
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 

 
 

SCORING RULE VOTING GAMES  
AND DOMINANCE SOLVABILITY 

 
 

Lucia Buenrostro  
and 

Amrita Dhillon 
 
 

 
No 698 

 
 
 
 
 
 
 
 

 

WARWICK  ECONOMIC  RESEARCH  PAPERS 
 

 
 
 

DEPARTMENT OF ECONOMICS 



Scoring Rule Voting Games and Dominance

Solvability∗

Lucia Buenrostro†and Amrita Dhillon‡

This version: December 2003

Abstract

This paper studies the dominance-solvability (by iterated deletion of
weakly dominated strategies) of general scoring rule voting games.
The scoring rules we study include Plurality rule, Approval voting,
Negative Plurality Rule, Borda rule and Relative Utilitarianism. We
provide a classification of scoring rule voting games according to whether
the sufficient conditions for dominance solvability require sufficient
agreement on the best alternative or on the worst alternative. We
also characterise the solutions when the sufficient conditions for dom-
inance solvability are satisfied.

Keywords: Scoring Rules, Voting Games, Dominance Solvability,
Iterated Weak Dominance, Condorcet Winner

JEL Classification Numbers: C72, D71, D72
∗We thank Chiaki Hara, Ben Lockwood, Ben Zissimos, Olivier Gossner and Charles

Blackorby for providing useful insights on this work.
†Department of Economics, University of Warwick, Coventry CV4 7AL, UK. E-mail:

L.Buenrostro@warwick.ac.uk. Financial support from Conacyt is gratefully acknowledged.
‡Address for Correspondence: Amrita Dhillon, Department of Economics, University

of Warwick, Coventry CV4 7AL, UK. E-mail: A.Dhillon@warwick.ac.uk

1



1 Introduction

The solution concept of Nash equilibrium in voting games has the drawback

of admitting predictions that seem unreasonable. For example, in voting

games with more than three candidates even if every voter has the same

preferences, the least preferred alternative might win in a Nash equilibrium.

Indeed, this is true not only with plurality rule1 but with any scoring rule2.

The reason this problem arises with Nash equilibria is that it allows any

possible beliefs on the part of voters, as long as they are consistent. For

example, suppose that it is common knowledge that a candidate, A is worst

for all voters. Nevertheless, there is a Nash equilibrium where every voter

votes for A because he believes that all other voters will vote for A. One

easy way of eliminating this equilibrium is to require voting strategies to be

weakly undominated. Unfortunately this requirement is not sufficient to give

a unique prediction. This problem was motivated first in a preceding article

(Dhillon and Lockwood, 1999) for the case of Plurality Rule only.

However, all the problems that arise with Nash equilibria in plurality rule

games also arise in other scoring rule games. We therefore study the applica-

tion of the iterated elimination of weakly dominated strategies to all scoring

rules. A game that yields a unique result after the iterated elimination of

dominated strategies is called Dominance Solvable (DS). Farquarson (1969)

called this procedure “sophisticated voting”, and he called a voting game

“determinate” if sophisticated voting led to a unique outcome.

Why study Dominance Solvability? If we consider the fact that most of

the scoring rules we consider (except Negative Plurality Rule) choose the

Condorcet winner whenever the sufficient conditions for the game to be DS

1Voters can vote for only one candidate and the candidate with the maximum votes
wins the election.

2A scoring rule is a voting rule which specifies the vote vectors that voters can use, and
then assigns a score to each candidate based on the total number of votes that a candidate
gets. The candidate(s) with the highest score wins the election.
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are satisfied, we could interpret Dominance Solvability of the scoring rule

voting game as being linked to the manipulability of a voting game. Thus,

whenever the sufficient conditions for the game to be DS are satisfied, the

outcome includes (except for Negative Plurality Rule) the Condorcet Winner,

i.e. the outcome is the same as if voters voted sincerely. In this sense we are

comparing different scoring rules in terms of this criterion of manipulability.

Iterated Admissibility or iterated elimination of weakly dominated strate-

gies has been criticised by a number of authors, as a strong theoretical justi-

fication for it has been elusive. A number of recent articles however provide

both learning and common knowledge justifications for it (see e.g. Marx

(1999) and Gilli (2002)).

We restrict ourselves to the more realistic case of three candidates or

three alternatives. Experimental studies (see for example Ho, Camerer and

Weigelt, (1998)) have pointed out that although iterated dominance is one

of the most basic principles in game theory, in general “...at the risk of

overgeneralising across games that are too different experimental results show

that subjects rarely violate dominance but usually stop after one– three levels

of iteration.” For reasons that will become obvious, the number of iterations

in scoring rule voting games are closely linked to the number of candidates.

Thus, we feel it is more relevant to study the case of three alternatives. The

flavour of the results would be qualitatively the same with more alternatives3.

The scoring rules we study in this paper are: Negative Plurality Rule (NPR),

Approval Voting (AV), Borda Rule (BR) and Relative Utilitarianism (RU).

We also compare the results on PR (Dhillon and Lockwood, 1999) to the

results of the three other scoring rules.

Our main results are: (1) A generalisation of the results on Plurality Rule

voting (Dhillon and Lockwood, 1999), in the sense that we derive sufficient

conditions for scoring rule voting games to be DS in terms of one statistic

3Buenrostro has separately proved generalisations for some of the scoring rules studied
in this paper.
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of the game: the degree of agreement on the best or the worst alternative,

(2) A classification of scoring rule voting games based on the strength of the

conditions required for DS shows that Approval Voting performs quite well

relative to other rules. Intuitively, this is because it is the least restrictive in

terms of the strategies allowed to voters and (3) When the game satisfies the

sufficient conditions for Dominance Solvability we investigate if the unique

outcome is also the Condorcet Winner. The scoring rule games for which the

Condorcet Winner is not chosen by the iterated elimination of dominated

strategies even when it exists and the sufficient conditions for Dominance

Solvability are satisfied are not very desirable rules according to this criterion.

The layout of the paper is as follows. Section 2 presents the model and

defines concepts and notation that will be used in the rest of the paper for

the one stage voting game with three alternatives. Sections 3,4 and 5 offer a

general classification of scoring rule voting games according to the sufficient

conditions for DS. Section 6 compares some of the well known Scoring Rule

voting games like Plurality Rule, Negative Plurality Rule, Approval Voting.

Section 7 concludes.

2 The Model

In the following analysis we assume there are three alternatives, and an

arbitrary number, n > 3, of voters. This is a simplified case of the general

voting game and it is the simplest case where strategic voting can occur. It is

common in the literature to compare voting systems with three alternatives;

for example, Myerson and Weber (1993), Myerson (2002). Also, often major

political elections have no more than three candidates. We believe that the

results would not be qualitatively different with more candidates.

A scoring rule is characterised by a set C ⊂ IR3, which represents the set

of feasible ballots or vote vectors a voter is permitted to submit (Myerson,

2002). A vote vector, c = (c1, c2, c3) represents a ballot that gives c1 points
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to candidate one, c2 points to candidate two etc. The vote-vectors of all

voters are added up to obtain a total point score for each candidate. The

winning set of candidates is those that get the maximum point score. If

there is a tie, we allow all candidates in the winning set to be chosen with

equal probability. We assume that the set C is a non empty subset of IR3.

Every voter can choose from the same feasible set C so the scoring rules we

consider are anonymous and neutral. We assume w.l.o.g. scoring rules to

be normalised, 0 ≤ ci ≤ 1, for all i. Thus in all feasible vote vectors, the

candidate who is top ranked gets 1 point and the candidate who is worst

ranked gets a point 0. Scoring rules differ only in the number of points that

can be given to the middle ranked candidate.

Examples of scoring rules are: Plurality Rule (PR),Negative Plurality

Rule (NPR), Approval Voting (AV), Borda Rule (BR) and Relative Utilitar-

ianism (RU)(Dhillon and Mertens, 1999).

Among these, PR, NPR, and AV allow ci ∈ {0, 1} only, while RU al-

lows any ci ∈ [0, 1]. Thus, for three alternatives, normalisation and no

indifferences imply that permitted vote vectors in any scoring rule r ∈
{PR,NPR,AV,BR,RU} are all possible permutations of the vector (1, sr, 0)

where sr ∈ Sr ⊂ [0, 1]. The set Sr characterises the scoring rule r. Thus

SPR = 0, SNPR = 1, SBR = 1/2, SAV = {0, 1} and SRU = [0, 1].

The social choice literature usually considers scoring rules which allow

singleton sets Sr. Our definition of a scoring rule is more general: we allow

Sr to be any subset of [0, 1]. We introduce here the Relative Utilitarian (RU)

scoring rule: RU is a social welfare function that consists of normalising

individual (von-Neumann Morgentern) utilities between 0 and 1 and then

adding them (Dhillon and Mertens, 1999). If interpreted as a scoring rule

RU calls for voters to submit ballots that allow the middle ranked alternative

to be given any point betweeen 0 and 1. We can derive any scoring rule from

RU by suitably restricting the strategy space.

