that whenever n/, > n/. then {y, z},{x,y,z}¢ W (v), for any v € V.

. The Corollary to Lemma 5

Then Lemma 6 tells us that in this case, all i € N/, will give 1 to x. Lemma
7 shows that if n/, > nj, then W = {z} and the game is DS. Thus if n/, >
max[n/, nj] all conditions are satisfied so the game is DS and x is the unique

winner. [

Corollary 1 to Theorem 3:Let 5, > 1/2 and s, < 5 Lo Ifn > 1+S’“ then

the Scoring rule game s DS and x is the unique winner.
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Proof of Corollary 1 to Theorem 3: Since 5, € (1,1] and s, € [0, ), we

have inf(nf.) = % = sup(n}) = &, so if n/, > 2* the game is DS and x is the

unique winner for all 5,,s,, in the intervals considered.
OJ

Corollary 2 to Theorem 3: If 5, > 1/2 and s, < 3, and n/, > then a

27
1s the unique Condorcet Winner and is the only determinate outcome.

n(1+3,)
3sr

The proof is obvious. [

5.2 Scoring Rules with 5, = %

Theorem 4:If 5, = %, and n!, = n, the scoring rule game is DS and the
unique winner is the Condorcet winner.

Proof of Theorem 4: The Corollary to Lemma 5 shows that L(v) €
Hy}. {z}. {v, #}, {=,y, 2}}. Thus min(w,)(v) > min(w,(v),w.(v)) for any
profile v. This means that W (v) e{{z},{y}, {z}.{z, y},{z, 2}, {z,y, 2} } ,Vo.
Consider an individual i € N/ such that x >=; y >=; z. It is easy to see that
Lemma 6 applies in this case as well when L(v) € {{y},{z}, {y, z}}. It is suf-
ficient, therefore to show that Lemma 6 holds when L(v) = {x,y, z}. Thus,
let v; = (5,,1,0) and v, = (1,s,,0) and 9; = (1,s,,0). Let (v;,v_;) = v,
(vl v_y) =0, (V,v—;) = 0. If W(v) = W(') = {z,y, 2z} then W(0) = {x}.
Thus by the proof of Lemma 6, we can eliminate strategies (S,,1,0) and
(1,s,,0). The only strategies that remain are those that give 1 to x. Since

wy(v) > nl, = n, for all v while maz,ev (wy(v),w,.(v)) = nls, = ns,, the

1

game is DS and x is the unique winner, since s, <5, = 3.

O
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6 Results for Scoring Rules: PR,AV,RU,BR,
NPR

What can we say about sufficient conditions for DS of the scoring rules that
are familiar in the literature? Well, our first result is that the sufficient
conditions for DS for both AV and RU are exactly the same! Thus, there is

no loss in restricting strategies to be s, € {0,1}.

Corollary to Theorems 1 and 3:The PR game is DS if n, > 2?” The
AV and RU voting games are DS if either (i)n. > % or (ii) nl, > 2. If the
sufficient conditions for DS are satisfied, there exists a CW and the winning

set coincides with the set of CW’s for all three scoring rules.
For Borda Rule we have the following result:

Corollary to Theorems 2 and 4:The BR game is DS if EITHER (A)
n. = n and either (i) n is odd (ii) n is even and n), # ny or (i) all voters
have DMA preferences, OR (B)nl, = n. If these sufficient conditions are
satisfied, in case A(i) there is a unique CW and it is the unique winning
alternative. In case A(ii) if all voters are equally divided between x and y
then all three alternatives will be in the winning set. In case (B) the unique

CW coincides with the winning set.

6.1 Sufficient Conditions for non Dominance Solvabil-
ity of PR, AV, BR, RU

Although we cannot say whether the sufficient conditions derived above are
also necessary’, we could try and derive sufficient conditions for non DS that

rely only on ordinal information. Dhillon and Lockwood (1999) follow pre-

"This is because the game could be DS even if the sufficient conditions are not satisfied
— recall that we wanted conditions that used information only on ordinal preferences— e.g.
with some utility functions and not with others.
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cisely this approach in the case of PR. We are able to derive these conditions
for NPR but not for the other voting rules.

The sufficient conditions for non Dominance Solvability for AV, BR and
RU are very complicated to characterise. The reason for this is that unlike
in PR and NPR the map from the space of voting profiles V' to the space of
Scoring Vectors € is not one to one, while it is one to one (upto permutations
between individuals) in the case of PR and NPR. Thus the inverse function

does not exist.

For example w, = w, = n;w, = 0 clearly corresponds to voting pro-
files n(1,0,0) 4+ n(0,1,0) under PR but in AV it could correspond to either
n(1,0,0) + n(0,1,0) or to n(1,1,0).

