%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Conformity and Bounded Rationality
in Games with Many Players

Edward Cartwright
And

Myrna Wooders

No 687

WARWICK ECONOMIC RESEARCH PAPERS

DEPARTMENT OF ECONOMICS

THE UNIVERSITY OF

WARWICK




Conformity and bounded rationality in games
with many players.

Edward Cartwright
Department of Economics
University of Warwick
Coventry CV4 7AL, UK
E.J .Cartwright@warwidk.ac.uk

Myrna Wooders
Department of Economics
University of Warwick
Coventry CV4 7AL, UK
M.Wooders@warwidk.ac.uk
http:/ / www.warwick.ac.uk/ fac/ soc/ Economics/ wooders/

October 20, 2003

A bstract

Intepret a set of players all playing the same pure strategy and all
with similar attributes as a society. Is it consistent with sdf interested
behaviour for a population to organise itsdf into a rdativdy small
number of societies? In a companion paper we characterized how large
" must be in terms of parameters describing individual games, for
an equilibrium to exhibit conformity in pure strategies. In this paper
we provide a wide class of games where such conformity is boundedly
rational, that is, where " can be chosen to be small.



1 Conformity, bounded rationality and equilibrium

We suggest that in games with many players common dements of bounded
rational behavior are the use of pure strategies and conformity in the sense
that a player is indined to choose the same strategy as players he perceives
as similar to himsdf. If this is the case, and we take Nash equilibrium as
an outcome of fully rational behavior, then the consistency of boundedly
rational behavior and rationality requires the existence of an approximate
Nash equilibrium exhibiting conformity. In this paper we provide a family
of games with many players where the desired equilibrium exists.

This paper extends, in important respects, previous results of Wood-
ers, Cartwright and Sdten, WCS, (2002) and Cartwright and Wooders,
CW, (2003a). In WCS we treat collections of games with complete infor-
mation and demonstrate existence of an approximate Nash equilibrium in
pure strategies and conformity. The class of games considered in WCS are
all derived from a common, underlying structure. In contrast to the ear-
lier research in WCS, CW treats individual games. Also, CW introduces
a new notion of conformity that allows individuals within the same society
to adhere to the same social norms - that is, to play the same strategy -
while taking on dixerent roles in that society. For example, according to
one social norm, in females cook dinner and males mow the lawn. Given
an individual game, CW determines bounds, depending on the parameters
describing the game, so that if " is larger than the bounds, an "-equilibrium
exhibiting conformity exists. Roughly, the parameters describing a game
are the number of ‘player classes’ and a measure of the doseness of players
within dasses. T he novd features of CW are thus the notion of conformity,
the notion of player dasses in strategic games, and the treatment of individ-
ual games rather than games with many players (as in WCS and the prior
literature on puri..cation of Nash equilibria).



An important question not addressed in CW is whether, for games with
many players - large games - the parameters describing individual games,
and thus ", can be chosen to be small. In this paper we introduce a frame-
work of games with incomplete information and demonstrate conditions un-
der which the numbers of player classes can be chosen to be rdativey small
while the distance between any two players of the same dass is small. Con-
formity and existence of an approximate equilibrium in pure strategies then
follows from our prior results.

To treat a family of games of incomplete information we take as given a
set of attributes - , a set of player types T and a set of actions A: A player’s
attribute is assumed to be publicly observable while a player’s type, deter-
mined by nature, is not. A universal payox function h details the payox of
a player as a function of his attribute type and action and the attributes,
types and actions of the complementary player set. A universal bdiefs func-
tion b details the probability distribution over type pro..les - players are
assumed to have consistent bdiefs with respect to this distribution. We re-
fer tothetuple G= (- ;A;T;lyh) as a non-cooperative pregame. A player
set and an attribute function, assigning an attribute to each player, induce,
through the pregame, a game.

We provide conditions on a pregame so that all su¢ ciently large games
induced from that pregame have an approximate Nash equilibrium in pure
strategies that is consistent with conformity. To formalize the idea of con-
sistency with conformity we introduce the notion of a society. A society is
de..ned as a collection of players who all play the same strategy and who all
have attributes in some convex subset of attribute space. A strategy vector
induces a partition of the population into societies and, in interpretation,
the fewer are the number of societies then the stronger the conformity. In
our main result we provide a bound on the number of societies induced that



is independent of the number of players. Thus, in large populations societies
must also be large

Following CW we permit an endogenous assignment of roles within a
society. A player is assigned a role according to some probability distribution
determined by the society and can make his action choice conditional on his
role This approach allows us to modd the case where players could be
seen as conforming (or bdonging to the same society) even though they
may perform dixerent actions: Given that players can make action choice
conditional on role or type, two players can play the same strategy and yet
(because they have been allocated dimerent roles or types) play dixerent
actions.

