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Abstract

This paper studies a decentralized job market model where firms
(academic departments) propose sequentially a (unique) position to
some workers (Ph.D. candidates). Successful candidates then decide
whether to accept the offers, and departments whose positions remain
unfilled propose to other candidates. We distinguish between several
cases, depending on whether agents’ actions are simultaneous and/or
irreversible (if a worker accepts an offer he is immediately matched, and
both the worker and the firm to which she is matched go out of the
market). For all these cases, we provide a complete characterization
of the Nash equilibrium outcomes and the Subgame Perfect equilib-
ria. While the set of Nash equilibria outcomes contain all individually
rational matchings, it turns out that in most cases considered all sub-
game perfect equilibria yield a unique outcome, the worker-optimal
matching.
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1 Introduction

Matching markets concern those environments where agents have incentives
to form groups. The College admission problem where students choose which
college to attend and colleges have to choose which students to accept, and
the American market for intern physicians are two of the most well known
examples. In spite of the very large literature on matching markets, how-
ever, one sort of matching market has received very little attention in the
literature: job markets with commitment, for example, the academic job
market for junior faculty members.

This paper is aimed at studying the strategic issues of markets that are
similar to the academic job market, that is, markets that are decentralized
with the possibility that agents’ decisions are irreversible. To this end,
we propose a model where firms make offers to workers, and then workers
each decide which, if any, offer to accept. A firm that has had some of its
offers rejected then may make further offers, and so on. To some extent, the
model we propose can be seen as a decentralized version of the Gale-Shapley
deferred acceptance algorithm.

By ‘decentralization’ we mean that each agent makes her own decisions,
independently of the decisions made by others at the same stage of the
game. For instance, a candidate is allowed to refuse an offer even if this is
the only one she has and even if she prefers the offer to being unmatched
at the end of the game. This contrasts with centralized markets employing
the Gale-Shapley deferred acceptance algorithm to match agents. Also, in
a centralized context, matching markets are typically modeled as normal
form games (where a players’ strategy consists of a preference list), while in
our decentralized context the market can be better described as a sequential
game.

Decentralized markets involve different strategic issues from those of cen-
tralized markets. To see this, consider the case of a candidate i, who receives
an offer that is acceptable to her from a firm f that is ranked low in her
preferences.1 Under the Gale-Shapley algorithm, unless she already has a
better offer, i would be assigned f , at least temporarily. By contrast, in a
decentralized market, i could decide to reject f ’s offer. If she does so, then f
may propose to another candidate, say k, who might accept. The candidate
k may then reject further offers (or might not receive some offers) that are
subsequently made to i and ranked higher in i’s preference ordering, allow-
ing i to be better off than she would have been had she accepted the initial
offer. In decentralized markets, there are also strategic considerations for
the side of the market making offers. For example, as perhaps some aca-
demic departments have already intuited, for a firm, if it fears rejection by

1By an acceptable offer, we mean one that the candidate prefers to being unmatched
at the end of the game.
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its most preferred set of candidates, it can be advantageous to make its first
offer to less preferred candidates. By initially making offers that are likely
to be rejected, the firm will loose some time and may eventually end up with
only candidates from among those that are minimally acceptable.

A second crucial aspect of the market studied in this paper is that can-
didates’ decisions are not “deferrable”. In a centralized market, holding an
offer while waiting for a better one may “block” the market and leaves work-
ers with their less preferred outcome. To see this, consider a candidate, say
i, having received an offer from some department x, but holding this offer,
expecting to have a better offer, say from y. She may well never receive
this offer, for the other candidate who received the offer from y (but prefer-
ring that from x) will accept it. As this second candidate does not receive
any offer from x (because it is “held” by i) she will accept the one from y,
eliminating the possibility for i to receive the offer from y. This sort of phe-
nomenon is peculiar to the deferred acceptance algorithm, especially when
all firms have a distinct most preferred worker and all firms are acceptable
to their most preferred workers. Since a firm has to be unmatched to make
an offer, no worker can expect to receive a better offer than the one she had
in the first round of offers.

That candidates’ decisions are not deferrable in our model means that
as soon as a candidate, say i, has accepted an offer from a firm, say f , then
i and f are immediately matched and the position offered to i cannot, at
any further stage in the game, be offered to anyone else. Although we are
aware that in actual hiring procedures, this assumption may sometimes be
violated we believe that the non-deferrability of decisions is a relevant fea-
ture of the academic job market for junior economists.2 A close look at the
hiring procedures may help to grasp the impact of this assumption. When
a candidate receives an offer, this is usually (first) by e-mail or by phone. It
is not until a couple of days or weeks later that she receives an official letter
confirming the offer. Meanwhile, the candidate has notified the department
whether she accepts the offer, also by e-mail or by phone. If a candidate
accepts an offer, although she is typically not officially contracted until sev-
eral weeks (if not months) later, it is usually the case that this candidate
is regarded as being indeed off the market.3 In this case, the candidate
rejects all subsequent offers, explaining that she is no longer seeking a job.
Consider a candidate, say Wendy, who receives an offer from University B.
At the time she receives this offer, it is the best she has, and therefore she
decides to accept. Suppose now that a couple of weeks later she receives an
offer from University A, which she prefers to the offer from B. If her con-

2During the course of the research carried out in this paper we have heard that some-
times, and quite unfortunately, some candidates do reject an offer they have previously
accepted.

3Although often the contract is not signed before the newly hired faculty member
arrives at the university, when her contract begins.
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tract with A is not yet signed, that is, if her notification of acceptance has
only been informal, she could accept the offer from A and send a message
to B saying that she has now decided to decline its offer. All this would
be perfectly legal. Considering Wendy’s case, reversing her acceptance of B
would be very likely to jeopardize her reputation. Moreover, if A knows that
she has accepted B, A is likely to refrain from making her an offer. Thus,
although Wendy could legally reject, ex-post, the position offered by A, she
cannot easily do it in practice. That is, candidates’ decisions on the job
market are irreversible or, said differently, workers and firms must commit.
It is important to notice that this assumption is different from the fact that
candidates are usually given several days to give their answer.4

We begin our study with a characterization of the Nash equilibrium.
We first show that for any individually rational matching µ we can find a
strategy profile that is a Nash equilibrium and whose outcome yields this
matching µ. Subgame perfect equilibrium yields more interesting results.
The most delicate case, a benchmark upon which we build most of our re-
sults, is when agents’ decisions are irreversible and not simultaneous. The
main technical difficulty in this benchmark case is that agents’ strategies
cannot in general be identified with their preferences. For instance, firm f ’s
strategy may consist of proposing to worker w if firm f ′ proposed to worker
w′ at a previous stage and to propose to worker w′′ otherwise. Similarly,
a worker who received offers from firms f and f ′ could decide to accept
f ’s offer if worker w′ has received an offer from f ′′ and to reject both of-
fers otherwise. We are able, however, to identify a natural class of firms’
strategies, which we call sanitization strategies, that can be, to some extent,
identified with an order of workers. Such a strategy for a firm, say f , consist
of making a plan of offers respecting some ordering of workers (which may
not follows f ’ preferences), but taking into account that some subgame may
be reached because f did not follow its order of offers. Put differently, a
firm’s sanitization strategy is characterized by an ordered list of offers that
does not depend on the strategies of other firms.5

Though useful to prove the following result, sanitization strategies turn
out not to be the only optimal strategy for firms. We find that there exists
a unique subgame perfect equilibrium outcome (i.e., a unique matching),
the candidate optimal matching, which may be supported by a large num-
ber of different strategy profiles. Recall that, in centralized markets using

4In the academic job market, candidates are always given some time to make up their
mind before deciding about an offer, and a department waiting for the answer of a candi-
date cannot make a proposal to another candidate (for the same position). In this paper,
we will consider the perfect information case between each period (albeit not necessarily
within periods. See section 3.1 for further details). Therefore, allowing for a delay in
responding to an offer has no effect on the outcome.

5See Appendix A for a formal description of these strategies.
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the deferred acceptance algorithm with firms proposing, the outcome is the
firm optimal matching. Thus, our result demonstrates a situation in which
decentralization gives more power to the workers.

Our result crucially depends on the assumption that workers’ decisions
are not simultaneous. When workers’ decisions are simultaneous, the set
of subgame perfect equilibria outcome is enlarged and includes (but may
not coincide with) the set of stable matching. Yet, whether firms’ decisions
are simultaneous or not does not change our findings. More precisely, if we
suppose that there is an “offer stage” during which firms make their offer
and then an “acceptance-rejection” stage, or if we suppose that firms do not
follow the same agenda,6 the outcome remains unchanged.

It turns out that the irreversibility assumption has lesser effects than as-
suming that the market is decentralized. If we allow workers not to commit,
then we also obtain that there is a unique subgame perfect equilibrium out-
come, the worker optimal matching, irrespective of the timing of workers’
decision (i.e., simultaneous or not). The reason for why this holds is quite
simple. Under perfect information each participant knows completely the
strategy employed by her opponents. Hence, if a candidate “knows” that
she will receive an offer from some department there is no need for her to
hold offers from less preferred departments. That is, holding an offer makes
sense only when some uncertainty prevails about the set of subsequent of-
fers that may be received. Here, all the relevant information comes from the
workers – which offers are accepted and which are not. Hence, if firms act
simultaneously and workers do not the results remain unchanged. To sum
up, the irreversibility assumption has an impact only when workers decisions
can be simultaneous.