We believe that the sufficient conditions will need to take into account
more information than simply the degree of agreement on the best and worst
alternatives. We construct an example for AV using the Condorcet cycle,
to show that the game is not DS when there is sufficient heterogeneity in

preferences:

Example 1 (Non DS of AV)

Let n = 6,n), = n;, = n, = 2,n, =n, =n, and the preferences such that:
Ty ==z

T=Y==z

Y= z>=2x

1

2

3

4 y=-z»>u
5) Z2=x >y
6

2Ty

In I'; the strategies that survive are (1,1,0) and (1,0,0) for 1 and 2; (0, 1,0)
and (0,1, 1) for 3 and 4 and (0,0,1) and (1,0, 1) for 5 and 6. Consider 1 and 2:
strategy (1,1,0) isa UBR to (1,0,0)+(0,1,0)+(0,1,1))+2(0,0, 1). Strategy
(1,0,0) is a UBR to e.g (1,0,0) +2(0,1,0) + (1,0,1) + (0,0, 1). For players
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3 and 4, strategy (0,1,1) is a UBR to 2(1,0,0)+ (0,1,0) + (1,0,1) 4+ (0,0, 1)
and strategy (0,1,0) is a UBR to 2(1,1,0) + (0,1,1) + (0,0,1) + (1,0,1).
Finally for players 5 and 6, strategy (1,0, 1) is a UBR to (1,0,0) +(1,1,0) +
2(0,1,0) + (0,0, 1) while strategy (0,0,1) is a UBR to (1,1,0) + (1,0,0) +
2(0,1,1) + (1,0, 1). Thus, the game is not DS. [J

NPR does not come under either of the categories we studied. Indeed,
the conditions of Theorem 3 are not satisfied for NPR (since s, = 1.). Thus

we find the sufficient conditions for this scoring rule as a separate case:

6.2 Negative plurality rule (NPR)

In the NPR voting game players have the following pure strategies: S; =
{(0,1,1),(1,0,1) and (1,1,0)}. The following lemma characterises the weakly

dominated strategies in this game.

Theorem 5 (Sufficient conditions for Dominance Solvability): The
: . . £ 2n 2 2n 1
NPR game with three alternatives is DS if 3 — 3 < n, < 3 — 3, and
preferences in x are polarised.
To prove this result, observe that Proposition 1 implies that I'y, for r =
N PR consists of strategies that give 1 to the best alternative for all voters.
Thus the undominated game I'y, has two strategies for each player.

Lemma 8: Consider the undominated game I'ynpr. If nl > 27” — % and
preferences in x are polarised, the only undominated strategy for any i ¢ N,

is (0,1,1).

Thus, only strategy (0,1,1) remains for all i ¢ N., and strategies (1,1,0)
and (1,0, 1) for ¢ € N/ in the reduced game.

From the above, all i € N/ give 1 to 2 (Lemma 1) and all i ¢ N/ give 0 to x

(Lemma 2), hence in the game I'y,, w, = n’.

Lemma 9: Consider the undominated game Iy, where w, = nl,. Ifn), < 3 —2
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the only undominated strategy for any i € N is one which gives 1 to the best

and 0 to the worst alternative.

Proof of Theorem 5: Proposition 1 shows that the first stage of iterated
deletion leads to the game I'y,., where only strategies that give 1 to the best
alternative survive. Then Lemma 8 shows that in I'y for all ¢ ¢ N the only
strategy that is not weakly dominated is (0,1,1). Finally Lemma 9 shows
that in ['y, for the remaining voters, i € N_, the strategy that gives 1 to the
best and 0 to the worst is the only one that survives. Hence all voters have

exactly one strategy remaining and the game is DS. [J

The proposition above gives sufficient conditions for the NPR game to be
DS. Are these conditions necessary as well? As the next proposition shows,
this is not the case. We cannot completely classify the game when preferences

are not polarised.

Theorem 6 (Sufficient condition for Non Dominance Solvability): (i)
If nl, < % — 2 the NPR game is not DS, (ii) If nl, > 2 + 2 and preferences
in x are polarised, the NPR game is not DS.

Of course these two propositions do not establish the necessity of the

conditions for DS. Indeed, the polarisation condition in Theorems 5 and 6

only makes it easier to classify games but is not a necessary condition.

We present an example that shows that the conditions for non Dominance
Solvability are not necessary conditions. Thus the game is not DS even when

the conditions are not satisfied.

Example 2 (NPR): ¢, > 2+ 2., preferences are not polarised and the game
is not DS.
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Let n = 6,n!, =5 and the preferences such that:

T>=Y==z
T=Y-=z
Ty =z
Ty ==z
Y=z

S Ot s W N

Y-z

In the game I'y the following strategies survive: players 1 — 5 : (1,1,0) and
(1,0,1) and player 6:(1,1,0) and (0, 1,1). For player 6: strategy (0,1,1) is a
UBR to 4(1,1,0) + (1,0, 1) while (1,1,0) is a UBR to 5(1,0,1). For players
1-5, strategy(1,1,0) is a UBR to 4(1,0,1) + (0,1, 1) while (1,0,1) is a UBR
to 4(1,1,0) + (0,1,1). Hence the game is not DS. O

Thus, to summarise, the NPR game is not DS when n! < %” — %, it is DS
when preferences in x are polarised and %" — % >nl > %" — % and it is not
DS when n}, > %” + %, and preferences in z are polarised. Asymptotically,

however the game is DS iff n/, = 2?” and preferences are polarised in z, but
obviously there is also the requirement that n!, be an integer. Indeed, we can
show that even when n is “small”, very few NPR games can be classified as

DS. The following proposition shows this:

Taking the integer condition into consideration, note that we need [ 2% ] >
n. > (2"—3_2W and preferences polarised, for Dominance Solvability. Let

2n —1 = w. We can write w as 3m +r where m is an integer and r = 0, 1, 2.