As wdl as treating the bounded rationality of conformity in pure strate-
gies we also treat in isolation the bounded rationality of playing pure strate-
gies and the bounded rationality of conformity. In both cases we provide
su¢ cient conditions on a pregame for the existence of an approximate Nash
equilibrium satisfying the desired properties - either one in pure strategies
or one consistent with conformity.

Elaborating further on the prior literature, WCS provide a family of
games with many players for which there exists an approximate Nash equi-
libriumin pure strategies that partitions the player set into a bounded num-
ber of societies. Two limitations of the results dueto WCS are: ..rst, it only
treats games of perfect information which, amongst other things, does not
allow us to modd an assignment of roles within a society. Second, the bound
on number of societies is proportional to the number of strategies; given that
the framework of WCS can be extended to allow a countable set of strategies
(see Cartwright and Wooders 2003b) this appears a signi..cant limitation.

In the companion paper CW we consider the bounded rationality of
conformity in pure strategies for arbitrary games of incomplete information.



This is done by introducing the concept of a (£ Q)-dass game - any ..nite
game is (£ Q)-dass game for some values of £and Q. Given a (% Q)-class
gamea bound on " permitting existence of a Bayesian Nash "-equilibriumin
pure strategies consistent with social conformity, is provided as a function
of £and Q. The approach of CW has the advantage of treating individual
games and permitting incomplete information. In addition, CW are able
to bound the number of societies independently of the number of strate-
gies. CW, however, only put a bound on the " for which there exists an
"-equilibrium satisfying the desired properties - they do not provide condi-
tions under which the" is small.

In this paper we address some of the issues that arise from WCS and
CW. First, we extend the pregame framework of WCS to permit incomplete
information. We then demonstrate a connection between (£ Q)-class games
and games induced from a pregame. T his allows us to apply the results of
CW and in doing so provide a family of games where the use of pure strate-
gies and conformity can be consistent with individually rational behavior.
Further, in the results of this paper, the number of societies is bounded
independently of the number of strategies.

We proceed as follows: Section 2 introduces de..nitions and notation and
Section 3 reviews the de..nition of a (% Q)-class game. In Section 4 we treat
conformity, in Section 5 we treat pure strategies and in Section 6 we treat
conformity in pure strategies. In Section 7 we conclude.

2 De..nitions and notation

We begin this section by de..ning a Bayesian game. T he pregame framework
is then introduced and we demonstrate how Bayesian games can be induced
through a pregame. Next, we consider the strategies available to players
in a Bayesian game and discuss expected payoxs. We conclude the section



with the de..nition of a Nash equilibrium.

2.1 A Bayesian Game

A Bayesian game i is given by a tuple (N;A;T;g;u) where N is a ..nite
player set, A is a set of action pro..les, T is a set of type pro..les, g is a
probability distribution over type pro..les and u is a set of utility functions.
We de. .ne these components in turn.

LeteN =f1::;;ngbea. niteplayer set, let A denotea..niteset of actions
and let T denote a ..nite set of types. ‘Nature’ assigns each player a type.
Informed of his own type but not the types of his opponents, each player
chooses an action. We say that a game is a game of perfect information if
jiTi=1 L&t A~ AN bethe st of action pro..les and lee T ~ TN bethe
set of type pro..les. Given action pro..lea and typepro.let welet a; and t;
denote respectively the action and type of playeri 2 N.

A player’s payox depends on the attributes, actions and types of players.
Formally, in game i, for each player i 2 N there exists a utility function
U :AE£T! R. Ininterpretation uj(a;t) denotes the payox of player i if
the action pro..leis a and the type pro..let. Let u denote the set of utility
functions.

A player, once informed of his own type, sdects an action without know-
ing the types of the other players. A player therefore forms bdiefs over the
types he expects others to be. These bdiefs are represented by a function p
where pi(t; ijtj) denotes the probability that player i assigns to type pro..le
(ti;t ;) given that i is of type t;. Throughout we will assume consistent
beliefs. Formally, for some probability distribution g over type pro..les, we
assume
olti; ti i)

02T, g(ti; ) W

pi(tiijti) = P




foralli2 N andt 2T.1

2.2 Pregames

Let - be a compact metric space, called an attribute space and let N be a
..nite player set. A function ® mapping from N to - is called an attribute
function. The pair (N; ® is a population. In interpretation, an attribute
function ascribes an attribute to each player in a population. Taking as
given a ..nite set of actions A and types T a population (N; ® induces a
Bayesian game i (N; ® “ (N;A;T;g%u® as we now formalize.

