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1 Laws of scarcity, parameterized collections of
games and equal treatment cores

This paper treats cooperative games with many players and provides some charac-
terization results for approximate cores, outcomes that are stable against coalition
formation. An advantage of the framework of cooperative games over detailed models
of economies is that models of games can accommodate the entire spectrum of games
derived from economies with only private goods to games derived from economies with
pure public goods. Thus, it is of interest to determine conditions on games ensuring
that they are `market-like' { that they satisfy analogues of well known properties of
competitive economies. Important papers in this direction include Shubik [21], which
introduced the study of large games as models of large private-goods economies, Shap-
ley and Shubik [20], which demonstrated an equivalence between markets and totally
balanced games, and Wooders ( [26], [27]) demonstrating that games with many play-
ers are market games. Further motivation for the framework of cooperative games
comes from Buchanan [2], who stressed the need for a general theory, including as
extreme cases both purely private and purely public goods economies and the need
for \a theory of clubs, a theory of cooperative membership."

The current paper employs the framework of parameterized collections of games
and obtains Laws of Scarcity, analogues of the celebrated Laws of Demand and of
Supply of general equilibrium theory. Roughly, the Law of Demand states that prices
and quantities demanded change in the opposite directions while, with inputs signed
negatively, the Law of Supply states that quantities demanded as inputs and produced
as outputs change in the same direction as price changes.1 In the framework of a
cooperative game, supply and demand are not distinct concepts. Thus, following [26]
we refer to our results for games as Laws of Scarcity. Roughly, our results state that,
if almost all gains to collective activities can be realized by groups of players bounded
in size, then numbers of players who are similar to each other and core payo®s respond
in opposite directions. If player types are thought of a commodity types while payo®s
to players are thought of as prices for commodities, our Laws of Scarcity are closely
related to comparative statics results for general equilibrium models with quasi-linear
utilities. As we discuss in a section relating our paper to the literature, our results
extend the literature in several directions.

As in our prior papers on parameterized collections of games,2 a game is described
by certain parameters: (a) the number of approximate types of players and the good-
ness of the approximation and (b) the size of nearly e®ective groups of players and
their distance from exact e®ectiveness. An equal treatment payo® vector is de¯ned

1The Law of Demand therefore rules out \Gi®en goods" or treats compensated demands; see
Mas-Colell, Whinston and Green [12], Sections 2.F and 4.C. This volume also provides a very clear
exposition and further references.

2[6], [7], [8] and [28].
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to be a payo® vector that assigns the same payo® to all players of the same approxi-
mate type. We show that equal treatment "-cores satisfy the property that numbers
of players who are similar to each other and equal treatment "-core payo®s respond
in nearly opposite directions; speci¯cally, we establish an exact upper bound on the
extent to which equal treatment "-core payo®s may respond in the same direction
and this bound will, under some conditions, be small. We actually demonstrate a
stronger result { equal treatment "-core vectors and vectors of numbers of players of
each approximate type satisfy cyclic monotonicity.3 In addition to cyclic monotonic-
ity, we demonstrate a closely related comparative statics result: When the relative
size of a group of players who are all similar to each other increases, then equal treat-
ment "-core payo®s to members of that group will not signi¯cantly increase and may
decrease.

The conditions required on a game to obtain our results are that (i) each player
has many close substitutes (a thickness condition) and (ii) almost all gains to col-
lective activities can be realized by groups of players bounded in size (small group
e®ectiveness - SGE). The ¯rst condition is frequently employed in economic theory.
The second condition may appear to be restrictive, but in fact, if there are su±ciently
many players of each type, then per capita boundedness (PCB) { ¯niteness of the
supremum of average payo® { and SGE are equivalent.4 Our results yield explicit
bounds, in terms of the parameters describing the games, on the maximal devia-
tion of equal treatment "-core payo®s from satisfying exact monotonicity. Moreover,
our framework allows some latitude in the exact speci¯cation of approximate types.
These two considerations suggest that in principle our results can be well applied to
estimate the e®ects on equal treatment "-core payo®s of changes in the composition
of the total player set. Note that all the bounds we obtain are exact, and depend on
the parameters describing the games and on the " of the "-core.