Proposition 2: There exists an nl, such that | %] > nl, > [“2] iff either

r=0, orr=1.

Proposition 3:If the conditions stated in Theorem 5 hold, then (i) if n > 5
a unique CW a® exists but a® is never in the winset (i) if n =4 at least
one CW exists and the alternative (s) in the winset is (are) CW.
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7 Conclusion

In this paper we found conditions for three-alternatives voting games to be
DS under NPR, AV, BR and RU voting rules. For NPR game we also found
conditions for the game not to be DS. These conditions are stated in terms of
the largest proportion of voters who agree on which alternative is the worst
(best).

Our results show that Approval Voting performs quite well. The intuition
is that voters have much more flexibility under this rule. Ideally voters need
to be able to choose to maximally differentiate between any two alternatives.
BR does not allow the maximal differentiation. RU does allow it, but also
allows other strategies which turn out never to be needed. The 'good” prop-
erties of AV have been recently studied from another point of view by Brams
and Sanver (2003).

A natural question that arises at this stage is: can we say something more
precise about the relations between the conditions required for Dominance
Solvability of these different scoring rules? The next result tries to answer

this question.

Theorem 7: Whenever the sufficient conditions for Dominance Solvability
for PR are satisfied, so are those for RU and AV. Whenever the sufficient
conditions for Dominance Solvability for BR are satisfied, so are those for
RU and AV. The sufficient conditions for Dominance Solvability for AV and

RU are the same.
The proof is obvious.

From the results in the last section we can compare plurality, negative plu-
rality approval and Borda voting rules using as a criterion the conditions for

the associated voting games to be DS.

The worst in terms of our criterion seems to be NPR. While we cannot show

analytically that whenever the sufficient conditions for Dominance Solvability
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are satisfied for NPR they are also satisfied for AV and RU, we have not found
a counterexample either. Many examples can be constructed where the NPR
game is DS and it turns out that the corresponding AV game (i.e. with the

same preferences) is also DS.

An attractive feature about the PR,AV and RU games is that the iterated
elimination procedure takes a very intuitive form: we use a sequence of iter-
ations that corresponds closely to the reasoning in voters’s minds when they
vote strategically: i.e. the iteration proceeds by elimination of candidates
that everyone knows are effectively not in the race. Thus the steps of iter-
ated elimination correspond to reducing the set of outcomes that can occur!
At every step all voters have the same strategy set. This feature of Plurality
Rule (and AV,RU) makes it eminently suitable to be used in experimental
settings for testing the powers of subjects with regard to iterated dominance

reasoning.

Obviously the main part missing in this paper is necessary conditions for
Dominance Solvability (or at least sufficient conditions for non Dominance
Solvability) so that we could characterise the necessary and sufficient con-
ditions at least for large groups of voters. This proved to be difficult to do
when we move away from scoring rules where the number of strategies is

equal to the number of alternatives.
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A. Appendix

A.1. Proposition 1

Proposition 1 In the game I',. the only strategies that are undominated for
a voter 1 are those that give c; > 'S, to his top ranked alternative j € X and
cr < s, to his worst ranked alternative k € X.

Before we prove this proposition, we introduce a lemma:

Lemma 1: Consider a voter i such that x =; y >=; z. Consider two strategies

. — /I __ / / / .
for such a voter: v; = (cz, ¢y, c.) and v; = (¢, c,,c,). Then strategy v; is at
/

! /
least as good as v iff cz—c, > ¢, —c;

/ / / /
and c;—c, > ¢,—c, and c,—c, > ¢, —c,.
The proof is obvious.

Proof of Proposition 1: Assume, w.l.o.g that © >; y >=; z. The strategies
of voter i are partitioned (upto duplication when s, € {0,1}) into the fol-
lowing: {(1,s,,0); (0, s, 1); (s, 1,0); (s,,0,1);(1,0,5,);(0,1, s,.)}, for s, € S,.
We show (i) that any strategy of the form (0, s,,1) for a fixed s, is weakly
dominated by strategy (1, s,,0). By Lemma 1 (1,s,,0) is at least as good as
(0, sy, 1) : when v_; is chosen so that 1/2 of the voters (except ) use (1,0, s,.)
and 1/2 use (s,,0,1) (if n is even then let the extra voter use (s,,0, 1)), then
wy(v_;) —wgp(vy) <1 — 5., wy(v_;) = 0. Thus for this profile, (1,s,,0) is
strictly better than (0,s,,1). (ii) Assume s, # 0 (otherwise the strategies
are not distinct): Any strategy of the form (0,1, s,) is weakly dominated by
(sr,1,0). By Lemma 1 (s,,1,0) is at least as good as (0,1, s,) and we can
construct the same profile v_; as for (i), except that if n is even, let the extra
voter use (0,1,s,) and all others are evenly divided between the strategies
(1,0,s,) and (s,,0,1) so that w,(v_;) — wy(v—;) < s, and wy(v_;) < 1. On
this profile, (s,,1,0) is strictly better than (0,1,s,). Moreover, if n > 3, y
can never be in the winset with the profile v_;. (iii) Assume s, # 1, (other-
wise the two strategies are not distinct). Any strategy of the form (s,.,0,1)
is weakly dominated by (1,0, s,). Again, by lemma 1, strategy (1,0, s,) is
at least as good as strategy (s,,0,1). It is strictly better for v_; constructed
above for (i).