We assume that there are no abstentions. With costless voting, abstention
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is weakly dominated and therefore deleted in the first stage for all voters. We

also assume strict preferences, so that vectors of the form (c, c, ..., c) are not

permitted in all the voting games we consider.

Let us now define the voting game Γr corresponding to scoring rule r.

The strategies of voters are the set of possible vote vectors allowed in any

scoring rule. Let vri ∈ V r
i represent the vote vectors allowed to individual iin

scoring rule r, where r = PR,NPR,AV,BR, RU. The profile of vote vectors,

one for each individual, is denoted v. The score for a particular candidate a,

corresponding to a vector of votes vr is denoted ωa(vr) (or just ωa when it is

clear which vote vector we are considering). A score profile (corresponding

to a vote vector,vr) is a vector ωr = (ω1, ω2, ω3), where ωi represents the total

point score of candidate i. Ωr denotes the space of scoring vectors ωr, for

scoring rule r.

Let W (vr) denote the set of winning candidates given the vote vector

vr. The payoffs are given by the expected utility over the set of winning

candidates.

Let the set of alternatives be X = {x, y, z} and the set of voters be N

such that |N | = n.

Define W (vr) = {a ∈ X|ωa(vr) ≥ max(ωb(vr), ωc(vr)),∀b, c ∈ X} as the

Winning Set for a given profile vr.

Define L(vr) = {a ∈ X|ωa ≤ min(ωb, ωc),∀b, c} as the Losing set for a

given profile vr.

We will impose the following regularity condition (Dhillon and Lockwood

1999) which ensures that the order of deletion of weakly dominated strategies

does not matter(see Marx and Swinkels’(1997) Transference of Decisionmaker

Indifference (TDI) condition which is sufficent to ensure that the order of

deletion does not matter: If A.1 is satisfied, then TDI is satisied):

A1. For all vr, v
′
r s.t. W (vr) 6= W (v′r), ui(vr) 6= ui(v

′
r), i ∈ N
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This says that no player is indifferent between any two different winsets4.

Let Na(N
′
a) ⊂ N with a ∈ {x, y, z} represent the set of individuals that

rank a as the worst (best) alternative and let na(n
′
a) be the number of voters

in this set. Let qa = na
n

and q′a = n′a
n
.

In what follows we focus only on pure strategies that survive iterated

deletion of weakly dominated strategies (since we are interested in dominance

solvability). In the rest of the paper we suppress the subscript r in vr, ωr when

it is clear which scoring rule is being discussed in a a particular section, and

we will use vi, i ∈ N, to denote the vote vector for voter i under the voting

rule that is being analysed. Let v−i represent the voting profile of all players

except player i. Let ωa(v−i) denote the total points that a ∈ X gets in

the profile v−i. Finally, say that in game Γ, preferences are polarized over

alternative a ∈ X if there is an M ⊂ N such that all i ∈ M rank a highest,

and i ∈ N/M rank a lowest. Preferences over alternative a are non-polarized

otherwise. Finally, let Γi denote the reduced game after i rounds of the

elimination of weakly dominated strategies and W∞ denote the outcome

when no further iterated elimination is possible.

Fix a scoring rule, r. Let pa(v) denote the probability that alternative

a is in the winset given profile v. We define a voter i to be pivotal on a set

S ⊂ X, if ∀a ∈ S, ∃ a strategy vi(a) ∈ Vi such that pa(v−i) 6= pa(v), where

v is the profile (v−i, vi(a)) (note that the order of vote vectors in the profile

does not matter as scoring rule voting games are anonymous), and ∀a 6∈ S,
for all strategies v′i ∈ Vi, p(a)(v−i) = pa(v

′), where v′ = (v−i, v
′
i). We say that

a strategy vi is at least as good as strategy v′i for voter i if strategy vi does not

decrease the probability that an alternative which is higher ranked by voter

i is in the winset, relative to strategy v′i, for any profile of (pure) strategies of

other voters. We denote the set of alternatives which are condorcet winners

as XCW and a CW is denoted as aCW ∈ XCW .

Finally we often use the short form UBR for Unique Best Response.

4A1 implies that no voter is indifferent between any pair of alternatives.
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We focus on sufficient conditions that require only ordinal information on

preferences5. In the next section we show that most scoring rules have very

similar sufficient conditions for DS. In particular we show that most scoring

rules can be categorised according to whether the sufficient conditions can be

expressed in terms of sufficient agreement on the best alternative or sufficient

agreement on the worst alternative.

3 A classification of scoring rule voting games

The idea behind strategic voting is that individuals try to differentiate max-

imally between the alternatives that are tied given the vote vectors of all

other voters. This has to be consistent with the type of vote vectors they

are permitted in the scoring rule. We can thus deduce something about the

undominated vectors. In PR, voters have a single vote (i.e. ci = 1 for any

i implies cj = 0,∀j 6= 1. ). Thus if they are pivotal over any set involving

the worst ranked alternative, they must give it zero, and if not pivotal on

this alternative they may as well give it zero points. Therefore the search for

sufficient conditions for dominance solvability of the PR voting game is es-

sentially a search for conditions under which we can reduce the set of possible

winning candidates. This idea extends to other scoring rules as well.

For scoring rule r let sr denote max s ∈ Sr, and sr denote min s ∈ Sr.

Obviously if Sr is a singleton then sr = sr = sr. Denote Σ(vr) = ωx(vr) +

ωy(vr) +ωz(vr). Note that for any scoring rule n(1 + sr) ≤ Σ(vr) ≤ n(1 + sr).

It is quite intuitive that with three alternatives, voters would never give

less than sr to their best alternative and never give more than sr to their

worst alternative. This is what the next proposition shows.

Proposition 1 In the game Γr the only strategies that are undominated for

a voter i are those that give cj ≥ sr to his top ranked alternative j ∈ X and

5Although we shall see later that this is not quite true for Borda Rule.
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ck ≤ sr to his worst ranked alternative k ∈ X.

See Appendix Section A.1 for the proof.

Thus the first stage of iterated elimination leads to the reduced game

denoted by Γ1r for scoring rule r, where the strategies are of the form (sr, 1, 0),

(1, sr, 0) and (1, 0, sr).

Our sufficient conditions for DS revolve around finding the conditions

under which we can reduce the set of possible candidates that can win the

election. This could happen in two ways: either we can eliminate the can-

didate who is worst ranked by most voters or we can say something about

the candidates who cannot lose if there is sufficient agreement on the best

and then use that to reduce the possible outcomes. We call these two sets

of sufficient conditions Agreement on the Worst and Agreement on the Best

respectively. We show that if sr < 1/2, then a scoring rule voting game is

DS if there is “sufficient” agreement on the worst and if sr > 1/2 then a

scoring rule voting game may be DS if there is sufficient agreement on the

best. The conditions for Agreement on the best and Agreement on the worst

are not symmetric– the reason is that agreement on the best only helps us

to eliminate candidates in the Losing Set while we are interested in reducing

the possible winning outcomes.

4 Agreement on the worst:

4.1 Scoring rules with sr < 1/2

W.l.o.g let z be the candidate that most voters rank worst6. Recall that nz

is the number of voters who rank z worst. In what follows we will drop the

subscript r from vr and use W synonymously with W (v), L synonymously

6This is uniquely defined if z is a Condorcet Loser. Whenever our sufficient conditions
are satisfied, this is indeed the case.
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with L(v). This makes the notation simpler.

In the next theorem we derive the sufficient conditions for Dominance

Solvability of Scoring Rule voting games with sr < 1/2. We know from

Proposition 1 that voters will give a minimal score to their worst candidate in

the undominated game. Consider a voter i who has z as his worst candidate.

If there are sufficiently many voters who rank z worst, then z can get at most

nzsr+(n−nz). Now if sr <
1
2
, this means that z can never be in the winning

set, so that even the voters who do not have z as the worst candidate will

not waste their votes on z. Thus the gameis reduced to a game between x

and y and the CW must win. This is what we show in this section.

Theorem 1 (A) If sr < 1/2, then the game Γr is DS if nz >
n(2−sr)
3(1−sr)

. (B)Also

whenever the sufficient conditions for DS are satisfied, (i) W∞ contains at

most two alternatives,(ii) if n is odd, a unique CW, aCW exists and W∞ =

{aCW}; (iii) if n is even, at least one CW exists and W∞ = XCW .

Before we prove this theorem we need a few lemmas. Proofs of all lemmas

are in the Appendix.

Lemma 2: Assume sr < 1/2. If nz >
n(2−sr)
3(1−sr)

then W ⊂ {{x}, {y}, {xy}}.

Corollary to Lemma 2: If sr = 1
2
, and nz = n then W (v) ∈ {{x}, {x, y}, {y},

{x, y, z}}, for all v ∈ V .

Lemma 3: Consider a voter i ∈ Nz such that x �i y �i z. Assume

W ⊂ {{x}, {y}, {xy}}. Then either (i) the strategy (1, 0, sr) weakly dom-

inates strategies (1, sr, 0) and (sr, 1, 0) for sr > 0, or (ii)all strategies of i are

equivalent.