Denote by W the set of all mappings from - £ A £ T into Z4; the
non-negative integers. A member of W is called a weight function. Given
population (N; ® we say that a weight function wgg;t is relative to action

pro..le a and type pro..le t if and only if:
n o-

Waat(!;a;t)) =" i 2N :®i)=!;a =a andtj =t ~:
Thus, w(! ;a';t?) denotes the number of players with attribute ! and type
tZ who take action a'.

A universal payox function hmaps- £ A £ T £ W into R, the non-
negative real numbers. The function h will determine payox functions for
every game induced by the pregame. Given a population (N; ®), the payox
of a player will depend on his attribute, his action, his type and the weight
function induced by the attributes, actions and types of the complementary
player set. Formally:

u®a;t) © h(@i);ai;ti; Weat):

Dencte by D the set of all mappings from- £ T into Zy. A member
of D is called a type function. Given population (N; ® we say that type

1We assume that the denominator of (1) is always positive - i.e. there is positive
probability that a player i 2 N will beof typet; foreacht; 2 T.
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function dgt is relative to type pro..le t if:
det(!;t%) =jfi2 N : ®i) =! and tj =t?g:

Thus, dgt(! ;t?) denotes the number of players with attribute ! and type
t2.2 A universal bdiefs function b maps D into [0;1]. The value bidgt) is
interpreted as the probability of type pro..let. Formally:

9%t ¥ b(dey)

where g® is the probability distribution over type pro..les induced by b and
® Players are assumed to have consistent bdiefs with respect to g®. It is
important to realize the dixerences between functions g® and b. Function
g®is de..ned rdative to a population (N; ® and its domainis TN. Function
b however, is de..ned independently of any speci..c game and has domain
D.

A pregame is given by a tuple

G=(-;A;T;bh);
consisting of a compact metric space - of attributes, ..nite action and type
sats A and T, a universal bdiefs function b: D i! [0;1] and a universal

payox functionh:- £ A£T £ W i! Ry. Asdiscussed above we refer to
a population (N; ® as inducing, through the pregame, a Bayesian game

i(N;® ° (N;A;T; g% u®):

2.3 Strategies and expected payoxs

Takeas given a population (N ; ® and induced Bayesian game(N; A; T; g% u®).
As discussed above, knowing his own type but not those of his opponents
a player chooses an action. A pure strategy details the action a player will

ZNote that de:t is a projection of Wea:t onto- £ T.
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take for each type tZ 2 T and is given by a function sk : T ! A where
s(t2) is the action taken by the player if he is of type tZ. Denote the set
of pure strategies by S and let K = jAj'T) = jSj denote the number of pure
strategies.

A (mixed) strategy is given by a probability distribution over the set of
purestrategies. Theset of strategies is denoted by ¢ (S). Given a strategy x
we denote by x(s*) the probability that a player takes pure strategy sk 2 S.
We denote by x(a'jt?) the probability that a player takes action a' given
that heis of typet?. Let § = ¢ (S)N denote the set of strategy vectors. We
refer to a strategy vector m as degenerate if forall i 2 N and t?2 2 T there
exists some action a' for which m;(a'jt?) = 1.

We assume that players are motivated by expected payoxs. Given a
strategy vector % a typet? 2 T and bdiefs about the type pro..le p® the
probability that player i puts on the action pro..letype pro..le pair a =
(a1 an) and t = (ty; ot 1,564, 0 t,) isgiven by:

Pr(a;ti ijt?) & p®(t; ijt?)¥a(anjty) :: %(aijt2) ¥ (@njtn).

Thus, given any strategy vector % for any typet* 2 T and any player i
of type t?, the expected payox of player i can be calculated. Let US(¢t?) :
§ ! R dencte the expected utility function of player i conditional on his

type beng t* where:
o s XX o
U (4t%) = Pr(a;ti ijt")ui(a; tz; ti i)
a2A t i2T;;
Denote by EW the set of functions mapping- £ A £ T into R4, the
non-negative reals. We refer to ew;eg 2 EW as expected weight functions.
Given a population (N; ® we say that an expected weight function ewgs,is

reative to strategy pro..le %if and only if:
X
ewgy{! ;a;t?) = Waai(! ;a;t?) Pr(a;t)
a2A 2T



for all !;a and t?. Thus, ewg{! ;al;t?) denotes the expected number of
players of attribute ! who will have type t and play action a'. Note that
this expectation is taken before any player is aware of his type.