This leaves us with strategies of the form {(1,s,,0); (s, 1,0);(1,0,s,)},
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for s, € S,.. We now show that (i) either strategy (3., 1,0) weakly dominates
strategy (s, 1,0) for some s, # 3, or all such strategies are equivalent. By
lemma 1, (5,,1,0) is at least as good as (s,,1,0) for all s, # 5,.. Either
there exists a profile and an s, such that 5, = w,(v_;) — w,(v_;) > s, and
wy(v_;) = 0: In this case, strategy (5,,1,0) is strictly better than (s,,1,0).
Thus all such strategies can be removed. Or all such strategies (s, 1,0) are
equivalent. The removal of such redundant strategies does not change the set
of outcomes that survive iterated elimination (see Marx and Swinkels, 1997):
thus we are left with strategy (S,,1,0) in any case. (ii) Either strategy
(1,0, s,) weakly dominates strategy (1,0,s,) for some s, # s, or all such
strategies (1,0, s,) are equivalent. By lemma 1 strategy (1,0,s,) is at least
as good as all strategies (1,0, s,) for all s, # s,. If there exists a profile v_;
such that 1 — s, = w,(v_;) —w,(v_;) > 1 —s, and w,(v_;) = 0, then (1,0, s,)
weakly dominates (1,0,s,). We can thus remove such strategies. If there
does not exist any such profile for any s, # s,, then all such strategies are
equivalent, and we can choose to eliminate all except (1,0, s,). (iii) Finally
(since we can choose the order of elimination) we choose to let strategies
(1,s,0) remain, even if some might be dominated.

0.

A.2.Scoring Rules with s, < % Lemma 2: Assume s, < 1/2. If
ne > 502 then W C {{} {y}, {ay}}

Proof of Lemma 2: By proposition 1 the maximum score that z can get

in any profile is w, = n,(s,) + (n —n.)1. Suppose to the contrary that z was
in the winning set for some profile v: the minimal score z requires would be
in the case that it ties with  and y. Note that the minimum sum of scores
over profiles is ¥, = n(1 + s,), while the maximum sum of scores possible
when z ties with = and y is w,(v) + wy(v) + w,(v) = 3(n.(s,) + (n — n,)1).
Ifn, > g((f:i)) then w,(v) + wy,(v) + w.(v) < ¥,, a contradiction. Moreover
n, < n implies that s, < 1/2. The case s, = 1/2, is discussed in Section 3

(Borda Rule). Hence we need s, < 1/2, for the Lemma to hold.
U
Corollary to Lemma 2: If s, = 1, and n, = n then W(v) € {{z}, {z,y}, {y},
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{z,y,z}}, forallv e V.

Proof of Corollary to Lemma 2: When s, = %, then it is possible that z is
in the winning set.But this is only possible if it ties with x and y. Suppose not:
it is sufficient to look at cases where W (v) = {x, z} or W(v) = {y, z}. W.lo.g
let W(v) = {x, z} for some v € V' then max(w,(v) + w,(v)) = 2(max(w,)) =
2(2) =n <n(l+3). Since n(1+1) < X(v) < n(1+5,) for all profiles v € V,
this is a contradiction.

O

Lemma 3: Consider a voter i € N, such that x =; y >=; z. Assume
W {{z},{y},{zy}}. Then either (i) the strategy (1,0,s,) weakly dom-
inates strategies (1, s,,0) and (5,,1,0) for s, >0, or (ii)all strategies of i are
equivalent.

Proof of Lemma 3: (i) Let v; = (1,0,s,), v, = (1, s,,0), and v/ = (5,,1,0).
Let v = (v;,v_), V' = (v},v_;), v = (v/,v_;). If W(v) = {z}, then clearly
W) C {{z},{y},{z,y}}, since the score for x must be the same while
that for y may increase if s, > 0. Also if W (v) = {x}, then clearly W (v") C
{{z},{y}, {z,y}}, since the score for = goes down given v_; if 5, < 1 while
that for y increases. If W(v) = {y}, then clearly W(v") = {y}, since the
score for x must be the same while that for y may increase if s, > 0. Also
if W(v) = {y}, then clearly W(v") = {y}, since the score for z does not
increase given v_; if 5. < 1 while that for y increases. Finally if W (v) =
{zy}, then W(v') C {{y},{x,y}}, since the score for x must be the same
while that for y may increase if s, > 0. Also if W (v) = {zy}, then clearly
W(") C {{y},{x,y}}, since the score for = goes down given v_; if 5, < 1
while that for y increases.