Lemma 4: Consider a voter i 6∈ Nz such that z �i x �i y. Assume W ⊂
{{x}, {y}, {xy}}. Then either (i) the strategy (1, 0, sr) (denoted vi) weakly

dominates strategies (0, sr, 1) (denoted v′i) and (sr, 0, 1) (denoted v′′i ) for sr >

0, or (ii) all strategies of i are equivalent.

Proof of Theorem 1 (A): Consider i ∈ Nz. W.l.o.g assume x �i y �i z. By
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Proposition 1, his undominated strategies (or his strategies in the game Γ1r

are of the form (sr, 1, 0), (1, sr, 0) and (1, 0, sr). Consider a voter j 6∈ Nz such

that z �i x �i y. By Proposition 1, his undominated strategies are (1, 0, sr),

(0, sr, 1) and (sr, 0, 1) By Lemma 2, we know that W ⊂ {{x}, {y}, {x, y}}.

Consider voter i above. By lemma 3, if strategy (1, 0, sr) weakly dom-

inates any of the strategies (1, sr, 0) and (sr, 1, 0) for sr 6= 0, then we can

remove all such strategies . Similarly for voter j above if strategy (1, 0, sr)

weakly dominates strategies (0, sr, 1) and (sr, 0, 1) for some sr then we can

remove these strategies in the second round of iterated deletion to reach the

reduced game Γ2r.

In the game Γ2r, either some voters have only one strategy remaining and

this is the one that gives 1 to the best candidate out of x, y and 0 to the

other, or all remaining strategies for all remaining voters are equivalent. This

means that we can choose the strategy that gives 1 to the best candidate out

of x, y and 0 to the other for all voters (since whichever strategy we choose

the outcome is the same for all voters). Thus all voters have only one strategy

left and the game is DS. �

Proof of Theorem 1(B): For the second part, observe that there z is the

unique Condorcet Loser in these voting games. Hence there must be a CW,

which is unique if n is odd. By the proof of theorem 1, we know that all

voters vote sincerely between x and y in the reduced game Γ2r, while z gets

n(sr) votes. Thus max(ωz) <
n
2

while if there is a unique CW (say x) then

min(ωx) >
n
2
. If n is even and both x and y are CW then ωx = ωy = n

2
.

Hence the winning set is the set of CW’s.

�
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4.2 Scoring Rules with sr = 1
2

Let, w.l.o.g, nz be the largest number of voters who have the same worst

alternative. As in Dhillon and Lockwood (1999) we say that i ∈ N has

dominated middle alternative (DMA) preferences if he prefers a lottery with

equal probabilities over all three alternatives to his middle-ranked alternative.

This section essentially shows that when sr increases to 1
2

the degree of

agreement required on the same worst alternative increases. The reason is

that our sufficient conditions are conditions that ensure that z will never be

in the winning set if voters use iteratively undominated strategies.

Theorem 2 (A)If sr = 1
2
, the game Γr is DS if nz = n and either (i) n is

odd, (ii) n is even and n′x 6= n′y or (iii) all voters have DMA preferences. (B)

If the conditions in (A) hold then at least one CW exists and W∞ includes

XCW .

Proof of Theorem 2(A) Using the Corollary to Lemma 2, W (v) ∈ {{x},{x, y},{y},{x, y, z}},
for all v ∈ V .

Note that if nz = n Proposition 1 implies that max(ωz(v)) = n
2
.

Suppose that ∃ v such that W (v) = {x, y, z} . This implies that ωx(v) =

ωy(v) = ωz(v). Such a profile exists iff all i ∈ N give 1
2

to z. But if all i ∈ N
give 1

2
to z, they must all be using the strategy which gives 1 to the best

alternative and 0 to the second ranked.Since ωx(v) = ωy(v) = ωz(v) it must

be that n′x = n′y = n
2

and therefore n is even.

Thus if n is odd, or n′x 6= n′y, no such profile exists, and {x, y, z} 6∈
W (v),for any v ∈ V . Then the result follows using Lemmas 3 and 4 and the

game is DS (following the same proof as for the case sr < 1/2.). We now

consider the case when n is even and n′x = n′y = n
2
.

Let i ∈ Nz be such that (w.l.o.g) x �i y �i z.. By Proposition 1 the

remaining strategies for such a player in the game Γ1r are: vi = (1, 0, 1/2),

ṽi = (1, sr, 0) and v̂i = (sr, 1, 0). It is sufficient to show that vi weakly
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dominates the two other strategies in the case W (v) = {x, y, z} (since the

rest follows from the proof of Theorem 1.).

Now assume that n is even, n′x = n′y and all the voters have DMA pref-

erences. Let v−i be such that W (v) = {x, y, z} , this implies that ωx(v−i) +

1 = ωy(v−i) = ωz(v−i) + 1
2
. Therefore, the only possible outcome for ṽ is

W (ṽ) = {y} and since i has DMA preferences strategy vi is at least as good

as ṽi. Analogously, the only possible outcome for v̂ is W (v̂) = {y} and since

i has DMA preferences strategy vi is at least as good as v̂i.

If there exists a profile v−i such that strategy (1, 0, 1
2
) is strictly better

than strategy (1, sr, 0) for any sr ∈ Sr and there exists a profile such that

(1, 0, 1
2
) is strictly better than strategy (sr, 1, 0), then we can eliminate the

dominated strategies. Otherwise all strategies are equivalent and we can

choose (1, 0, 1
2
).

Therefore, if nz = n and either (i), (ii) or (iii) in Theorem 2 hold then the

only strategy that is undominated in Γ1r for all voters is the strategy that

gives 1 to the best and 1/2 to the worst alternative.

�

Proof of Theorem 2(B): If the sufficient conditions for DS are satisfied,

there is a Condorcet Loser (z), so clearly there is a unique CW if n is odd

and if n is even then both x and y are CW’s. The proof of part (A) shows

that all voters are left with the strategy that gives 1 to the best and 1
2

to z.

Thus, the winning set coincides with the CW if n is odd, and if n is even all

three alternatives get equal votes so the winning set includes the Condorcet

winners.

�
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5 Agreement on the Best

W.l.o.g let x be the alternative that a plurality of voters rank best. As

shown by Proposition 1 the reduced game Γ1r gives a maximum of sr to

the worst alternative and a minimum of sr to the best alternative. Thus

min(ωx) = n′xsr.

Recall n(1+sr) ≤ Σ(v) ≤ n(1+sr). Recall too that the strategies that sur-

vive in Γ1r for i such that x �i y �i z are of the form (1, 0, sr); (1, sr, 0); (sr, 1, 0).

When a sufficiently large number of voters agree that x is the best can-

didate, then we might conjecture that x is always in the winning set, and

the only question is whether it is uniquely in the winning set or not. This is

indeed the case: consider Negative Plurality Rule which is the worst scoring

rule in the sense that sr = 1. Even if all voters agree that x is the best

each voter still has two undominated strategies remaining, so that the out-

come could be {x, y} or {x, z}. Indeed, this is true even if all voters have

exactly the same preferences. The co-ordination problem is particularly bad

with NPR. We derive some sufficient conditions for NPR in Section 6. On the

other hand when sr < 1, there is some hope that the game is DS if sufficiently

many voters agree on the same best alternative. The exact conditions are

derived below. If sr is less than 1
2
, then even if all voters agreed on the same

best candidate, we still could not ensure that that candidate would always

be in the winning set. That is why we need sr ≥ 1
2
, to be able to derive

sufficient conditions based on agreement on the best.

5.1 Scoring Rules when sr >
1
2 :

Theorem 3:(A) Let sr > 1/2 and sr < 1. If n′x > max[n(1+sr)
3sr

, n
2−sr

] and

sr ≥ sr then the Scoring rule game is DS and x is the unique winner. (B) If

the sufficient conditions are satisfed, the unique CW is x.

Before we prove this theorem, we need a few lemmas. We assume from
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now on that sr > 1/2.

Lemma 5: If n′x >
n(1+sr)

3sr
then L ∈ {{y}, {z}, {y, z}}.

Comment 1: Thus we can deduce that ωx > min(ωy, ωz) for all profiles v.

Corollary 1 to Lemma 5: If n′x >
n(1+sr)

3sr
then W (v) ∈ {{x}, {y}, {z}, {x, y}{x, z}},∀v.

The proof is obvious using Comment 1 above: {y, z} and {x, y, z} cannot be

in the winning set for any profile v.

Corollary 2 to Lemma 5: If sr = 1
2

and n′x = n then L ∈ {{y}, {z},{x, y, z},{y, z}}.

Lemma 6: Let i ∈ N ′x, such that x �i y �i z. If L ⊂ {{y}, {z}, {y, z}},
then either (a) strategies vi = (sr, 1, 0) and v′i = (1, sr, 0) are both weakly

dominated by strategy ṽi = (1, sr, 0) or (b) all strategies are equivalent for i.

If strategy ṽi weakly dominates strategy vi (v′i) then we can eliminate vi(v
′
i).

Otherwise, the two are equivalent and we can choose ṽi.

Thus the reduced game Γ2r is the game where all i ∈ N ′x have strategies

(1, 0, sr) and (1, sr, 0) remaining.