In all cases, except when actions are simultaneous and irreversible, sub-
game perfect equilibrium strategies turn out to have a very specific structure.
Roughly, for a firm, a strategy consists of proposing to any worker preferred
to the worker-optimal mate (including this mate) before proposing to any
worker less preferred than the worker-optimal mate.7 Since there might
be many workers preferred (or less preferred) to the worker-optimal mate,
it follows that optimal strategies are multiple. For a worker, an optimal
strategy is to accept any offer that is preferred to the worker-optimal mate
(including her), and reject all others.

The paper is organized as follows. In section 2 we define the main con-
cepts and notations. In section 3 we analyze the job market game where
players’ actions are irreversible and not simultaneous. In section 4 we study
the other cases, i.e., when actions may be simultaneous, with and without

6For instance, we could have the case of one firm making three different offers while
another firm has time to make only one offer.

7Firms’ subgame perfect equilibrium strategies may not be unique. However, in some
case the position (in a firm’s plan of offers) of the most preferred worker among the set of
workers less preferred than the worker-optimal mate may matter. See Section 5.2.
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irreversibility. In section 5 we provide several examples illustrating the main
findings of the paper. In section 6 we discuss some papers in the match-
ing literature dealing with decentralized markets. A conclusion is given in
section 7. Appendix A is devoted to a formal description of sanitization
strategies and Appendix B contains the proofs of the results.

2 Preliminaries

We consider a (finite) set of workers and a (finite) set of firms, denoted
W and F respectively. Throughout the paper, feminine pronouns refer to
firms, whereas masculine pronouns refer to workers. Each worker w ∈ W
has a strict, complete, transitive, and asymmetric preference relation Pw

over F ∪ {w}. Similarly, each firm f ∈ F has a strict, complete, transitive,
and asymmetric preference relation Pf over W ∪ {f}. The cardinality of a
(finite) set A is denoted ♯A. Let maxPv S be the maximal element of S with
respect to Pv;

max
Pv

S
def
= {v′ ∈ S ∪ {v} | v′R(v)v′′ ∀ v′′ ∈ S ∪ {v}}

where R(v) denotes ‘preferred or indifferent.’ The set of all possible pref-
erences for an individual v ∈ W ∪ F is denoted by Pv, and any element P

of P
def
= Πw∈WPw × Πf∈FPf is called a preference profile. A job market is

described by the triple (W,F, P ).
A matching µ is a function from W ∪ F onto itself such that

(i) For all w ∈ W , µ(w) ∈ F ∪ {w} ;

(ii) For all f ∈ F , µ(f) ∈ W ∪ {f} ;

(iii) For all v ∈ W ∪ F , µ(µ(v)) = v .

Let M denote the set of all matchings. Given a preference relation Pw

of a worker w over F ∪{w}, we can extend Pw to a complete, transitive and
reflexive preference relation R(w) (with Pw and I(w) denoting respectively
the strict preferences and the indifference relations) over the set of matchings
M in the following way: µPwµ′ if and only if µ(w)Pwµ′(w), and µI(w)µ′ if
and only if µ(w) = µ′(w). Similarly, we can also extend firms’ preferences
to preferences over M.

A matching µ is blocked by agent i if iPiµ(i). A matching µ that is
not blocked by any agent is called individually rational. A matching µ is
blocked by a pair (w, f) if fPwµ(w) and wPfµ(f). A matching µ that is
individually rational and is not blocked by any pair under P is called stable.
For a job market (W,F, P ), we denote by S(P ) the set of stable matching.
The firm-optimal matching (resp. the worker-optimal matching), denoted
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µf (resp. µW ), is the matching preferred by all firms (resp. workers) among
all stable matchings.

Gale and Shapley [6] and Knuth [7] respectively proved the following
properties,8

• The deferred acceptance algorithm with firms (workers) proposing pro-
duces the firm-optimal (worker-optimal) matching;

• The firm-optimal (worker-optimal) matching is the workers’ (firms’)
least preferred matching among all stable matchings.

3 Job matching with commitment

We consider now the situation where firms can make sequential offers to
workers, and each worker who receives an offer from a firm has to make an
irreversible decision, to either reject or accept the offer. The irreversibility
assumption means that if a worker rejects an offer, he cannot decide later
to accept it. Moreover, if a worker accepts an offer he cannot decide at a
subsequent stage to reject the offer. This implies that once a worker, say w,
has accepted an offer from a firm, say f , both w and f go out of the market:
worker w cannot receive other offers and firm f cannot make offers to other
workers.

3.1 The sequential game

Let G(P ) denote the sequential game where firms make the offers and workers
accept or reject the offer and all agent’s decisions are irreversible. Since the
game analyzed in this section is a game of perfect information, the order of
play in our context has little importance. For the sake of clarity we shall
nevertheless specify an order of play.

The game is divided into several stages. Each stage is divided into two
sub-stages: First and offering stage (during which firms act), and second
a responding stage (during which workers act). Workers and firms are as-
signed index numbers, so the kth firm (worker) is denoted by fk (wk). At
each step, it is assumed that players act in the order of their index numbers,
i.e., firm f1 plays first, then f2, . . . , and then worker w1 plays first, then
w2, . . .

Stage 1.1: Each firm sequentially offers its position to at most one worker.
If a firm does not offer her position to any worker, then she exits the market.9

8See Roth and Sotomayor [10] for further references.
9This assumption makes thus the game finite, and avoids, for instance, the case where

at each stage some firms decide not to make any offer.
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Stage 1.2: If a worker did not receive any offer at stage 1, then he does
nothing and waits for the next stage. If a worker received one or more offers
at stage 1, then he can either reject all or accept one of them. If a worker,
say i, accepts an offer from a firm, say j, then i and j are matched and both
go out of the market. If a firm does not offer her position to any worker,
then she exits the market.
. . .
Stage t.1: Each remaining firm decides either not to make any offer or to
make an offer to at most one agent remaining in the market to whom she
did not make an offer yet. If such an agent does not exists at stage s, then
the firm cannot make any offer and goes out of the market.
Stage t.2: If a worker did not receive any offer at stage s, then he does
nothing and waits for the next stage. If a worker received one or more offers
at stage s, then he can either reject all or accept one of them. If a worker,
say i, accepts an offer from a firm, say j, then i and j are matched and both
go out of the market.
Final stage: The game stops when all firms are out of the market (whether
matched or not), or when for each remaining firm there is no worker left in
the market to whom she has not already made an offer.

Dividing the timing of the game into stages is for convenience only. Our
results would still hold if, for example, one firm were allowed to make more
offers at each stage than another firm.10

Remark 1 The sequence described here makes the game actually closer
to a decentralized version of the McVitie-Wilson algorithm [8]. A decen-
tralized version of the deferred acceptance algorithm would instead more
closely resemble a game where, within each sub-stage, firms and workers act
simultaneously (see section 4).

Players’ actions are taken at decision nodes (also called information sets),
which are typically denoted by α. We write s(α) for the stage in wich node
α occurs. At each node, each active player v ∈ W ∪ F chooses an action
a ∈ Av. If f ∈ F , Af = W ∪ {∅}, and a = w means that at node α firm
f makes an offer to w. For an active worker at node α, denote by Xα

w the
set of offers w receives at that node. Then, his action set is Aw = Xα

w ∪{w}
where a = f means that w accepted the offer of f and a = w means that w
rejected all his offers. For each node α, we write γ(α) the subgame starting
at node α.

A strategy profile σ specifies a strategy for each player in the market,
i.e., a plan of action for each node of the game where this player may have
to act. We write σi for the strategy of player i and σ−i the strategy vector
{σ1, . . . , σi−1, σi+1, . . . , σk}, where k = ♯(W ∪ F ). For S ⊆ W ∪ F , let

10See footnote 6.
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ΣS = Πv∈SΣv, where Σv is v’s strategy set. For a node α and a strategy
σi, let σi|α be the strategy played by i in the subgames that comes after
node α .

Finally, we denote by µ[σ] the outcome obtained when the strategy pro-
file σ is played.

3.2 Nash equilibrium

Nash equilibria outcomes appear to be easily characterized. Individual ratio-
nality turns out to be a necessary and sufficient condition for a matching to
be supported by a Nash equilibrium. Necessity is obvious. To see that it is
also sufficient, take any individually rational matching µ (possibly unstable),
and construct the following strategy profile σ,

(i) For all f ∈ F , make an offer to µ(f) only;

(ii) For all w ∈ W , accept only the offer from µ(w) .

Clearly, any player’s strategy is a best response given the strategy of the
others. We have just proved the following result.

Proposition 1 A strategy profile σ is a Nash equilibrium of G(P ) if and
only if µ[σ] is individually rational.

3.3 Subgame perfect equilibrium

The previous section showed that the Nash equilibrium concept does not
require that we work with the full definition of a player’s strategy, i.e. a
plan of actions for any decision node where this player has to act. Subgame
perfect equilibrium (SPE) strategies turn out not to be as simple Nash
equilibrium strategies and, as expected, actions off the equilibrium path
play a significant role.

