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Abstract

We study a discrete time dynamic game of price competition with spa-
tially dixerentiated products and price adjustment costs. We characterise the
Markov perfect and the open-loop equilibrium of our game. We ..nd that in
the steady state Markov perfect equilibrium, given the presence of adjustment
cogts, equilibrium prices are always highe than prices at the repeated static
Nash solution, even though, adjustment costs are not paid in steady state
Thisis dueto intetemporal strategic complementarity in the srategies of the
.Irms and from the fact that the cost of adjusting prices adds aedibility to
high price equilibrium strategies. On the other hand, the stationary open-loop
equilibrium coinddes always with the static solution. Furthermore, in contrast
to continuous time games, we show that the stationary Markov perfect equilib-
rium converges to the static Nash eguilibrium when adjustment costs tend to
zero. Moreover, we obtain the same convergence result when adjustment costs
tend to in. .nity.

K eywords: price adjustment costs, dixerence game, Markov pefet equi-
librium, Open-loop equilibrium.

JEL:C72, C73 L13

1 Introduction

In this paper we devdop a duopolistic dynamic game of price competition, in which
products are horizontally dixerentiated and ..rms face adjustment costs every time

*Acknowledgment: | would liketo thank Myrna Wooders, PaoloB ertoletti, ] onathan Cave, ] avier
Fronti, Augusto Schianchi for useful comments, and the participants of seminars at the University
of Warwick and at the University of Pavia. Any mistakes remain my own.
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they change thear prices. |mposing adjustment costs creates a time dependent struc-
ture in our dynamic game and allows us to devdop our modd as a discrete time
dixterential game, or dixerence gagme.! Themain objective of our analysis is to study
the exects of the presence of such adjustment costs on the strategic behaviour of
..rms under dizerent assumptions on theability of the..rms to commit to price paths
in advance. In particular, we focus on two dixerent classes of strateges that have
been widdy used in the dynamic competition modds, Markov and open-loop strate-
gies.? Markov strategies depend only on payox rdevant variables that condense the
direct exect of the past on the current payox.3 The use of Markov strategies restrict
equilibrium evaluation soldy to subgame perfect equilibria, which have the desir-
able property of exduding non-credible thregts. In contrast, open-loop strategies are
functions of the initial state of the game and of the calendar time, and typically, are
not subgame peafect. Thus, Markov and open-loop strategies correspond to extreme
assumptions about player’'s capacities to make commitments about their future ac-
tions. Under the open-loop information pattern, the period of commitment is the
same as the planning harizon while under Markovian strateges no commitment is
possible. T he role of price stidkiness has been analysed in many theoretical modds of
business cycles.* Very little attention, however, has been paid to strategic incentives
associated with price adjustment costs in dynamic oligopoly modds.

T here are several examples of dixerential games of Cournot competition with
sticky prices, for example, Fershtman and Kamien (1987), Piga (2000) and Cdlini
and Lambertini (2001.a). The main result of these authors is that the subgame

!Dixerential games are dynamic games in continuous time, in which the dixerent stages of the
game are linked through a transition equation that describes the eva ution of the state of the model.
Furthemore, the transition equation depends on the strategic behaviour of the players. T hese kind
of games are also called “state-space” games. Dixnaence games are the discrete time countepart of
dixerential games. See Basar and Olsder (1995) for a detailed analysis. See also De Zesuw and Van
Der Ploeg (1991) for a survey on the use of dixerence games in economics.

2See Fudenberg and Tirole (1991) Ch. 13, for and introduction to Markov and open-loop equi-
libria and on ther usein dynamic games. Amir (2001) provides an extensive survey on the use of
these strategies in dynamic economic models.

3There is no generally accepted name in dixerence/ dinerential games theory for such strategies
and for the rdlated equilibrium. Basar and Oldser (1995) use the term “Feedback Nash Equilib-
rium” while Papavassilopoulos and Cruz (1979) use the term “Closed-Loop Memoryless Equilib-
rium”. However, after Maskin and Tirole (1988), the terms M arkov strategies and Markov P erfect
equilibrium has become standard in economic literature.

4Two dixerent possibilities to modd price adjustment costs have been considered in theliterature
on business cycles. First, thereis a ..xed cost per price change due to the physical cost of changing
posted prices. T hese..xed costs are called "menu costs”. See for example, Akerlof and Y ellen (1985)
and M ankiw (1985) among the others. Second, there are costs that apture the negative exect of
price changes, partiaularly price increases on the reputation of ..rms. These costs are quadratic
becuse reputation of ..rms is presumebly more axected by large price changes than by small price
changes. See for example, Rotemberg (1982). In our model, we follow the latter approach.



perfect equilibrium quantity is always bdow the static Cournot equilibrium, even if
prices adjust instantaneously. This implies that the presence of price rigidity cre-
ates a more competitive market outcome. However, in those moddss, price rigdity is
not modd led using adjustment costs, but instead refas to stickiness in the general
price levd. This implies that those modds deal only with one state variable, that
is, the price levd given by the inverse demand function, while in our modd we have
two state variables, the two prices of both ..cms. This fact adds considerably to the
tedchnical complexity of our problem. Themain reason is that dynamic programming
suxers the “curse of dimensionality”, that is the tendency of the state space, and thus
computational di¢ culties, to grow exponentially with the number of state variables.
As far as adjustment costs are concerned, most of the literature on dynamic com-
petition has instead focused on adjustment costs in quantities. However, the same
result described above still hdd in when these adjustment costs are considered. For
example, Reynolds (1989, 1991) and Driskill and McCaxerty (1989) study a dynamic
duopoly with homogenous product and quadratic capacity adjustment costs in con-
tinuous time setting. The steady state output in the subgame perfect equilibrium is
found to be larger than in the Cournat static game without adjustment costs. The
main reason is the presence of intertemporal strateg ¢ substitutability in the strategic
behaviour of the ..rms. A larger output of a ..rm today leads the ..rm being more
aggessive tomorrow. The same result seems to hold independently on the kind of
competition that is considered, as showed by ] un and Vives (2001) in their modd of
Bertrand competition with output adjustment costs.”

