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Abstract

We study a discrete time dynamic game of price competition with spa-
tially di¤erentiated products and priceadjustment costs. We characterise the
Markov perfect and the open-loop equilibrium of our game. We…nd that in
thesteady stateMarkov perfect equilibrium, given thepresenceof adjustment

costs, equilibrium prices are always higher than prices at the repeated static
Nash solution, even though, adjustment costs are not paid in steady state.
This is dueto intertemporal strategic complementarity in the strategiesof the
…rms and from the fact that the cost of adjusting prices adds credibility to
high priceequilibriumstrategies. On theother hand, thestationary open-loop
equilibriumcoincidesalwayswith thestatic solution. Furthermore, in contrast
tocontinuous timegames, weshowthat thestationaryMarkov perfect equilib-
riumconverges to thestatic Nash equilibriumwhen adjustment costs tend to
zero. Moreover, weobtain thesameconvergenceresult whenadjustment costs
tend to in…nity.

-
K eywords: price adjustment costs, di¤erence game, Markov perfect equi-

librium, Open-loop equilibrium.
-
J EL:C72, C73, L13

1 Introduction

In this paper wedevelop a duopolistic dynamic gameof price competition, in which
products are horizontally di¤erentiated and …rms face adjustment costs every time

¤Acknowledgment: I would liketo thankMyrnaWooders, PaoloBertoletti, J onathan Cave, J avier

Fronti, Augusto Schianchi for useful comments, and theparticipants of seminars at the University

of Warwick and at the University of Pavia. Any mistakes remain my own.
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they change their prices. Imposingadjustment costs createsa timedependent struc-

ture in our dynamic game and allows us to develop our model as a discrete time
di¤erential game, or di¤erencegame.1 Themain objectiveof our analysis is tostudy
the e¤ects of the presence of such adjustment costs on the strategic behaviour of
…rmsunder di¤erent assumptionson theability of the…rms tocommit topricepaths

in advance. In particular, we focus on two di¤erent classes of strategies that have
been widely used in thedynamic competition models, Markov and open-loop strate-
gies.2 Markov strategies depend only on payo¤ relevant variables that condensethe
direct e¤ect of thepast on thecurrent payo¤.3 Theuseof Markov strategies restrict

equilibrium evaluation solely to subgame perfect equilibria, which have the desir-
ableproperty of excludingnon-crediblethreats. In contrast, open-loop strategiesare
functionsof the initial stateof thegameandof thecalendar time, and typically, are
not subgameperfect. Thus, Markov and open-loop strategies correspond to extreme

assumptions about player’s capacities to make commitments about their future ac-
tions. Under the open-loop information pattern, the period of commitment is the
same as the planning horizon while under Markovian strategies no commitment is
possible. Theroleof pricestickinesshasbeen analysed inmany theoretical models of

business cycles.4 Very littleattention, however, hasbeen paid to strategic incentives
associated with priceadjustment costs in dynamic oligopoly models.

There are several examples of di¤erential games of Cournot competition with
sticky prices, for example, Fershtman and Kamien (1987), Piga (2000) and Cellini

and Lambertini (2001.a). The main result of these authors is that the subgame

1Di¤erential games are dynamic games in continuous time, in which the di¤erent stages of the

gameare linked through a transition equation that describes theevolution of thestateof themodel.

Furthermore, the transition equation dependson thestrategic behaviour of theplayers. Thesekind

of games arealso called “state-space” games. Di¤erencegames are the discrete timecounterpart of

di¤erential games. SeeBasar and Olsder (1995) for a detailed analysis. Seealso DeZeeuw and Van

Der Ploeg (1991) for a survey on theuseof di¤erence games in economics.
2See Fudenberg and Tirole (1991) Ch. 13, for and introduction to Markov and open-loop equi-

libria and on their use in dynamic games. Amir (2001) provides an extensive survey on the useof

thesestrategies in dynamic economic models.
3There is no generally accepted name in di¤erence/di¤erential games theory for such strategies

and for the related equilibrium. Basar and Oldser (1995) use the term “Feedback Nash Equilib-

rium” while Papavassilopoulos and Cruz (1979) use the term “Closed-Loop Memoryless Equilib-

rium”. However, after Maskin and T irole (1988), the termsMarkov strategies and Markov Perfect
equilibriumhas become standard in economic literature.