For our results characterizing "-cores of games to be interesting, it is impor-
tant that under some reasonably broad set of conditions, "-cores of large games are
nonempty. Since Shapley and Shubik [19] showing nonemptiness of approximate cores
of exchange economies with many players and quasi-linear utilities and Wooders [23],
[24], showing nonemptiness of approximate cores of game with many players with
and without side payments, there has been a number of further results. For pa-
rameterized collections of games, such results are demonstrated in [6], [7], [8] and
[28]. The interest of our monotonicity results is further enhanced by results showing
that approximate cores have the equal treatment property; in this regard, note that
[26] shows that approximate cores of large games treat most similar players nearly
equally. In research in progress, similar equal treatment results are demonstrated for

3Cyclic monotonicity relates to monotonicity in the same way as the Strong Axiom of Revealed
Preference relates to the Weak Axiom of Revelaed Preference (see, for example, Richter [13], [14]).

4This is shown for \pregames" in [27], Theorem 4. Per capita boundedness and small group
e®ectiveness were introduced into the study of large games in Wooders [24],[25] respectively.
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parameterized collections of games.
In the next section we de¯ne parameterized collections of games. In Section 3,

the results are presented. Section 4 consists of an example, applying our results to
a matching model with hospitals and interns. Section 5 further relates the current
paper to the literature and concludes the paper. In the Appendix we prove that the
bounds cannot be tightened.

2 Cooperative games
Let (N; v) be a pair consisting of a ¯nite set N; called the player set, and a function v;
called the characteristic function, from subsets of N to the non-negative real numbers
with v(;) = 0: The pair (N; v) is a game (with side payments or a TU game). Non-
empty subsets of N are called coalitions or groups. A game (N; v) is superadditive
if v(S) ¸ P

k v(S
k) for all groups S ½ N and for all partitions

©
Sk

ª
of S. For the

current paper we restrict our attention to superadditive games. This is slightly more
restrictive than required, but simpli¯es notation and shortens the proof.

2.1 Parameterized collections of games
±¡substitute partitions: In our approach we approximate games with many players,
all of whom may be distinct, by games with player types.

Let (N; v) be a game and let ± ¸ 0 be a non-negative real number. Informally, a
±-substitute partition is a partition of the player set N into subsets with the property
that any two players in the same subset are \within ±" of being substitutes for each
other. That is, if players in a coalition are replaced by ±-substitutes, the payo® to
that coalition changes by no more than ± per capita. Formally, given a partition
fN [t] : t = 1; ::; Tg of N , a permutation ¿ of N is type consistent if, for any i 2 N;
¿(i) belongs to the same element of the partition fN [t]g as i. A ±-substitute partition
of N is a partition fN [t] : t = 1; ::; Tg of N with the property that, for any type-
consistent permutation ¿ and any coalition S,

jv(S) ¡ v(¿ (S))j · ± jSj :

Note that in general a ±-substitute partition of N is not uniquely determined. More-
over, two games, say (N; v) and (N; v0), may have the same partitions into ±-substitutes
but have no other relationship to each other (in contrast to games derived from a
pregame).

(±,T )- type games. The notion of a (±,T )-type game is an extension of the notion of
a game with a ¯nite number of types to a game with approximate types.
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Let ± be a non-negative real number and let T be a positive integer. A game (N; v)
is a (±; T )-type game if there exists a T -member ±-substitute partition fN [t] : t = 1; ::; Tg
of N . The set N [t] is interpreted as an approximate type. Players in the same element
of a ±-substitute partition are ±-substitutes. When ± = 0; they are exact substitutes.

pro¯les. Pro¯les of player sets are de¯ned relative to partitions of player sets into
approximate types.

Let ± ¸ 0 be a non-negative real number, let (N; v) be a game and let
fN [t] : t = 1; ::; Tg be a partition of N into ±-substitutes. A pro¯le relative to fN [t]g
is a vector of non-negative integers f 2 ZT+. Given S ½ N the pro¯le of S is a pro¯le,
say s 2 ZT+, where st = jS \N [t]j : A pro¯le describes a group of players in terms of
the numbers of players of each approximate type in the group. Let kfk denote the
number of players in a group described by f , that is, kfk =

P
ft.