2.4 Nash equilibrium

T he standard de. .nition of a Bayesian Nash equilibrium applies. A strategy
vector %is a Bayesian Nash "-equilibrium (or informally an approximate
Bayesian Nash equilibrium) if and only if:

U %jt7) . UG % jt2) i "
forall x2 ¢ (S),allt* 2T and for all i 2 N. We say that a Bayesian Nash
" equilibrium m is a Bayesian Nash "-equilibrium in pure strategies if mis
degenerate

3 (xQ)-class games

Informally, a game i (N; ® = (N;A;T;g%u®) is a (% Q)-dass game if the
population N can be partitioned into Q subsets N1;:::;; Ng; called classes,
where (1) any two players in the same dass are ‘+=substitutes’ for each other
and (2) roughly, the payox to a player depends only on his own strategy
choice and the ‘aggregate strategy’ of the players in each class. T he concept
of a (£ Q)-dass game was introduced in CW.

To formally de..nea (£ Q)-class game we require notions of approximate
substitute players. Take as given a game i (N; ® and a partition of the
player ss¢ N =fN7y;::;;NgQ.

Partition N is a F-interaction substitute partition when: For any two
strategy vectors 3%;34% 2 § if:

X
(K = (SN
i2Ng i2Ng
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for all Ng and all s€ 2 S, then:

UBx; %) 1 UR(x 34,1 - %
for any player i 2 N and any strategy x 2 ¢ (S).

Informally, N is a Z-interaction substitute partition if a player’s payox
changes by at most 4 when other players of the same dass ‘exchange’ strate-
gies, with his own strategy choice held constant.

Partition N is a 2p-individual substitute partition when: For any Ng, for
any two playersi;j 2 Nq and for any strategy vector %2 § such that
Y = Y.

U %) | UBx; %) -
for any strategy x 2 ¢ (S).

Informally, N isa #p -individual substitute partition if the payoxs of any two
players in the same class, when they both play the same strategy and the
strategies of other players are hed constant, are within #p.

Partition N isa % -strategy switching partition when: For any two strategy
vectors 34;3% 2 § if:

Y i A 1 2)
i2Ng

for all Ng and all sk 2 S then:

UEx; %) i U3, - =

for any player i 2 N and any strategy x 2 ¢ (S).
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T hus, given a small proportional changein the ‘aggregate strategy’ of a class,
if N is a 3¢ -strategy switching partition then payoxs will change by at most
4.

Gamei (N; ® issaid tobea (#; 4 ; &; Q)-class game if there exists a
partition N of the player set into Q dasses such that N is a % -interaction
substitute partition, a 3p -individual substitute and a # -strategy switching
partition. If &;4p; & - *then werefer to i (N; ® as a (% Q)-cass game.
Given a (£ Q)-dass game i (N; ® we refer to a partition N as a proper
partition of the player set into classes if it is a =substitute partition and
*+strategy switching partition.

4 Games With Many Players

Wewill assumethroughout a rdativay mild continuity property with respect
to attributes. This assumption, introduced in WCS, dictates that a player’s
payox is rdativdy invariant to a small perturbation of the attributes of
players (including himsdf). Such an assumption would be satis..ed, for
example, in a private goods economy where individual preferences depend
only on own consumption of commodities. Formally:

Continuity in attributes: Pregame G = (- ;A;T;bh) is said to satisfy
continuity in attributes when: for any " > 0 and any two induced games
i(N;® and i (N;®), if, foralli 2 N,

dist(®(i); ®(i)) <"
then, for all i 2 N, all t* 2 T and any strategy vector %2 §:
US4 i UR) <
We note that the assumption of continuity in attributes considers a
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change in attributes while the strategies are had constant. The assump-
tion comprises essentially two distinct dements: (1) A player should be
reativay indinerent to small changes in the attributes of others - this would
suggest, amongst other things, that the probability distribution over types
is largdy unarected by a small change in the attribute function. (2) Players
with similar attributes recave similar payoxs. T his later point will dearly
have a roleto play in demonstrating the existence of 4 -individual substitute
partitions for small values of %

4.1 Societies

We de..ne a society. Given a game (N; ® and a strategy vector ¥awe in-
terpret a set of players D as a society if (i) there exists some strategy
X 2 ¢ (S) such that 3% = x for all i 2 D, and (ii) for any playeri 2 N,
if ®&i) 2 con(®D)) theni 2 D.3 Thus, any two players bdonging to a
society D must play the same strategy. Furthermore, to any society D we
can associate a convex subset - p of attribute space - with the properties
that any player beonging to D has an attributein - p while there exists no
player who has an attribute in - p that does not beongto D. 4

We say that a strategy vector 3induces a partition of the player set
into Q societies if there exists a Q member partition of the player see N =
fN1;::;; Nog such that each subset N is a society.