With the use of ‘sanitized strategies’ in the proof, we are able to obtain
the following result characterizing the set of subgame perfect equilibria for
our matching game. It turns out that there a unique equilibrium outcome,
the worker-optimal matching.

Theorem 1 Let σ be a subgame perfect equilibrium. Then µ[σ] = µW .

Although Theorem 1 states that the outcomes of any subgame perfect
equilibrium are identical, nothing is said about the number of subgame
perfect equilibria. Typically, subgame perfect equilibria are not unique (see
the examples in Section 5).
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3.3.1 Sanitized strategies

A natural way to look at firms’ strategy would be to define a strategy as
merely a sequence of offers, which would imply that firms’ strategy spaces
are just the set of all possible orderings of workers (union themselves), i.e.,
equivalent to the set of all preferences.11 Since a player’s strategy must
specify a list of actions, one for each of her information sets, it is not pos-
sible to describe a firm’s strategy as a mere ordering. To see this, suppose
that a firm, say f , decided to make her offers based on some ordering of
workers (which may not necessarily coincides with her preferences), at any
subgame. Quite obviously, there are subgames that can be reached only if
this very firm f did not follow its ordering. If such subgames are attained,
the firm’s sequence of offers will not necessarily coincide with the original
ordering. More generally, it could well be the case that a firm follows some
order of offers for some subgames and another order of offers for other sub-
games.(Guillaume, could this be much shorter?)

Of course, if we look at the execution path of a strategy profile we can
identify for each firm and worker a partial order. For firms, this partial
order consists of the sequence of offers made. For a worker, if he rejects first
firms f1 and f2 and finally accept that of f3 the order consists of having
f3 before f1 and f2 (but without any indication about the relative order
between f1 and f2). Blum, Roth and Rothblum [4] identify the partial
order thus obtained as “revealed preferences”. While such preferences may
serve as a proxy of agents’ strategies (their game has a high level of imperfect
information) this serve little in our case.

In spite of the above remarks, it is nevertheless possible to define a class
of strategies where a firm’s strategy can be identified as a simple sequence
of offers, or more precisely, as an ordering of workers. A firm’s sanitization
strategy is characterized by a consistency requirement which dictates that,
given her ordering of workers at her initial information set, the firm’s offers at
every decision node must be consistent with that ordering, even at decision
nodes that would not be reached had that ordering been used.

Consider for example a firm having chosen a strategy that is repre-
sentable by some ordering. To define formally such a strategy, we need
to specify how the firm will act in those subgames that are reached even if
she did not follow the original ordering of offers. Our consistency criterion
amounts to suppose that this deviation was a “temporary mistake”, and
that the firm will make further offers following the original sequence. For
instance, if the original sequence of offers was {w1, w2, w3, w4}, and instead
of making an offer to w2 the firm made an offer to w4, then the order of offers
after having proposed to w4 will be {w2, w3}. After having proposed (by
mistake) to w4, the workers to whom she did not propose yet are w2 and w3.

11Blum, Roth and Rothblum [4] call such strategies “preference strategies”.
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In the original order, w2 comes before w3. Therefore, in the subgame that
starts after her “deviation”, she must propose to w2 before w3.

12 Strategies
that are consistent with this (informal) criterion will be called sanitization

strategies, and the ordering π = (w1, w2, w3, w4) will be called a repre-

sentation of the firm’s strategy (see Appendix A for a formal definition). If
a firm uses a sanitization strategy that represents the preference of that firm
we shall say that the firm’s strategy is a strong sanitization strategy.

A brief explanation why any SPE yields the worker-optimal matching is
the following (we can also refer the reader to see the examples in section 5).
When firms make their offers it is always profitable for a worker to reject
those offers that are less preferred than his worker-optimal mate. Indeed,
these offers are the worker-optimal mates of some other workers. In other
words, as long as workers receive such offers it is in their common interest
to reject them. To some extent, the game has some flavor of strategic com-
plementarity between the workers. However, when workers receive offers
from their worker-optimal mates this strategic complementarity disappears,
and workers start vying with each other for better outcomes. If a worker
rejects his worker-optimal mate in order to get a better offer (that he will
indeed receive) it must be the case that there is another worker who accepts
being matched to a firm less preferred than his worker-optimal mate. This
property is mainly derived from the fact that the worker-optimal matching
is a stable matching (see lemma 3 in Appendix B).

3.3.2 A sketch of the proof of Theorem 1

To prove Theorem 1 we proceed in several steps. First, we consider the
case where firms do not act strategically. That is, firms are required to act
as robots and make offers according to their preferences; that is, they are
required to use strong sanitization strategies. With this restriction, we show
that any subgame perfect equilibrium yields the worker-optimal matching
(Lemma 6). From this result, we deduce that if at some SPE some firms
are worse off than at the worker-optimal matching, it must be the case that
one of those firms did not use a strong sanitization strategy (Lemma 7).
It follows that at any SPE firms cannot be strictly worse off than in the
worker-optimal matching (Lemma 10). The penultimate step of the proof
consists of deducing that workers are matched to their worker-optimal mate.

A key concept used in throughout the proofs is that of “sub-markets,”i.e.,
the job market corresponding to a particular subgame. Observe that for any
subgame the history of play can be summarized by

• A list of matched workers and firms;

12In the above example, it may be the case that after deviating (i.e., proposing to w4

instead of w2), worker w2 may be matched to another firm and thus not available anymore
in the market. In that case, the firm will propose to w3 (if he is available).
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• For each firm, the set of workers that have rejected her offers.

Let α be any node of the game, and let Oα
f be the set of workers to

whom f has already made a proposal (and who have rejected f ’s offer) and
workers already matched at the nodes preceding α. That is, W\Oα

f is the
set of workers that are still in the market at node α and to whom f has not
yet made an offer.

For a subgame starting at node α, let F (α) and W (α) respectively denote
the set of firms and workers not yet matched. For a firm f ∈ F (α), let Pα

f

denote firm f ’s preferences over the where all the workers in Oα
f are taken

as unacceptable (since they have already rejected f), and leaving unchanged
the relative rankings of those reminaing workers:

∀ v, v′ ∈ W (α) ∪ {f}\Oα
f vPα

f v′ ⇔ vPfv′ ,

∀ w ∈ Oα
f fPα

f w .

For a worker w ∈ W (α), let Oα
w be the set of firms from which w has rejected

an offer (and have rejected f ’s offer) and firms already matched at the nodes
preceding α. For a worker w ∈ W (α), let Pα

w denote workers w’s preferences
where all firms in Oα

w are taken as unacceptable, and leaving unchanged the
relative ranking of all other firms:

∀ v, v′ ∈ F (α) ∪ {w}\Oα
w vPα

wv′ ⇔ vPwv′ ,

∀ f ∈ Oα
w wPα

wf .

Let Pα be the preference profile of agents in F (α)∪W (α) that satisfy the
above conditions. It is obvious to see that, in terms of subgame perfection (or
even with Nash equilibria), the job market (F,W,P ) at the subgame starting
at node α is equivalent to the job market (F (α),W (α), Pα). Indeed, in
Proposition 1 we saw that only individually rational matchings are possible
candidates for subgame perfection. Therefore, if for a firm in F (α) we put all
workers in Oα

f as being unacceptable, we are sure that f ’s subgame perfect
equilibrium strategy will never consider making an offer to workers in Oα

f .
For a subgame starting at a node α, let µα

W denote the worker-optimal
matching corresponding to the market (F (α),W (α), Pα).

A direct corollary of Theorem 1 is that for a job market (F,W,P ), at
any node α the subgame perfect equilibrium is such that workers and firms
that are not matched yet will be matched to the individual assigned under
the worker-optimal matching µα

W .13

4 Alternative market organizations

In the case studied in section 3 it was assumed that decisions are irreversible
and that agents’ actions are not simultaneous. In this case, it is obvious

13Note that for some node α, there may exist a firm f ∈ F (α) such that µα
W (f) 6= µW (f).
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that the irreversibility assumption has no impact. Hence, we can deduce
that if actions are simultaneous, but not irreversible, then we obviously get
the same result: there is a unique subgame perfect equilibrium outcome,
the worker-optimal matching, and the equilibrium strategies are identical
to those of the case where irreversibility holds. If a firm orders workers
acccording to its true preferences, but then it gets rejected for its first k
offers then it could make those offers in any order.)

Two other possibles cases are when firms’ moves are simultaneous (resp. not
simultaneous) and workers’ moves are not simultaneous (resp. simultaneous).
If firms’ moves are simultaneous but workers’ moves are not, it is easy to
see (the proofs remain unchanged) that we are in the same situation as in
our benchmark case, where we have perfect information.

Things differ, however, when we consider the situation where firms’
moves are not simultaneous but workers’ moves are simultaneous. Let G∗

be the game where firms actions are not simultaneous but workers’ actions
are. More precisely, any proposing stage is with perfect information, any
responding stage is a simultaneous game, and between each sub-stage there
is perfect information. That is, each firm can observe the offers made by the
firms who decided before her, and all workers observe the offers made by
all firms. However, at each stage active workers do not observe the action
taken by the other workers during the stage, although they do observe the
workers’ decisions taken at previous stages. In this case, we find that any
stable matching can be supported by a subgame perfect equilibrium.