¯-e®ective B-bounded groups: The following notion formulates the idea of small group
e®ectiveness, SGE, in the context of parameterized collections of games. Informally,
groups of players containing no more than B members are ¯-e®ective if, by restricting
coalitions to having fewer than B members, the per capita loss is no more than ¯.

Let ¯ be a given non-negative real number, and let B be a given integer. A game
(N; v) has ¯-e®ective B-bounded groups if for every group S ½ N there is a partition©
Sk

ª
of S into subgroups with

¯̄
Sk

¯̄
· B for each k and

v(S) ¡
X

k

v(Sk) · ¯ jSj :

When ¯ = 0, 0-e®ective B-bounded groups are called strictly e®ective B-bounded
groups.

parametrized collections of games ¡((±; T ); (¯;B)). Let T and B be positive integers,
let ± and ¯ be non-negative real numbers. De¯ne

¡((±; T ); (¯;B))

to be the collection of all (±; T )-type games that have ¯-e®ective B-bounded groups.

2.2 Equal treatment "-core
the core and "-cores. Let (N; v) be a game and let " be a nonnegative real number.
A payo® vector x is in the "-core of (N; v) if and only if

P
a2N xa · v(N) andP

a2S xa ¸ v(S) ¡ " jSj for all S ½ N . When " = 0; the "-core is the core.
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the equal treatment "-core. Given nonnegative real numbers " and ±, we will de¯ne the
equal treatment "-core of a game (N; v) relative to a ±-substitute partition fN [t]g of
the player set as the set of payo® vectors x in the "-core with the property that for
each t and all i and j in N [t], it holds that xi = xj .

With the de¯nition of the equal treatment "-core in hand, we can next address
monotonicity properties and comparative statics for this concept. In the present
paper we simply assume nonemptiness of the equal treatment "-core of games. With
SGE along with per capita boundedness, for " > 0 this assumption is satis¯ed for all
su±ciently large games in parameterized collections. Such a result appears in [7], [9].
Notice that we treat the equal treatment "-core as a \stand-in" for the competitive
equilibrium in the general context of the cooperative game theory. This motivates
our use of the equal treatment "-core and not the "-core in the main subject of the
present paper.

3 Laws of Scarcity
A technical lemma is required. For x; y 2 RT , let x ¢ y denote the scalar product of
x and y, i.e. x ¢ y := PT

t=1 xtyt.

Lemma. Let (N; v) be in ¡((±; T ); (¯;B)) and let (S1; v); (S2; v) be subgames of
(N; v). Let fN [t]g denote a partition of N into types and, for k = 1; 2; let fk denote
the pro¯le of Sk relative to fN [t]g. Assume that fkt ¸ B for each k and each t. For
each k; let xk 2 RT represent a payo® vector in the equal treatment "-core of (Sk; v).
Then

(x1 ¡ x2) ¢ f 1 · ("+ ± + ¯)
°°f 1

°° .
Proof: Since (N; v) has ¯-e®ective B-bounded groups, there exists a partition

©
G1`

ª

of S1, such that
¯̄
G1`

¯̄
· B for any ` and

P
` v(G

1`) ¸ v(S1) ¡ ¯ kf 1k. Let us denote
the pro¯les of G1` by g`: Observe that

P
` g
` = f 1.