All theliterature described so far shares the common feature of a continuous time
setting. An interesting limit result that is common to modds in continuous time
is that, as adjustment costs or price stickiness tends to zero, the subgame perfect
equilibrium approaches a limit that is dixerent from the Nash equilibrium of the cor-
responding static game. Discretetime modds of dynamic competition have been less
devd oped, since it appears that the discrete time formulation is less tractable than
the continuous time formulation. Disade time modds of dynamic competition with
adjustment costs have been analysed in Maskin and Tirde (1987), Karp and Perlox
(1993) and Lapham and Ware (19%4) among athers. In the..rst case Cournat com-
petition with quantities adjustment costs is considered, but the equilibrium has been
characterised only for the casein which adjustment costs approach in..nity. Morein-
teresting for our purposes is the modd of Lapham and Ware (1994). T hey show that
the taxonomy of strategic incentives devdoped by Fudenberg and Tirole (1984) in a
two-stage game @n be extended to in. nite horizon games with Markov strateges.
However, their analysis is limited to the case in which adjustment costs are zero in
equilibrium. Neverthdess, they .nd alimit result that contradicts the one of contin-
uous time modds. T har steady-state Markov perfect equilibrium when adjustment
costs tend to zero is equa to the Nash equilibrium of ther static counterpart game

>This seems to provide a counterpoint to the idea of Kreps and Scheinkman (1983) that quantity
precommitment and price competition yields Cournot outcomes.
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without adjustment costs.

In our modd we characterize the Markov perfect equilibrium for dizerent values
of adjustment costs and product dixerentiation. Given the mathematical complexity
involved in the anaysis, some qualitative results are derived with numerical sinu-
lation. We .nd that the prices at the steady-state Markov perfect equilibrium are
always higher than the prices at the static Nash equilibrium of the corresponding
static game but they coincide in two limit cases - when adjustment costs tend to
zero and when they tend to in..nity. The economic force behind this result is the
presence of intertemporal strategc complementarity: a ..rm, may strategically raise
price today, and induce high prices from its rival tomorrow. The presence of ad-
justment costs enables ..rns to increase prices today and signal that they plan to
keep prices higher next period. However, the magnitude of this strategic comple-
mentarity depends on the levd of product dixerentiation. As products become less
dixerentiated, higher equilibrium prices are sustainable only if adjustment costs are
su¢ ciently high. Strategc complementarity is absent in open-loop strategies and the
steady-state open-loop equilibrium is in correspondence oneto-one with the static
Nash equilibrium. Our anaysis is conducted under the assumptions that demand
functions are linear function of prices and that pro..t functions and adjustment costs
are quadratic and symmetric between ..rms. With this structure our modd is a linear
quadratic game. T hiskind of gameis analytically convenient because the equilibrium
strategies are known to be linear in the state variables of the modd. Moreowver, in
some cases linear quadratic modds or linear quadratic approximations of non-linear
games provide a good representation of oligopdistic behaviour especially around a
deterministic steady state

T he paper is organized as follows. In section 2 we describe the modd. Section
3 presents the full computation of the Markov perfect equilibrium. In Section 4 we
compare the Markov perfect equilibrium with the open-loop equilibrium and then we
consider some limit results for these two equilibria. Setion 5 concludes.

2 The M odel

We start with the derivation of the demand functions. Conside a simple modd
of spatial competition @' la Hotdling in which there is a continuum of consumers
uniformly distributed in theunit interval [0; 1]; with the position of a..rmrepresenting
its ideal product. Consumers incur exogenous ‘transportation costs' for having to
consume one of the available brands instead of thar ideal brand. This cost has the
formof (1=2s), wheres 2 (0; 1 ] provides a measure of substitutability between bath
products.® In particular, when the transportation (or switching) cost tends to zero,

5The formulation of the consumer problem is standard and follows the lines as in Doganouglu
(1999). Dixerently from his analysis, we do not incorporate possible persistent exedts in customer
tastes.



products become dose substitute. In contrast, if 1=2s ! 1 , a consumer prefers
to chocse the brand closest to its ideal pant, independent of price Thus, we can
think at s as an indicator of market power of ..rms. Indeed, when products are highly
dixerentiated (s is small), ..rms @n increase prices without signi..cantly axecting
thar own demand.

T he utility function at time t of the consumer located at point ®in the unit seg-
ment, for product i, is a linear function Ui(v; ®;s; pit) = Vi @%U i pt: Thetemyv
represents the utility that a consumer derives for consuming her ideal product, that
is assumed to betime invariant. Given our speci..cation, the term v represents also
an upper boundary leve for the price set.” If prices plus the exogenous transporta-
tion costs are greater than v, then no products will be bought by the consumers. In
the following we shall assumethat v is su¢ ciently high so that this does not occur.
Finally, F; 2 [0; 1] isthelocation of .xmi; and thetemi p; retects the negative im-
pact of price of product i on the utility of consumers. Following standard procedures,
we solve for the demand functions of a consumer &who is at the point of indixerence.
The linear demand function faced by ..cmi is simply

VePsRd =3 +s@ci po &)
withi;j =0;1andi & j: If .rms set the same price both share equally the market.
In our duopdy modd the two ..rms are symmetric and they are located at each
end of the unit interval. There is no uncertainty. Both ..rms face ..xed quadratic
adjustment costs: —% (pti pii 1)%; where . . 0is a messure of the cost of adjusting
the price levd.? This formulation implies that adjustment costs are minimized when
no adjustment takes place. The per-period pro. t function for ..cm i is the following
concave function in its own prices:

Ya(pit; B Pt 1) = PeYie(Pe P | —; (pti pei 1)’ (2)
At time t; .rm i deddes by how much to changeits price ¢ it = (piti Piti1), O
equivalently to set the new pricelevd at timet: Thus, using the terminology of the
optimal contrd theory, prices at timet are the control variables for the . rms, while
prices at timeti 1 arethe state variables.
Firmi maximizes thefdlowing discounted stream of future pro..ts over an in..nite
horizon:

'Thefad that theset of pricesisbounded assuresthat instantaneous pro. t functions are bounded
aswdl, which is a su¢ cient condition for dynamic programming to be applicable. See Maskin and
Tirole (1988.b).