Lemma 7: In the game Γ2r, if sr < 1, and n′x >
n

2−sr
then the Scoring rule

game is DS and x is the unique winner.

Corollary to Lemma 7: In the game Γ2r if sr <
1
2
, then if n′x >

2n
3

, the game

is DS and x is the unique winner.

Proof of Theorem 3: Denote n′T = n(1+sr)
3sr

. The Corollary to Lemma 5

shows that whenever n′x > n′T then {y, z},{x, y, z}6∈ W (v), for any v ∈ V.

Then Lemma 6 tells us that in this case, all i ∈ N ′x will give 1 to x. Lemma

7 shows that if n′x > n′t, then W = {x} and the game is DS. Thus if n′x >

max[n′T , n
′
t] all conditions are satisfied so the game is DS and x is the unique

winner. �

Corollary 1 to Theorem 3:Let sr > 1/2 and sr <
1
2
. If n′x >

n(1+sr)
3sr

then

the Scoring rule game is DS and x is the unique winner.
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Proof of Corollary 1 to Theorem 3: Since sr ∈ (1
2
, 1] and sr ∈ [0, 1

2
), we

have inf(n′T ) = 2n
3

= sup(n′t) = 2n
3
, so if n′x >

2n
3

the game is DS and x is the

unique winner for all sr, sr, in the intervals considered.

�

Corollary 2 to Theorem 3: If sr > 1/2 and sr <
1
2
, and n′a >

n(1+sr)
3sr

then a

is the unique Condorcet Winner and is the only determinate outcome.

The proof is obvious. �

5.2 Scoring Rules with sr = 1
2 .

Theorem 4:If sr = 1
2
, and n′x = n, the scoring rule game is DS and the

unique winner is the Condorcet winner.

Proof of Theorem 4: The Corollary to Lemma 5 shows that L(v) ∈
{{y}, {z}, {y, z}, {x, y, z}}. Thus min(ωx)(v) ≥ min(ωy(v), ωz(v)) for any

profile v. This means that W (v) ∈{{x}, {y}, {z},{x, y}, {x, z}, {x, y, z}},∀v.
Consider an individual i ∈ N ′x such that x �i y �i z. It is easy to see that

Lemma 6 applies in this case as well when L(v) ∈ {{y}, {z}, {y, z}}. It is suf-

ficient, therefore to show that Lemma 6 holds when L(v) = {x, y, z}. Thus,

let vi = (sr, 1, 0) and v′i = (1, sr, 0) and ṽi = (1, sr, 0). Let (vi, v−i) = v,

(v′i, v−i) = v′, (ṽi, v−i) = ṽ. If W (v) = W (v′) = {x, y, z} then W (ṽ) = {x}.
Thus by the proof of Lemma 6, we can eliminate strategies (sr, 1, 0) and

(1, sr, 0). The only strategies that remain are those that give 1 to x. Since

ωx(v) ≥ n′x = n, for all v while maxv∈V (ωy(v), ωz(v)) = n′xsr = nsr, the

game is DS and x is the unique winner, since sr ≤ sr = 1
2
.

�
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6 Results for Scoring Rules: PR,AV,RU,BR,

NPR

What can we say about sufficient conditions for DS of the scoring rules that

are familiar in the literature? Well, our first result is that the sufficient

conditions for DS for both AV and RU are exactly the same! Thus, there is

no loss in restricting strategies to be sr ∈ {0, 1}.

Corollary to Theorems 1 and 3:The PR game is DS if nz >
2n
3

. The

AV and RU voting games are DS if either (i)nz >
2n
3

or (ii) n′x >
2n
3
. If the

sufficient conditions for DS are satisfied, there exists a CW and the winning

set coincides with the set of CW’s for all three scoring rules.

For Borda Rule we have the following result:

Corollary to Theorems 2 and 4:The BR game is DS if EITHER (A)

nz = n and either (i) n is odd (ii) n is even and n′x 6= n′y or (ii) all voters

have DMA preferences, OR (B)n′x = n. If these sufficient conditions are

satisfied, in case A(i) there is a unique CW and it is the unique winning

alternative. In case A(ii) if all voters are equally divided between x and y

then all three alternatives will be in the winning set. In case (B) the unique

CW coincides with the winning set.

6.1 Sufficient Conditions for non Dominance Solvabil-

ity of PR, AV, BR, RU

Although we cannot say whether the sufficient conditions derived above are

also necessary7, we could try and derive sufficient conditions for non DS that

rely only on ordinal information. Dhillon and Lockwood (1999) follow pre-

7This is because the game could be DS even if the sufficient conditions are not satisfied
– recall that we wanted conditions that used information only on ordinal preferences– e.g.
with some utility functions and not with others.
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cisely this approach in the case of PR. We are able to derive these conditions

for NPR but not for the other voting rules.

The sufficient conditions for non Dominance Solvability for AV, BR and

RU are very complicated to characterise. The reason for this is that unlike

in PR and NPR the map from the space of voting profiles V to the space of

Scoring Vectors Ω is not one to one, while it is one to one (upto permutations

between individuals) in the case of PR and NPR. Thus the inverse function

does not exist.

For example ωx = ωy = n;ωz = 0 clearly corresponds to voting pro-

files n(1, 0, 0) + n(0, 1, 0) under PR but in AV it could correspond to either

n(1, 0, 0) + n(0, 1, 0) or to n(1, 1, 0).

We believe that the sufficient conditions will need to take into account

more information than simply the degree of agreement on the best and worst

alternatives. We construct an example for AV using the Condorcet cycle,

to show that the game is not DS when there is sufficient heterogeneity in

preferences:

Example 1 (Non DS of AV)

Let n = 6, n′x = n′y = n′z = 2, nz = ny = nx and the preferences such that:

1 : x � y � z

2 : x � y � z

3 : y � z � x

4 : y � z � x

5 : z � x � y

6 : z � x � y

In Γ1 the strategies that survive are (1, 1, 0) and (1, 0, 0) for 1 and 2; (0, 1, 0)

and (0, 1, 1) for 3 and 4 and (0, 0, 1) and (1, 0, 1) for 5 and 6. Consider 1 and 2:

strategy (1, 1, 0) is a UBR to (1, 0, 0)+(0, 1, 0)+(0, 1, 1))+2(0, 0, 1). Strategy

(1, 0, 0) is a UBR to e.g (1, 0, 0) + 2(0, 1, 0) + (1, 0, 1) + (0, 0, 1). For players
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3 and 4, strategy (0, 1, 1) is a UBR to 2(1, 0, 0) + (0, 1, 0) + (1, 0, 1) + (0, 0, 1)

and strategy (0, 1, 0) is a UBR to 2(1, 1, 0) + (0, 1, 1) + (0, 0, 1) + (1, 0, 1).

Finally for players 5 and 6, strategy (1, 0, 1) is a UBR to (1, 0, 0) + (1, 1, 0) +

2(0, 1, 0) + (0, 0, 1) while strategy (0, 0, 1) is a UBR to (1, 1, 0) + (1, 0, 0) +

2(0, 1, 1) + (1, 0, 1). Thus, the game is not DS. �

NPR does not come under either of the categories we studied. Indeed,

the conditions of Theorem 3 are not satisfied for NPR (since sr = 1.). Thus

we find the sufficient conditions for this scoring rule as a separate case:

6.2 Negative plurality rule (NPR)

In the NPR voting game players have the following pure strategies: Si =

{(0, 1, 1), (1, 0, 1) and (1, 1, 0)}. The following lemma characterises the weakly

dominated strategies in this game.

Theorem 5 (Sufficient conditions for Dominance Solvability): The

NPR game with three alternatives is DS if 2n
3
− 2

3
≤ n′x ≤ 2n

3
− 1

3
, and

preferences in x are polarised.

To prove this result, observe that Proposition 1 implies that Γ1r for r =

NPR consists of strategies that give 1 to the best alternative for all voters.

Thus the undominated game Γ1r has two strategies for each player.

Lemma 8: Consider the undominated game Γ1NPR. If n′x ≥ 2n
3
− 2

3
and

preferences in x are polarised, the only undominated strategy for any i 6∈ N ′x
is (0, 1, 1).

Thus, only strategy (0, 1, 1) remains for all i /∈ N ′x, and strategies (1, 1, 0)

and (1, 0, 1) for i ∈ N ′x in the reduced game.

From the above, all i ∈ N ′x give 1 to x (Lemma 1) and all i 6∈ N ′x give 0 to x

(Lemma 2), hence in the game Γ2r, ωx = n′x.

Lemma 9: Consider the undominated game Γ2r where ωx = n′x. If n′x ≤ 2n
3
− 1

3
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the only undominated strategy for any i ∈ N ′x is one which gives 1 to the best

and 0 to the worst alternative.