Since f2t ¸ B for each t, it holds that g` · f2 for each `. Therefore for each `
there exists a subset G2` ½ S2 with pro¯le g`. Observe that since both G1` and G2`

have pro¯le g`, it holds that
¯̄
v(G1`) ¡ v(G2`)

¯̄
· ±

°°g`
°°. Since x2 represents a payo®

vector in the equal treatment "-core of (S2; v) and G2` ½ S2 has pro¯le g`; the total
payo® x2 ¢ g` cannot be improved on by the coalition G2` by more than "

°°g`
°°. Thus,

for each set G2` ½ S2 with pro¯le g`; it holds that x2 ¢g` ¸ v(G2`)¡"
°°g`

°° ¸ v(G1`)¡
("+ ±)

°°g`
°°. Adding these inequalities we have x2 ¢ f 1 ¸ P

` v(G
1`)¡ ("+ ±) kf1k. It

then follows that x2 ¢ f 1 ¸ v(S1) ¡ ("+ ± + ¯) kf1k.
Since x1 represents a payo® vector in the equal treatment "-core of (S1; v), x1 ¢ f 1

is feasible for (S1; v), that is, x1 ¢ f1 · v(S1). Combining these inequalities we have
(x1 ¡ x2) ¢ f 1 · ("+ ± + ¯) kf1k :

Now we can state and prove our main results.
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3.1 Approximate cyclic monotonicity
We derive an exact bound on the amount by which an approximate core payo® vector
for a given game can deviate from satisfying exact cyclic monotonicity. The bound
depends on:

±, the extent to which players within each of T types may di®er from being exact
substitutes for each other;

¯, the maximal loss of per capita payo® from restricting e®ective coalitions to contain
no more than B players; and

", a measure of the extent to which the "-core di®ers from the core.

Our result is stated both for absolute numbers and for proportions of players of each
type. If exact cyclic monotonicity were satis¯ed, then the right hand sides of the
equations (1) and (2) below could both be set equal to zero.

Proposition 1. Let (N; v) be in ¡((±; T ); (¯;B)) and let (S1; v); ::; (SK ; v) be sub-
games of (N; v). Let fN [t]g denote a partition of N into types and for each k let fk
denote the pro¯le of Sk relative to fN [t]g. Assume that fkt ¸ B for each k and each
t. For each k; let xk 2 RT represent a payo® vector in the equal treatment "-core of
(Sk; v). Then

(x1¡x2) ¢f1+(x2¡x3) ¢f 2+ ::+(xK¡x1) ¢fK · ("+±+¯)
°°f1 + f 2 + ::+ fK

°° (1)

and

(x1 ¡ x2) ¢ f
1

kf 1k + (x2 ¡ x3) ¢ f
2

kf 2k + ::+ (xK ¡ x1) ¢ f
K

kfKk · K("+ ± + ¯). (2)

That is, the equal treatment "-core correspondence approximately satis¯es cyclic
monotonicity both in terms of numbers of players of each type and percentages of
players of each type.

Proof: From Lemma we have (xk ¡ xk+1) ¢ fk · ("+ ±+ ¯)
°°fk

°° for k = 2; ::;K ¡ 1
and (xK ¡ x1) ¢ fK · ("+ ± + ¯)

°°fK
°°. Summing these inequalities we get (1).

Alternatively we have (xk ¡ xk+1) ¢ fk

kfkk · (" + ± + ¯) for k = 1; ::; K ¡ 1 and

(xK ¡ x1) ¢ fKkfKk · ("+ ± + ¯). Summing these inequalities we obtain (2).

Remark. When K = 2, Proposition 1 implies that

(x1 ¡ x2) ¢ (f 1 ¡ f2) · ("+ ± + ¯)
°°f 1 + f 2

°° :
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This form of monotonicity is typically called simply monotonicity or weak monotonic-
ity. Note that weak monotonicity does not imply cyclic monotonicity.

Corollary. When K = 2, Proposition 1 implies that

(x1¡x2)¢(f 1¡f2) · ("+±+¯)
°°f 1 + f2

°° and (x1¡x2)¢( f
1

kf 1k ¡ f 2

kf 2k) · 2("+±+¯).

That is, the equal treatment "-core correspondence is approximately monotonic.

Note that the bound of Proposition 1 and its Corollary holds for any partition of
the player set into ±-substitutes.

3.2 Comparative Statics
For j = 1; ::; T let us de¯ne ej 2 RT such that ejl = 1 for l = j and 0 otherwise.
Our comparative statics results relate to changes in the abundances of players of a
particular type.