8We use convex adjustment costs as in Rotemberg (1982). Quadratic price adjustment costs have
bean used also by Lapham and Ware (1994) and J un and Vives (2001) because of their analytical
tractability.



X‘ —
L= Ya(Pie; Pie; Pei 1) (3)

t=1

where ™ 2 (0; 1) is the time invariant discount factor.?

With this structure, our modd is a linear quadratic game. This kind of games is
analytically convenient because the equilibrium strategies are known to belinear in
the state variables,

In our modd, we mainly focus on strategic behaviour of the ..rms based on pure
Markov strateges, that is, Markov strateges that are deterministic, in which the
past infuences current play only through its exect on the current state variables
that summarise the direct exect of the past on the aurrent environment. Optimal
Markovian strategies have the property that, whatever theinitial state and time are,
all remaining decisions from that particular initial state and particular time onwards
nust also constitute optimal strategies. T his means that Markov strategies are time-
consistent. An equilibriumin Markov strategies is a subgame perfect equilibrium and
it is called Markov perfect equilibrium™.

Following Maskin and T irole (1988), we de..nea Markov perfect equilibriumusing
the game theoretic analogue of dynamic programming®?:

De..nition 1 . Let Vit(piti 1; Bti 1) » Withi;j=1,2andi & j; be the value of the game
starting at period t where toth players play their optimal strategy (pe(piti 1; Biti 1) for
i;j=L2andi &]j). This pair of strateges constitute a Markov Perfect Equilibrium
(MPE) if and only if they solve the following dynamic programming problent

Vit(piti 1 Bt 1) = Mp‘?X Ma(pe B Pt 1)) + Vier(pe Bl (4)

T he pair of equations in 4) are the Bdlman'’s equations of our problem that have
to hold in equilibrium. Dixerentiating the right-hand side of the Bdlman’s equations

9The presence of a discount factor less than one together with per-period payox functions uni-
formly bounded assures that the objective functions faced by players are continuous at in..nity.
Under this condition a Markov perfect equilibrium, at least in mixed strategies, always exist in a
game with in..nite horizon. See Fudenberg and Tirole p. 515.

OFor a detailed analysis of this point, see Papavassilopoulos, M edanic and Cruz (1979)

1T he concept of subgame perfection is much stronger than time consistency, sinceit requires that
the property of subgame perfection hold at every subgame, not just thosealong the equilibrium path.
On the other hand, dynamic (or "time”) consistency would require that along the equilibrium path
the continuation of theNash equilibrium strategies remains a Nash equilibrium. For a discussion on
the dinerence between subgame perfection and time consistency see Reinganum and Stokey (1985).

12By de..nition, Markov strategies are feedback rules. Furthermore, it is well known that dynamic
programming produces feedbadk equilibria by its very construction , thus, it represents a natural
tool to analyse Markov perfect equilibria.



) with respect the control variable of each ..rm, we obtain the following ..rst order
conditions:

@a(po P Pt 1) |, - @ies1(pe Be)
@it * @t =0 )

Given thelinear quadratic nature the..rst orde conditions of each player com-
pletely characterize the Markov perfect equilibrium. To solvethis system of equations,
we need to guess a functional form for the unknown value functions Vi (9: However,
we know that equilibrium strateges in linear quadratic games are linear fundions of
the state variables and value functions are quadratic. Then, we guess the following
functional form for the value functions:13

d . D
Vierr (P pe) = & + bpie +qgt+—2'p,2t+epitgt +fip} fori;j =L2andi6& ]
(6)

where the parameters ai; h;G; d; e and f; are unknown parameters. Equation 6)
had for every t:

We are ndt interested in solving for all these parameters since we are analysing
only the derivatives of the value functions that are given by:

@Qit+1 (Pit; Pit)
@it

=h +dpt+apt fori;j =L2andi&j

@it+1 (Pt Bt)
@Dt

where the coe¢ cients b; ¢; di; @ and f; arethe parameters of interest that areto be
determined by the method of undetermined coeg cients (See Appendix). A solution
for those coeg cients, if it exists, will be a function of the structural parameters of
the modd given by s;” and ,: Substituting the rdevant derivatives of the payox
functions and equations 7.1) and 7.2) into 5), we can obtain a solution for the current
prices (pt; Bt) as a linear function of the state variables (pi; 1; 9+ 1). T his solution
is dven by the fdlowing pair of linear Markov strategies:

=g +apt+fipt fori;j =L2andi &j (7)

Bt =Fi +Ripti 1+Mipti1 fori;j =1L 2andi &] (8)

13Since the mathematical analysis involved is standard, we follow the lines as in Lapham and
Ware (1994).



where thecoe¢ dents F;; R; and M; are functions diredly and indirectly, through
the unknown parameters of the derivatives given by 7.1) and 7.2), of the structural
parameters of themodd (s; ™ and | ): (See Appendix).

We can substitute optimal strategies given by 8), after taking into account for
symmetry, into the Bdlman’'s equations 4), and then dixerentiating 4) for the state
variables (piti 1; Pt 1 ). Using the ..rst order conditions 5) to apply the Envelope
theorem, we obtain the following system of four Euler equations:

Qi _ @4 +.@/1?t+-@/it+f @t
@t1 @1 @ @t i1

@ _ @& . @& -@hui’ @t i o
@i 1 @ti1+ @t+ @ @tilforl,j L,2andi & (9.2)

where the pro. .t functions are given by Y&(Bt(piti 1; Bti 1); Bt(Bti 1, Bt 1); Piei 1):
Using equations 7.1) and 7.2) in the above Euler equations, and using the mehod
of undetermined e¢ cients, we obtain ten non-linear equations in ten unknowns
parameters ai; h;G;di;e and fj for i = 1; 2 (see Appendix): If a solutions for these
parameters exists, then the linear Markov perfect equilibrium given by 8) exists as
wdl. Given the fact that we have to deal with ten non-linear equations, to simplify
the mathematical tractability of the modd, we restrict our analysis to a symmetric
Markov perfect equilibrium.** T hisimplies that from equations 7.1) and 7.2) we have
bhb=b=ba=g=cd=b=de=eg=eand f; =f, =f: Thus, Markov
strategies arealso symmetric, thatis, F; =F, =F;R; =R, =R andM; =M, = M:
Suppose that a solution for the unknown parameters exists, and denote this solution
with % ¢ d € and f ™ Using symmetry in the Markov strategies, and using the
de. nitions given in the Appendix for the coe¢ cients F; R and M, we can solve for
the symmetric steady statelevd of thesystemof ..rst order dixterence equations given
by 8):

fori;j =L2andi & (9.1)

e _1 1420
251 (F+e&)

whereweassume s & ~ (dF + €). T he equilibriumin 10) is the steady-state linear
Markov perfect equilibrium of our modd. Note that when s tends to in..nity the
equilibrium prices tend to zero. In the next section we will show how to derive a
solution for the unknown parameters I§°; ¢, d; € and f ™ Then, we will consider in
detalls the properties that the equilibrium given by 10) exhibits.