Proposition 2 Let µ ∈ S(P ). Then there exists σ in G∗ such that µ[σ] = µ
and σ is an SPE of G∗.

It turns out, however, that an unstable matching can be the outcome
of an SPE. To see this, consider the following job market where F =
{f1, f2, f3}, W = {w1, w2, w3} and the preferences are

P (w1) = f3, f2, f1, w1, P (f1) = w1, w3, w2, f1,

P (w2) = f2, f1, f3, w2, P (f2) = w3, w2, w1, f2,

P (w3) = f1, f3, f2, w3, P (f3) = w3, w2, w1, f3,

which can be read as “firm f1’s first choice is w1, then w3 and then w2, and
they are all acceptable for her (i.e., preferred to herself)”, and similarly for
the other players.

The worker-optimal matching for this market is

µW = {(f1, w3), (f2, w2), (f3, w1)}

and the firm-optimal matching is

µF = {(f1, w1), (f2, w2), (f3, w3)}.

13



Suppose the game is such that f1 decides first, then f2 and finally f3, and
consider the following strategy profile. Let f1 propose to w1, f2 to w3 and
f3 to w2. After this chain of proposal, let each worker accept the offer he
received. Clearly, for each worker, given that the two others accept their
offer it is a best response to accept (otherwise he remains unmatched as
there is no other available firm in the market). Hence, after f3’s proposal,
the actions chosen by each worker is a Nash equilibrium, and therefore an
SPE of the subgame considered. (Note that this is not the only equilibrium
of this subgame.) The matching obtained is then

µ̂ = {(f1, w1), (f2, w3), (f3, w2)} .

Clearly, µ̂ is not stable as it is blocked by the pair (f3, w3). If one (or more)
firm does not follow the above mentioned sequence of offers, consider the
following workers’ strategy profile: accept only the offer from the worker-
optimal mate and reject all other offers. For the subgames that are reached
after the deviation of one or several firms, we have an SPE. For any order of
proposal we attain µW . Since any worker is acceptable, firms are therefore
indifferent between all the possible order of offers they may follow. For
the workers, they are all matched to their best mate, so any deviation is
strategically unconceivable. Hence, it remains to check that the initial order
made during the first stage is a Nash equilibrium when considering the
outcomes obtained at all other subgames.

Consider now f3’s optimal choice. If f3 follows the plan of offers, she is
matched to w2. If she deviates, she obtains µW (f3) = w1. Since w2Pf3

w1, it
is a best response for f3 not to deviate. Likewise, it is in their best interest
for f2 and f1 not to deviate, for they can obtain their most preferred worker.
By deviating, they both would be strictly worse off. Hence, no firm wants
to deviate from the original plan of offers. We therefore have µ̂, an unstable
matching, that can be supported as an SPE.

This result contrasts to those obtained by Peleg [9], Alcalde et al. [2],
and Alcalde and Romero-Medina [3].14 These authors proposed a model
similar to ours, but with the difference that there is only one stage. Like us,
they show that any stable matching can be supported by an SPE. However,
they show that the converse also holds ([9] for the marriage model, and [2]
and [3] for the College Admission problem). The reasons for this are twofold.
First, there is no continuation stage if at the end of the first stage there are
still available workers and firms unmatched and acceptable to each other.

14Suh and Wen [15] have an example of a sequential marriage market with perfect infor-
mation where an unstable matching can be the outcome of a subgame perfect equilibrium.
However, they assume that there is only one stage, i.e., each agent can only propose at
most once. In their model, both men and women (firms and workers in our case) can
propose, but their example of an SPE yielding an unstable matching fits to our model in
the sense that first all men propose and then all women either accept one of their proposal
(if any) or reject all of them.
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Second, firms do act simultaneously. When there is only one stage, the
proof to show that any SPE must yield a stable matching is quite simple.
Suppose that there is a blocking pair, (f, w). Since we are at an SPE, w did
not receive any offer from f . Hence, f can deviate and make an offer to w.
Since firms play simultaneously, firms playing “after” f will not change their
action. After this deviation, worker w has a better offer than the one he
would have received had f not deviated. Subgame perfection implies then
that w will accept f ’s offer, making therefore f ’s deviation a profitable one.

5 Examples

This section is devoted to the study of two examples, one with two firms and
two workers, and one with three firms and three workers. The first example
mainly serves to show how crucial is the assumption that workers decisions
are not simultaneous. We shall not provide the complete game tree with
the second case (a readable tree would not fit in one page). This second
example serves as an illustration of some possible equilibrium strategies.

5.1 Two firms - two workers

Let F = {f1, f2} and W = {w1, w2}, with the following preferences:

Pf1
= w1, w2, f1 Pw1

= f2, f1, w1

Pf2
= w2, w1, f2 Pw2

= f1, f2, w2

This job market has two stable matchings:

µF = {{f1, w1}, {f2, w2}} ,

µW = {{f1, w2}, {f2, w1}} .

The five other matchings are:

µ1 = {{f1, w1}, {f2}, {w2}} ,

µ′
1 = {{f2, w1}, {f1}, {w2}} ,

µ2 = {{f2, w2}, {f1}, {w1}} ,

µ′
2 = {{f1, w2}, {f2}, {w1}} ,

µ
∅

= {{f1}, {f2}, {w1}, {w2}} .

Consider subgame where f1 has already asked to w1 but he refused the
offer, and f2 proposed to w2 who also refused. In this subgame, f1 has the
choice between proposing to w2 or to drop out of the market. Since w2 is
acceptable for f1, in a subgame perfect equilibrium it is easy to see that
it is never optimal for f1 not to propose a job to w2. The same applies
for f2 and w1. Therefore, we can easily deduce that the SPE outcome for
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this subgame is µW . Similarly, if f1 proposed first to w2 and f2 to w1 and
both refused their offer, we obtain another subgame where the only subgame
perfect equilibrium is µF . Now, consider the original root of the game. For
the same reason as before (i.e., the game tree would be to large), we shall
not consider the case where a firm decides to drop out of the market without
having proposed to all available workers, or when a worker decides not to
be matched at the end of the game.
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Figure 1: Two firms and two workers

The game tree reads as follows. At node ∗ where w1 has a choice between
f1 and f2, w1 received two offers, and w2 none. Then, w1 can either accept
f1 (action f1) or accept f2 (action f2). If he accepts f1, then f2 will make an
offer in the next stage (not drawn) to w2 whose best response is to accept.
We then have the matching µF . On the contrary, if w1 chooses f2, then f1

will make an offer to w2, which yields µW . The same applies in the subgame
where w2 received two offers and w1 none. Hence, the outcome in these two
subgames is µW . In the other subgames, it is obvious to see that µW is also
the outcome obtained with backward induction.

Obviously, whatever the firms’ decision during the first stage is, we ob-
tain the worker-optimal matching. Hence, even in this simple game firms
have at some subgame multiple best response, which entails in the existence
of several SPE’s.

It is also easy to see that making firms’ decision simultaneously does
not affect the outcome. The only part of the game where this simultaneity
may affect the game is during the first stage. However, since the workers’
sub-stage is with complete information, workers have still the possibility to
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“swap” between each their offers and attain the worker-optimal matching.
Suppose now that workers’ decisions are simultaneous (but firms’ decision
are not), and consider for instance the subgame ∗∗ of the game depicted in
Figure 1 where w1 received an offer from f1 and w2 from f2. The tree at
this stage is given in Figure 2.
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Figure 2: Workers’ decisions are simultaneous.

In this subgame, there are two Nash equilibria: (a, a) and (r, r). If
both workers choose to reject their offers the game continue and we reach
the matching µW . However, if they both accept, we obtain the match-
ing µF . Observe that any SPE yields to a stable matching, which would
contradict the example proposed after Proposition 2. In fact, since both
firms (resp. workers) are acceptable for both workers (resp. firms) it is easy
to deduce that any SPE must yield to a matching in which all agents are
matched. Since the only such matchings are µW and µF the observation
easily follows. Thus, when workers’ actions are simultaneous, the scope for
cooperation is reduced. In this case, if a worker does reject his current offer
he may not be able to receive a better one in exchange (at a later stage).
For this to be the case, it must be the case that the other workers also do so.
This may happen when we assume that workers’ acceptance are deferrable
(i.e., dropping the irreversibility assumption) and workers wait for a better
offer before rejecting their current (most preferred) offer.