4Twodi¤erent possibilities tomodel priceadjustment costshavebeen considered in theliterature

on business cycles. F irst, there is a …xed cost per price changedue to thephysical cost of changing

posted prices. These…xed costs arecalled ”menu costs”. See for example, Akerlof and Yellen (1985)

and Mankiw (1985) among the others. Second, there are costs that capture the negative e¤ect of

price changes, particularly price increases on the reputation of …rms. These costs are quadratic

because reputation of …rms is presumebly morea¤ected by large pricechanges than by small price

changes. See for example, Rotemberg (1982). In our model, we follow the latter approach.
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perfect equilibriumquantity is always below the static Cournot equilibrium, even if

prices adjust instantaneously. This implies that the presence of price rigidity cre-
atesamorecompetitivemarket outcome. However, in thosemodels, pricerigidity is
not modelled using adjustment costs, but instead refers to stickiness in the general
price level. This implies that those models deal only with one state variable, that

is, theprice level given by the inverse demand function, while in our model wehave
two statevariables, the two prices of both …rms. This fact adds considerably to the
technical complexity of our problem. Themain reason is that dynamic programming
su¤ersthe“curseof dimensionality”, that isthetendencyof thestatespace, and thus

computational di¢ culties, to growexponentially with thenumber of statevariables.
As far as adjustment costs are concerned, most of the literature on dynamic com-
petition has instead focused on adjustment costs in quantities. However, the same
result described abovestill hold in when these adjustment costs areconsidered. For

example, Reynolds (1989, 1991) and Driskill andMcCa¤erty (1989) study adynamic
duopoly with homogenous product and quadratic capacity adjustment costs in con-
tinuous timesetting. Thesteady stateoutput in thesubgameperfect equilibrium is
found to be larger than in the Cournot static gamewithout adjustment costs. The

main reason is thepresenceof intertemporal strategicsubstitutability in thestrategic
behaviour of the…rms. A larger output of a …rm today leads the…rm being more
aggressive tomorrow. The same result seems to hold independently on the kind of
competition that is considered, as showed by J unand Vives (2001) in their model of

Bertrand competition with output adjustment costs.5

All theliteraturedescribed sofar sharesthecommon featureof acontinuous time
setting. An interesting limit result that is common to models in continuous time

is that, as adjustment costs or price stickiness tends to zero, the subgameperfect
equilibriumapproachesa limit that is di¤erent fromtheNashequilibriumof thecor-
responding static game. Discretetimemodelsof dynamic competition havebeen less
developed, since it appears that the discrete time formulation is less tractable than

thecontinuous timeformulation. Discretetimemodels of dynamic competition with
adjustment costshavebeen analysed in Maskin and Tirole (1987), Karp and Perlo¤
(1993) and Lapham and Ware (1994) among others. In the…rst caseCournot com-
petitionwith quantitiesadjustment costs is considered, but theequilibriumhasbeen

characterised only for thecaseinwhich adjustment costs approach in…nity. More in-
teresting for our purposes is themodel of LaphamandWare(1994). They show that
thetaxonomy of strategic incentives developed by Fudenbergand Tirole (1984) in a
two-stage game can be extended to in…nite horizon games with Markov strategies.

However, their analysis is limited to the case in which adjustment costs arezero in
equilibrium. Nevertheless, they …nd alimit result that contradicts theoneof contin-
uous timemodels. Their steady-stateMarkov perfect equilibriumwhen adjustment
costs tend to zero is equal to theNash equilibrium of their static counterpart game

5This seems toprovidea counterpoint to the ideaof Krepsand Scheinkman (1983) that quantity

precommitment and price competition yields Cournot outcomes.
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without adjustment costs.

In our model wecharacterize theMarkov perfect equilibrium for di¤erent values
of adjustment costs and product di¤erentiation. Given themathematical complexity
involved in the analysis, somequalitative results are derived with numerical simu-
lation. We …nd that the prices at the steady-stateMarkov perfect equilibrium are

always higher than the prices at the static Nash equilibrium of the corresponding
static gamebut they coincide in two limit cases – when adjustment costs tend to
zero and when they tend to in…nity. The economic force behind this result is the
presence of intertemporal strategic complementarity: a…rm, may strategically raise

price today, and induce high prices from its rival tomorrow. The presence of ad-
justment costs enables …rms to increase prices today and signal that they plan to
keep prices higher next period. However, the magnitude of this strategic comple-
mentarity depends on the level of product di¤erentiation. As products become less

di¤erentiated, higher equilibrium prices are sustainable only if adjustment costs are
su¢ cientlyhigh. Strategiccomplementarity is absent in open-loop strategiesand the
steady-state open-loop equilibrium is in correspondence one-to-one with the static
Nash equilibrium. Our analysis is conducted under the assumptions that demand

functionsare linear function of pricesand that pro…t functionsand adjustment costs
arequadraticand symmetricbetween…rms. With this structureour model is a linear
quadraticgame. Thiskindof gameisanalytically convenient becausetheequilibrium
strategies are known to be linear in the state variables of themodel. Moreover, in

somecases linear quadraticmodels or linear quadratic approximations of non-linear
games provide a good representation of oligopolistic behaviour especially around a
deterministic steady state.