fori =12 (10)

l4Strategic symmetric behaviour by ..rms is a standard assumption in the literature on dynamic
competition. Seefor example J un and Vives (2001), Driskill and McAxrerty (1989) and Doganouglu
(1999) among the others. This assumption can be seen as a natural consequence of the fact that
..rms face a symmetric dynamic problem. However, weare aware that the presence of ten non-linear
equations implies that many equilibria, symmetric and not, an arise from our modd.
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3 Computation and P roperties of the M arkov P er-
fect Equilibrium

In this section we compute more in detal the linear Markov perfect equilibrium of
our modd. We start with the derivation of the Nash equilibrium of the static game
associated with our modd without adjustment costs.’® This particular equilibrium
represents a useful benchmark that can be compared with the Markov perfect and the
open-loop equilibria of themodd and it will be useful when will study the convergence
properties of such equilibria when adjustment costs tend to zero. Assuming ;, = 0;
the symmetric static equilibrium of the repeated game without adjustment costs,
denoted by ; is given by:

—s_ 1
" 2s

As we might expect, without adjustment costs, prices in equilibrium arefunctions
of the measure of substitutability between the two goods. As far the Markov per-
fect equilibrium, when goods are perfectly homogeneous (s tends to in..nity) static
equilibrium prices are zero as in the dassical Bertrand modd.

In order to derive the properties of the Markov perfect equilibrium given by 10)
we nexd to ..nd a sdution for the parameters of the vaue functions §°; ¢, &; € and
f*: Despite the analytical tractability of linear quadratic games, gven the analytical
di¢ culty to deal with the highly non-linear systeam of implicit functions, most of
the results that we are going to present are obtained using numerica methods.®
Numerical techniques are often used in dynamic games in state-space form, as in
Judd (1990) or Karp and Perlox (1993). The presence of nonlinearity implies that
we must expect many solutions for the unknown parameters, and thus, multiple
Markov perfedt equilibiria.l’ In arder to reduce this multiplidty, we concentrate our
analysis to symmetric Markov perfect equilibria that are asymptotically stable as in
Driskill and M cCarerty (1989) and J un and Vives (2001). An asymptotically stable
equilibrium is one where the equilibrium prices converge to a ..nite stationary leve
for every feasible initia condition.’® The symmetric optimal Markov strategies are

(11)

BThis particular equilibrium is important because it represents a subgame perfect equilibrium of
the in..nite repeated game without adjustment costs associated with our model.

8" particular, we use the Newton’s method for nonlinear systems. The numerical analysis is
performed with the use of the mathematical software Maple 7. For an introduction to the Newton's
method, see Cheney and Kincaid (1999), Ch.3.

YUnfortunately, in literature, there are no general results on the uniqueness of Markov perfect
equilibria in dynamic games. An interesting exception is Lokwood (1996) that provides su¢ cient
conditions for uniqueness of Markov perfect equilibria in a¢ ne-quadratic dixerential games with one
state variable.

18Given the lack of a transversality condition in the dynamic problem stated in De..nition 1, we
focus on asymptotically stable equilibria also because in this case we know that these equilibria will
ful.l. the tranversality condition even implicitly.



given by:

Bt =F +Rpt 1 +Mpii 1 fori;j =L2andi & (12)

From these strategies we @n derive the conditions for stability of the symmetric
linear M arkov perfect equilibrium :

Proposition 1 Assumingin 12) that (2s+ , i “d) & (s + " ¢); then, this pair of
strateg es de, .nes a stable equilibrium, if and only if, the e genvalues of the synmetric
matrix A = I\F/i |\F/} arein module less than one. This implies that conditions for
the stability of the system gven by 12) are (di € << and (d+¢) < =:

The result in Proposition 1 is derived from the theory of dynamic systems in
discrete time.® T he conditionthat (2s+ , i ~d) & (s+ ~ €) assures that the param-
eters of the Markov strategies 12) are wel de..ned (see Appendix). Thus, when we
look for a solution of the system A3) de..ned in the Appendix, this solution should
respect the conditions in Proposition 1. Furthermore, we impose that at that solu-
tion, equilibrium prices cannat be negative Given these conditions, we now focus
on the properties of our Markov pefedt equilibrium when adjustment costs are pos-
itive and . nite  We solve the system A3) in the Appendix for given values of the
transportation cost, s, the discount factor ~; and the measure of adjustment costs
.20 We consider only readl solutions for the unknown parameters, and we consider
only solutions that are localy isolated, or loally stable?! Thus, we construct an
asymptotically stable Markov pefect equilibrium numerically instead of anaytically
as in Drisckill and McCamerty (1989) and J un and Vives (2001). This allows us to
obtain a unique solution for the parameters B, ¢&; d%; € and f* and thus, a unique
Markov perfect equilibrium for each set of values of the structural parameters of the
modd (s; = and | ): Given the di¢ cult economic interpretation for these parameters,
a sample of resultsis given in the Appendix. Haewereport the implications of those
solutions for the ceg cients of the symmetric Markov strategies F; M and R: Weare
interested in particular on the coe¢ cient R that represents the exect of one ..rm's
today choice on the rival’s choice tomorrow.

