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Abstract

Intepret a set of players all playing thesamepurestrategy and all

with similar attributesasa society. Is it consistent with self interested

behaviour for a population to organise itself into a relatively small

number of societies? In a companion paper wecharacterized how large

" must be, in terms of parameters describing individual games, for

an equilibrium to exhibit conformity in pure strategies. In this paper

weprovidea wideclass of gameswheresuch conformity is boundedly

rational, that is, where " can bechosen to besmall.
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1 Conformity, bounded rationality and equilibrium

Wesuggest that in gameswith many players common elements of bounded

rational behavior are theuseof purestrategies and conformity in thesense

that a player is inclined to choosethesamestrategy as players heperceives

as similar to himself. If this is the case, and we take Nash equilibrium as

an outcome of fully rational behavior, then the consistency of boundedly

rational behavior and rationality requires the existence of an approximate

Nash equilibrium exhibiting conformity. In this paper weprovide a family

of gameswith many playerswhere thedesired equilibriumexists.

This paper extends, in important respects, previous results of Wood-

ers, Cartwright and Selten, WCS, (2002) and Cartwright and Wooders,

CW, (2003a). In WCS we treat collections of games with complete infor-

mation and demonstrate existence of an approximate Nash equilibrium in

pure strategies and conformity. The class of games considered in WCS are

all derived from a common, underlying structure. In contrast to the ear-

lier research in WCS, CW treats individual games. Also, CW introduces

a new notion of conformity that allows individuals within the samesociety

to adhere to the same social norms – that is, to play the same strategy –

while taking on di¤erent roles in that society. For example, according to

one social norm, in females cook dinner and males mow the lawn. Given

an individual game, CW determines bounds, depending on theparameters

describingthegame, so that if " is larger than thebounds, an "-equilibrium

exhibiting conformity exists. Roughly, the parameters describing a game

are thenumber of ‘player classes’ and ameasureof thecloseness of players

within classes. Thenovel features of CW arethus thenotion of conformity,

thenotion of player classes in strategic games, and thetreatment of individ-

ual games rather than games with many players (as in WCS and theprior

literatureon puri…cation of Nash equilibria).
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An important question not addressed in CW iswhether, for gameswith

many players - large games - the parameters describing individual games,

and thus ", can bechosen to besmall. In this paper we introducea frame-

work of gameswith incompleteinformation and demonstrateconditionsun-

der which thenumbers of player classescan bechosen to berelatively small

while thedistancebetween any two players of thesameclass is small. Con-

formity and existenceof an approximateequilibriumin purestrategies then

follows fromour prior results.

To treat a family of games of incomplete information wetakeas given a

set of attributes - , a set of player typesT and aset of actionsA : A player’s

attribute is assumed to bepublicly observablewhile a player’s type, deter-

mined by nature, is not. A universal payo¤ function h details thepayo¤ of

a player as a function of his attribute, type and action and the attributes,

typesand actionsof thecomplementary player set. A universal beliefs func-

tion b details the probability distribution over type pro…les - players are

assumed to haveconsistent beliefs with respect to this distribution. Were-

fer to the tupleG= (- ;A ;T ;b;h) as a non-cooperative pregame. A player

set and an attribute function, assigningan attributeto each player, induce,

through thepregame, a game.

Weprovideconditions on a pregameso that all su¢ ciently largegames

induced from that pregamehavean approximateNash equilibrium in pure

strategies that is consistent with conformity. To formalize the idea of con-

sistency with conformity we introduce the notion of a society. A society is

de…ned asa collection of playerswhoall play thesamestrategy andwhoall

haveattributes in someconvex subset of attributespace. A strategy vector

induces a partition of the population into societies and, in interpretation,

the fewer are the number of societies then the stronger the conformity. In

our main result weprovideabound on thenumber of societies induced that
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is independent of thenumber of players. Thus, in largepopulationssocieties

must also be large.

Following CW we permit an endogenous assignment of roles within a

society. A player isassignedaroleaccordingtosomeprobability distribution

determined by thesociety and canmakehisaction choiceconditional on his

role. This approach allows us to model the case where players could be

seen as conforming (or belonging to the same society) even though they

may perform di¤erent actions: Given that players can make action choice

conditional on roleor type, two players can play thesamestrategy and yet

(because they have been allocated di¤erent roles or types) play di¤erent

actions.

Aswell as treating thebounded rationality of conformity in purestrate-

gieswealso treat in isolation thebounded rationality of playingpurestrate-

gies and the bounded rationality of conformity. In both cases we provide

su¢ cient conditionson apregamefor theexistenceof an approximateNash

equilibrium satisfying the desired properties - either one in pure strategies

or oneconsistent with conformity.