The paper is organized as follows. In section 2 we describe themodel. Section
3 presents the full computation of theMarkov perfect equilibrium. In Section 4we
comparetheMarkov perfect equilibriumwith theopen-loopequilibriumand thenwe
consider somelimit results for thesetwo equilibria. Section 5 concludes.

2 The M odel

We start with the derivation of the demand functions. Consider a simple model
of spatial competition a’ la Hotelling in which there is a continuum of consumers
uniformlydistributedintheunit interval [0;1];with theposition of a…rmrepresenting
its ideal product. Consumers incur exogenous ‘transportation costs’ for having to

consume one of the availablebrands instead of their ideal brand. This cost has the
formof (1=2s), wheres 2 (0;1 ]providesameasureof substitutability betweenboth
products.6 In particular, when the transportation (or switching) cost tends to zero,

6The formulation of the consumer problem is standard and follows the lines as in Doganouglu

(1999). Di¤erently from his analysis, we do not incorporate possible persistent e¤ects in customer

tastes.
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products become close substitute. In contrast, if 1=2s ! 1 , a consumer prefers

to choose the brand closest to its ideal point, independent of price. Thus, we can
thinkat s asan indicator ofmarket power of…rms. Indeed, whenproductsarehighly
di¤erentiated (s is small), …rms can increase prices without signi…cantly a¤ecting
their own demand.

Theutility function at time t of theconsumer locatedat point®in theunit seg-
ment, for product i, is a linear functionUt(v;®i ;s;pit) =v¡

j®i ¡ F i j
2s ¡ pit: Thetermv

represents the utility that a consumer derives for consuming her ideal product, that
is assumed to betimeinvariant. Given our speci…cation, the termv represents also

an upper boundary level for theprice set.7 If prices plus the exogenous transporta-
tion costs are greater than v, then no productswill bebought by theconsumers. In
thefollowingwe shall assumethat v is su¢ ciently high so that this does not occur.
Finally, F i 2 [0;1] isthelocation of…rm i; and theterm¡ pit re‡ects thenegative im-

pact of priceof product i on theutility of consumers. Followingstandardprocedures,
wesolvefor thedemand functionsof aconsumer e®whoisat thepoint of indi¤erence.
The linear demand function faced by…rm i is simply

yit(pit;pj t) =
1

2
+ s(pj t ¡ pit) (1)

with i ; j =0;1and i 6= j : If …rms set thesameprice, both shareequally themarket.
In our duopoly model the two …rms are symmetric and they are located at each
end of the unit interval. There is no uncertainty. Both …rms face…xed quadratic

adjustment costs: 1
2¸ (pit ¡ pit¡ 1)

2
;where¸ ¸ 0 is ameasureof thecost of adjusting

theprice level.8 This formulation implies that adjustment costs areminimized when
no adjustment takes place. Theper-period pro…t function for …rm i is thefollowing
concave function in its own prices:

¼it(pit;pj t;pit¡ 1) = pityit(pit;pj t) ¡
1

2
¸ (pit ¡ pit¡ 1)

2
(2)

At time t; …rm i decides by how much to change its price ¢ it = (pit ¡ pit¡ 1), or
equivalently to set thenew price level at time t: Thus, using the terminology of the

optimal control theory, prices at time t are the control variables for the…rms, while
pricesat time t ¡ 1arethestatevariables.

Firm i maximizes thefollowingdiscounted streamof futurepro…tsover an in…nite
horizon:

7Thefact that theset of pricesisboundedassuresthat instantaneouspro…t functionsarebounded

aswell, which is a su¢ cient condition for dynamic programming to beapplicable. SeeMaskin and

T irole (1988.b).
8Weuseconvex adjustment costs as in Rotemberg (1982). Quadratic priceadjustment costs have

been used also by Lapham and Ware (1994) and J un and Vives (2001) because of their analytical

tractability.
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¦ i =

1X

t=1

¯ t¼it(pit;pj t;pit¡ 1) (3)

where¯ 2 (0;1) is thetimeinvariant discount factor.9

With this structure, our model is a linear quadratic game. This kind of games is
analytically convenient becausethe equilibrium strategies areknown to be linear in
thestatevariables.10