Proposition 2 For a plausible range of the structural parameters of the modd s; ~
and ,, we have the following results at the stable solutions of the system A3):

BDrisckill and McCarerty (1989) and Jun and Vives (2001) construct an asymptatically stable
Markov equilibrium using similar conditions for dixerential equations, called Routh-Hurwitz condi-
tions. Forthe case of a 2£ 2 system of diraence equations, these conditions imply that jdet(A)j < 1
and jdet(A) + 1j < tr(A); wheretr isthetrace of matrix A.

20Most of our results are based on avalue of ~ close to 1, a value that we take from the numerical
analysis of Karp and Perlox (1993).

2lIn practice we want that at one particular solution, if we perturb that solution, the system of
implicit functions A3) must remain close to zero.
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1) the coet cients of the Markov strateges are always positive

2) R is.rst increasing and then decreasing in | : The higher s the higher the

persistence of the increasing phase

3) R is dacreasing in s when adjustment costs are small. R ..rst increases and
then decreases in s

when adj ustment costs become larges The higher |, the higher the persistence of the
increasing

phase;

4) we have always M > R, however, the dicerence (M i R) is dacreasingin s;

5) the coet cient M isincreasingin , and dacreasing in s;

T he statements in Proposition 2 are summarised in the following table, in which
we report a sample of the results of our numerical analysis made on system A3.
Table 1. Numerical values far the coeg cients of Markov strategies.

s=05" =095 s=1" =0% s=10, =095

, F M R F M R F M R
01 0924 0104 004 0480 0.057 0.0265 0049 0.006 0.003
05 0704 0313 00® 0414 0204 0.0757 0049 0.031 0.015
0.8 0567 0401 0111 0374 0275 0.0919 0.048 0.047 0.022
1 0541 0446 0115 0352 0313 00991 0.048 0.058 0.026
2 0362 0588 0117 0270 0446 0.1154 0.046 0.104 0.044
5 0174 0757 0093 0154 0.633 01145 0.041 0204 0.075
10 0092 0852 0064 0.087 0757 0.0931 0033 0313 0.09

In Proposition 2, we have identi..ed the strategic behaviour of ..rms when adjust-
ment costs are paositive and . nite Not surprisingly, we have that the optimal price
choice of a . rmis an increasing function in the rival’s price and this exect is captured
by the coet cient R: Thus, the strategic behaviour of the ..cms in our modd, is char-
acterised by intetempora strategic complementarity. Furthermore, the size of the
exect of strateg c complementarity as a function of | follows a bdl-shaped curve. For
small adjustment costs, it increases, while, when adjustment costs become higher, it
deaeases until it reaches zero as , approaches in. nity. Thisis because, the bene. .ts
of inaeasing prices today to amect rival’s prices tomorrow, are more than oase by
the costs of adjusting prices. However, results 2) and 5) in theabove Proposition say
that this rdationship depends on the measure of product dixerentiation s: When s
is high, competition between . rms becomes . ercer, since small changes in priges can
have huge exects on consumer’s demand. |n this case to sustain a credible strategy
of increasing pricesit is neaessary to have a rdatively higher levd of adjustment costs
than in the case in which s is small and . rms have highe market power. Finally,
result 4) in Proposition 2) says that as s increases, ..rms tend to assign a rdativey
higher weght to the rival’s price in ther strategic behaviour than in the case in
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which products are more dixerentiated. From Proposition 2, we can identify the ef-
fects of pasitive adjustment costs on the steady-state Markov perfect equilibrium of
our modd. The main result is stated in the following P roposition:

Proposition 3 When adjustment costs are positive and . nite, prices a the sym-
metric steady state Markov perfect equilibrium are always higher than prices in the
equilibrium of the repaated static game. This is true even though, no adjustment
costs are paid in the steady state.

T he equilibrium values of the Markov perfect and the corresponding static Nash
equilibrium for the same sample used in Table 1 are reported in the following table

Table 2 Comparison between the symmetric Markov perfect and the counterpart
static Nash equilibrium.

s=05 =09 s=1 =09 s=10, =095
L. P" P P P P* P
01 1086 1 0.525 0.5 00503 0.05

05 119 1 0575 05 00513 0.05
08 1225 1 0592 05 00521 005
1 1234 1 059 05 00525 005
2 1233 1 0615 05 0043 005
5 1168 1 0609 0.5 00570 0.05
10 1106 1 0582 0.5 00573 0.05

From Proposition 3 wecan say that in our dynamic game, the presence of adjust-
ment costs and the hypothesis of Markov strategies create a strategic incentivefor the
..rms to deviate from the equilibrium of the repeated static game even if adjustment
costs are not paid in steady state. Theresult is a less competitive behaviour by the
..rms in the Markov equilibrium than in the static case. T he economic force behind
this result is the presence of intertemporal strategic complementarity that we have
analysed above. A ..rm by pricing high today will induce high prices from therival
tomorrow, and the cost of adjusting prices lends credibility to this strategy, since it
is costly to deviate from that strategy. The result in Proposition 3) contrasts with
the one found in dynamic competition modeds with stidky prices, where general price
stickiness creates a more competitive outcome in the subgame perfect equilibrium
than in the static Nash equilibrium. The main reason is that in our modd, price
rigidity is moddled directly in the cost functions of the ..rms and there is a credi-
bility extect associated with adjustment costs that can sustain high equilibrium price
strategies, while, this credibility exect is absent with general price stickiness. We
can notice that as products become close substitute (s increases), the higher is the
level of adjustment costs the higher is the dixerence between P€ and P° rdativey
to the case where s is small. The intuition is the same as the one described above
to explain results 2) and 3) of Proposition 2). When s is high, ..rms have a strong

r



incentive to reduce ther prices of a small amount in order to capture additional de-
mand. Large adjustment costs can oxset this incentive because the credibility of a
high price equilibrium strategy will be stronger. Obviously, we know already from
Propasition 2) that this credibility exect is nat increasing monotonicaly with |, be-
cause as adjustment costs become extremdy high, the coe¢ cient R tends to zero. We
shall anayse this aspect in more detail when we will consider the properties of the
Markov pefect equilibriumin thelimit game. Theresult in Proposition 3) states that
when adjustment costs are positive, ..rms are better ox in the steady state Markov
perfect equilibrium than in the static Nash equilibrium of the repeated game. T hus,
the presence of positive adjustment costs can induce a tacit collusive behaviour by
..rms. However, this is true only if products are not homogeneous, that iss < 1 : If
products are perfect substitute, we already know that the Markov perfect equilibrium
given by 10) converges to the static Nash equilibrium independently of the value of | :
Moreover, in this case both equilibria are equal to zero and we fall into the classical
"Bertrand paradox”.