Elaborating further on the prior literature, WCS provide a family of

gameswith many players for which thereexists an approximateNash equi-

libriumin purestrategies that partitions theplayer set intoabounded num-

ber of societies. Two limitationsof theresultsduetoWCSare: …rst, it only

treats games of perfect information which, amongst other things, does not

allowustomodel anassignment of roleswithin asociety. Second, thebound

onnumber of societies isproportional to thenumber of strategies; given that

theframework ofWCScanbeextended toallowacountableset of strategies

(seeCartwright andWooders 2003b) this appears a signi…cant limitation.

In the companion paper CW we consider the bounded rationality of

conformity in purestrategies for arbitrary gamesof incompleteinformation.
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This is done by introducing the concept of a (±;Q)-class game - any …nite

game is (±;Q)-class game for somevalues of ±and Q. Given a (±;Q)-class

gameabound on " permittingexistenceof aBayesianNash "-equilibriumin

pure strategies consistent with social conformity, is provided as a function

of ±and Q. Theapproach of CW has theadvantageof treating individual

games and permitting incomplete information. In addition, CW are able

to bound the number of societies independently of the number of strate-

gies. CW, however, only put a bound on the " for which there exists an

"-equilibrium satisfying thedesired properties - they do not provide condi-

tions under which the " is small.

In this paper we address some of the issues that arise fromWCS and

CW. First, weextend thepregameframework of WCS topermit incomplete

information. Wethen demonstratea connection between (±;Q)-classgames

and games induced froma pregame. This allows us to apply the results of

CW and in doingsoprovidea family of gameswheretheuseof purestrate-

gies and conformity can be consistent with individually rational behavior.

Further, in the results of this paper, the number of societies is bounded

independently of thenumber of strategies.

Weproceedas follows: Section 2 introducesde…nitionsandnotation and

Section 3reviews thede…nition of a (±;Q)-classgame. In Section 4wetreat

conformity, in Section 5 we treat pure strategies and in Section 6 we treat

conformity in purestrategies. In Section 7weconclude.

2 De…nitions and notation

Webegin thissection by de…ningaBayesiangame. Thepregameframework

is then introduced andwedemonstratehowBayesian gamescan beinduced

through a pregame. Next, we consider the strategies available to players

in a Bayesian gameand discuss expected payo¤s. Weconclude the section
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with thede…nition of a Nash equilibrium.

2.1 A Bayesian Game

A Bayesian game ¡ is given by a tuple (N;A;T;g;u) whereN is a …nite

player set, A is a set of action pro…les, T is a set of type pro…les, g is a

probability distribution over type pro…les and u is a set of utility functions.

Wede…nethesecomponents in turn.

LetN = f1; :::;ngbea…niteplayer set, let A denotea…niteset ofactions

and let T denote a …nite set of types. ‘Nature’ assigns each player a type.

Informed of his own type but not the types of his opponents, each player

chooses an action. We say that a game is a game of perfect information if

jT j = 1. Let A ´ AN be the set of action pro…les and let T ´ T N be the

set of typepro…les. Given action pro…lea and typepro…le t welet ai and ti

denote respectively theaction and typeof player i 2 N .

A player’spayo¤ dependson theattributes, actionsand typesof players.

Formally, in game ¡ , for each player i 2 N there exists a utility function

ui : A £ T ! R. In interpretation ui(a;t) denotes the payo¤ of player i if

theaction pro…le is a and the typepro…le t. Let u denote the set of utility

functions.

A player, onceinformed of hisown type, selectsan actionwithout know-

ing thetypes of theother players. A player therefore forms beliefs over the

typesheexpectsothers tobe. Thesebeliefsarerepresented by a function pi

wherepi(t¡ i jti) denotes theprobability that player i assigns to typepro…le

(ti ;t¡ i) given that i is of type ti . Throughout we will assume consistent

beliefs. Formally, for someprobability distribution g over type pro…les, we

assume:

pi(t¡ i jti) =
g(ti ;t¡ i)P

t
0

¡ i2T¡ i
g(ti ;t0¡ i)

(1)
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for all i 2 N and ti 2 T .1

2.2 P regames

Let - bea compact metric space, called an attribute space and let N bea

…niteplayer set. A function®mapping fromN to - is called an attribute

function. The pair (N;®) is a population. In interpretation, an attribute

function ascribes an attribute to each player in a population. Taking as

given a …nite set of actions A and types T a population (N;®) induces a

Bayesian game ¡ (N;®) ´ (N;A;T;g®;u®) aswenow formalize.

Denote by W the set of all mappings from - £ A £ T into Z+; the

non-negative integers. A member of W is called a weight function. Given

population (N;®) we say that a weight function w®;a;t is relative to action

pro…le a and type pro…le t if and only if:

w®;a;t(! ;a
l;tz) =

¯
¯
¯
n
i 2 N :®(i) = ! ;ai = al and ti = tz

o¯
¯
¯:

Thus, w(! ;al;tz) denotes thenumber of players with attribute ! and type

tz who takeaction al.