Proposition 2. Let (N; v) be in ¡((±; T ); (¯;B)) and let (S1; v); (S2; v) be subgames
of (N; v). Let fN [t]g denote a partition of N into types and for each k let fk denote
the pro¯le of Sk relative to fN [t]g. Assume that fkt ¸ B for each k and each t. For
each k, let xk 2 RT represent a payo® vector in the equal treatment "-core of (Sk; v).
Then the following holds:

(A) If f 2 = f1 +mej for some positive integer m (i.e., the second game has more
players of approximate type j but the same numbers of players of other types)
then

(x2j ¡ x1j) · ("+ ± + ¯)
kf1 + f 2k
kf2 ¡ f1k = ("+ ± + ¯)

2 kf 2k ¡m
m

.

(B) If f2
kf2k = (1 ¡ ¹) f1kf1k + ¹ej for some ¹ 2 (0; 1) (i.e., the second game has

proportionally more players of approximate type j but the same proportions
between the numbers of players of other types) then

(x2j ¡ x1j) · ("+ ± + ¯)
2 ¡ ¹
¹

.

That is, approximately the equal treatment "-core correspondence provides lower
payo®s for players of a type that is more abundant.

Proof: (A): Applying Corollary we get (x2 ¡x1) ¢mej · ("+ ±+¯) kf1 + f 2k. Since
kf 2k = kf 1k +m, this inequality implies our ¯rst result.
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(B): From Lemma we have (1¡¹)(x1¡x2) ¢ f1kf1k · (1¡¹)("+±+¯) and similarly

(x2 ¡x1) ¢ f2kf2k · ("+ ±+¯). Summing these inequalities we obtain (x2 ¡x1) ¢ ( f2kf2k ¡
(1¡¹) f1kf1k) · (2¡¹)("+±+¯). Thus we get that (x2¡x1) ¢¹ej · (2¡¹)("+±+¯).
This inequality implies our second result.

Obviously, again the bounds provided by the Proposition are independent of the
speci¯c partition of the player set into ±-substitutes. Note that all the bounds are
exact; see Appendix.

4 Matching hospitals and interns; An example
Given the great importance of matching models (see, for example, Roth and So-
tomayor [16] for an excellent study and numerous references to related papers), we
present an application of our results to a model of matching interns and hospitals.
Our example is highly stylized. For a more complete discussion of the matching
interns and hospitals problem, we refer the reader to Roth [15].

The problem consists of the assignment of a set of interns I = f1; ::; i; ::; Ig to
hospitals. The set of hospitals is H = f1; ::; h; ::;Hg. The total player set N is
given by N = I S H. Each hospital h has a preference ordering over the interns
and a maximum number of interns I(h) that it wishes to employ. Interns also have
preferences over hospitals. We'll assume I(h) · 9 for all h 2 H: This gives us a bound
of 10 on the size of strictly e®ective groups (¯ = 0). For simplicity, we'll assume that
both hospitals and interns can be ordered by the real numbers so that players with
higher numbers in the ordering are more desirable. The rank held by a player will
be referred to as the player's quality. More than one player may share the same rank
in the ordering. In fact, we assume that the total payo® to a group consisting of a
hospital and no more than nine interns is given by the sum of the rankings attached
to the hospital and to the interns. Let us also assume that the rank assigned to any
intern is between 0 and 1 and the rank assigned to any hospital is between 1 and 2:
Thus, if the hospital is ranked 1:3 for example and is assigned 5 interns of quality :2
each, then the total payo® to that group is 2:3:

Since all interns have qualities in the interval [0; 1) and similarly, all hospitals have
qualities in the interval [1; 2], given any positive real number ± = 1

n for some positive
integer n we can partition the interval [0; 2] into 2n intervals, [0; 1n); ::; [

j¡1
n ;

j
n); ::; [

2n¡1
n ; 2];

each of measure 1
n . Assume that if there is a player with rank in the jth interval,

then there are at least 10 players with ranks in the same interval.
Given " ¸ 0, let x1 represent a payo® vector in the "-core that treats all interns

with ranks in the same interval equally and all hospitals with ranks in the same
interval equally (that is, x1 is equal treatment relative to the given partition of the
total player set into types). Let us now increase the abundance of some type of
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intern that appears in N with rank in the jth interval for some j. We could imagine,
for example, that some university training medical students increases the number of
type j interns by admitting more students from another country. Let x2 represent
an equal treatment payo® vector in the "-core after the increase in type j interns. It
then holds, from result (A) of Proposition 2 that