3.1 Markov Perfect Equilibrium in the Limit Game

We now consider the properties of the Markov perfect equilibrium of our modd in
dimerent limit cases. Dinerently from previous section, the results we are going to
show are obtained analytically. We start our analysis evaluating the steady state
Markov perfect equilibrium given by 10) in two limit cases, when adjustment costs
tendtozeo(, ! 0); and when they arein.nite(, ! 1 ): This allows us to de.ne
the convergence properties of the steady-state Markov pefect equilibrium given by
10) toward the static Nash equilibrium 11), that, as we know from the introduction,
is an important issue for the literature on dynamic competition. In order to describe
the behaviour of the equilibrium in 10) in the two limit games, we nead to evaluate
the systeam A3) in the Appendix in the two extreme assumptions on the adjustment
costs parameter | : T heresults for our limit games are the following

Proposition 4 When adjustment coststendstozero (, ! 0); thesymmetric solution
for the unknown parameters is the following b* = =df =& =f* = (; and the
steady-state Markov perfect equilibrium corresponds with the static Nash eguilibrium
of the repeated game. When adjustment aoststendtoin..nity (, ! 1 ), the synmetric
solution for the unknown paranetersis: B = -'ZL; c=0d=i2e=sf"=0and
the steady-state Markov perfect equilibrium converges to the static Nash equilibrium
gven by 10).

Proof (see Appendix). The convergence of the steady state Markov perfect equi-
librium toward the static Nash equilibrium when adjustment costs tend to zero, is
the same result as in Lapham and Ware (1994), and it contradicts the results found
in continuous timemodds of dynamic competition. In our discrete time modd, as in
Lapham and Ware (1994), the discontinuity found in continuous time modds, when
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adjustment costs tend to zero, disappears. T his result is supported by the numerical
analysis devdoped by Karp and Perloxt (1993), that gves also a possible explana-
tion of why discrete and continuous time behave dixerently in the limit case of zero
adjustment costs. In their modd, they show that the steady-state Markov perfect
equilibrium becomes more sensitiveto , when we pass from discrete time to continu-
ous time. On the othe hand, the second result is common in discrete and continuous
time modds, like in Maskin and T irole (1987) and Reynolds (1991). T he economic
intuition behind this result is that: when adjustment costs become very large, the
extra costs to change prices strategically outweight the bene. ts, thus, ..rns are in-
duced to behave nonstrategically and the steady-state subgame pefect equilibrium
converges to the static sdution. Of course, the case with in..nite adjustment costs
is not very practical, espedally for our purpose, since we are dealing with price ad-
justment costs that are normally associated with a small value of | : However, this
limit result is important because it shows that our value functions are continuous
at in..nity?2. Finally, we consider what happens to the steady state Markov perfect
equilibrium when ™ tends to zero, that is, when only present matters for ..rns. Fer-
shtman and Kamien (1987), using a continuous time modd with sticky prices, found
that when only present matters for ..rms ther stationary Markov perfect equilibrium
convergss to the competitive outcome. On the other hand, Driskill and McCaxerty
(1989), using a similar modd but with adjustment costsin quantities, found that the
Markov perfect equilibrium converges to the static Nash equilibrium of the repeated
game without adjustment costs. In our modd, we have the following result:

Proposition 5 As ~; the dismount factor, tends to zero, the steady state Markov
perfect enuilibrium gven by 10) tends to the static Nash eguilibrium of the repeated
game without adjustment costs.

T he proof of this Proposition can be easily seen taking the limit of the Markov
pefect equilibriumin 10) for = ! 0: In this case it is simple to see that the result is
the static Nash equilibrium gven by 11).

Aswe might expect, if futuredoes nat matter for ..rms, the result istheequilibrium
of the oneshot game We obtain a result similar to the one of Driskill and McCaxerty
(1989), however, if we allow products to be homogeneous our equilibrium converges
to the competitive outcome as in Fershtman and Kamien (1989), that, in our case
implies equilibrium prices equal to zero.

4 The Open-Loop Equilibrium
In this section we will analyse what are the exects of adjustment costs on equilibrium

price if we force ..rms to behave using open-loop strategies. While Markov strate-
gies are feadback rules, open-loop strateges are trajectory, or path, strategies. In

22See | ensen and Lokwood (1998) for an analysis of discontinuity of value functions in dynamic
games.
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particular, open-loop strategies are functions of theinitia state of the game (that is
known a priori) and of the calendar time. Markov pefect and open-loop strategies
correspond to extreme assumptions about player's capacities to make commitments
about ther future actions. Unde the open-loop information pattern, the period of
commitment is the same as the planning horizon, that in our case is in..nite T hat
is, at the beginning of the game, each playa must make a binding commitment about
theactions it will take at all futuredates. T hen, in general terms, a set of open-logp
strategies constitutes a Nash equilibrium if, for each player, the path to which they
are committed is an optimal response to the paths to which the ather players have
committed themsdves. An open-loop strategy for player i is an in..nite sequence
o (po; post) = fpypz i pe g 2 <t ,specifying the price levd at every period
t ove an in.nite horizon as a function of the initial price leves (po; B o) and the
calendar time Formally, we de..ne an open-logp equilibrium in the following way:

De..nition 2 A pair of open-loop strateges (p2'; pg) constitutes an open-loop eoui-
librium of our game if and only if the following inequalities are satis..ed for each
player:

i p) L i) withisj =12 and i 6]

Typically these equilibria are not subgame perfect by de. nition, then, they may or
not may "time consistent”. T here are exampl es of dynamic games in which open-loop
equilibria are subgame perfect?, but in general when dosed-loop strategies are fessi-
ble, subgame perfect equilibria will typically not be in open-loop strategies. In order
to solve for the steady state open-loop equilibrium, we need to use the Pontryagin’s
maximum principle of the optimal control theory, sinceit can be shown that thereisa
close relationship between derivation of an open-logp equilibrium and solving jointly
dixerent optimal control problems, one for each player?®.