5.2 Three firms - three workers

Let F = {f1, f2, f3} and W = {w1, w2, w3}, with the following preferences:

Pf1
= w2, w3, w1, f1 Pw1

= f1, f2, f3, w1

Pf2
= w1, w2, w3, f2 Pw2

= f2, f1, f3w2

Pf3
= w3, w1, w2, f3 Pw3

= f1, f3, f2, w3

Suppose that f1 proposes first, then f2 and then f3, and assume that
f1 uses the following representation for her strategy: πf1

= w2, w1, w3, and
f2 and f3 use for representation their own preferences. When the game
starts, w1 has an offer from f2, w2 has an offer from f1 and w3 from f3.
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Observe that if all workers accept their offer we obtain the worker-optimal
matching. However, given the strategy used by f1, it is optimal for w1 to
reject f2’s offer. By doing so, f2 will propose to her next best choice, w2,
who will accept (this is his most preferred firm). Then, w2 rejects f1. She
then proposes to w1, who accepts. Obviously, f1 did not choose an optimal
strategy. With the representation πf1

= Pf1
she would have been better off.

Indeed, if w1 rejects w2, w2 will still accept f2 and reject f1, but f1 will now
propose to f3, who will accept. Then, w1 is left with f3, which makes him
worse off.

Here, the key element in f1’s optimal strategies is about the positions
of the workers less preferred than the worker-optimal mate, w3 and w2.
Observe that both w2 and w3 prefer f1 to their worker-optimal mate. For a
job market (W,F, P ), let

Qf = {w ∈ W | fPwµW (w) and wPff} ,

be the set of workers who prefer f to their worker-optimal mate and are
acceptable for f . By the stability of µW , for all workers w ∈ Qf we have
µW (f)Pfw . Define ŵf as the worker such that

ŵf = max
Pf

Qf .

That is, ŵf is f ’s most preferred acceptable worker among those worker who
are less preferred than the worker-optimal mate and who prefer f to their
worker-optimal mate. In the job market we are considering in this example,
ŵf1

= w3. The fact that for any representation π of f ’s strategy we have,15

π(ŵf ) = π(µW ) + 1 , (1)

may be a key element for f ’s to be matched to her worker-optimal mate
(or any worker preferred to him). If Eq. (1) is satisfied, then f will always
propose to ŵf before the other workers who are less preferred than µW (f).
If not, then some workers may have an incentive to swap their mates (w1

and w2 in the example).

6 The literature

A startling feature of the literature on matching (whether applied or theo-
retical) is that decentralized market have received relatively little attention.
In this respect, two comments are in order. First, some notable exceptions
are Roth and Xiaolin [14], Blum, Roth and Rothblum [4], Peleg [9], and
Alcalde, Pérez-Castrillo and Romero-Medina [2]. In [14], Roth and Xiaolin
study the market for clinical psychologist which is, like the market studied

15See Appendix A for a definition of a representation.
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in this paper, decentralized. A specific aspect of this market is that the
proposing & acceptance-rejection game takes place in one single day. In
this market candidates are allowed to hold an offer for a while, but their
decisions are also irreversible. That an offer can be held for some period of
time by a candidate is similar to the feature in the market for economists
that the offer typically comes with a deadline. In the current paper, since
the job market is modeled as a game of complete information, it is straight-
forward to see that giving the candidate some time to decide whether to
accept the offer does not change the outcome of the game.16 Indeed, all
what matters in the complete information game is individuals’ knowledge
of the game. If, at some point a candidate happens to know that he will
eventually receive an offer from a university U , which he plans to accept,
there is no gain in delaying his responses to other, less preferred universi-
ties proposing to him earlier in the game than U . Roth and Xiaolin show
that the market for clinical psychologist is actually somehow similar to a
decentralized version of the well known Deferred Acceptance algorithm orig-
inally proposed by Gale and Shapley[6]. This calls for our second comment,
which is about the very use of the Gale-Shapley algorithm in the literature.
A quick glance at the plethora of papers about matching literature shows
that a significant proportion these papers deal with Gale and Shapley’s de-
ferred acceptance algorithm or some of its refinements. All these algorithms,
although being presented as centralized procedures where individuals have
to submit their preferences, are actually described as purely decentralized
procedures.As Gale and Shapley wrote:

“ . . . let each boy propose to his favorite girl. Each girl who
receives more than one proposal rejects all but her favorite among
those who have proposed to her. . . ”

For a centralized market it would be more appropriate to write for in-
stance (without altering the results):

“For each girl, take the set of boys who prefer her to any other
girl, and match this girl to the one she prefers among these
boys. . . ”

We are aware that this argument may be pedantic.17 Nevertheless, it is
our contention that, even if the same algorithm is employed, a centralized
market and its decentralization version are not completely equivalent. In a
centralized version, agents are matched by a “match-maker” (or the clearing

16Of course, as we said before, if we drop the irreversibility assumption holding offers
may “block” the market and leave workers with outcomes less preferred than the one had
they not held their offers during the course of the game.

17The distinction between centralized and decentralized presentation of the Deferred
Acceptance algorithm has already pointed out by Roth and Rothblum [13].
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house running the algorithm). This latter is usually assumed to be neutral,
and thus there is no reason why it should un-match a firm and a worker pre-
viously matched when there is no second firm, not matched, that is preferred
to the first one by the worker. Yet, in a decentralized version, a worker could
well decide to refuse being matched to some (acceptable) firm even if there is
no better alternative. This feature, characteristic of decentralized markets,
is already pointed out by Blum, Roth and Rothblum [4]. Their work deals
with markets for senior positions, which are usually decentralized. Although
most of their paper is devoted to a centralized version of such markets,18

their work also addresses the issue of decentralized markets. The game ana-
lyzed in [4] differs from ours. In contrast to our approach, they assume that
there is a high level of uncertainty. Each firm only knows which of her offers
have been rejected (by which worker), and each worker, at any stage, only
knows which offer she has received so far. Furthermore, they restricted their
study to the case where each agent do use “preference strategies”, i.e., firms’
strategies that follow a specific, fixed order of proposals, and workers’ strate-
gies that decide acceptance or rejection of offers following a unique ordering
(which may not necessarily coincide with the workers’ preferences). In this
context, [4] analyze Nash equilibria and showed that they coincide with the
equilibria of a centralized market.19 Other papers related to decentralized
matching markets are by Peleg [9], Alcalde, Pérez-Castrillo and Romero-
Medina [2], and Alcalde and Romero-Medina [3]. Their models differs from
ours, however, in an important respect. Like us, they study a sequential
market but with the difference that firms can only propose once.20 In con-
trast, we suppose here that there is a “continuation game” in the sense that
firms whose offers have been rejected can propose their position to other
workers (if any). This allows us then to construct an SPE where workers
can credibly “threat” to reject all their offers if a firm deviates. When there
is no continuation stages, the threat of rejecting all offers that differ from
their worker-optimal mate is not credible.

7 Conclusion

In most of cases, we found that the worker-optimal matching is the unique
subgame perfect equilibrium outcome. Firms’ optimal strategies can shed
some light on the reason why we obtain this outcome. For a firm, the order
with which she proposes does not matter as long as it concerns those workers

18[4] studies how markets for senior positions can be re-stabilized after new positions
have been created or after the retirement of some workers.

19Because in their game there is a random ordering under which firms make offers
they use a different equilibrium concept than the Nash equilibrium (although similar in
its spirit), which they called Realization-Independent equilibrium. This equilibria can be
interpreted as an “Ex-post” Nash equilibrium.

20[2] only looks at the case where within each sub-stage agents’ actions are simultaneous.
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preferred to the worker-optimal mate. However, for workers less preferred
to this latter, it must be the case that the sequence of offers follows, to
some extent, her preferences. Roughly speaking, for any matching such that
workers are matched to a firm less preferred to their worker-optimal mate,
it is in the interest of all workers to reject such a matching. That way,
they can help each other to attain the worker-optimal matching. In other
words, as long as we have not reached the worker-optimal matching, workers’
interests do coincide. For a firm, all workers that are preferred to her worker-
optimal mate do consider this very firm as being less preferred than their
own worker-optimal mate. Hence, whatever is the order of proposal between
these workers, the firm will be rejected anyway. However, for matchings
that are preferred to the worker-optimal matching, workers do enter into
competition. For a worker to be better off, it must be the case that another
worker is worse off, and does indeed accept to be worse off (i.e., he rejects his
worker-optimal mate). Hence, to maintain this competition (and avoid being
worse off the at the worker-optimal matching), firms do have to propose to
workers less preferred than the worker-optimal mate with the same ordering
that their preferences dictates (see section 5.2). Results differ when we
workers’ moves are simultaneous. In this case, we showed that the set of
subgame perfect equilibrium outcomes includes the set of stable matchings.
Results can be summarized in Table 1.

Firms
Moves simultaneous non-simultaneous

simultaneous includes S(P ) includes S(P )
Workers

non-simultaneous µW µW

Table 1: Outcomes of subgame perfect equilibria.