Thus no matter what v_; is, the strategy (1,0,s,) is weakly better for
i given that W C {{z}, {y}, {zy}}. The strategy (1,0, s,) is strictly better
than v} (that is, if s, # 0) if there exists a v_; such that 1 > w,(v_;) —
wy(v_;) > 1 —s,, or if there exists a v_; such that 1 = w,(v_;) — wy(v_;) >
1—s,.

Similarly the strategy v; is strictly better than the strategy v/ if there
exists a profile such that 1 > wy(v_;) —wy(v_;) > 5, — 1, or if there exists
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a v_; such that 1 = wy(v_;) — wy(v_;) > 5 — 1. If any of these strategies
exists in the game I'y, then strategy v; weakly dominates strategy v} and v/
respectively.

If such profiles do not exist, then any pair of such strategies must be
equivalent in the sense that W (v;,v_;) = W (v}, v_;), Vu;, v} € V.

O

Lemma 4: Consider a voter i & N, such that z =; x =; y. Assume W C
{{z},{y},{zy}}. Then either (i) the strategy (1,0,5,) (denoted v;) weakly
dominates strategies (0, s,, 1) (denoted v) and (s,,0,1) (denoted v!) for s, >

0, or (i1) all strategies of i are equivalent.
Proof of Lemma 4: (i) Let v = (v;,v_;), v' = (v},v_;), v" = (v, v_).
(A)If W(v) = {z}, (i.e. wy(v_;) —ws(v_;) < 1) then clearly W (v') = {x},
if (Dws(v-i) —wy(v-4) > s, W(') = {x, y} if (i) wa (Vi) —wy(v-) = s,,and
U)W (') = {y}, if we(v-i) — wy(v-i) <,
(BYIEf W (v) = {z,y}, (i.e. wy(v_;)—w,(v_;) = 1) then clearlyW (v') = {y},

since given that wy(v_;) — w,(v_;) =1, wy(v_;) < wy + s,, for any s, € S,.

(CE W () = {y}, (ie. wy(v-s) —welv_i) > 1) then clearly W (') = {4},
since given that wy(v_;) — wy(v_;) > 1, wy(v_;) < wy, + s,, for any s, € S,.

Thus no matter what v_; is, the strategy v; is weakly better for ¢ given that
W C {{z},{y}, {zy}}. The strategy v; is strictly better than v/ if there exists
a v_; such that wy(v_;) —w,(v_;) < 1 and w,(v_;) —wy(v_;) = s,, or Wy(v_;) —
wy(v_;) < s, (Cases A (ii) and (iii) respectively), or if wy(v_;) — wy(v_;) =1
(Case (B).) If any of these profiles exist then strategy v; weakly dominates
strategy v!. If no such profile exists the two strategies are equivalent.

Now we consider strategy v,

(ANIE W (v) = {x}, (i.e. wy(v_;)—wy(v_;) < 1) then clearly W(v") = {x},
if wy(v_;) — wy(v_y) < s, W) = {z,y}, if wy( i) — we(v_y) = s, (for
sp < 1), and W(v') = {y}, if wy(v_;) —ws(v_;) > s,

(B)If W(v) = {=,y}, (i.e. wy(v_;) —wy(v_;) = 1) then clearly W(v') =
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{y}, since given that wy(v_;) — w,(v_;) = 1, wy(v_;) — wy(v_; > s,, for any
s, < 1.

(C")Finally if W(v) = {y}, (le. wy(v_;) — wy(v_;) > 1) then clearly
W(v') = {y}, since given that w,(v_;) — w,(v_;) > 1, wy(v_;) —w, > s,, for
any s, € S,.

The strategy v; is strictly better than the strategy v/ if there exists a
profile such that wy,(v_;) — w,(v_;) < 1 and wy(v_;) — wy(v_;) = s,, (for
sy < 1), or wy(v_;) — wy(v_;) > s, (Cases (A’)(ii) and (iii) respectively) or
wy(v_;) —wy(v_;) =1 (Case (B’)). If any of these profiles exists strategy v;
weakly domimates strategy v/. If no such profile exists then the two strategies
are clearly equivalent, i.e. they give the same outcome for all profiles v_;. [J
1
2
Lemma 5: If n, > HST) then L € {{y},{z}.{vy, z}}.

A.3.Scoring Rules with s, >

Proof of Lemma 5: Suppose to the contrary that dv € V such that = €
L(v). Then, since all i € N, give a minimum of 5, to  we have: min(w,) =
n.s.. lfz e L, w, > wy,w, > w,. Thus, min(w, +wy+w,) > 3n,35, > n(1+5,)

(1""57")

since n > , a contradiction.