Given a population (N; ® we say that a partition N =fN7y;::;;Nqggisa
partition of (N; ® into convex subsets if thereexists a partition - 1;:::;- 9Q
of - into convex subsets with the property that if i 2 Ng then &i) 2 - 4 for

3Where con(®D)) denctes the convex hull of ®&D).
4This is a stronger notion of conformity than used by WCS. In WCS condition (ii)

becomes: for any playeri 2 N if &) 2 int(con(®&D))) theni 2 D whereint(A) denotes
the interior of set A.

13



alli2 N>

4.2 Conformity

In this section we demonstrate that for a large family of games we can put a

bound Q on the number of societies, where Q is independent of population

size, such that any game within this family has an approximate Nash equi-

librium that partitions the population into at most Q societies. Note that

in this section we make no assumption that players use pure strategies.
We introduce a second assumption:

Risk Neutrality property: We say that a pregame G satis..es the risk
neutrality propety when: for any population (N; ® and any two strategy
pro..les 3332 §N with expected weight functions ewgs, and ewgs, respec-
tivdy, where:

ewgy(! ;al;t?) = ewgyf! ;a’;t?)
for all ! ;al and t?, if 3% = % then:
US4t = UB(AE)
foranyt? 2 T.

Therisk neutrality property requires players to be risk neutral with respect
to the strategies of others. For example, consider two playersi and j who
both have attribute! and consider some other player |. T herisk neutrality
property dictates that player | should be indixterent as to whether (i) player
i plays strategy s and player j plays strategy s?, (ii) player j plays strategy
s! and player i plays strategy s, and (iii) both players choose strategy

>Of course the sets - 4 are required to be only relatively convex since - may not be
convex.
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st and s2 with probability one half. There are many instances where this
assumption would appear mild - we consider one case later.

Before stating our ..rst Theorem, we recall that it follows from T heorem
2 of CW that any (0; 0; % Q(¢))-class Bayesian game has a Bayesian Nash
equilibrium (a 0-equilibrium) with the property that any two players in the
same dass play the same strategy. Our ..rst Theorem demonstrates that
for any game induced by a pregame thereis a ‘near-by’ (0; 0; £ Q) game for
some xand Q. The existence of such games allows us to infer properties of
games induced by pregames.

Theorem 1: Consider a pregame G = (- ;A;T; b h) that satis..es the risk
neutrality property. Given real number ¢ > 0 thereis a real number Q(¢)
such that for any population (N; ® there is another population (N; ®) sat-
isfying dist(®i); ®(i)) < ¢ for all i 2 N and, for some #; the induced game
i (N;® isa (0,0, Q(¢))-dass Bayesian game. Furthermore, there exists
a partition N of N that is both a proper partition into classes for game
i (N;® and a partition of (N; ® into convex subsets.

Proof: Partition- into convex subsets- 1;:::;- o each of diameter lessthan
¢ > 0. For each subset -  chooseand ..x an attribute ! ¢ 2 - 4. Consider an
arbitrary gamei (N; ®. De .neattribute function ®as follows for all i 2 N:

®(i) =! qif and only if &i) 2 - 4.

Clearly dist(®i); ®(i)) <é foralli2 N. For each g de.neNg=fi 2 N :
®(i) = ! 0. We conjecturethat the partition N “ fNjy;::;; Ngg satis..es the
desired properties. We note that all players of the same class have the same
attribute It is, thus, immediate from the de..nition of individual substitute
partitions that N is a O-individual substitute partition for i (N;®). Also,
by the risk neutrality property N is a O-interaction substitute partition for

15



i (N;®. Thus, game i (N;® is a (0;0; % Q)-class Bayesian game and N
is a proper partition of N. It is immediate that N partitions (N; ® into
convex subsets.¥

Theorem 1 leads to Proposition 1, a consequence of the above result and
Theorem 2 of CW:

Proposition 1. Consider a pregame G = (- ;A;T; b h) that satis..es the
risk neutrality property and continuity in attributes. Given real number
" > 0 there exists real number Q1(") > 0 such that for any population
(N; ® theinduced game i (N; ® has a Bayesian Nash "-equilibrium that
induces a partition of the player set into Q1(") societies.