Proof of Theorem 5: Proposition 1 shows that the first stage of iterated

deletion leads to the game Γ1r, where only strategies that give 1 to the best

alternative survive. Then Lemma 8 shows that in Γ1 for all i 6∈ N ′x the only

strategy that is not weakly dominated is (0, 1, 1). Finally Lemma 9 shows

that in Γ2r for the remaining voters, i ∈ N ′x, the strategy that gives 1 to the

best and 0 to the worst is the only one that survives. Hence all voters have

exactly one strategy remaining and the game is DS. �

The proposition above gives sufficient conditions for the NPR game to be

DS. Are these conditions necessary as well? As the next proposition shows,

this is not the case. We cannot completely classify the game when preferences

are not polarised.

Theorem 6 (Sufficient condition for Non Dominance Solvability):(i)

If n′x ≤ 2n
3
− 5

3
the NPR game is not DS, (ii) If n′x ≥ 2n

3
+ 2

3
and preferences

in x are polarised, the NPR game is not DS.

Of course these two propositions do not establish the necessity of the

conditions for DS. Indeed, the polarisation condition in Theorems 5 and 6

only makes it easier to classify games but is not a necessary condition.

We present an example that shows that the conditions for non Dominance

Solvability are not necessary conditions. Thus the game is not DS even when

the conditions are not satisfied.

Example 2 (NPR): q′x ≥ 2
3
+ 2

3n
, preferences are not polarised and the game

is not DS.
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Let n = 6, n′x = 5 and the preferences such that:

1 : x � y � z

2 : x � y � z

3 : x � y � z

4 : x � y � z

5 : x � y � z

6 : y � x � z

In the game Γ1 the following strategies survive: players 1 − 5 : (1, 1, 0) and

(1, 0, 1) and player 6:(1, 1, 0) and (0, 1, 1). For player 6: strategy (0, 1, 1) is a

UBR to 4(1, 1, 0) + (1, 0, 1) while (1, 1, 0) is a UBR to 5(1, 0, 1). For players

1-5, strategy(1, 1, 0) is a UBR to 4(1, 0, 1) + (0, 1, 1) while (1, 0, 1) is a UBR

to 4(1, 1, 0) + (0, 1, 1). Hence the game is not DS. �

Thus, to summarise, the NPR game is not DS when n′x ≤ 2n
3
− 5

3
, it is DS

when preferences in x are polarised and 2n
3
− 1

3
≥ n′x ≥ 2n

3
− 2

3
and it is not

DS when n′x ≥ 2n
3

+ 2
3
, and preferences in x are polarised. Asymptotically,

however the game is DS iff n′x = 2n
3

and preferences are polarised in x, but

obviously there is also the requirement that n′x be an integer. Indeed, we can

show that even when n is “small”, very few NPR games can be classified as

DS. The following proposition shows this:

Taking the integer condition into consideration, note that we need b2n−1
3
c ≥

n′x ≥ d2n−2
3
e and preferences polarised, for Dominance Solvability. Let

2n− 1 = w. We can write w as 3m+ r where m is an integer and r = 0, 1, 2.

Proposition 2: There exists an n′x such that bw
3
c ≥ n′x ≥ dw−1

3
e iff either

r = 0, or r = 1.

Proposition 3:If the conditions stated in Theorem 5 hold, then (i) if n ≥ 5

a unique CW acw exists but acw is never in the winset (ii) if n = 4 at least

one CW exists and the alternative (s) in the winset is (are) CW.
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7 Conclusion

In this paper we found conditions for three-alternatives voting games to be

DS under NPR, AV, BR and RU voting rules. For NPR game we also found

conditions for the game not to be DS. These conditions are stated in terms of

the largest proportion of voters who agree on which alternative is the worst

(best).

Our results show that Approval Voting performs quite well. The intuition

is that voters have much more flexibility under this rule. Ideally voters need

to be able to choose to maximally differentiate between any two alternatives.

BR does not allow the maximal differentiation. RU does allow it, but also

allows other strategies which turn out never to be needed. The ’good” prop-

erties of AV have been recently studied from another point of view by Brams

and Sanver (2003).

A natural question that arises at this stage is: can we say something more

precise about the relations between the conditions required for Dominance

Solvability of these different scoring rules? The next result tries to answer

this question.

Theorem 7: Whenever the sufficient conditions for Dominance Solvability

for PR are satisfied, so are those for RU and AV. Whenever the sufficient

conditions for Dominance Solvability for BR are satisfied, so are those for

RU and AV. The sufficient conditions for Dominance Solvability for AV and

RU are the same.

The proof is obvious.

From the results in the last section we can compare plurality, negative plu-

rality approval and Borda voting rules using as a criterion the conditions for

the associated voting games to be DS.

The worst in terms of our criterion seems to be NPR. While we cannot show

analytically that whenever the sufficient conditions for Dominance Solvability
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are satisfied for NPR they are also satisfied for AV and RU, we have not found

a counterexample either. Many examples can be constructed where the NPR

game is DS and it turns out that the corresponding AV game (i.e. with the

same preferences) is also DS.

An attractive feature about the PR,AV and RU games is that the iterated

elimination procedure takes a very intuitive form: we use a sequence of iter-

ations that corresponds closely to the reasoning in voters’s minds when they

vote strategically: i.e. the iteration proceeds by elimination of candidates

that everyone knows are effectively not in the race. Thus the steps of iter-

ated elimination correspond to reducing the set of outcomes that can occur!

At every step all voters have the same strategy set. This feature of Plurality

Rule (and AV,RU) makes it eminently suitable to be used in experimental

settings for testing the powers of subjects with regard to iterated dominance

reasoning.

Obviously the main part missing in this paper is necessary conditions for

Dominance Solvability (or at least sufficient conditions for non Dominance

Solvability) so that we could characterise the necessary and sufficient con-

ditions at least for large groups of voters. This proved to be difficult to do

when we move away from scoring rules where the number of strategies is

equal to the number of alternatives.
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A. Appendix

A.1. Proposition 1

Proposition 1 In the game Γr the only strategies that are undominated for

a voter i are those that give cj ≥ sr to his top ranked alternative j ∈ X and

ck ≤ sr to his worst ranked alternative k ∈ X.

Before we prove this proposition, we introduce a lemma:

Lemma 1: Consider a voter i such that x �i y �i z. Consider two strategies

for such a voter: vi = (cx, cy, cz) and v′i = (c′x, c
′
y, c
′
z). Then strategy vi is at

least as good as v′i iff cx−cy ≥ c′x−c′y and cx−cz ≥ c′x−c′z and cy−cz ≥ c′y−c′z.
The proof is obvious.

Proof of Proposition 1: Assume, w.l.o.g that x �i y �i z. The strategies

of voter i are partitioned (upto duplication when sr ∈ {0, 1}) into the fol-

lowing: {(1, sr, 0); (0, sr, 1); (sr, 1, 0); (sr, 0, 1);(1, 0, sr);(0, 1, sr)}, for sr ∈ Sr.
We show (i) that any strategy of the form (0, sr, 1) for a fixed sr is weakly

dominated by strategy (1, sr, 0). By Lemma 1 (1, sr, 0) is at least as good as

(0, sr, 1) : when v−i is chosen so that 1/2 of the voters (except i) use (1, 0, sr)

and 1/2 use (sr, 0, 1) (if n is even then let the extra voter use (sr, 0, 1)), then

ωz(v−i) − ωx(v−i) ≤ 1 − sr, ωy(v−i) = 0. Thus for this profile, (1, sr, 0) is

strictly better than (0, sr, 1). (ii) Assume sr 6= 0 (otherwise the strategies

are not distinct): Any strategy of the form (0, 1, sr) is weakly dominated by

(sr, 1, 0). By Lemma 1 (sr, 1, 0) is at least as good as (0, 1, sr) and we can

construct the same profile v−i as for (i), except that if n is even, let the extra

voter use (0, 1, sr) and all others are evenly divided between the strategies

(1, 0, sr) and (sr, 0, 1) so that ωz(v−i) − ωx(v−i) ≤ sr and ωy(v−i) ≤ 1. On

this profile, (sr, 1, 0) is strictly better than (0, 1, sr). Moreover, if n > 3, y

can never be in the winset with the profile v−i. (iii) Assume sr 6= 1, (other-

wise the two strategies are not distinct). Any strategy of the form (sr, 0, 1)

is weakly dominated by (1, 0, sr). Again, by lemma 1, strategy (1, 0, sr) is

at least as good as strategy (sr, 0, 1). It is strictly better for v−i constructed

above for (i).

This leaves us with strategies of the form {(1, sr, 0); (sr, 1, 0); (1, 0, sr)},
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for sr ∈ Sr. We now show that (i) either strategy (sr, 1, 0) weakly dominates

strategy (sr, 1, 0) for some sr 6= sr or all such strategies are equivalent. By

lemma 1, (sr, 1, 0) is at least as good as (sr, 1, 0) for all sr 6= sr. Either

there exists a profile and an sr such that sr = ωz(v−i) − ωx(v−i) > sr and

ωy(v−i) = 0: In this case, strategy (sr, 1, 0) is strictly better than (sr, 1, 0).