A universal payo¤ function h maps - £ A £ T £ W into R+, the non-

negative real numbers. The function h will determine payo¤ functions for

every gameinduced by thepregame. Given a population (N;®), thepayo¤

of a player will depend on his attribute, his action, his typeand theweight

function induced by theattributes, actionsand typesof thecomplementary

player set. Formally:

u®i (a;t)
def
= h(®(i);ai ;ti ;w®;a;t):

Denote by D the set of all mappings from - £ T into Z+. A member

of D is called a type function. Given population (N;®) we say that type

1We assume that the denominator of (1) is always positive - i.e. there is positive

probability that a player i 2 N will beof type ti for each ti 2 T .
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function d®;t is relative to type pro…le t if:

d®;t(! ;t
z) = jf i 2 N :®(i) = ! and ti = tzgj :

Thus, d®;t(! ;t
z) denotes the number of players with attribute ! and type

tz.2 A universal beliefs function bmaps D into [0;1]. The value b(d®;t) is

interpreted as theprobability of typepro…le t. Formally:

g®(t)
def
= b(d®;t)

whereg® is theprobability distribution over typepro…les induced by band

®. Players are assumed to have consistent beliefs with respect to g®. It is

important to realize the di¤erences between functions g® and b. Function

g® isde…ned relativetoapopulation (N;®) and itsdomain isT N . Function

b, however, is de…ned independently of any speci…c game and has domain

D.

A pregame is given by a tuple

G= (- ;A ;T ;b;h);

consisting of a compact metric space - of attributes, …niteaction and type

sets A and T , a universal beliefs function b : D ¡ ! [0;1] and a universal

payo¤ function h : - £ A £ T £ W ¡ ! R+. As discussed abovewerefer to

a population (N;®) as inducing, through thepregame, a Bayesian game

¡ (N;®) ´ (N;A;T;g®;u®):

2.3 Strategies and expected payo¤s

Takeasgivenapopulation (N;®) andinducedBayesiangame(N;A;T;g®;u®).

As discussed above, knowing his own type, but not those of his opponents

a player chooses an action. A pure strategy details the action a player will

2Note that d®;t is a projection of w®;a;t onto - £ T .
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take for each type tz 2 T and is given by a function sk : T ! A where

sk(tz) is the action taken by the player if he is of type tz. Denote the set

of purestrategies by S and let K = jAjjT j = jSj denote thenumber of pure

strategies.

A (mixed) strategy is given by a probability distribution over the set of

purestrategies. Theset of strategies isdenotedby¢ (S). Givenastrategy x

wedenoteby x(sk) theprobability that aplayer takespurestrategy sk 2 S.

We denote by x(aljtz) the probability that a player takes action al given

that he is of type tz. Let § = ¢ (S)N denotetheset of strategy vectors. We

refer to a strategy vector m as degenerate if for all i 2 N and tz 2 T there

exists someaction al for whichmi(aljtz) = 1.

We assume that players are motivated by expected payo¤s. Given a

strategy vector ¾, a type tz 2 T and beliefs about the type pro…le p®i the

probability that player i puts on the action pro…le-type pro…le pair a =

(a1; :::;an) and t= (t1;:::;ti¡ 1;t
z;ti+i ;:::;tn) is given by:

Pr(a;t¡ i jt
z)

def
= p®i (t¡ i jt

z)¾1(a1jt1):::¾i(ai jt
z):::¾n(anjtn).

Thus, given any strategy vector ¾, for any type tz 2 T and any player i

of type tz, the expected payo¤ of player i can be calculated. Let U®
i (¢jt

z) :

§ ! R denote the expected utility function of player i conditional on his

typebeing tz where:

U®
i (¾jt

z)
def
=

X

a2A

X

t¡ i2T¡ i

Pr(a;t¡ i jt
z)u®i (a;tz;t¡ i).

Denote by EW the set of functions mapping - £ A £ T into R+, the

non-negative reals. We refer to ew;eg 2 EW as expected weight functions.

Given apopulation (N;®) wesay that an expected weight function ew®;¾ is

relative to strategy pro…le¾if and only if:

ew®;¾(! ;a
l;tz) =

X

a2A

X

t2T

w®;a;t(! ;a
l;tz) Pr(a;t)
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for all ! ;al and tz. Thus, ew®;¾(! ;al;tz) denotes the expected number of

players of attribute ! who will have type tz and play action al. Note that

this expectation is taken beforeany player is awareof his type.

2.4 Nash equilibrium

Thestandard de…nition of a Bayesian Nash equilibriumapplies. A strategy

vector ¾is a Bayesian Nash "-equilibrium (or informally an approximate

Bayesian Nash equilibrium) if and only if:

U®
i (¾i ;¾¡ i jt

z) ¸ U®
i (x;¾¡ i jt

z) ¡ "

for all x 2 ¢ (S), all tz 2 T and for all i 2 N . Wesay that a Bayesian Nash

" equilibriumm is a Bayesian Nash "-equilibrium in pure strategies ifm is

degenerate.