0
Corollary 2 to Lemma 5: If5, = § andnl, = n then L € {{y},{z}.{z, v, 2}.{y, 2} }.

Proof of Corollary to Lemma 5: It is sufficient to show that {z,y} and
{z,z} cannot be in the losing set. W.l.o.g suppose L(v) = {z,y} for some
v € V. Then w,(v) = wy(v) < w,(v). Since n), = n, min(w,(v)) = 3, so
that min(w, (v) + wy(v) + w,(v) > 2, a contradiction, since ¥(v) < 2 when
5, =3.0

2
Lemma 6: Let i € N, such that v >; y >=; z. If L C {{y},{z}.{v.2}},
then either (a) strategies v; = (5,,1,0) and v, = (1,s,,0) are both weakly

dominated by strateqy v; = (1,s,,0) or (b) all strategies are equivalent for i.

Y Er

Proof of Lemma 6: By Proposition 1, strategies for such an individual ¢
in I'y, are (1,0, s,); (1, s.,0); (5., 1,0), where s, € [s,,5,].
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Using Lemma 1, we can deduce that the probability that x is in the
winning set cannot decrease relative to other alternatives in the winning set
when i uses strategy (1, s,,0) instead of strategy (5,,1,0) or (1,s,,0) (since

Cy — ¢y and ¢, — ¢, are both greater with strategy v; than with strategies v;
and v}).

This means that whenever W (v) = {z}, then W(9) = {z}, when W (v) =
{z,y} then W(0) € {{z,y},{z}}; when W(v) = {z,z}, then W(0) €
{{z} {z, 23}

Similarly, whenever W (v') = {z}, then W(0) = {z}, when W(v') =
{z,y} , then W(v) € {{z,y},{z}}; when W(v') = {z,z}, then W(v) €
{{z}, {2, 2}}-

So the only cases to check are W € {{y},{z}}. If W(v) = W(v') = {2}
when i uses strategy v;, or v, then i can do no worse with strategy ;. Thus
the only case to check is when W = {y} when i uses strategy v; or v..

Thus consider strategy v; first. If W(v) = {y}, then wy(v_;) +1 >
we(v_i) +35,, and wy(v_;) +1 > w,(v_;). If he uses v; then the outcome could
be {y} (if wy(v-i) + s, > wa(v-i) + 1 or {z, y} (if wy(v-i) + 5, = we(v-) + 1),
or {x}. The outcomes {z} or {y,z}, are ruled out since w, + s, > w, by
Comment 1.

If a profile v_; exists such that W(v) = {z,y} and W(0) = {z}; or
W(v) = {x,z}, and W(0) = {z} or W(v) = {2z} and W(0) = {z} or
W (0) = {x, z} then strategy 9; weakly dominates strategy v;.Otherwise the

two are equivalent.

The same argument applies to v,. The outcomes {z} or {z,y} are ruled

out by Comment 1, so if W (v') = {y} then W(0) € {{z}, {z,y}}.

If a profile v_; exists such that W(v') = {z,y} and W(0) = {{z}} or
W(') = {x,z}, and W(0) = {{z}} or W(v') = {2z} and W(0) = {z} or
W(0) = {x, z} then strategy 7; weakly dominates strategy v;.Otherwise the
two are equivalent.

O
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2—s

Lemma 7: In the game s, if s, < 1, and n!, > then the Scoring rule

T

game is DS and x is the unique winner.

Proof: The reduced game I'y,. is the game where all i € N/ have strate-
gies (1,0,s,) and (1,s,,0) remaining. This implies that min(w,) = nl,

» O
max(wy, w,) = n,(s,) + (n —nl). Thus W = {z} if n, > nls, +n —nl,
ie if nj > ;7. O

2r

Corollary to Lemma 7: In the game I'y, if s, < %, then if nl, > %”, the game
1s DS and x is the unique winner.

Proof: Denote n; = 5"~. By Lemma 7 the game is DS and x is the unique
winner if n/, > nj. Since s, € [0, 3), supn; = %. Thus the condition n/, > nj

is always satisfied if n}, > 2. [

A.4 Negative Plurality Rule

Lemma 8: Consider the undominated game I'ynpr. If nl > 2?" - % and
preferences in x are polarised, the only undominated strategy for any i ¢ N

is (0,1,1).

Proof of Lemma 8: W.l.o.g. consider ¢ € N.. Preferences are polarised so
we have z >; y >; . By Proposition 1 his remaining strategies in '}, are
(1,0,1) and (0,1,1). The strategy (1,0,1) is a UBR whenever i is pivotal
between candidates z and y only®, i.e. the strategy (1,0, 1) is a UBR to the
following profiles: (i) wy =w, > w, + 1, or (ii) wy —w, =1 and w, > w, + 1,
or possibly (ili) wy, —w, = 1 and w, > w,, (if the lottery over (z,y,z) is
preferred by i to y).