These results greatly contrast with those obtained in centralized market.
Indeed, if the market is centralized and firms do make the proposals, the
deferred acceptance algorithm yields to the firm optimal matching. Such an
reversal of outcome is not new in the matching literature. Alcalde [1] studies
the case of a centralized market where the deferred acceptance algorithm is
used to match agents, and these latter act strategically. He shows that with
the iterative deletion of dominated strategies we also obtain the worker opti-
mal matching when firms do propose. In Alcalde’s game, a player’ strategy
set is the set of all possible preferences she can have (one of which is the true
preference list). We then have a normal form game where each player has to
choose a ranking, which will be communicated to a central authority. This
latter will match the agents using the deferred acceptance algorithm, and
agents’ “payoffs” are given by “how much” they like their mate with their
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true preferences. A natural question would be then to see if there is a link
between our game and that of Alcalde, i.e., if the two games are equivalent.
In fact, there is no relationship whatsoever. In our game, we have seen that
the firms have several optimal strategies at the equilibrium, whereas Alcalde
shows that there it is a dominant strategy for the firms to submit their true
preferences.
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Appendix A: Sanitization strategies

For f ∈ F , let πf be any ordering of W ∪ {f} with πf (v) being the index of
v in πf . Let π∗

f be the ordering that follows the preferences of firm f , i.e.,

π∗
f (v) < π∗

f (v′) ⇔ vPfv′, ∀ v, v′ ∈ W ∪ {f} . (2)

Definition 1 Given an ordering πf , a firm f and a node α where f acts,
πf is a representation of σf at α if,

af (α) = w ⇔ ∄ w′ ∈ W (α)\Oα
f such that πf (w′) < πf (w) . (3)

Note that given the action of a firm at some node, we may find several
distinct representations. All that is required is that the worker to whom
the firm is proposing is ranked first, according to the order π, among the
workers who are still available to f . In order to complete the characteriza-
tion of sanitization strategies we still need to specify firms’ actions in those
subgames reached when a firm deviated from its initial plan of offers.

We denote by σf |α the strategy of firm f in the subgame γ(α) where
we have deleted f ’s action at node α. The reason for doing this is to make
the definition of a sanitization strategy consistent with the fact that a firm
may not follow her initial strategy at node α. Consider for instance a firm
f whose plan of offers is w1, w2, w3, w4, w5, but instead of making an offer
to w2 at the third stage (say node α) of the game she makes an offer to w4.
It is easy to see that the consistency requirement would not make any sense
had we considered f ’s strategy in the subgame γ(α) including her action at
node α.

Definition 2 A strategy σf is a sanitization strategy if, at any node α
where f has to play, σf |α admits a representation π. The strategy σf is a
strong sanitization strategy if it admits for representation π∗

f .

We denote by Σ∗
f the set of strong sanitization strategies of firm f .
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Appendix B: Proofs

Without loss of generality we shall consider throughout the proofs a “trun-
cated” version of the game where we delete those actions corresponding to a
firm’s offer to an unacceptable worker, offer to a worker by an unacceptable
firm, and the actions of a worker if receiving such offers. In this truncated
game, any strategy profile yields an individually rational matching for all
workers and firms. Since the game is with perfect information, the original
game and the truncated one are obviously strategically identical in terms of
subgame perfection.

Workers’ optimal strategies can be characterized quite easily. For a strat-
egy profile σ, define by Oσ

w the set of possible offers w can have if he opts
for rejecting all his offers, given that all other players do not change their
strategies.

Lemma 1 σ ∈ SPE(G(P )). Then for all w ∈ W , µ[σ](w) = maxPw Oσ
w.

Proof Since a subgame perfect equilibrium is necessarily a Nash equi-
librium the claim easily follows from the fact that for any strategy profile σ
choosing maxPw Oσ

w is the best response of worker w. �

Lemma 2 (Roth [11]). Let (F,W,P ) be a matching market and µW its
worker-optimal matching. There is no individually rational matching µ such
that for all w ∈ W we have µPwµW .

Lemma 3 Let (F,W,P ) be a matching market and µW its worker-optimal
matching. Assume that there exists a set Ŵ and a matching µ̄ such that for
all w ∈ Ŵ , µ̄(µ(w)) ∈ Ŵ , µ̄(w)PwµW (w). Then there exists wi, wj ∈ Ŵ
and wk /∈ Ŵ with wj = µ̄(µW (wi)) such that

(i) wkPµW (wi)wj ,

(ii) µW (wi)Pwk
µW (wk) .

Proof Let (F,W,P ) be a matching market and let wi, wj ∈ Ŵ such
that µ̄(wi) = µW (wj). Consider the execution of the deferred acceptance
algorithm with workers proposing. Worker wi will eventually ask to µW (wj)
before µW (wi). Since he will be rejected by µW (wj), there should be another
worker, say wl, such that µW (wj) rejects wi in favor of wl, i.e., whPµW (wj)wi .
We then have two cases.
Case (i): wl /∈ Ŵ . Since wl is the player that µW (wj) prefers to wi,
we have wlPµW (wj)wi . To obtain the lemma, it suffices now to show that
µW (wj)Pwl

µW (wl) . This is easily done, since we can observe that wl pro-
poses to µW (wj) before the algorithm stops for him,21 which implies that wl

21For each player on the proposing side, the deferred acceptance algorithm stops when
this player is matched to his optimal mate.
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prefers µW (wj) to his optimal mate. We then have (i) µW (wj)Pwl
µW (wl) ,

and (ii) wlPµW (wj)wi . Relabel now wl into wk, and wi := wj , wj := wi and
we obtain the statement of the lemma.
Case (ii): wl ∈ Ŵ . Let Ŵ = {w1, . . . , wh, wi, wj}. Worker wj was rejected
by µW (wi) in favor of another worker, say w1. Hence, w1 was rejected by
his previous mate by another worker, say w̄. Either w̄ ∈ Ŵ or w̄ /∈ Ŵ . In
the latter case, we can use the argument developed in (i). If w̄ ∈ Ŵ , then
assume that w̄ = w2. Again, for w2 to propose w1’s previous mate, it must
be the case that w2 was rejected by his own previous mate. Continuing
this way, we arrive eventually to wi−1 who has been rejected by his previous
mate. If for one of these workers, his previous mate did rejected him in favor
of a worker not in Ŵ , then we are back to case (i). Recall that a worker must
be unmatched to make a proposal. Therefore, it must be the case that when
workers in Ŵ “swap” their mate, one of them, say wj , is unmatched before
making his proposal. That is, wj is unmatched because he was rejected by
µW (wi). Since it cannot be in favor of wi (who is matched to µW (wi−1)), it
must be in favor of another player, say wl, not in Ŵ . This implies that (i)
µW (wi)Pwl

µW (wl), and (ii) wlPµW (wi)wj . Statement (i) is from the fact
that wl 6= wi. and statement (ii) is from the fact that wj was rejected by
µW (wi) in favor of wl . Relabel now wl into wk and we obtain the statement
of the lemma. �

Let Φ(P, F,W ) be the normal form game with workers and firms where
a strategy of v ∈ F ∪ W consists of sending submitting a preference profile
and the outcome are obtained using the Deferred-Acceptance algorithm with
workers proposing with the submitted preferences, but agents payoffs are
evaluated using their original “true” preferences.22

Lemma 4 (Dubins and Freedman [5]). In the game Φ(P, F, W ) it is a
dominant strategy for any agent in W to declare his true preferences.

Lemma 5 Let (W,F, P ) be a job market. Consider a worker w such that
µW (w) 6= w. Let f := µW (w). Let P ′ such that for all v 6= w, Pv = P ′

v, and
P ′

w such that for all v, v′ 6= µW (w), vPwv′ if and only if vP ′
wv′ and wP ′

wf .
Then, with v̂ being the mate of w under the worker-optimal matching under
the preference profile P ′ we have fPwv̂ .

Proof Immediate by Lemma 4. �

The next result states that if all firms use a sanitization strategy with
representation being their preferences, then a subgame perfect equilibrium
must yields the candidate-optimal matching µW . Note that this game dif-
fers from the original one since firms have less strategic options: they are

22See [1, 5, 12] for a description of the game.
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forced to use a sanitization strategy. Let denote SPE(G(P )), set of subgame
perfect equilibria of the game G(P ).

Lemma 6 Let GF (P ) be the game such that workers’ strategy set are the
same as in G(P ), and for all firms f ∈ F , Σf = Σ∗

f and for all nodes α, Pf

is the representation of σf |α. Let σ ∈ SPE(GF (P )). Then µ[σ] = µW .

Proof We prove the Lemma by induction on the number of stages
needed to end the game. When there is only one stage left the result is
obvious: Each unmatched firm (if any) has only one available worker left
to propose to. Suppose then that there are two stages (i.e., two “offering”
stages and two “responding” stages).23 Let γ(α) be any subgame where
there are only two stages left and σ be an SPE. (α is the first node of
this subgame.) Consider the preference profile Pα. Since there are only two
stages left, each firm f ∈ F (α) has at most to acceptable workers in her pref-
erences Pα

f .24 Since σF = σ∗
f , and σ is an SPE, w such that µ[σ](w) ∈ Fα

⇔ µα
F (w) ∈ Fα ⇔ µα

W (w) ∈ Fα. Indeed, if a worker receives an (accept-
able) offer he is sure to be matched at the end of the game at any SPE.
It follows, using the deferred acceptance algorithm that he’s matched at
µF , and thus at µW , too. Hence, f such that µ[σ](f) ⇔ µα

W (f) ∈ Wα.
Suppose that σ is such that in the subgame γ(α) there is a worker, say w1

such that µα
W (w1)P

α
w1

µ[σ](w1). Let f1 = µα
W (w1). Since µ[σ](w1) 6= f1,

f1 /∈ maxPw Oσ
w. Therefore, µ[σ](f1) ∈ W (α)\{w1}. Let w2 = µ[σ](f1).