3 (±;Q)-class games

Informally, a game ¡ (N;®) = (N;A;T;g®;u®) is a (±;Q)-class game if the

population N can be partitioned into Q subsets N1; :::;NQ; called classes,

where(1) any twoplayers in thesameclassare‘±-substitutes’ for each other

and (2) roughly, the payo¤ to a player depends only on his own strategy

choiceand the‘aggregatestrategy’ of theplayers in each class. Theconcept

of a (±;Q)-class gamewas introduced in CW.

To formally de…nea (±;Q)-classgamewerequirenotionsof approximate

substitute players. Take as given a game ¡ (N;®) and a partition of the

player set N =fN1; :::;NQg.

Partition N is a ±I -interaction substitute partition when: For any two

strategy vectors¾1;¾2 2 § if:

X

i2Nq

¾1i (s
k) =

X

i2Nq

¾2i (s
k);

10



for all Nq and all sk 2 S, then:

¯
Ū®
i (x;¾

1
¡ i jt

z) ¡ U®
i (x;¾

2
¡ i jt

z)
¯
¯ · ±I

for any player i 2 N and any strategy x 2 ¢ (S).

Informally, N is a ±I -interaction substitute partition if a player’s payo¤

changesbyat most±I whenother playersof thesameclass‘exchange’ strate-

gies, with his own strategy choiceheld constant.

Partition N is a ±P -individual substitute partition when: For any Nq, for

any two players i; j 2 Nq and for any strategy vector ¾2 § such that

¾i =¾j :

¯
Ū®
i (x;¾¡ i jt

z) ¡ U®
j (x;¾¡ j jt

z)
¯
¯ · ±P

for any strategy x 2 ¢ (S).

Informally, N isa±P -individual substitutepartition if thepayo¤sof any two

players in the same class, when they both play the same strategy and the

strategies of other players areheld constant, arewithin±P .

PartitionN isa±C -strategy switchingpartition when: For any twostrategy

vectors¾1;¾2 2 § if:

X

i2Nq

¯
¯
¾̄1i (s

k) ¡ ¾2i (s
k)
¯
¯
¯ · 1, (2)

for all Nq and all sk 2 S then:

¯
Ū®
i (x;¾

1
¡ i jt

z) ¡ U®
i (x;¾

2
¡ i jt

z)
¯
¯ · ±C

for any player i 2 N and any strategy x 2 ¢ (S).
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Thus, givenasmall proportional changein the‘aggregatestrategy’ of aclass,

if N is a±C -strategy switchingpartition then payo¤swill changeby at most

±C .

Game ¡ (N;®) is said to bea (±I ;±P ;±C ;Q)-class game if thereexists a

partition N of theplayer set intoQ classes such that N is a±I -interaction

substitute partition, a ±P -individual substitute and a ±C -strategy switching

partition. If ±I ;±P ;±C · ±then we refer to ¡ (N;®) as a (±;Q)-class game.

Given a (±;Q)-class game ¡ (N;®) we refer to a partition N as a proper

partition of the player set into classes if it is a ±-substitute partition and

±-strategy switching partition.

4 Games W ith M any P layers

Wewill assumethroughout arelativelymildcontinuitypropertywithrespect

toattributes. This assumption, introduced inWCS, dictates that a player’s

payo¤ is relatively invariant to a small perturbation of the attributes of

players (including himself). Such an assumption would be satis…ed, for

example, in a private goods economy where individual preferences depend

only on own consumption of commodities. Formally:

Continuity in attributes: PregameG= (- ;A ;T ;b;h) is said to satisfy

continuity in attributes when: for any " > 0 and any two induced games

¡ (N;®) and ¡ (N;®), if, for all i 2 N ,

dist(®(i);®(i)) < "

then, for all i 2 N , all tz 2 T and any strategy vector ¾2 § :

¯
Ū®
i (¾jt

z) ¡ U®
i (¾jt

z)
¯
¯< ":

We note that the assumption of continuity in attributes considers a
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change in attributes while the strategies are held constant. The assump-

tion comprises essentially two distinct elements: (1) A player should be

relatively indi¤erent to small changes in theattributesof others - thiswould

suggest, amongst other things, that the probability distribution over types

is largely una¤ected by asmall changein theattributefunction. (2) Players

with similar attributes receive similar payo¤s. This later point will clearly

havearoletoplay indemonstratingtheexistenceof±P -individual substitute

partitions for small values of ±.

4.1 Societies

We de…ne a society. Given a game (N;®) and a strategy vector ¾we in-

terpret a set of players D as a society if (i) there exists some strategy

x 2 ¢ (S) such that ¾i = x for all i 2 D, and (ii) for any player i 2 N ,

if ®(i) 2 con(®(D)) then i 2 D.3 Thus, any two players belonging to a

society D must play the same strategy. Furthermore, to any society D we

can associate a convex subset - D of attribute space - with the properties

that any player belonging toD hasan attribute in - D whilethereexistsno

player who has an attribute in - D that does not belong toD. 4

We say that a strategy vector ¾induces a partition of the player set

intoQ societies if thereexists aQ member partition of theplayer set N =

fN1; :::;NQg such that each subset Nq is a society.