The strategy (0,1, 1) is a UBR whenever i is pivotal between candidates x
and y only?, i.e. the strategy (0,1,1) is a UBR to the following profiles: (i)’
Wy = wy > w, + 1, or (ii) w, —w, =1 and w, > w, + 1, or possibly (iii)’
wy —w; = 1 and w, > w,, (if the lottery over (z,y, 2) is less preferred by i
to y). Similarly the strategy (0,1,1) is a UBR to the following profiles: (iv)’
We=w, >wy+1lor(v)w, —w,=1and w, > w, or (vi)w, =w, =w,. In

81.e. he cannot achieve the outcome x for sure with his vote, only in a lottery.
91.e. he cannot achieve his best outcome z with his vote but he can achieve either

outcome x or y.
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all other profiles v_;, the two strategies give the same payoff. Since there are
only two pure strategies, it is sufficient to show that A v_; such that strategy
(1,0,1) is a UBR and 3 v_; such that (0,1,1) is a UBR. Claim 1 proves the
former and Claim 2 proves the latter.

Claim 1 (Lemma 8): If nl, > % — 2, then A v_; such that either of (i), (ii)
or (11i) holds.

Proof: 1f such a profile exists, it must exist for the minimum w, possible
i.e. when w, = n/. Thus it is sufficient to consider this case. Assume 3 v_;
such that either of (i), (ii) or (iii) holds. Case (i) implies that min X (v_;) =
3n/, + 2, case (ii) implies that min¥(v_;) = 3n}, + 1, and case (iii) implies
that min X(v_;) = 3n,, + 3. If n/, > 2 — 2 for cases (i), (ii) and (iii) we have
that min ¥(v_;) > 2n — 1 > 2n — 2, a contradiction.

O

Claim 2 (Lemma 8). If n, > % — 2 then 3 v_; such that strategy (0,1,1) is
a UBR.

Proof: We construct a strategy v_; such that (0, 1,1) is a UBR. In particular,
we construct a strategy v_; such that either (i)” or (ii)’ holds.

/ ’
n,—1 n,—1

Let w, = nj, +ny, + [=5—1], wy, = n), +n, + | =5—], w. = n,, — 1, then clearly
Y(v_;) = 2n — 2, hence this profile is feasible!®. So the only thing to check
is that strategy (0,1,1) is a UBR. Suppose n/, is odd: then w, = w, and we

need (from (i)): wy > w. +1, e n, <2 — 1 If 0l is even: w, —w, = 1,

and we need (from (ii)") wy, > w., i.e n, < 2*. Thus, if n], < 2 — £, then this

profile exists for both cases.

Thus, it remains to show that if n/, > 2 — 2 then n, < 2 — 1. Observe that

/ ! ! : / 2n 2 / in 2
n, +n, +n., = n. Hence, if n), > 3 — 2, we have that max(n’) < 3 + 3.
1

Moreover, since n > 3, note that % + % < 27" — 3

U
Take (1,1,0) for all i € N, N, and if n/, — 1 is even divide voters in N/ equally in

to those using (0,1, 1) and those using (1,0, 1), and if n, — 1 is odd take %; voters in N/
using (1,1,0) and % — 1 using (1,0, 1).

32



Lemma 9: Consider the undominated game Iy, where w, = nl,. Ifn, < %”—%
the only undominated strategy for any i € N, is one which gives 1 to the best

and 0 to the worst alternative.

Proof of Lemma 9: Leti € N.. W.lo.glet 2 >=; y >=; 2. We show that
strategy (1,0,1) is dominated by (1,1,0). The strategy (1,0,1) is a UBR
to the following profiles: (i) w, = w, > w, + 1, or (ii) wy — w, = 1 and
Wy > w, + 1, or possibly (iil) wy, —w, = 1 and w, > w;, (if the lottery over
(x,y, z) is preferred by i to y).

The strategy (1,1, 0) is a UBR to the following profiles: (i)’ w, = w, > w,+1,
or (ii)’ wy —w, = 1 and w, > w,, (if the lottery over (z,y, z) is less preferred
to y.) or (iii)’ w, = w, and wy, > w, + 1, (iv)’ w, —w, = 1 and w, > w,, (v)’
w, —w, = 1 and w, > w, + 1,and (vi)’ w, = w, = w,. In all other profiles v_;,
the two strategies give the same payoff. It is sufficient to show (since there
are only two pure strategies) that A v_; such that strategy (1,0,1) is a UBR
and 3 v_; such that (1,1,0) is a UBR. Claim 1 proves the former and Claim
2 proves the latter.

Claim 1 (Lemma 9): If n, < % — &, then A v_; such that either of (i), (ii)
or (iii) holds.

Proof:  Since i € N, we know that w, = n/ — 1. Assume 3 v_; such

that either of (i), (ii) or (iii) holds. Case (i) implies that maxX(v_;) =

3nl, — 4, case (ii) implies that max 3 (v_;) = 3n!, — 3, and case (iii) implies
2 _ 2

that max ¥ (v_;) = 3n), — 2. If ¢, < £ — 5~ for cases (i), (ii) and (iii) we have

that max ¥(v_;) < 2n — 4 < 2n — 2, a contradiction.[d

Claim 2 (Lemma 9). If n, < %' — % then 3 v_; such that strategy (1,1,0) is
a UBR.

Proof: We construct a strategy v_; such that (1,1,0) is a UBR. In particular
we construct v_; such that one of (iii)’or (iv)holds.