Thus all such strategies can be removed. Or all such strategies (sr, 1, 0) are

equivalent. The removal of such redundant strategies does not change the set

of outcomes that survive iterated elimination (see Marx and Swinkels, 1997):

thus we are left with strategy (sr, 1, 0) in any case. (ii) Either strategy

(1, 0, sr) weakly dominates strategy (1, 0, sr) for some sr 6= sr or all such

strategies (1, 0, sr) are equivalent. By lemma 1 strategy (1, 0, sr) is at least

as good as all strategies (1, 0, sr) for all sr 6= sr. If there exists a profile v−i
such that 1− sr = ωz(v−i)−ωx(v−i) > 1− sr and ωy(v−i) = 0, then (1, 0, sr)

weakly dominates (1, 0, sr). We can thus remove such strategies. If there

does not exist any such profile for any sr 6= sr, then all such strategies are

equivalent, and we can choose to eliminate all except (1, 0, sr). (iii) Finally

(since we can choose the order of elimination) we choose to let strategies

(1, s, 0) remain, even if some might be dominated.

�.

A.2.Scoring Rules with sr <
1
2 Lemma 2: Assume sr < 1/2. If

nz >
n(2−sr)
3(1−sr)

then W ⊂ {{x}, {y}, {xy}}.

Proof of Lemma 2: By proposition 1 the maximum score that z can get

in any profile is ωz = nz(sr) + (n−nz)1. Suppose to the contrary that z was

in the winning set for some profile v: the minimal score z requires would be

in the case that it ties with x and y. Note that the minimum sum of scores

over profiles is Σr = n(1 + sr), while the maximum sum of scores possible

when z ties with x and y is ωx(v) + ωy(v) + ωz(v) = 3(nz(sr) + (n − nz)1).

If nz >
n(2−sr)
3(1−sr)

then ωx(v) + ωy(v) + ωz(v) < Σr, a contradiction. Moreover

nz ≤ n implies that sr ≤ 1/2. The case sr = 1/2, is discussed in Section 3

(Borda Rule). Hence we need sr < 1/2, for the Lemma to hold.

�

Corollary to Lemma 2: If sr = 1
2
, and nz = n then W (v) ∈ {{x}, {x, y}, {y},
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{x, y, z}}, for all v ∈ V .

Proof of Corollary to Lemma 2: When sr = 1
2
, then it is possible that z is

in the winning set.But this is only possible if it ties with x and y. Suppose not:

it is sufficient to look at cases where W (v) = {x, z} or W (v) = {y, z}. W.l.o.g

let W (v) = {x, z} for some v ∈ V then max(ωx(v) + ωz(v)) = 2(max(ωz)) =

2(n
2
) = n < n(1+ 1

2
). Since n(1+ 1

2
) ≤ Σ(v) ≤ n(1+sr) for all profiles v ∈ V ,

this is a contradiction.

�

Lemma 3: Consider a voter i ∈ Nz such that x �i y �i z. Assume

W ⊂ {{x}, {y}, {xy}}. Then either (i) the strategy (1, 0, sr) weakly dom-

inates strategies (1, sr, 0) and (sr, 1, 0) for sr > 0, or (ii)all strategies of i are

equivalent.

Proof of Lemma 3: (i) Let vi = (1, 0, sr), v
′
i = (1, sr, 0), and v′′i = (sr, 1, 0).

Let v = (vi, v−i), v
′ = (v′i, v−i), v

′′ = (v′′i , v−i). If W (v) = {x}, then clearly

W (v′) ⊂ {{x}, {y}, {x, y}}, since the score for x must be the same while

that for y may increase if sr > 0. Also if W (v) = {x}, then clearly W (v′′) ⊂
{{x}, {y}, {x, y}}, since the score for x goes down given v−i if sr < 1 while

that for y increases. If W (v) = {y}, then clearly W (v′) = {y}, since the

score for x must be the same while that for y may increase if sr > 0. Also

if W (v) = {y}, then clearly W (v′′) = {y}, since the score for x does not

increase given v−i if sr ≤ 1 while that for y increases. Finally if W (v) =

{xy}, then W (v′) ⊂ {{y}, {x, y}}, since the score for x must be the same

while that for y may increase if sr > 0. Also if W (v) = {xy}, then clearly

W (v′′) ⊂ {{y}, {x, y}}, since the score for x goes down given v−i if sr < 1

while that for y increases.

Thus no matter what v−i is, the strategy (1, 0, sr) is weakly better for

i given that W ⊂ {{x}, {y}, {xy}}. The strategy (1, 0, sr) is strictly better

than v′i (that is, if sr 6= 0) if there exists a v−i such that 1 > ωy(v−i) −
ωx(v−i) ≥ 1 − sr, or if there exists a v−i such that 1 = ωy(v−i) − ωx(v−i) >
1− sr.

Similarly the strategy vi is strictly better than the strategy v′′i if there

exists a profile such that 1 > ωy(v−i) − ωx(v−i) ≥ sr − 1, or if there exists
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a v−i such that 1 = ωy(v−i) − ωx(v−i) > sr − 1. If any of these strategies

exists in the game Γ1r then strategy vi weakly dominates strategy v′i and v′′i
respectively.

If such profiles do not exist, then any pair of such strategies must be

equivalent in the sense that W (vi, v−i) = W (v′i, v−i),∀vi, v′i ∈ Vi.

�

Lemma 4: Consider a voter i 6∈ Nz such that z �i x �i y. Assume W ⊂
{{x}, {y}, {xy}}. Then either (i) the strategy (1, 0, sr) (denoted vi) weakly

dominates strategies (0, sr, 1) (denoted v′i) and (sr, 0, 1) (denoted v′′i ) for sr >

0, or (ii) all strategies of i are equivalent.

Proof of Lemma 4: (i) Let v = (vi, v−i), v
′ = (v′i, v−i), v

′′ = (v′′i , v−i).

(A)If W (v) = {x}, (i.e. ωy(v−i)−ωx(v−i) < 1) then clearly W (v′) = {x},
if (i)ωx(v−i)−ωy(v−i) > sr, W (v′) = {x, y}, if (ii) ωx(v−i)−ωy(v−i) = sr,and

(iii)W (v′) = {y}, if ωx(v−i)− ωy(v−i) < sr.

(B)IfW (v) = {x, y}, (i.e. ωy(v−i)−ωx(v−i) = 1) then clearlyW (v′) = {y},
since given that ωy(v−i)− ωx(v−i) = 1, ωx(v−i) < ωy + sr, for any sr ∈ Sr.

(C)If W (v) = {y}, (i.e. ωy(v−i)−ωx(v−i) > 1) then clearly W (v′) = {y},
since given that ωy(v−i)− ωx(v−i) > 1, ωx(v−i) < ωy + sr, for any sr ∈ Sr.

Thus no matter what v−i is, the strategy vi is weakly better for i given that

W ⊂ {{x}, {y}, {xy}}. The strategy vi is strictly better than v′i if there exists

a v−i such that ωy(v−i)−ωx(v−i) < 1 and ωx(v−i)−ωy(v−i) = sr, or ωx(v−i)−
ωy(v−i) < sr (Cases A (ii) and (iii) respectively), or if ωy(v−i)− ωx(v−i) = 1

(Case (B).) If any of these profiles exist then strategy vi weakly dominates

strategy v′i. If no such profile exists the two strategies are equivalent.

Now we consider strategy v′′i :

(A’)If W (v) = {x}, (i.e. ωy(v−i)−ωx(v−i) < 1) then clearly W (v′′) = {x},
if ωy(v−i) − ωx(v−i) < sr, W (v′) = {x, y}, if ωy(v−i) − ωx(v−i) = sr, (for

sr < 1), and W (v′) = {y}, if ωy(v−i)− ωx(v−i) > sr.

(B’)If W (v) = {x, y}, (i.e. ωy(v−i) − ωx(v−i) = 1) then clearly W (v′) =
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{y}, since given that ωy(v−i) − ωx(v−i) = 1, ωy(v−i) − ωx(v−i > sr, for any

sr < 1.

(C’)Finally if W (v) = {y}, (i.e. ωy(v−i) − ωx(v−i) > 1) then clearly

W (v′) = {y}, since given that ωy(v−i)− ωx(v−i) > 1, ωy(v−i)− ωx > sr, for

any sr ∈ Sr.

The strategy vi is strictly better than the strategy v′′i if there exists a

profile such that ωy(v−i) − ωx(v−i) < 1 and ωy(v−i) − ωx(v−i) = sr, (for

sr < 1), or ωy(v−i) − ωx(v−i) > sr (Cases (A’)(ii) and (iii) respectively) or

ωy(v−i) − ωx(v−i) = 1 (Case (B’)). If any of these profiles exists strategy vi
weakly domimates strategy v′′i . If no such profile exists then the two strategies

are clearly equivalent, i.e. they give the same outcome for all profiles v−i. �

A.3.Scoring Rules with sr >
1
2

Lemma 5: If n′x >
n(1+sr)

3sr
then L ∈ {{y}, {z}, {y, z}}.

Proof of Lemma 5: Suppose to the contrary that ∃v ∈ V such that x ∈
L(v). Then, since all i ∈ N ′x give a minimum of sr to x we have: min(ωx) =

n′xsr. If x ∈ L, ωy ≥ ωx, ωz ≥ ωx. Thus, min(ωx+ωy+ωz) ≥ 3n′xsr > n(1+sr)

since n′x >
n(1+sr)

3sr
, a contradiction.