Proof: Givenan" >0, deneé * 3". By Theorem 1 there exists real
number Q(¢) such that for any population (N; ® there exists a popula-
tion (N;® such that max;,n fdist(&li); ®i))g < ¢ and the induced game
i (N;® isa (0;0; % Q)-substitute Bayesian game for some % Further there
exists a proper partition of N into classes N for game i (N;®) that is a
partition of (N; ® into convex subsets. Theorem 2 of CW states that any
(0; 0; = Q)-class Bayesian game has a Bayesian Nash 0-equilibrium m with
the property that any two players of the same class play the same strategy.
Thus, gamei (N; ® has a Bayesian Nash 0-equilibrium m with the property
that any two players of the same class play the same strategy. By continuity
in attributes, for all i 2 N:

U m ijt2) i UBx m; i) < 5
forall x2 ¢(S)andt? 2 T. Thus:
UB(mi; my ijt2) > UG myjt2) i "

for all x 2 ¢ (S). This completes the proof.¥
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If the number of attributesis..nitethen wecan go further. Of coursewith
a ..nite number of attributes conformity is less interesting. T he following
T heorem, also a consequence of Theorem 2 of CW, simply states that there
exists a possibly mixed strategy where all players who are identical play the
same strategy.

Proposition 2: Consider a pregame G that satis..es the risk neutrality
property and where the number of attributes is a ..nite integer Q. For
any population (N; ® the induced game i (N; ® has a Bayesian Nash 0
equilibrium that induces a partition of the player set into Q societies.

Proof: Takeas given game i (N; ®. Let - =f! ;! o9 be the space of
attributes and let N = fNj;::;; Nqg denote the partition of the player set
wherei 2 Nq if and only if ®(i) =! 4. Partition N is a O-interaction substi-
tute partition and a O-substitute partition. Thus, i (N;®) isa (0,0, £Q)-
class Bayesian game. Theorem 2 of CW states that any (0; 0; % Q)-class
Bayesian game has a Bayesian Nash 0-equilibrium m with the property that
any two players of the same class play the same strategy. This completes
the proof.¥

5 Pure Strategy Equilibrium

The risk neutrality property proves insu¢ cient for the existence of an ap-
proximate Nash equilibrium in pure strategies. We therefore introduce a
stronger large game property. First, taking a population (N; ® as given, we
de..ne a metric on the space E W of expected weight functions:

D S S SR SN P
dlst2(ew,eg)—.N. ew(!;a;t?)i eg(!;a';t?)
Jioan)aiaa 2T

for any ew;eg 2 EWe. Thus, two expected weight functions are ‘close’ if
the expected proportion of players with each attribute and each type that
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are playing each action are close

Large game property: We say that a pregame G satis. .es the large game
property when: for any " > 0O, any population (N; ® and any two strategy
pro.les 332 §N where;

dist2(ewgsy; ewgy) <"
if % =% then:
UBEa) i U8R <™
foranyt? 2 T.

If a pregame satis..es the large game propety then we can think of payox
functions as satisfying one principal condition - a player is nearly indixerent
to a change in the proportion of players of each attribute and of each type
playing each action (provided his own strategy is unchanged); thus, the
behavior of no one individual or small group of individuals can have large
exects on a player’s payox. T his contrasts with the risk neutrality property
where one individual can have a large infuence® Risk neutrality is also
required to hold under the large game property but an assumption of risk
neutrality is mild in this context; with large player sets, ..nite sets of pure
strategies and ..nite types the law of large numbers dictates that the actual
proportion of players playing each action will, with high probability, be close
to the expected proportion (Kalai 2002).
We state our second theorem:

T heorem 2: Consider a pregame G that satis..es the large game property.
Given real numbers £> 0 and ¢ > O there areintegers “(%¢) and Q(¢)
such that for any population (N; ®, where jNj > “(%¢), there exists a

5T his could be the case if there is a unique player with a certain attribute.
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similar population (N;® with dist(®i); ®i)) < ¢ forall i 2 N and the
induced game i (N;® is a (£ Q(z¢))-substitute Bayesian game.  Further
there exists a proper partition into classes N for game i (N;®) that is a
partition of (N; ® into convex subsets.

P roof: Suppose that the statement of the lenma is false Then there is
some +> 0 and £ > 0, such that for any real number Q and for each
integer 2 there is a population (N°; &) where jN°j > 2 and such that for
no population (N °; ®) where max;,n fdist(®(i); ®i))g < ¢ is the induced
game i (N°; ®) a (% Q)-substitute Bayesian game.