Proposition 6 The steady-state open-loop eguilibrium is in correspondence one-to-
one with the Nash epuilibrium of the counterpart static game.

Proof. We nead to solve a jant optimal control problem for both ..rxms. The
Hamiltonians are®:

Hi = _tl/&(ﬁtigt;ﬁti 1) +1 ii(t)(pt [ Rt 1) + 1ij (t)(gti Qti 1) with IIJ = 112 and i &J
(13)

2Cdlini and Lambertini (2001.b) show that in a dixerential oligopoly game with capital accu-
mulation, Markov perfect and open-loop equilibria are the same if the dynamic of the accumulation
takes the form a’ la Nerlove-Arrow or @' la Ramsey.

24For a detailed analysis, see Basar and Olsder (1995), Ch.6.

A formalization of the Maximum Principle in discrete time can be found in Leonard and Van
Long (1998), Ch. 4.
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T he corresponding necessary conditions for an open-loop solution are:

@'li __t@/ﬂt(mt;gt;pti 1) 41

@ = an (=0
. . . @, . -t @4&(Po Bu Bt 1)
L) (i 1) =i — = 1t
i1 Fulti 1) =i @i 1 ! @i 1 +hil
LTt D= e ) (14)

@i 1

in steady state we have * ji(t) = *;i(ti 1), *y(t) = *4(ti 1), pt = Pt 1 and
Bt = Pt 1: Thus, from the last two conditions we obtain * j;(t) = *; (t) = & Using
this results, we can seethat in steady state, theinitia problem reduces to the static
maximization problem (@ﬂgf;@‘ﬁ =0). Q.E.D.

T hus, thereis a direct correspondence between the steady state open-loop and the
static Nash equilibrium of our modd. In a stationary open-loop equilibrium there
are no strategic inaentives to deviate from the static outcome of the modd without
adjustment costs. The main reason is that open-logp strategies are independent on
state variables and then, there is no way to axect rival’s choice tomorrow dhanging
strategy today as in Markov strateges. T he same result has been found by Driskill
and McCarerty (1989) and J un and Vives (2001) using dixerent modds but it dixers
from the one in Fershtman and Kamien (1987) and Cdlini and Lambertini (2001.a),
since in ther modds, the open-loop solution implies higher output than the static
solution, and they coincide only when the pricelevd can adjust instantaneously. T his
dixerence is mainly due to the dixerent speci..cation of the transition law attached
to the costate variables in the Hamiltonian system. In our modd, as in Driskill
and McCaxerty(1989) and J un and Vives (2001), this transition law is ssimply the
de nition of .rst direrence in prices,?® while in Fershtman and Kamien (1987) and
Cdlini and Lambertini (2001.a), this transition law is the dixerence between current
pricelevd and the price on the demand function for each levd of output. Finadly, from
a regulation paint of view, if it could be possible to force . rms to behave according
to open-loop strategies it would be possible to increase the levd of competition in
equilibrium also with the presence of positive adjustment costs.

5 Conclusion

In this paper we have devdloped a dynamic duopdy modd of price competition over
an in. nite horizon, with symmetric and convex price adjustment costs and spatially

260bviously, in Driskill and McCarerty (1989) and ) un and Vives (2001) the transition law is the
time derivative of prices.
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dixerentiated products. We have concentrated our analysis on the strategic interac-
tion between ..rms in a linear quadratic dierence game using two dixerent equilib-
rium concepts: Markov perfect equilibrium, that has the property of being subgame
perfect, and the open-loop equilibrium, that is normally not subgame perfect. Given
the existence of adjustment costs in prices, in the steady state Markov pefect equi-
librium there is a strategic incentive for .rms to deviate from the repeated static
Nash solution even if no adjustment costs are paid in equilibrium. In particular, we
have shown that the steady state price equilibrium, and then, the levd of compe-
tition, is lower in the stationary Markov equilibrium than in the counterpart static
Nash solution without adjustment costs. T he economic force behind this result isthe
presence of intertemporal strategic complamnentarity. A ..rm by pricing high today
will induce high prices from the rival tomorrow. Moreover, the presence of adjust-
ment costs leads to adibility in strategies that imply higher prices in equilibrium,
for each ..rm, than in the case of static Nash equilibrium. This implies that ..rms are
better ox when adjustment costs are positive and they behave according to Markov
strategies and that the presence of these adjustment costs can sustain cdlusive be-
haviour. However, this is trueonly if products are not homogeneous. If products are
perfect substitutes, the steady state Markov perfedt equilibrium always incide with
the static Nash equilibrium of the repeated game without adjustment costs and we
fal into the classical "Bertrand paradox”. The incentive to deviate from the static
equilibrium is absent once we consider gpen-loop strategies. Indeed, the stationary
open-loop equilibrium of our modd is aways in correspondence one-to-one with the
Nash equilibrium of the static game. In addition, we have shown that when adjust-
ment costs tend to zao or to in. nity, the limit of our Markov perfect equilibrium
converges to the static Nash equilibrium. T he former result, con..rmed by Lapham
and Ware (1994), seams to be peculiar of discrete time modds, since in continuous
time modéds thereis a discontinuity in the limit of the Markov perfect equilibrium as
adjustment costs tend to zero. A number of extensions can be made in our analysis.
Linear quadratic games do not peform wdl when uncertainty is considered. These
particular models allow for speci..c shocks in the transition equation but they cannot
dedl, for instance, with shocks to the demand function. A natural extension of our
analysis could be to rdax the hypothesis of linearity of the strategies to allow for
demand uncartainty. Another possible extension could be the analysis of the exects
of asymmetric adjustment costs between ..rms, since this could giverise to a possible
set of asymmetric steady state outcomes.
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Appendix

In this section we derive the equations for the unknown parametas of the value
functionsh; G; d;; @ and f; that areto solved to computea Markov perfect equilibrium
in our modd. We start with the sdution of the two ..rstOorder conditions given by
5) in the paper. Using the deivatives of the value functions 7.1) and 7.2) into 5) and
calculating the rdevant derivatives of the payox functions, we obtain the following
system of equations:

pt =Ai +Bipt+Cipti1; fori;j =L 2andi & j: (A1)
where the coe¢ cients A;; B; and C; have the following functional form:

3t h g __(s+7e) |
25+, 0 “d) ' (2s+,i d)

and where we assumethat 2s + | & " d:

We can sdve the system A.1) for pi+ as a function of the state variables pit; 1 and
Bti 1, fori;j =1,2and i & j: The solution is the pair of linear Markov strategies
given by 8) in the paper that we report here for simplicity of exposition:

Ci =

Ai =

(2s+,i ~d)

Bt =F +Ript 1 +Mipri1 fori;j =12andi &]

Fi=r——; Ri=—"; Mj=———; fori;j =L2andi6&]
(A2)

and where we assume B; & 1; that inpliesthat (2s+, i "d) & (s+ " &):

Using 7) into the Euler equations 9), and then using 8), we can obtain four
equations that dgpend only on the state variables, pt; 1; with i = 1,2 Rearranging
and matching the coe¢ cients associated with the state variables as wdl as for the
various constant terms, we obtain the following non-linear system of ten implicit
equations in ten unknowns, b; G; di; @ and f; :

E)

0=S(Rji Mi)Fi i b+Mj %i S(Fji Fj) i, (M 1)Fi+_Rj [Fi(s+a+fi)+qg]

O=S(Mji R,)F,I C|+%RJI J(Fj'j)+-Ri —;-I Fi(25+;+di)+Fj(S+e)+b
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O0=s(Rji Mi)Mii di sM;[M;i Rjli ,(Mji 1)2+_Rj [Mi (s+&) +fiRj]

O=S(Rji M,)R,I gi SMJ' [R,I MJ]I J(Mii 1)Ri+_Rj [RJ (S+Q)+fiMi]

O0=s(Rji Mj)Rii fii sRi(Rji Mj)i JRi2+_Ri[Mj (s+e)i Ri(25+Ji di)]
(A3)

where for all theequationswe havethati;j = 1,2and i & j: Imposing symmetry,
thatish=h=ba=cg=cdh=db=da=e=efi=f=f;F1=F2=F;
Ri =R, =R and M; = M, = M; implies that the steady state associated with the
systam in 8) is gven by:

F

mpe _
P =TT M +R)

(A4)
and substituting the de..nitions for the coet¢ cients F; R and M given above, we
..nd equation 10) in the paper.

We use numerical tedhniques to solve the system A3). In particular, we adopt the
iterative Newton’'s method. To sdvesystem A3), we..rst de..ne dixerent set of values
for the structural parameters of the modd, (s; , and 7) : We evaluatethe system A3)
for these values and then we look for the corresponding salution for the parameters
b ¢ d eand f using the Newton algorithm. Using the restrictions described in the
paper we are able to obtain a unique solution for any set of values of the structural
parameters. Inour analysisthevaueof ™ is..xedto0:95 asin Karp and P erlox (1993).
The parameters s and , varies from 0 to 1000 with dixerent length of variation. A
sample of the results is reported in the fdlowing tables:

Table Al). Solution for the parametersy G d; eand f given values for s; , and ~

s=05" =095 s=1" =09

i b C d e f b C d e f

01 0120 0049 -0.034 0006 0.0024| 0.072 002 -0.09 0.004 o0.001
05 0373 0125 -0286 0062 0.0162| 0252 009 -0.35 0.052 0.016
0488 0146 -0423 0127 0.0248| 0373 012 -0.57 0125 003
0552 0139 -0567 0219 0028|048 013 -0.84 0255 0049
0554 0097 -0.740 0341 0019 | 055 010 -1.2 0501 004
053% 0063 -0842 0409 0010|0551 007 -1.48 0.683 003
0516 0031 -0927 0461 0003|0528 004 -1.73 0.851 0016

FBEuvNE




Table A2). Solution for the parameters b G d; eand f given values for s; , and ~

s=10" =095 s=100," = 0:95

b C d e f b C d e f

0.1 0.008 0.003 -0.09 00005 0.0002| 0.0008 0.0003 -0.09 0.00005 0.00002
05 0038 0015 -047 00118 0.0046| 0.0041 0.0016 -049 00013 0.0005
1 0072 0027 -090 00416 0.0159| 0.0081 0.0032 -0.98 00053 0.0021
2 012 0045 -168 0134 00487 0016 0.0063 -1.95 00206 0.0082
5 024 0028 -353 0526 0165|0038 0.0118 -4.75 0.118 0.0465
10 033 -019 -572 1254 0325 | 0071 -0.014 -909 0416 0159
25 030 -145 -828 3100 0536 | 0104 -0816 -203 1913 06/6

P roof of Proposition 4. First of all, we impose symmetry in the system A3).
Then, we consider thecasein which , ! 0: Evaluatingtheterm C at , = Owedearly
obtain that C; -y =0, and using this fact into the de.nitions of R and M, we have
that R( o) = O M( =g = @ Thus, irrespective of the value of F; using R( —o) = 0;
M( =g = Olntosystem A3) wehave 0 = & = oF = & = f* = 0: Furthermore,
as in Lapham and Ware (1994), the J acobian matrix associated with that system
is an identity matrix, and thus, non singular. This implies, that at , cose to zero,
the solution for the unknown parameters is a continuous function of | : Substituting
b = &F = & = 0into 10) in the paper, we see that the Markov perfect equilibrium
becomes equal to 5+; that is the static Nash equilibrium given by 11). Now consider
thecaseinwhich , ! 1 :Takingthelimitfor ;! 1 ofthecoet dentsA;B andC,
we obtain I|mA 0; I|mB =0and IimC = 1. Applying the wall known rules for

limits, we havethat I|mF =0 I|mR =0and I|mM = 1: Thus, taking the limit

for ;! 1 ofthe |mpI|C|t funct|ons in the system A3) gives the following results for
theunknown paramgeas. B =12, =0 F =i X ;& =sand f* = 0: Again,
substituting this fact into the Markov perfedt equilibrium given by 10) we can see
that it aoincides with the static Nash equilibrium 11). Obviously, we can obtain the
same limit result for the Markov perfect equilibrium, taking thelimit for ;| !' 1 of
A4) and applying the Hospital's rule.
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