(x2j ¡ x1j) · ("+
1
n
)
kf 1 + f2k
kf 2 ¡ f 1k :

Of course this is not the most general application of our results { we could increase
the proportions of players of one type by reducing the numbers of players of other
types. Then part (B) of our Proposition could be applied.

It is remarkable that our results apply so easily. For this simple sort of example, it
is probably the case that a sharper result can be obtained. This is beyond the scope
of our current paper, however. Research in progress considers whether sharper results
are obtainable with assortative matching of the kind illustrated by this example { that
is, where players can be ordered so that players with higher ranks in the orderings
are superior in terms of their marginal contributions to coalitions.

Finally, the parameter values that we have used in this example were chosen
for convenience and simplicity. In principle, these could be estimated and various
questions addressed. For example, are payo®s to interns approximately competitive?
Do non-market characteristics such as ethnic background or gender make signi¯cant
di®erences to payo®s?

5 Relationships to the literature and conclusions
Our results may be viewed as a contribution to the literature on comparative statics
properties of solutions of games. As noted by Crawford [3], the ¯rst suggestion of the
sort of results obtained in this paper may be in Shapley [18], who showed that in a
linear optimal-assignment problem the marginal product of a player on one side of
a market weakly decreases when another player is added to that side of the market
and weakly increases when a player is added to the other side of the market. Kelso
and Crawford [5], building on the model of Crawford and Knoer [4], show that, for a
many-to-one matching market with ¯rms and workers, adding one or more ¯rms to
the market makes the ¯rm-optimal stable outcome weakly better for all workers and
adding one or more workers makes the ¯rm-optimal stable outcome weakly better for
all ¯rms. Crawford [3] extends these results to both sides of the market and to many-
to-many matchings.5 In contrast to this literature, our results are not restricted to
matching markets and treat all outcomes in equal treatment "-cores. Moreover, we
demonstrate cyclic monotonicity. Instead of the assumptions of \substitutability" of

5And also to pair-wise stable outcomes but this is apparently not so directly related to our paper.
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Kelso and Crawford [5], however, we require our thickness condition and SGE. Unlike
[5] and [3], our current results are limited to games with side payments { we plan to
consider this limitation in future research.

Note that our results imply a certain continuity of comparative statics results
with respect to changes in the descriptors of the total player set. In particular,
the results are independent of the exact partition of players into approximate types.
Speci¯cally, given a number T of approximate types and a measure of the required
closeness of the approximation, subject to the condition that players of each type are
approximate substitutes for each other, our results apply independently of exactly
where the boundary lines between types are drawn. Suppose, for example, that we
wished to partition candidates for positions as hospital interns into three categories
{ say \good," \ better" and \best." It may be that there is more than one way to
partition the set of players into these categories while retaining the property that all
players in each member of the partition are approximate substitutes for each other;
the exact partition does not a®ect the results. Relating this feature of our work to
general equilibrium theory, a ¯nite set of commodities is typically considered to be
an approximation to the real-world situation that all units of each commodity may
di®er. Descriptions of commodities are incomplete and a \commodity" is a group of
objects that satisfy the description. For example, models of labor markets may have
two types of workers, \skilled" and \unskilled" but no two workers (or two loaves of
bread, or two oranges) may be exactly identical. In the di®erentiated commodities
literature, results addressing this problem show that prices are continuous functions
of attributes of commodities (cf., Mas-Colell [11]). Since our framework does not
require a topology on the space of player types, continuity takes a di®erent but valid
form and is more directly apparent.