�

Corollary 2 to Lemma 5: If sr = 1
2

and n′x = n then L ∈ {{y}, {z},{x, y, z},{y, z}}.

Proof of Corollary to Lemma 5: It is sufficient to show that {x, y} and

{x, z} cannot be in the losing set. W.l.o.g suppose L(v) = {x, y} for some

v ∈ V. Then ωx(v) = ωy(v) < ωz(v). Since n′x = n, min(ωx(v)) = n
2
, so

that min(ωx(v) + ωy(v) + ωz(v) > 3n
2

, a contradiction, since Σ(v) ≤ 3n
2

when

sr = 1
2
. �

Lemma 6: Let i ∈ N ′x, such that x �i y �i z. If L ⊂ {{y}, {z}, {y, z}},
then either (a) strategies vi = (sr, 1, 0) and v′i = (1, sr, 0) are both weakly

dominated by strategy ṽi = (1, sr, 0) or (b) all strategies are equivalent for i.

Proof of Lemma 6: By Proposition 1, strategies for such an individual i

in Γ1r are (1, 0, sr); (1, sr, 0); (sr, 1, 0), where sr ∈ [sr, sr].
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Using Lemma 1, we can deduce that the probability that x is in the

winning set cannot decrease relative to other alternatives in the winning set

when i uses strategy (1, sr, 0) instead of strategy (sr, 1, 0) or (1, sr, 0) (since

cx − cy and cx − cz are both greater with strategy ṽi than with strategies vi
and v′i).

This means that whenever W (v) = {x}, then W (ṽ) = {x}, when W (v) =

{x, y} then W (ṽ) ∈ {{x, y}, {x}}; when W (v) = {x, z}, then W (ṽ) ∈
{{x}, {x, z}}.

Similarly, whenever W (v′) = {x}, then W (ṽ) = {x}, when W (v′) =

{x, y} , then W (ṽ) ∈ {{x, y}, {x}}; when W (v′) = {x, z}, then W (ṽ) ∈
{{x}, {x, z}}.

So the only cases to check are W ∈ {{y}, {z}}. If W (v) = W (v′) = {z}
when i uses strategy vi, or v′i then i can do no worse with strategy ṽi. Thus

the only case to check is when W = {y} when i uses strategy vi or v′i.

Thus consider strategy vi first. If W (v) = {y}, then ωy(v−i) + 1 >

ωx(v−i) + sr, and ωy(v−i) + 1 > ωz(v−i). If he uses ṽi then the outcome could

be {y} (if ωy(v−i) + sr > ωx(v−i) + 1 or {x, y} (if ωy(v−i) + sr = ωx(v−i) + 1),

or {x}. The outcomes {z} or {y, z}, are ruled out since ωx + sr > ωz by

Comment 1.

If a profile v−i exists such that W (v) = {x, y} and W (ṽ) = {x}; or

W (v) = {x, z}, and W (ṽ) = {x} or W (v) = {z} and W (ṽ) = {x} or

W (ṽ) = {x, z} then strategy ṽi weakly dominates strategy vi.Otherwise the

two are equivalent.

The same argument applies to v′i. The outcomes {z} or {z, y} are ruled

out by Comment 1, so if W (v′) = {y} then W (ṽ) ∈ {{x}, {x, y}}.

If a profile v−i exists such that W (v′) = {x, y} and W (ṽ) = {{x}} or

W (v′) = {x, z}, and W (ṽ) = {{x}} or W (v′) = {z} and W (ṽ) = {x} or

W (ṽ) = {x, z} then strategy ṽi weakly dominates strategy vi.Otherwise the

two are equivalent.

�
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Lemma 7: In the game Γ2r, if sr < 1, and n′x >
n

2−sr
then the Scoring rule

game is DS and x is the unique winner.

Proof: The reduced game Γ2r is the game where all i ∈ N ′x have strate-

gies (1, 0, sr) and (1, sr, 0) remaining. This implies that min(ωx) = n′x,

max(ωy, ωz) = n′x(sr) + (n − n′x). Thus W = {x} if n′x > n′xsr + n − n′x,

i.e. if n′x >
n

2−sr
. �

Corollary to Lemma 7: In the game Γ2r if sr <
1
2
, then if n′x >

2n
3

, the game

is DS and x is the unique winner.

Proof: Denote n′t = n
2−sr

. By Lemma 7 the game is DS and x is the unique

winner if n′x > n′t. Since sr ∈ [0, 1
2
), supn′t = 2n

3
. Thus the condition n′x > n′t

is always satisfied if n′x >
2n
3
. �

A.4 Negative Plurality Rule

Lemma 8: Consider the undominated game Γ1NPR. If n′x ≥ 2n
3
− 2

3
and

preferences in x are polarised, the only undominated strategy for any i 6∈ N ′x
is (0, 1, 1).

Proof of Lemma 8: W.l.o.g. consider i ∈ N ′z. Preferences are polarised so

we have z �i y �i x. By Proposition 1 his remaining strategies in Γ1r are

(1, 0, 1) and (0, 1, 1). The strategy (1, 0, 1) is a UBR whenever i is pivotal

between candidates z and y only8, i.e. the strategy (1, 0, 1) is a UBR to the

following profiles: (i) ωy = ωz ≥ ωx + 1, or (ii) ωy − ωz = 1 and ωz ≥ ωx + 1,

or possibly (iii) ωy − ωz = 1 and ωz ≥ ωx, (if the lottery over (x, y, z) is

preferred by i to y).

The strategy (0, 1, 1) is a UBR whenever i is pivotal between candidates x

and y only9, i.e. the strategy (0, 1, 1) is a UBR to the following profiles: (i)’

ωx = ωy ≥ ωz + 1, or (ii)’ ωx − ωy = 1 and ωy ≥ ωz + 1, or possibly (iii)’

ωy − ωx = 1 and ωx ≥ ωz, (if the lottery over (x, y, z) is less preferred by i

to y). Similarly the strategy (0, 1, 1) is a UBR to the following profiles: (iv)’

ωx = ωz ≥ ωy + 1 or (v)’ ωx − ωz = 1 and ωz ≥ ωy or (vi)’ωx = ωy = ωz. In

8I.e. he cannot achieve the outcome x for sure with his vote, only in a lottery.
9I.e. he cannot achieve his best outcome z with his vote but he can achieve either

outcome x or y.
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all other profiles v−i, the two strategies give the same payoff. Since there are

only two pure strategies, it is sufficient to show that 6 ∃ v−i such that strategy

(1, 0, 1) is a UBR and ∃ v−i such that (0, 1, 1) is a UBR. Claim 1 proves the

former and Claim 2 proves the latter.

Claim 1 (Lemma 8): If n′x ≥ 2n
3
− 2

3
, then 6 ∃ v−i such that either of (i), (ii)

or (iii) holds.

Proof: If such a profile exists, it must exist for the minimum ωx possible

i.e. when ωx = n′x. Thus it is sufficient to consider this case. Assume ∃ v−i
such that either of (i), (ii) or (iii) holds. Case (i) implies that min Σ(v−i) =

3n′x + 2, case (ii) implies that min Σ(v−i) = 3n′x + 1, and case (iii) implies

that min Σ(v−i) = 3n′x + 3. If n′x ≥ 2n
3
− 2

3
for cases (i), (ii) and (iii) we have

that min Σ(v−i) > 2n− 1 > 2n− 2, a contradiction.

�

Claim 2 (Lemma 8). If n′x ≥ 2n
3
− 2

3
then ∃ v−i such that strategy (0, 1, 1) is

a UBR.

Proof: We construct a strategy v−i such that (0, 1, 1) is a UBR. In particular,

we construct a strategy v−i such that either (i)’ or (ii)’ holds.

Let ωx = n′x + n′y + dn
′
z−1
2
e, ωy = n′x + n′y + bn

′
z−1
2
c, ωz = n′z − 1, then clearly

Σ(v−i) = 2n − 2, hence this profile is feasible10. So the only thing to check

is that strategy (0, 1, 1) is a UBR. Suppose n′z is odd: then ωx = ωy and we

need (from (i)’): ωx ≥ ωz + 1, i.e. n′z ≤ 2n
3
− 1

3
. If n′z is even: ωx − ωy = 1,

and we need (from (ii)’) ωy ≥ ωz, i.e n′z ≤ 2n
3
. Thus, if n′z ≤ 2n

3
− 1

3
, then this

profile exists for both cases.

Thus, it remains to show that if n′x ≥ 2n
3
− 2

3
then n′z ≤ 2n

3
− 1

3
. Observe that

n′x + n′y + n′z = n. Hence, if n′x ≥ 2n
3
− 2

3
, we have that max(n′z) ≤ 1n

3
+ 2

3
.

Moreover, since n ≥ 3, note that n
3

+ 2
3
≤ 2n

3
− 1

3
.