Given a population (N;®) wesay that a partition N =fN1; :::;NQg is a

partition of (N;®) into convexsubsets if thereexistsapartition f - 1;:::;- Qg

of - into convex subsetswith theproperty that if i 2 Nq then®(i) 2 - q for

3Where con(®(D)) denotes the convex hull of ®(D).
4This is a stronger notion of conformity than used by WCS. In WCS condition (ii)

becomes: for any player i 2 N if ®(i) 2 int(con(®(D))) then i 2 D where int(A) denotes

the interior of set A.
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all i 2 N .5

4.2 Conformity

In this sectionwedemonstratethat for a largefamily of gameswecan put a

bound Q on thenumber of societies, whereQ is independent of population

size, such that any gamewithin this family has an approximateNash equi-

librium that partitions the population into at most Q societies. Note that

in this section wemakeno assumption that players usepurestrategies.

We introducea second assumption:

R isk Neutrality property: We say that a pregame G satis…es the risk

neutrality property when: for any population (N;®) and any two strategy

pro…les¾;¾2 § N with expected weight functions ew®;¾and ew®;¾ respec-

tively, where:

ew®;¾(! ;a
l;tz) = ew®;¾(! ;a

l;tz)

for all ! ;al and tz, if¾i =¾i then:

U®
i (¾jt

z) =U®
i (¾jt

z)

for any tz 2 T .

Therisk neutrality property requires players to berisk neutral with respect

to the strategies of others. For example, consider two players i and j who

both haveattribute ! and consider someother player l. Therisk neutrality

property dictates that player l should beindi¤erent as towhether (i) player

i playsstrategy s1 and player j playsstrategy s2, (ii) player j playsstrategy

s1 and player i plays strategy s2, and (iii) both players choose strategy

5Of course the sets - q are required to be only relatively convex since - may not be

convex.
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s1 and s2 with probability one half. There aremany instances where this

assumption would appear mild - weconsider onecase later.

Beforestatingour …rst Theorem, werecall that it follows fromTheorem

2 of CW that any (0;0;±;Q(¿))-class Bayesian gamehas a Bayesian Nash

equilibrium(a 0-equilibrium) with theproperty that any two players in the

same class play the same strategy. Our …rst Theorem demonstrates that

for any gameinduced by a pregamethere is a ‘near-by’ (0;0;±;Q) gamefor

some±and Q. Theexistenceof such games allows us to infer properties of

games induced by pregames.

Theorem 1: Consider a pregameG= (- ;A ;T ;b;h) that satis…es the risk

neutrality property. Given real number ¿ > 0 there is a real number Q(¿)

such that for any population (N;®) there is another population (N;®) sat-

isfying dist(®(i);®(i)) < ¿ for all i 2 N and, for some±, the induced game

¡ (N;®) is a (0;0;±;Q(¿))-class Bayesian game. Furthermore, there exists

a partition N of N that is both a proper partition into classes for game

¡ (N;®) and a partition of (N;®) into convex subsets.

P roof: Partition - intoconvex subsets - 1;:::;- Q eachof diameter lessthan

¿ > 0. For each subset - q chooseand…x an attribute ! q 2 - q. Consider an

arbitrary game¡ (N;®). De…neattributefunction®as follows for all i 2 N :

®(i) = ! q if and only if®(i) 2 - q.

Clearly dist(®(i);®(i)) < ¿ for all i 2 N . For each q, de…neNq = f i 2 N :

®(i) = ! qg. Weconjecturethat thepartitionN ´ fN1;:::;NQg satis…es the

desired properties. Wenotethat all playersof thesameclasshavethesame

attribute. It is, thus, immediatefromthede…nition of individual substitute

partitions that N is a 0-individual substitute partition for ¡ (N;®). Also,

by the risk neutrality property N is a 0-interaction substitutepartition for
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¡ (N;®). Thus, game ¡ (N;®) is a (0;0;±;Q)-class Bayesian game and N

is a proper partition of N . It is immediate that N partitions (N;®) into

convex subsets.¥

Theorem1leads toProposition 1, a consequenceof theaboveresult and

Theorem2of CW:

P roposition 1: Consider a pregameG = (- ;A;T ;b;h) that satis…es the

risk neutrality property and continuity in attributes. Given real number

" > 0 there exists real number Q1(") > 0 such that for any population

(N;®) the induced game ¡ (N;®) has a Bayesian Nash "-equilibrium that

induces a partition of theplayer set intoQ1(") societies.

P roof: Given an " > 0, de…ne ¿ ´ 1
2
". By Theorem 1 there exists real

number Q(¿) such that for any population (N;®) there exists a popula-

tion (N;®) such that maxi2N fdist(®(i);®(i))g< ¿ and the induced game

¡ (N;®) is a (0;0;±;Q)-substituteBayesian gamefor some±. Further there

exists a proper partition of N into classes N for game ¡ (N;®) that is a

partition of (N;®) into convex subsets. Theorem 2 of CW states that any

(0;0;±;Q)-class Bayesian gamehas a Bayesian Nash 0-equilibriumm with

theproperty that any two players of thesameclass play thesamestrategy.