Besides the matching literature, our results are related to prior results obtained
within the context of a pregame, cf. [23], [26]. A pregame speci¯es a set of compact
metric space of player types and a single worth function, assigning a worth to each
¯nite list of attributes (repetitions allowed). Since there is only one worth function, all
games derived from a pregame are related and, given the attributes of the members of
a coalition, the payo® to that coalition is independent of the total player set in which
the coalition is embedded; widespread externalities are not allowed. In contrast, our
results apply to given games and, as in the earlier results for matching models, there is
no requisite topological structure on the space of players types. While our results for a
given game hold for all games in a collection described by the same parameters, there
are no necessary relationships between games. For example, consider the collection
of games where two-player coalitions are e®ective and there are only two types of
players. This collection includes two-sided assignment games, such as marriage games
and buyer-seller games, and also games where any two-player coalition is e®ective.
There appears to be no way in which one pregame can accommodate all the games
in the collection. These considerations indicate that the framework of parameterized
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collections of games is signi¯cantly broader than that of a pregame.6
Amajor advantage of our approach over the prior approach using pregames is that,

except for the special case of pregames satisfying strict small group e®ectiveness (or, in
other words, `exhaustion of gains to scale by coalitions bounded in size') with a ¯nite
number of exact types, the conditions used in the prior literature cannot be veri¯ed for
any ¯nite game.7 That is, since the conditions are stated on the worth function of the
entire pregame, which includes speci¯cation of the worths of arbitrarily large groups,
or on the closeness of the worth function to the limiting per capita utility function, it
is not possible to determine whether the conditions are satis¯ed. In contrast, given
any game, values of parameters describing that game can be computed.8

Another major advantage of our approach is that we provide exact bounds, in
terms of the parameters describing a game, on the amounts by which equal treatment
"-core payo® vectors can di®er from satisfying cyclic monotonicity. We are unaware
of any comparable results in the literature. The prior literature does not indicate
the sensitivity of the results to speci¯cations of bounds on group sizes and of types
of players. Such an analysis is important for empirical testing since, in fact, few
commodities are completely standardized. (This may be especially true in estimating
hedonic prices.) Nor does the prior literature provide empirically testable conclusions
on approximate monotonicity or comparative statics.

Numerous examples of games derived from pregames may lead one to expect our
comparative statics result. Consider a glove game, for example where the payo®
function can be written as u(x; y) = minfx; yg. Suppose initially that the number
of RH gloves, say x; is equal to the number of LH gloves, y, and both x and y
are greater than one. Then the equal-treatment core can be described by the set
f(px; py) 2 R2

+ : px + py = 1g; each RH glove is assigned px and each LH glove is
assigned py and a pair of gloves is assigned 1. Now increase the number of players
with RH gloves. The equal treatment core is now described by f(0; 1)g; each RH
glove is assigned 0 and each LH glove is assigned 1.

In games with a ¯nite set of player types, de¯ning the core via linear programming
also leads to a law of scarcity, quite immediately. Let (N; v) be a game with a ¯nite
number T of player types and with mt players of type t, t = 1; :::; T: We take v as
a mapping from subpro¯les s of m (s 2 ZT+, s · m). Then, following Wooders [23],

6A short survey discussing parameterized collections of games and their relationships to pregames
appears in [29].

7Strict small group efectiveness dictates that all gains to coalition formation can be realized by
partitioning the total player set, no matter how large, into coalitions bounded in size. This condition
was introduced in Wooders [23] (condition *) and, for NTU games, in Wooders [24], where it was
called `minimum e±cient scale.'

8Since there may be many but a ¯nite number of coalitions, in fact determining the required
sizes of ± and T; ¯ and B may be time-consuming but it is possible. In contrast, to verify that a
pregame satis¯es SGE or PCB requires consideration of an in¯nite number of payo® sets or, even
more demanding, a limiting set of equal treatment payo®s.
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consider the following LP problem9:

minimizep¸0 p ¢m
subject to p ¢ s ¸ v(s) for all s · m

If the game has a nonempty core, then the solution p¤ satis¯es v(m) = p¤ ¢m. Now
consider the same problem but with an increased number of players of type bt in the
objective function for some bt 2 f1; :::; Tg. Assume that the same inequalities are the
only constraints; this imposes a form of strict small group e®ectiveness on the game
{ only groups with pro¯les s · m are e®ective. It is clear that the payo® to players
of type bt will not increase with the increase in the number of players of that type in
the objective function since the constraint set has not changed { the payo® to type bt
can only decrease. This suggests some of the initial intuition underlying comparative
statics results for games. Under conditions roughly equivalent to those of Wooders
[23] { that all gains to coalition formation can be exhausted by coalitions bounded in
size { a proof of the comparative statics result and weak monotonicity of core payo®
vectors was provided in [17]. We provide a more comprehensive discussion of the
literature in [10].

6 Appendix.
We construct some sequences of games to demonstrates that all the bounds we ob-
tained in our results are exact, that is, the bound cannot be decreased.

I). Let us concentrate ¯rst on the central case ± = ¯ = 0. Consider a game (N; v)
where any player can get only 1 unit or less in any coalition and there are no gains to
forming coalitions. This game has strictly e®ective 1-bounded groups and all agents
are identical. Formally, however, we may partition the set of players into many types.
Thus (N; v) 2 ¡((0; ¿); (0; 1)) for any integer ¿; 1 · ¿ · jN j. Notice also that for
any " ¸ 0 the "-core of the game is nonempty and very simple: it includes all payo®
vectors that are feasible and provide at least 1 ¡ " for each of the players. All the
games that we are going to construct will be subgames of a game (N; v).

a). For the bound in Lemma we can present even a single game with two payo®s
vectors that realize this bound. Namely, let ¿ = 1 (all players are of one type) and
let us consider any two subgames S1; S2 with the same number of players and the
equal treatment payo®s x1 = 1 and x2 = 1 ¡ ". Then (x1 ¡ x2) ¢ f 1 = " kf1k.

b). For the bound in Proposition 1, for K · jN j and some nonnegative integer
l · jN j ¡ K, let us consider ¿ = K and the subgroups S1; ::; SK with the pro¯les
f1; ::; fK where fkt = l+1 for t = k and 1 otherwise. Let also consider payo® vectors

9The core has been described as an outcome of a linear programming problem since the seminal
works of Gilles and Shapley. Wooders [23] introduces the linear programming formulation with
player types.
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xk where xkt = 1 for t = k and 1¡ " otherwise. Then (xi¡ xj) ¢ f i = "l for any i 6= j.
Hence

(x1¡x2) ¢f 1+(x2 ¡x3) ¢f 2+ ::+(xK¡x1) ¢fK = "lK = "
°°f 1 + f 2 + ::+ fK

°° l
l +K

and (x1 ¡ x2) ¢ f
1

kf 1k + (x2 ¡ x3) ¢ f
2

kf2k + ::+ (xK ¡ x1) ¢ f
K

kfKk = K"
l

l +K
:

It is straightforward to verify that for any ¯xed K both our bounds in Proposition
2 can not be improved for sequences of games (N; v); with jN j going to in¯nity, for
subgames constructed as above with l going to in¯nity.

c). For the bound in Proposition 2 it is enough to concentrate on (A) since it is
a special case of the result (B). For jN j ¸ 2 let us consider ¿ = 2 and l · jN j ¡ 2.
Then consider the subgroups S1; S2 with the pro¯les f1 = (1; 1) and f 2 = (l + 1; 1)
and payo® vectors x1 = (1 ¡ "; 1) and x2 = (1; 1). Then

(x21 ¡ x11) = " = "
kf1 + f 2k
kf 2 ¡ f 1k

l
l + 4

:

It follows that both our bounds in Proposition 2 can not be improved for sequences
of games (N; v); with jN j going to in¯nity, for subgames constructed as above with l
going to in¯nity.

II). It is easy to modify our example to allow for non-zero ± and ¯ in a such a way
that we will have the same pro¯les as in Part I, but will use the payo®s of 1 + ± + ¯
and 1¡" instead of 1 and 1¡". This will lead us to the appearance of "+±+¯ on the
places of " in all bound in Part I. We leave it as a simple exercise for the interested
reader.
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