�
10Take (1, 1, 0) for all i ∈ N ′x, N ′y, and if n′z − 1 is even divide voters in N ′z equally in

to those using (0, 1, 1) and those using (1, 0, 1), and if n′z − 1 is odd take n′z
2 voters in N ′z

using (1, 1, 0) and n′z
2 − 1 using (1, 0, 1).
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Lemma 9: Consider the undominated game Γ2r where ωx = n′x. If n′x ≤ 2n
3
− 1

3

the only undominated strategy for any i ∈ N ′x is one which gives 1 to the best

and 0 to the worst alternative.

Proof of Lemma 9: Let i ∈ N ′x. W.l.o.g let x �i y �i z. We show that

strategy (1, 0, 1) is dominated by (1, 1, 0). The strategy (1, 0, 1) is a UBR

to the following profiles: (i) ωx = ωy ≥ ωz + 1, or (ii) ωy − ωx = 1 and

ωx ≥ ωz + 1, or possibly (iii) ωy − ωx = 1 and ωx ≥ ωz, (if the lottery over

(x, y, z) is preferred by i to y).

The strategy (1, 1, 0) is a UBR to the following profiles: (i)’ ωx = ωz ≥ ωy+1,

or (ii)’ ωy −ωx = 1 and ωx ≥ ωz, (if the lottery over (x, y, z) is less preferred

to y.) or (iii)’ ωz = ωy and ωy ≥ ωx + 1, (iv)’ ωz − ωy = 1 and ωy ≥ ωx, (v)’

ωz−ωy = 1 and ωy ≥ ωx + 1,and (vi)’ ωz = ωy = ωx. In all other profiles v−i,

the two strategies give the same payoff. It is sufficient to show (since there

are only two pure strategies) that 6 ∃ v−i such that strategy (1, 0, 1) is a UBR

and ∃ v−i such that (1, 1, 0) is a UBR. Claim 1 proves the former and Claim

2 proves the latter.

Claim 1 (Lemma 9): If n′x ≤ 2n
3
− 1

3
, then 6 ∃ v−i such that either of (i), (ii)

or (iii) holds.

Proof: Since i ∈ N ′x, we know that ωx = n′x − 1. Assume ∃ v−i such

that either of (i), (ii) or (iii) holds. Case (i) implies that max Σ(v−i) =

3n′x − 4, case (ii) implies that max Σ(v−i) = 3n′x − 3, and case (iii) implies

that max Σ(v−i) = 3n′x− 2. If q′x ≤ 2
3
− 2

3n
for cases (i), (ii) and (iii) we have

that max Σ(v−i) < 2n− 4 < 2n− 2, a contradiction.�

Claim 2 (Lemma 9). If n′x ≤ 2n
3
− 1

3
then ∃ v−i such that strategy (1, 1, 0) is

a UBR.

Proof: We construct a strategy v−i such that (1, 1, 0) is a UBR. In particular

we construct v−i such that one of (iii)’or (iv)’holds.

Let ωz = n′y +n′z + dn
′
x−1
2
e, ωy = n′y +n′z + bn

′
x−1
2
c, ωx = n′x− 1, Then clearly

Σ(v−i) = 2n − 2, hence this profile is feasible11. So the only thing to check

11Take (0, 1, 1) (the only surviving strategy) for all i /∈ N ′x and if n′x − 1 is even divide
voters in N ′x equally in to those using (1, 1, 0) and those using (1, 0, 1), and if n′x − 1 is
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is that strategy (1, 1, 0) is a UBR. Suppose n′x is odd: then ωy = ωz and we

need (from (iii)’): ωy ≥ ωx + 1, i.e. n′x ≤ 2n
3
− 1

3
. If n′x is even, then we need

(from (iv)’) ωy ≥ ωx, i.e n′x ≤ 2n
3
. Thus, if n′x ≤ 2n

3
− 1

3
, then at least one of

these profiles exists and (1, 1, 0) is a UBR.

�

Theorem 6 (Sufficient condition for Non Dominance Solvability):(i)

If n′x ≤ 2n
3
− 5

3
the NPR game is not DS, (ii) If n′x ≥ 2n

3
+ 2

3
and preferences

in x are polarised, the NPR game is not DS.

Proof of Theorem 6: (i) It is sufficient to show that every strategy in Γ1r

is a UBR to some profile v−i. We show this w.l.o.g for i ∈ N ′x
12. W.l.o.g

assume x �i y �i z. Strategy (1, 0, 1) is a UBR to the following profile:

ωx = n′x − 1 + n′y + bn
′
z

2
c, ωy = n′x − 1 + n′y + dn

′
z

2
e, ωz = n′z. This is clearly

feasible and it remains to check that ωx ≥ ωz+1. If n′z is even, then this is so if

n′z ≤ 2n
3
− 4

3
, and if n′z is odd, it requires n′z ≤ 2n

3
− 5

3
. Thus if n′z ≤ n′x ≤ 2n

3
− 5

3
,

then strategy (1, 0, 1) is a UBR. Similarly strategy (1, 1, 0) is a UBR to the

following profile: ωx = n′x− 1 + n′z + bn
′
y

2
c, ωz = n′x− 1 + n′z + dn

′
y

2
e, ωy = n′y.

This is clearly feasible and it remains to check that ωx ≥ ωy+1. If n′y is even,

then this is so if n′y ≤ 2n
3
− 4

3
, and if n′y is odd, it requires n′z ≤ 2n

3
− 5

3
. Thus

if n′y ≤ n′x ≤ 2n
3
− 5

3
, then strategy (1, 1, 0) is a UBR.�

(ii) Since n′x >
2n
3
− 2

3
, by Proposition 1 and Lemma 8, we are in game Γ2r

where all i 6∈ N ′x have only strategy (0, 1, 1) remaining (recall that preferences

are polarised in x). It is sufficient to show that for all i ∈ N ′x, strategies

(1, 1, 0) and (1, 0, 1) are both UBR to some profile v−i, in Γ2. We show this

w.l.o.g for i ∈ N ′x such that x �i y �i z. Strategy (1, 0, 1) is a UBR to

the following profile: Let n′x − 1 − (n′y + n′z) of i ∈ N ′x vote (1, 1, 0); and

the remaining n′y + n′z of them vote (1, 0, 1). Obviously, all i 6∈ N ′x vote

(0, 1, 1). Note that n′x − 1 ≥ (n′y + n′z), (since n′x ≥ 2n
3

+ 2
3
≥ n

2
+ 1

2
) and

ωx + ωy + ωz = 2n − 2 so this profile is feasible. Moreover in this profile,

ωx = ωy ≥ ωz + 1 iff n′x ≥ 2n
3

+ 2
3
. Strategy (1, 1, 0) is a UBR to the following

profile: Let n′x − 1 − (n′y + n′z) of i ∈ N ′x vote (1, 0, 1); and the remaining

odd take n′x
2 voters in N ′x using (1, 0, 1) and n′x

2 − 1 using (1, 1, 0).
12Since n′x = maxa=x,y,z(n′a).
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n′y + n′z of them vote (1, 1, 0). Obviously, all i 6∈ N ′x vote (0, 1, 1). Note that

n′x − 1 ≥ (n′y + n′z), and ωx + ωy + ωz = 2n − 2 so this profile is feasible.

Moreover in this profile, ωx = ωz ≥ ωy + 1 iff n′x ≥ 2n
3

+ 2
3
.

�

Proposition 2: There exists an n′x such that bw
3
c ≥ n′x ≥ dw−1

3
e iff either

r = 0, or r = 1.

Proof of proposition 2: First we show that if r = 0, 1, there exists an

n′x satisfying the required inequality. If r = 0, bw
3
c = m = dw−1

3
e, since

dw−1
3
e = m− b1

3
c = m.

If r = 1, bw
3
c = m+ b1

3
c = m. dw−1

3
e = m, since w − 1 = 3m.

It remains to show that when r = 2, there does not exist an n′x satisfying the

above:Suppose ∃ an n′x that satisfies the above. Then we need bω
3
c ≥ dω

3
e.

If r = 2, we have bw
3
c = m+ b2

3
c = m, and dw−1

3
e = m+ d1

3
e = m+ 1, since

w − 1 = 3m+ 1, a contradiction.

�.

Proposition 3:If the conditions stated in Theorem 5 hold, then (i) if n ≥ 5

a unique CW acw exists but acw is never in the winset (ii) if n = 4 at least

one CW exists and the alternative (s) in the winset is (are) CW.

Proof of Proposition 3. Let 2n
3
− 2

3
≤ n′x ≤ 2n

3
− 1

3
, and preferences in x be

polarised. (i) It is easy to check that if n′x ≥ 2n
3
− 2

3
and n ≥ 5 then n′x >

n
2

therefore, x is the unique CW. Lemma 2 and lemma 3 imply that : ωx = n′x,

ωy = n−n′x +nz and ωz = n−n′x +ny where na(n
′
a) is the number of voters

who rank a as the worst (best) alternative. Now assume that x is in the

winset. If x is in the winset ⇒ ωx > ωy and ωx > ωz since nx + ny + nz = n

and nx = n − n′x (preferences in x are polarised) this implies that n′x >
2n
3

which is a contradiction. Thus, x is never in the winset.

�
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