Partition - into convex subsets - 1;:::;- @ each of diameter less than €.
To each subset - ¢ choose and .. an attribute ! o For each (N*; &) de .ne
the attribute function ® as follows: for all i 2 N °:

® (i) = !  if and only if &i) 2 - 4.

Given game (N*; ®) let N® = fN7;:::;Nqg denote the partition of the
player set such that i 2 Ng if and only if & (i) = ! 5. We note that the
value Q is ..xed independently of the game (N°;®). The partition N°
is a O-individual substitute partition for all ¢ and, given the large game
property, a *=interaction substitute partition. Also, for su¢ ciently large 2,
by the large game property, N ° is a *strategy switching partition. Thus,
game i (N°; ®) is a (% Q)-substitute Bayesian game.¥

Our third proposition demonstrates the existence of an approximate
Nash equilibrium in pure strategies and obtains a puri..cation result as a
consequence of the puri..cation result in CW for (£ Q) dass-games.

P roposition 3: Consider a pregame G that satis. .es thelarge game property
and continuity in attributes. Given real number " > 0 there exists real
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number “5(") > 0 such that any induced game i (N; ® where jNj > “5(")
has a Bayesian Nash "-equilibrium in pure strategies.

Proof: Let +~ %3 By Theorem 2 therearereal numbers * and Q such that
for any population (N; ®, wherejNj > *, there exists a population (N; ®)
such that maxjon fdist(®(i); ®i))g < £and the induced game i (N;®) is a
(£ Q)-substitute Bayesian game. Theorem 1 of CW states that any (% Q)-
class game has a Nash 4=z=equilibrium. Let m be a Nash 4z=equilibrium of
game i (N;®). By continuity in attributes, for all i 2 N :

UBGm; (j2) i UBG m; (7)<
forall x2 ¢(S)andt? 2 T. Thus:
US(mjt?) > UB(x; m; ijt?) i 6

for all x 2 ¢ (S). This completes the proof.¥

6 Conformity in Pure Strategies with Roles

Following the approach of CW we consider the possibility that players may
conform in their choice of strategy yet play dizerent actions. T he existence
of imperfect information permits this as a player’s action is conditional on
his type We assume that players can endogenously create imperfect in-
formation through an allocation of roles within a society. To simplify the
analysis we assume that play ‘begins’ with a game of perfect information.
Take as given a pregame G = (- ;A;T;bh) where jTj = 1. Games
induced through this pregame are games of perfect information. Assume
that thereexists a set of rolesR = frl;::;rK g. Consider gamei (N; ®). Let
R ~ RN bethe set of role pro..les. Take as given a protahility distribution
f over the set of role pro..les R where f (r) denotes the probability of role
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pro.ler. We consider a Bayesian game with endogenous roles i (f )(N; ®).
In game i (f)(N; ® roles are (Harsanyi) types. Thus, roles are randomly
allocated to players, a player can make his action choice conditional on
his role and makes his choice of action knowing his role but not those of
playersin the complementary player set. A player’s payox, however, does not
depend directly on the role pro..le We assume that players have consistent
bdiefs with respect to the distribution over roles f . Formally, we can de..ne
game i (f)(N; ® = (N;A;T(f); g®F); u®(f)) to satisfy:

1 T(f) R,

2. foralr2R,

3. u¥f)(ar) " uMa) foralla2 A,r2Randalli2N.

Condition 1 states that roles are equivalent to types. Condition 2 states
that players have consistent bdiefs with respect to the distribution of roles.
Condition 3 states that payoxs are not directly exected by the role pro..le.

We highlight that roles and a probability distribution over role pro..les
are de..ned rdative to a speci..c game i (N; ® rather than a pregame. T his
retects the idea that roles are endogenously created within a population.
Thus, it is more natural to think of a probability distribution over roles
taking as given a speci..c game i (N; ®. Note that this observation is also
retected in the statement of Proposition 4, to follow.

Asdiscussed further by CW, to retain a notion of society in which players
can truly be seen as conforming, assumptions are required on the probability
distribution over roles f. For instance it seems desirable, if players are
conforming, that every player should have an egual chance of beng each
role if this were not the case then it might be argued that players who

21



are playing the same strategy are not exhibiting the same behaviour. T his
motivates our ..rst condition.

W ithin class anonymity: A probability distribution over roles f satis..es
within class anonymity if the probability that a player from a class Nq will
have role rk is (a priori) identical for all players belonging to that dass.
Formally, if i;j 2 Nq for some q then:

forall rk 2 R.