’ ’
n,—1 n,—1

Let w, =n, +n, + [*5—], wy, = nj, +n, + |5, w, = n, — 1, Then clearly
Y(v_;) = 2n — 2, hence this profile is feasible!!. So the only thing to check

UTake (0,1,1) (the only surviving strategy) for all i ¢ N/ and if n/, — 1 is even divide
voters in N/ equally in to those using (1,1,0) and those using (1,0, 1), and if n/, — 1 is
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is that strategy (1,1,0) is a UBR. Suppose n/, is odd: then w, = w, and we

need (from (iii)"): w, > w, + 1, i.e. nf, < 2 — 2. If n, is even, then we need
: : 2 : 2n 1

(from (iv)’) wy > wy, i.e n), < 3. Thus, if n, < 3 — 2, then at least one of

these profiles exists and (1, 1,0) is a UBR.

O

Theorem 6 (Sufficient condition for Non Dominance Solvability): (i)
Ifn! < 2?” — % the NPR game is not DS, (ii) If n!, > 27" + % and preferences
in x are polarised, the NPR game is not DS.

Proof of Theorem 6: (i) It is sufficient to show that every strategy in I'y,
is a UBR to some profile v_;. We show this w.l.o.g for i € N2, W.lo.g
assume r >; y »; z. Strategy (1,0,1) is a UBR to the following profile:
Wy =Ny —1+n, + ["—;J, wy =n, —1+n, + (%1, w, = nl. This is clearly
feasible and it remains to check that w, > w,+1. If n/, is even, then this is so if
n, < 22 and if n/, is odd, it requires n, < 2 —2. Thusifn, <n/ < 2 —2,
then strategy (1,0, 1) is a UBR. Similarly strategy (1,1,0) is a UBR to the
following profile: w, =n), —1+n/ + L%;’J, w, =nl—14+n,+ (%L Wy =N,
This is clearly feasible and it remains to check that w, > w, +1. If n; is even,
then this is so if nj, < 2?" — %, and if nj, is odd, it requires n/, < 2?” — g Thus
if n), <nj, < % — 2 then strategy (1,1,0) is a UBR.O

(ii) Since n!, > %” — %, by Proposition 1 and Lemma 8, we are in game Iy,
where all i ¢ N. have only strategy (0, 1, 1) remaining (recall that preferences
are polarised in x). It is sufficient to show that for all i € N/, strategies
(1,1,0) and (1,0,1) are both UBR to some profile v_;, in I'y. We show this
w.lo.g for i € N/ such that x =; y »; z. Strategy (1,0,1) is a UBR to
the following profile: Let n) — 1 — (n;, + n}) of i € N} vote (1,1,0); and
the remaining n; + n/, of them vote (1,0,1). Obviously, all i ¢ N, vote
(0,1,1). Note that n}, — 1 > (n] +n), (since n, > 2 + 2 > 2 4 7) and
Wy + wy +w, = 2n — 2 so this profile is feasible. Moreover in this profile,
wy = wy > w,+1iff ), > 2+ 2. Strategy (1,1,0) is a UBR to the following
profile: Let nj, —1 — (n, +n’) of i € N, vote (1,0,1); and the remaining

odd take % voters in N/ using (1,0,1) and "7; — 1 using (1, 1,0).
2Gince n/, = maxq—z.y.-(n})-
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n,, + n’, of them vote (1,1,0). Obviously, all i ¢ N, vote (0,1,1). Note that
n, —1 > (n, +n}), and w, + w, +w, = 2n — 2 so this profile is feasible.
Moreover in this profile, w, = w, > w, + 1 iff n/, > 2?" + %

O

Proposition 2: There exists an nl, such that || > nl, > [“2] iff either

r=0, orr=1.

Proof of proposition 2: First we show that if » = 0,1, there exists an
n!, satisfying the required inequality. If r = 0, [%] = m = [%3}], since
B = m— [} =m

Ifr=1, 1% =m+ 3] =m. [%] =m, since w — 1 = 3m.

It remains to show that when r = 2, there does not exist an n/, satisfying the
above:Suppose 3 an n, that satisfies the above. Then we need %] > [%].

If r =2 wehave |%] =m+ 2] =m, and [“*] =m+ [3] = m+ 1, since
w—1=3m+ 1, a contradiction.

.

Proposition 3:1f the conditions stated in Theorem 5 hold, then (i) if n > 5
a unique CW a® exists but a® is never in the winset (i) if n =4 at least
one CW exists and the alternative (s) in the winset is (are) CW.

Proof of Proposition 3. Let 2?” — % <nl < 2?” — %, and preferences in x be
polarised. (i) It is easy to check that if n}, > 2 — 2 and n > 5 then n}, > 2
therefore, x is the unique CW. Lemma 2 and lemma 3 imply that : w, = n/,
wy =n—nl +n, and w, = n —n!, 4+ n, where n,(n),) is the number of voters
who rank a as the worst (best) alternative. Now assume that x is in the
winset. If z is in the winset = w, > w, and w, > w, since n, +n, +n, =n
and n, = n — n), (preferences in x are polarised) this implies that n! > 2?”

which is a contradiction. Thus, z is never in the winset.

O
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