Thus, game¡ (N;®) hasaBayesianNash0-equilibriummwith theproperty

that any twoplayersof thesameclassplay thesamestrategy. By continuity

in attributes, for all i 2 N :

¯
Ū®
i (x;m¡ i jt

z) ¡ U®
i (x;m¡ i jt

z)
¯
¯<

"

2
:

for all x 2 ¢ (S) and tz 2 T . Thus:

U®
i (mi ;m¡ i jt

z) >U®
i (x;m¡ i jt

z) ¡ "

for all x 2 ¢ (S). This completes theproof.¥
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If thenumber of attributesis…nitethenwecangofurther. Of coursewith

a …nite number of attributes conformity is less interesting. The following

Theorem, also a consequenceof Theorem2of CW, simply states that there

exists a possibly mixed strategy whereall playerswhoareidentical play the

samestrategy.

P roposition 2: Consider a pregame G that satis…es the risk neutrality

property and where the number of attributes is a …nite integer Q. For

any population (N;®) the induced game ¡ (N;®) has a Bayesian Nash 0-

equilibrium that induces a partition of theplayer set intoQ societies.

P roof: Takeas given game ¡ (N;®). Let - = f ! 1;::::;! Qg be the spaceof

attributes and let N = fN1;:::;NQg denote the partition of the player set

where i 2 Nq if and only if®(i) = ! q. Partition N is a 0-interaction substi-

tute partition and a 0-substitute partition. Thus, ¡ (N;®) is a (0;0;±;Q)-

class Bayesian game. Theorem 2 of CW states that any (0;0;±;Q)-class

Bayesian gamehasaBayesian Nash 0-equilibriummwith theproperty that

any two players of the same class play the same strategy. This completes

theproof.¥

5 Pure Strategy Equilibrium

The risk neutrality property proves insu¢ cient for the existence of an ap-

proximate Nash equilibrium in pure strategies. We therefore introduce a

stronger largegameproperty. First, takingapopulation (N;®) asgiven, we

de…neametric on thespaceEW®of expected weight functions:

dist2(ew;eg) =
1

jN j

X

! 2®(N )

X

al2A

X

tz2T

¯
¯
ēw(! ;al;tz) ¡ eg(! ;al;tz)

¯
¯
¯

for any ew;eg 2 EW®. Thus, two expected weight functions are ‘close’ if

the expected proportion of players with each attribute and each type that

17



areplaying each action areclose.

Large game property: Wesay that a pregameG satis…es the largegame

property when: for any " > 0, any population (N;®) and any two strategy

pro…les¾;¾2 § N where:

dist2(ew®;¾;ew®;¾) < "

if¾i =¾i then:

jU®
i (¾jt

z) ¡ U®
i (¾jt

z)j < ":

for any tz 2 T .

If a pregame satis…es the large gameproperty then we can think of payo¤

functionsassatisfyingoneprincipal condition - aplayer isnearly indi¤erent

to a change in theproportion of players of each attribute and of each type

playing each action (provided his own strategy is unchanged); thus, the

behavior of no one individual or small group of individuals can have large

e¤ects on a player’s payo¤. This contrastswith therisk neutrality property

where one individual can have a large in‡uence.6 Risk neutrality is also

required to hold under the large gameproperty but an assumption of risk

neutrality is mild in this context; with large player sets, …nite sets of pure

strategies and…nitetypes the law of largenumbers dictates that theactual

proportionof playersplayingeachactionwill, with highprobability, beclose

to theexpected proportion (Kalai 2002).

Westateour second theorem:

Theorem 2: Consider a pregameG that satis…es the largegameproperty.

Given real numbers±> 0 and ¿ > 0 there are integers ´(±;¿) and Q(±;¿)

such that for any population (N;®), where jN j > ´(±;¿), there exists a

6This could be the case if there is a uniqueplayer with a certain attribute.
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similar population (N;®) with dist(®(i);®(i)) < ¿ for all i 2 N and the

induced game ¡ (N;®) is a (±;Q(±;¿))-substitute Bayesian game. Further

there exists a proper partition into classes N for game ¡ (N;®) that is a

partition of (N;®) into convex subsets.

P roof: Suppose that the statement of the lemma is false. Then there is

some ±> 0 and ¿ > 0, such that for any real number Q and for each

integer º there is a population (N º ;®º ) where jN º j > º and such that for

no population (N º ;®º ) wheremaxi2N fdist(®(i);®(i))g< ¿ is the induced

game ¡ (N º ;®º ) a (±;Q)-substituteBayesian game.

Partition - into convex subsets - 1;:::;- Q each of diameter less than ¿.