Since there are only two stages left, f1 has only two acceptable workers in
Pα

f1
. Moreover, σf1

= σ∗
f1

implies that w2P
α
f1

w1. Since w2 is matched, it
follows that µα

W (w2) ∈ F (α). Let f2 = µα
W (w2). By the stability of µα

W , we
have f2P

α
w2

f1.
If f2 6= µ[σ](w1) then we can deduce that there exists a worker, say w3,

such that µ[σ](w3) = f2 and for some f3 ∈ Fα, µα
W (w3) = f3. Again, we

have either f3 = µ[σ](w1) or f3 6= µ[σ](w1). Since the number of workers
and firms is finite we will eventually reach a firm fk such that µ[σ](fk) = w1

and µα
W (fk) = wk. (The case where f2 = µ[σ](w1) corresponds to k = 2.)

We then obtain a set of firms and workers, F̂ = {f1, . . . , fk} and Ŵ =
{w1, . . . , wk} such that both µα

W and µα
F map F̂ onto Ŵ , and for all v ∈

Ŵ ∪ F̂ , µα
W (v) 6= µα

F (v). Observe that this implies under σ each worker

w ∈ Ŵ is matched at the penultimate stage.25

Consider first the worker in Ŵ who has to decide, say w1.
26 If w1 rejects

all offers he has, then we enter a new subgame than the one had w1 accepted

23This case is similar to the example depicted in Section 5.1.
24Recall we are using the truncated game as defined in the beginning of Appendix B.
25Clearly, there might be several “couples” of such sets Ŵ and F̂ , i.e., sets Ŵ1, . . . , Ŵl

and F̂1, . . . , F̂l such that µα
F (resp. µα

W ) maps Ŵh onto F̂h, h = 1, . . . , l. For the sake of
simplicity we shall continue the proof assuming that there is only one such couple of sets.

26Since there is perfect information there is only one such worker.
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the offer from µ[σ](w1) = fk. So now wk = µα
W (fk) knows that he will receive

an offer from fk if he rejects his current offers.27

We claim that if wk rejects fk−1’s offer he cannot receive a better offer
than fk. To see this, suppose that there is f̃1 such that f̃1 makes an offer
to wk if he rejects fk−1’s offer, where f̃1P

α
wk

fk. Clearly, f̃1 /∈ F̂ , otherwise

it would mean that f̃1 (say f̃1 = fh, h 6= 1, k, k − 1) has three acceptable
workers left, namely wh, wh+1, w2, a contradiction since there are only two
stages left. Hence, f̃1 /∈ F̂ and she has at most two acceptable workers left
in her preferences, Pα

f̃1

. The only way to sustain the stability of µα
W is that

∃ w̃1 /∈ Ŵ such that µα
W (f̃1) = w̃1 and w̃1P

α

f̃1

wk. If f̃1 proposes to wk in

the last stage, it means that w̃1 rejected her in the penultimate stage, for a
better offer, say by f̃2, where f̃1 /∈ F̂ . Hence, f̃2P

α
w̃1

f̃1. For µα
W to be stable,

it must be the case that ∃ w̃2 /∈ Ŵ such that µα
W (f̃2) = w̃2 and w̃2P

α

f̃2

w̃1.

Thus w̃2 rejects f̃2’s offer. Continuing this way, we shall eventually obtain
a set of workers, W̃ = {w̃1, . . . , w̃l} and a set of firms, F̃ = {f̃1, . . . , f̃l} such
that µα

W (w̃h) = f̃h, and in the subgame obtained when w1 rejects f2’s offer,
the SPE is such that w̃h rejects f̃h’s offer to obtain in the last stage an offer
from f̃h+1, for all h = 1, . . . , l modulo l. In particular, we have w̃k rejects
f̃k’s offer to accept that of f̃1. That is, both wk and w̃l are expecting an
offer from f̃1 in the last stage, a contradiction. It follows that wk will not
receive in the last stage a better offer than that of fk, if he rejects that of
fk−1 in the penultimate stage, which proves the claim.

Hence, the SPE must be such that if w1 rejects f2’s offer in the penul-
timate stage, wk rejects fk−1’s offer in the penultimate stage. Continuing
this way, we attain worker w2 who rejects f1’s offer in the penultimate state.
Then, w1 will receive in the last stage an offer from f1. For the same reason
than with w2, it can be shown that w1 cannot expect to receive a better offer
than f1. In any case, w1 is better off rejecting f2’s offer, which contradict
the fact that σ is an SPE. To complete the proof of the induction hypoth-
esis, observe that if ∃w such that µ[σ](w)Pα

wµα
W (w) then either µ[σ] is not

individually rational or ∃w′ 6= w such that µα
W (w′)Pα

w′µ[σ](w′). Therefore,
when there are two stages left, any SPE gives the worker-optimal matching.

Suppose now that for all subgames γ(α) such that there are k stages
left any SPE gives the matching µα

W . Consider now any subgame γ(α′)
with k + 1 stages left. By the stability of µα′

W and because σF = σ∗
F , no

worker w ∈ W (α′) receives at stage k + 1 an offer from a firm f such that
fPα

wµα′

W (w). Otherwise we have wPfµα
W (f), contradicting the stability of

µα
W . If a worker w ∈ W (α′) receives at stage k + 1 an offer from µα′

W (w) we
claim that he must accept it. Suppose he rejects such an offer. Then, in the

27Note that since firms make their offers first and then workers respond, the set of offers
made to wk during the penultimate stage does not change if w1 deviates. The same applies
for the other workers.
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next stage, say starting at node α′′, we have wPα′′

w µα′

W (w), and according
to the induction hypothesis w will be matched to µα′′

W (w). By Lemma 5
it follows that µα′′

W (w)Pwµα′

W (w). That is, w is worse off rejecting µα′

W (w)’s
offer, which proves the claim. To sum up, when there are k + 1 stages left,
(active) workers can receive offers from their worker-optimal mate or from
less preferred firms. The issue now is that if for worker w all his offers at
stage k + 1 are less preferred than µα′

W (w). In this case, another worker w′

must have received an offer from µα′

W (w). It may happen that, if w rejects
all his offers that w′ accepts µα′

W (w)’s offer. If not, then w is ensured by
the induction hypothesis to be matched to µα′

W (w) when the game ends.
To complete the proof we then have to show that all such workers w must
reject all the offers they have. Consider the last worker, say wh who has
to decide at the end of the stage beginning at α′ among those workers not
having received an offer from their worker-optimal mate (by the previous
argument we can get rid of the other workers). Let αh be any the node
where wh acts in the subgame γ(α′). Note that in the subgame γ(α′) there
are several such nodes αh, each one depending on the history of decisions
by the previous workers acting during the stage beginning at α′. For all
such nodes α1

h, . . . , αl
h, the job market (F (αr

h),W (αr
h), Pαr

h), r = 1, . . . , l
uniquely determines a worker-optimal mate for wh. Of course, we may have

µ
αr

h

W (wh) 6= µ
αr′

h

W (wh) for some r 6= r′. If wh rejects his offer(s), then in
the next subgame there are only k stages left and the induction hypothesis

applies, i.e., w will be matched to µ
αr

h

W , for all r = 1, . . . , l. Therefore, w
is better off rejecting the offer(s) he has. Consider now the worker who
has to decide just before wh, say wh−1. As we said above, the only reason
that would lead wh−1 to rejects his offer(s) is because wh holds fh−1’s offer
(workers w1, . . . , wh−2, have already taken their decision). Since wh will
reject this offer, wh−1 knows that by rejecting his he at node αr

h−1 he will

be matched to µ
αr

h−1

W (wh−1) at the end of the game. Since at the node αr
h−1

he does not have a better offer, his best response is to reject his offer(s).
Repeating the argument with workers wh−2, . . . , w1 we can deduce that all
workers will reject their offers, and thus the outcome of any SPE when there
are k + 1 stages left gives the worker-optimal matching. �

Lemma 7 Let σ ∈ SPE(G(P )) and µ[σ] 6= µW , such that for at least one
firm f , µW (f)Pfµ[σ](f) . Then there exists f̃ ∈ F such that

• σf 6= σ∗
f ;

• µW (f)Pfµ[σ](f) .

Proof Denote F̂ = {f ∈ F : σf ∈ Σ∗
f}. Let f1 such that w1 =

µW (f1)Pf1
µ[σ](f1). Observe that because preferences are strict we have
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µW (f1) ∈ W . If f1 /∈ F̂ then we are done. Hence, suppose that f1 ∈ F̂ .
It follows that f1 did propose to w1 (or was planing to if w1 did accepted
another offer) before proposing to µ[σ](f1). Since w1 could ensure to have
at least f1, it follows that µ[σ](w1) ∈ F . Let f2 = µ[σ](w1). We then
have f2Pw1

f1, which implies that µW (f2) ∈ W and w2Pf2
w1, where w2 :=

µW (f2). If σf2
6= σ∗

f2
we are done. Suppose then that σf2

= σ∗
f2

. It follows
that there is f3 such that µ[σ](w2) = f3 and f3Pw2

f2. Again, we deduce that
there is w3 such that w3 := µW (f3) and w3Pf3

w2. Then, either σf3
6= σ∗

f3
or

σf3
= σ∗

f3
. In the first case, we are done. Suppose then that σf3

= σ∗
f3

. We
then have two cases: (i) f3 = f1, or (ii) f3 6= f1. Our claim is that in both
cases, if f3 ∈ F̂ we can deduce that there is another firm which is worse off
than at the worker-optimal matching.