To motivate the next requirement, consider the example of a male-female
household following the roles of ‘he goes out to work, she stays home'. For
this norm to be successful, it is necessary that no player, knowing the struc-
ture of society - the number of players with each role in his or her dass -
after roles are assigned, wishes to change role assignment. T his motivates a
second condition.

W ithin class determination: Given a role pro..ler let z(r;k; g) be the
number of players in class Nq who have role rk. A probability distribution
over roles f is within class determined if for any class Nq and for any two
rolepro.lesr andT, if f (r); f (r) > Othen z(r; k; q) = z(T; k; q) for all classes
gand for all rk2 R,

I'n sum, within dass anonymity requires that each player in a class has an
equal probability of being allocated each role. Within class determination
implies that the number of players who have each role can be known with
certainty ex ante- the only uncertainty is who will have each role. Theseare
strong requirements on f : We propose they capture the notion that players
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in the same class who play the same strategy are conforming to some norm
of behavior.

Before stating our ..nal result we introduce one further de. .nition. We
use the concept of ex-post Nash equilibrium as introduced by Kalai (2002).
Ex-post Nash implies that, knowing the action pro..le and the type pro. .le,
no player has a strong incentive to change her own action. Formally, given
population i (N; ® an action pro..le type pro..le pair a;t is said to be "
ex-Post Nash if for all i 2 N:

uMa;t) , u®aai;t)i "

for all al 2 A. A strategy pro..le %is said to be a Bayesian " ex-Post Nash
euilibrium if it yidds an " ex-Post Nash action pro..le typepro..le pair with
probability one. If a strategy vector is a Bayesian ex-Post Nash equilibrium
then, as discussed further by Kalai (2002), no player would wish to change
his action after knowing the types (or roles) and the actions of the other
players. The proof is based on that of CW (T heorem 3).

Proposition 4: Consider a pregame G that satis..es the large game prop-
erty and continuity in attributes and where jTj = 1. Given a real number
" > 0 there are real numbers “4(") > 0 and Q 4(") such that for any popu-
lation (N; ® where jNj > “,(") there exists a probability distribution over
role pro..les f (that is within dass anonymous and determined) with the
property that game i (f )(N; ® has a Bayesian " ex-Post Nash equilibrium
in pure strategies that induces a partition of the player set into at most
Qa4(") societies.

Proof: Let +° ". By Theorem 2 there are real numbers “ and Q such
that for any population (N; ®, where jNj > *, there exists a population
(N;® such that dist(®i); ®i)) < x=for all i 2 N and the induced game
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i (N;® isa (£ Q)-substitute Bayesian game. Further there exists a proper
partition into dasses N for game i (N;®) that is a partition of (N; ® into
convex subsets.

Theorem 3 of CW states that any given any (% Q)-class game i (N;®)
and proper partition N there exists a probability distribution over role pro-
.lesf (that is within class anonymous and determined) such that i (f )(N; ®
has a Bayesian 10+ex-Post Nash equilibrium with the property that every
player of the same dass plays the same pure strategy. Let m be such an
equilibrium of game i (N;®). By continuity in attributes, for all i 2 N :

USOGm ijt2) i UBG my ijt?) < =

forall x2 ¢(S)andt? 2 T. Thus:
US(mi; my ijt2) > U mi ijt8) | 12+

for all x 2 ¢ (S). This completes the proof.¥

7 Conclusion

In this paper we provide a family of games with many players for which
there exists an approximate Nash equilibrium in pure strategies exhibiting
conformity. A strategy vector exhibits conformity when the population could
be partitioned into a rdatively small number of societies - playersin the same
society play the same strategy and have similar attributes. The existence
of roles within a society was permitted, thus allowing the possibility that
players play the same strategy and yet perform dixerent actions.

Our results complement and extend those due to WCS and CW. In
WCS we also provide a family of games for which there exists an approxi-
mate Nash equilibrium in pure strategies exhibiting conformity. The current
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paper, however, extends that of WCS in considering games of imperfect in-
formation. This allows a dixerent interpretation of conformity and of a
society. As a consequence we are able to bound the number of societies
independently of the number of strategies (in contrast to WCS). In CW
we treat individual games and provide a bound on the ", depending on the
parameters describing the game, allowing existence of a Nash "-equilibrium
in pure strategies exhibiting conformity. CW do not, however, demonstrate
that in large games this bound, and thus ", can be taken to be small. This
paper applies the results of CW in focussing on large games.
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