To each subset - q chooseand …x an attribute ! q. For each (N
º ;®º ) de…ne

theattribute function®º as follows: for all i 2 N º :

®º (i) = ! q if and only if®(i) 2 - q.

Given game (N º ;®º ) let N º = fN º
1 ;:::;N

º
Qg denote the partition of the

player set such that i 2 N º
q if and only if ®º (i) = ! q. We note that the

value Q is …xed independently of the game (N º ;®º ). The partition N º

is a 0-individual substitute partition for all º and, given the large game

property, a±-interaction substitute partition. Also, for su¢ ciently large º,

by the large gameproperty, N º is a ±-strategy switching partition. Thus,

game ¡ (N º ;®º ) is a (±;Q)-substituteBayesian game.¥

Our third proposition demonstrates the existence of an approximate

Nash equilibrium in pure strategies and obtains a puri…cation result as a

consequenceof thepuri…cation result in CW for (±;Q) class-games.

P roposition 3: Consider apregameGthat satis…esthelargegameproperty

and continuity in attributes. Given real number " > 0 there exists real
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number ´2(") > 0 such that any induced game ¡ (N;®) where jN j > ´2(")

has a Bayesian Nash "-equilibrium in purestrategies.

P roof: Let±´ 1
6". By Theorem2therearereal numbers´ andQ such that

for any population (N;®), where jN j > ´, there exists a population (N;®)

such that maxi2N fdist(®(i);®(i))g<±and the induced game ¡ (N;®) is a

(±;Q)-substituteBayesian game. Theorem1 of CW states that any (±;Q)-

class game has a Nash 4±-equilibrium. Let m be a Nash 4±-equilibrium of

game ¡ (N;®). By continuity in attributes, for all i 2 N :

¯
Ū®
i (x;m¡ i jt

z) ¡ U®
i (x;m¡ i jt

z)
¯
¯<±:

for all x 2 ¢ (S) and tz 2 T . Thus:

U®
i (mjt

z) >U®
i (x;m¡ i jt

z) ¡ 6±

for all x 2 ¢ (S). This completes theproof.¥

6 Conformity in Pure Strategies with Roles

Following theapproach of CW weconsider thepossibility that playersmay

conform in their choiceof strategy yet play di¤erent actions. Theexistence

of imperfect information permits this as a player’s action is conditional on

his type. We assume that players can endogenously create imperfect in-

formation through an allocation of roles within a society. To simplify the

analysis weassumethat play ‘begins’ with a gameof perfect information.

Take as given a pregame G = (- ;A ;T ;b;h) where jT j = 1. Games

induced through this pregame are games of perfect information. Assume

that thereexistsaset of rolesR = f r1; :::;rK g. Consider game¡ (N;®). Let

R ´ RN be the set of role pro…les. Takeas given a probability distribution

f over the set of role pro…les R where f (r) denotes the probability of role
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pro…le r. We consider a Bayesian gamewith endogenous roles ¡ (f )(N;®).

In game ¡ (f )(N;®) roles are (Harsanyi) types. Thus, roles are randomly

allocated to players, a player can make his action choice conditional on

his role and makes his choice of action knowing his role but not those of

playersin thecomplementaryplayer set. A player’spayo¤, however, doesnot

depend directly on therolepro…le. Weassumethat players haveconsistent

beliefswith respect to thedistribution over roles f . Formally, wecan de…ne

game ¡ (f )(N;®) = (N;A;T(f );g®(f );u®(f )) to satisfy:

1. T(f ) ´ R,

2. for all r 2 R,

g®(f )(r) ´ f (r)

3. u®i (f )(a;r) ´ u®i (a) for all a2 A, r 2 R and all i 2 N .

Condition 1 states that roles are equivalent to types. Condition 2 states

that players haveconsistent beliefswith respect to thedistribution of roles.

Condition 3 states that payo¤s arenot directly e¤ected by the rolepro…le.

Wehighlight that roles and a probability distribution over role pro…les

arede…ned relativeto a speci…c game ¡ (N;®) rather than a pregame. This

re‡ects the idea that roles are endogenously created within a population.

Thus, it is more natural to think of a probability distribution over roles

taking as given a speci…c game ¡ (N;®). Note that this observation is also

re‡ected in thestatement of Proposition 4, to follow.

Asdiscussed further byCW, toretainanotionof society inwhichplayers

can truly beseenasconforming, assumptionsarerequiredon theprobability

distribution over roles f . For instance, it seems desirable, if players are

conforming, that every player should have an equal chance of being each

role; if this were not the case then it might be argued that players who
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areplaying the samestrategy arenot exhibiting the samebehaviour. This

motivates our …rst condition.

Within class anonymity: A probability distribution over roles f satis…es

within class anonymity if theprobability that a player froma classNq will

have role rk is (a priori) identical for all players belonging to that class.

Formally, if i; j 2 Nq for someq then:

X

r2R :r i=rk

f (r) =
X

r2R:r j =rk

f (r)

for all rk 2 R .