Case (i). We then have the conditions of Lemma 3 where Ŵ = {w1, w2}.
Applying Lemma 3 we deduce that there exists another worker, say w3 6=
w1, w2 such that for a firm, say f2, we have w3Pf2

w1, and f2Pw3
µW (w3).

Since σf2
∈ Σ∗

f2
, it follows that w3 is matched to another firm, say f3.

Indeed, given the strategies played by f2 (i.e., proposing to w3 before w1,
this latter being her match under σ), w3 could eventually receive an offer
from f2 but finally took a better offer: the one from f3. That is, we have
f3 := µ[σ](w3)Pw3

µW (w3), which implies that, by the stability of µW , there
exists w4 ∈ W such that w4 = µW (f3) and w4Pf3

w3. If f3 /∈ F̂ then we are

done. In the other case, observe that we have now identified 3 firms in F̂ :
f1, f2 and f3. It follows that w4 is matched to another firm, say f4, under
σ such that f4Pw4

µW (w4) and µW (f4)Pf4
w4. We can repeat the argument

in (i) if f4 ∈ {f1, f2, f3}, or the argument in (ii) otherwise. In both cases,
we will eventually find another firm, say f5, such that µW (f5)Pf5

µ[σ](f5).

Case (ii) Then, ∃ f4 such that f4 = µ[σ](w3)Pw3
f3. By stability, it follows

that w4 := µW (f4)Pf4
w3. If f4 /∈ F̂ then we are done. If f4 ∈ F̂ then we have

f5 = µ[σ](w4) such that f5Pw4
f4 (because f4 did propose or was planning

to propose to w4). By stability of µW , we have w5 := µW (f5)Pf5
w4. If

f5 ∈ {f1, f2, f3, f4} we can use the argument given in (i), or the argument
in (ii) otherwise. In both cases, we will eventually find another firm, say
f6, such that µW (f6)Pf6

µ[σ](f6). Continuing this way, we may eventually

obtain a firm f such that µ[σ](f)PfµW (f) and f /∈ F̂ , otherwise we obtain

F̂ = F , which would contradicts lemma 6. �

The following lemma states that at any subgame perfect equilibrium all
firms can ensure to be matched to their candidate optimal mate worker
corresponding to the worker-optimal matching or to a worker they prefer
to him. Such an equilibrium can be obtained when firms use sanitization
strategies.
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Lemma 8 σ ∈ SPE(G(P )) ⇒ ∀ f ∈ F, µ[σ](f)RfµW (f) .

Proof Suppose now that the lemma is not true. Let σ ∈ SPE(G(P ))
such that for some f ∈ F , µW (f)Pfµ[σ](f). By lemma 6, there exists an

non-empty strict subset of F , F̂ , such that σ
F̂

/∈ Σ∗

F̂
. We proceed by

induction on the size of F̂ to show that σ cannot be an SPE.
Suppose first that ♯F̂ = 1 and let F̂ = {f1}. By lemma 7, µW f1Pf1

µ[σ](f1) .
If f1 switch to a strategy in Σ∗

f1
, then all firms use a sanitization strategy,

and thus, using Lemma 6, f1 obtains µW (f1) . Therefore, σ cannot be an
SPE, a contradiction. Suppose now that for all h ≤ k such that ♯F̂ ≤ h
it is true that σ cannot be an SPE and that it is optimal for all firms to
play σ∗. Suppose now that ♯F̂ = k + 1. Again by lemma 7, there is at least
one f ∈ F̂ such that µW (f)Pfµ[σ](f) . If f , switches to σ∗

f , then we have
the strategy profile σ′ = (σ∗

f , σ−f ), which necessarily implies that there are
only k firms not using a sanitization strategy at any subgame. Thus, the
induction hypothesis applies and we deduce that at any subgame the other
firms will play σ∗. In this case f obtains µW (f), which shows that if σ is
such that ♯F̂ = k + 1 cannot be an SPE either. �

Lemma 9 If for some w ∈ W , µW (w) = w then for all σ ∈ SPE(G(P )),
µ[σ](w) = w.

Proof Let w such that µW (w) = w. Suppose that for some σ ∈
SPE(G(P )), µ[σ](w) 6= w. Denote f := µ[σ](w). Since σ is an SPE, µ[σ]
is individually rational, and therefore we have fPww. Moreover, µW (f) 6=
µ[σ](f). It follows by lemma 8 that wPfµW (f), which contradicts the sta-
bility of µW . �

Lemma 10 σ ∈ SPE(G(P )) ⇒ ∀ w ∈ W , µW (w)Rwµ[σ](w) .

Proof Immediate by Lemma 2. �

Proof of Theorem 1 By Lemma 9 we can get rid of those workers w
for whom we have µW (w) = w. We prove the lemma by induction on the
number of steps. When there are only two steps left the result easily follows:
the argument is almost identical to that in the proof of Lemma 6. The main
difference is when there is at some σ ∈ SPE(G(P )) a worker w such that
µW (w)Pwµ[σ](w). In this case, f = µW (w) is matched to another worker w′

in the penultimate stage. In the proof of Lemma 6 we deduce that w′Pfw
because σf = σ∗

f . Since the game now is such that firms may not necessarily
follow their strong sanitization strategy, the fact that w′Pfw follows from
Lemma 8.

Suppose now that for all subgames γ(α) such that there are k stages
left any SPE gives the matching µα

W . By Lemma 10 we can deduce that
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workers cannot obtain a better outcome than the worker-optimal matching
at any SPE. Hence, it suffices to show that the optimal strategies for each
worker consists of accepting the worker-optimal mate if receiving an offer
from her and rejecting all offers that are less preferred than the worker-
optimal mate. Consider now any subgame γ(α′) with k + 1 stages left. Let
{w1, . . . , wh} = W (α′), and let wh be the last worker deciding at the end of
the sub-stage beginning at node α′. Let α′′ be any node where wh acts in this
stage. Since wh cannot obtain a better offer than µα′′

W , we claim that his best
response is to reject any firm f such that µα′′

W (wh)Pα′′

wh
f , and accept the offer

of µα′′

W (wh). If he rejects µα′′

W (wh)’s offer, then by the induction hypothesis
he will be matched in the following subgames to µα′′′

W (wh), where α′′′ is the
node following α′′. Since in node α′′′ we have whPα′′′

wh
µα′′

W (wh), it follows by

Lemma 5 that µα′′

W (wh)Pwh
µα′′′

W (wh). That is, wh is worse off if he rejects the
offer from µα′′

W (wh). It remains to show that wh is better off if he rejects any
offer from firms less preferred than µα′′

W (wh). To this end, it suffices to show
that if he rejects all f such that µα′′

W (wh)Pα′′

wh
f , then any node α′′′ that follows

this decision is such that µα′′

W (wh) = µα′′′

W (wh). This is easily done using the
Deferred Acceptance algorithm. Observe that the only difference between
Pα′′

wh
and Pα′′

wh
is that under Pα′′′

wh
some firms less preferred than µα′′

W (wh) are
now unacceptable. Hence, running the Deferred Acceptance algorithm with
workers proposing under the preference profile (Pα′′

wh
, Pα′′

−wh
) or (Pα′′′

wh
, Pα′′

−wh
)

obviously gives the same output. Hence, µα′′

W (wh) = µα′′′

W (wh). We can now
repeat the same argument with worker wh−1, then wh−2, . . . until worker
w1, which gives the desired conclusion. �

Proof of Proposition 2 Let µ ∈ S(P ), and construct a strategy profile
σ such that all firm f ∈ F propose to µ(f) at the first stage and each worker
accepts the best offer he has at the end of the first stage (i.e., at all nodes
that belong to stage 1.1). Clearly, µ[σ] = µ. If a worker w decides to reject
his offer at the first stage, then he will be unmatched at the end of the
game or matched to a less preferred firm than µ(w) (by the stability of µ,
such firms are unmatched at this matching), i.e., worse off. If one or several
firms do not propose to their partner under µ during the first stage let σ
be such that each worker w, at each subgame, does reject all offers that are
strictly less preferred from µW (w) and accept any offer from µW (w) or firms
preferred to µW (w). Clearly, the only way for a firm to be matched to a
different worker than her worker-optimal mate is to be matched to a worker
less preferred to her, and thus, no worker has an incentive to deviate from
this profile. Hence, in the subgames attained if one or several firms did not
propose to her partner under µ, the profile constitutes am equilibrium and
yields µW . If a firm f plays according to σ, then she is matched to µ(σ)(f),
otherwise she is matched to µW (f). Since for all firms f ∈ F and µ ∈ S(P ),
we have µ(f)PfµW (f), playing according to σ is a best response for each
firm, which gives the desired conclusion. �
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