Tomotivatethenext requirement, consider theexampleof amale-female

household following the roles of ‘hegoes out to work, she stays home’. For

thisnormtobesuccessful, it is necessary that noplayer, knowingthestruc-

ture of society – the number of players with each role in his or her class –

after roles areassigned, wishes to changeroleassignment. Thismotivates a

second condition.

Within class determination: Given a role pro…le r let z(r;k;q) be the

number of players in classNq who have role r
k. A probability distribution

over roles f iswithin class determined if for any class Nq and for any two

rolepro…les r and r, if f (r); f (r) > 0 then z(r;k;q) = z(r;k;q) for all classes

qand for all rk 2 R .

In sum, within classanonymity requiresthat eachplayer in aclasshasan

equal probability of being allocated each role. Within class determination

implies that the number of players who have each role can be known with

certainty ex ante- theonly uncertainty iswhowill haveeach role. Theseare

strong requirements on f :Wepropose they capture thenotion that players
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in thesameclasswho play thesamestrategy areconforming to somenorm

of behavior.

Before stating our …nal result we introduce one further de…nition. We

usetheconcept of ex-post Nash equilibriumas introduced by Kalai (2002).

Ex-post Nash implies that, knowing theaction pro…leand the typepro…le,

no player has a strong incentive to changeher own action. Formally, given

population ¡ (N;®) an action pro…le, type pro…le pair a;t is said to be "

ex-Post Nash if for all i 2 N :

u®i (a;t) ¸ u®i (a
l;a¡ i ;t) ¡ "

for all al 2 A . A strategy pro…le¾is said to bea Bayesian " ex-Post Nash

equilibrium if it yieldsan " ex-Post Nashactionpro…le, typepro…lepair with

probability one. If a strategy vector is aBayesian ex-Post Nash equilibrium

then, as discussed further by Kalai (2002), no player would wish to change

his action after knowing the types (or roles) and the actions of the other

players. Theproof is based on that of CW (Theorem3).

P roposition 4: Consider a pregameG that satis…es the large gameprop-

erty and continuity in attributes and where jT j = 1. Given a real number

" > 0 thereare real numbers ´4(") > 0 and Q 4(") such that for any popu-

lation (N;®) where jN j > ´4(") thereexists a probability distribution over

role pro…les f (that is within class anonymous and determined) with the

property that game ¡ (f )(N;®) has a Bayesian " ex-Post Nash equilibrium

in pure strategies that induces a partition of the player set into at most

Q4(") societies.

P roof: Let ±´ 1
12
". By Theorem 2 there are real numbers ´ and Q such

that for any population (N;®), where jN j > ´, there exists a population

(N;®) such that dist(®(i);®(i)) < ±for all i 2 N and the induced game
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¡ (N;®) is a (±;Q)-substituteBayesian game. Further thereexists a proper

partition into classesN for game ¡ (N;®) that is a partition of (N;®) into

convex subsets.

Theorem 3 of CW states that any given any (±;Q)-class game ¡ (N;®)

and proper partitionN thereexists a probability distribution over rolepro-

…les f (that iswithinclassanonymousanddetermined) such that ¡ (f )(N;®)

has a Bayesian 10±ex–Post Nash equilibriumwith theproperty that every

player of the same class plays the same pure strategy. Let m be such an

equilibriumof game ¡ (N;®). By continuity in attributes, for all i 2 N :

¯
Ū®
i (x;m¡ i jt

z) ¡ U®
i (x;m¡ i jt

z)
¯
¯<±:

for all x 2 ¢ (S) and tz 2 T . Thus:

U®
i (mi ;m¡ i jt

z) >U®
i (x;m¡ i jt

z) ¡ 12±

for all x 2 ¢ (S). This completes theproof.¥

7 Conclusion

In this paper we provide a family of games with many players for which

there exists an approximateNash equilibrium in pure strategies exhibiting

conformity. A strategyvector exhibitsconformitywhenthepopulationcould

bepartitioned intoarelatively small number of societies- playersin thesame

society play the same strategy and have similar attributes. The existence

of roles within a society was permitted, thus allowing the possibility that

players play thesamestrategy and yet performdi¤erent actions.

Our results complement and extend those due to WCS and CW. In

WCS wealso provide a family of games for which there exists an approxi-

mateNashequilibriuminpurestrategiesexhibitingconformity. Thecurrent
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paper, however, extends that of WCS in consideringgames of imperfect in-

formation. This allows a di¤erent interpretation of conformity and of a

society. As a consequence we are able to bound the number of societies

independently of the number of strategies (in contrast to WCS). In CW

we treat individual games and providea bound on the ", depending on the

parameters describing thegame, allowingexistenceof a Nash "-equilibrium

in purestrategies exhibiting conformity. CW do not, however, demonstrate

that in largegames this bound, and thus ", can be taken to besmall. This

paper applies the results of CW in focussing on largegames.
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