In our model, wemainly focus on strategic behaviour of the…rmsbased on pure

Markov strategies, that is, Markov strategies that are deterministic, in which the
past in‡uences current play only through its e¤ect on the current state variables
that summarise the direct e¤ect of the past on the current environment. Optimal
Markovian strategieshavetheproperty that, whatever theinitial stateand timeare,

all remainingdecisions fromthat particular initial stateand particular timeonwards
must also constituteoptimal strategies. Thismeans that Markov strategiesaretime-
consistent. AnequilibriuminMarkov strategies isa subgameperfect equilibriumand

it is calledMarkov perfect equilibrium11.
FollowingMaskin andT irole(1988), wede…neaMarkov perfect equilibriumusing

thegame theoretic analogue of dynamic programming12:

De…nition 1 . Let Vit(pit¡ 1;pj t¡ 1) , with i; j=1,2and i 6= j ; bethevalueof thegame
startingat period t where bothplayersplay their optimal strategy (epit(pit¡ 1;pj t¡ 1) for
i; j=1,2 and i 6= j ). This pair of strategies constitute a Markov Perfect Equilibrium
(MPE) if and only if they solvethefollowingdynamic programmingproblem:

Vit(pit¡ 1;pj t¡ 1) =Max
pi t

[¼it(pit;pj t;pit¡ 1)) + ¯Vit+1(pit;pj t)] (4)

Thepair of equations in 4) aretheBellman’sequationsof our problemthat have

tohold in equilibrium. Di¤erentiatingtheright-hand sideof theBellman’sequations

9The presenceof a discount factor less than one together with per-period payo¤ functions uni-

formly bounded assures that the objective functions faced by players are continuous at in…nity.

Under this condition a Markov perfect equilibrium, at least in mixed strategies, always exist in a

game with in…nitehorizon. SeeFudenberg and Tirolep. 515.
10For a detailed analysis of this point, see Papavassilopoulos, Medanic and Cruz (1979)
11Theconcept of subgameperfection ismuch stronger than timeconsistency, sinceit requires that

theproperty of subgameperfectionhold at every subgame, not just thosealongtheequilibriumpath.

On the other hand, dynamic (or ”time”) consistency would require that along theequilibrium path

thecontinuation of theNash equilibriumstrategies remainsa Nash equilibrium. For adiscussion on

the di¤erencebetween subgame perfection and timeconsistency seeReinganumand Stokey (1985).

12By de…nition, Markov strategies are feedback rules. Furthermore, it iswell known that dynamic
programming produces feedback equilibria by its very construction , thus, it represents a natural

tool to analyseMarkov perfect equilibria.
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) with respect the control variable of each …rm, we obtain the following …rst order

conditions:

@¼it(pit;pj t;pit¡ 1)

@pit
+ ¯

@Vit+1(pit;pj t)

@pit
=0 (5)

Given the linear quadratic nature, the…rst order conditionsof each player com-
pletely characterizetheMarkovperfect equilibrium. Tosolvethissystemofequations,

weneed to guess a functional form for theunknown valuefunctions Vi (¢): However,
weknow that equilibrium strategies in linear quadratic gamesare linear functions of
thestatevariables and value functions are quadratic. Then, weguess thefollowing
functional formfor thevaluefunctions:13

Vit+1 (pit;pj t) = ai +bipit +cipj t+
di

2
p2it+eipitpj t +f ip

2
j t for i; j = 1;2and i 6= j

(6)

where the parameters ai ;bi ;ci ;di ;ei and f i are unknown parameters. Equation 6)
hold for every t:

Weare not interested in solving for all these parameters since we are analysing
only thederivatives of thevaluefunctions that aregivenby:

@Vit+1 (pit;pj t)

@pit
=bi +dipit+eipj t for i; j =1;2and i 6= j

@Vit+1 (pit;pj t)

@pj t
= ci +eipit+ f ipj t for i; j = 1;2and i 6= j (7)

wherethecoe¢ cientsbi;ci;di;ei and f i aretheparameters of interest that areto be
determined by themethod of undetermined coe¢ cients (SeeAppendix). A solution
for those coe¢ cients, if it exists, will be a function of the structural parameters of
the model given by s;¯ and ¸: Substituting the relevant derivatives of the payo¤

functionsandequations7.1) and7.2) into5), wecanobtain asolution for thecurrent
prices (pit;pj t) as a linear function of thestate variables (pit¡ 1;pj t¡ 1). This solution
is given by thefollowingpair of linear Markov strategies:

epit = Fi +Ripj t¡ 1+M ipit¡ 1 for i ; j = 1;2and i 6= j (8)

13Since the mathematical analysis involved is standard, we follow the lines as in Lapham and

Ware (1994).
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wherethecoe¢ cientsFi ;Ri andM i arefunctionsdirectly and indirectly, through

theunknown parameters of the derivatives given by 7.1) and 7.2), of thestructural
parameters of themodel (s;¯ and ¸): (SeeAppendix).

We can substitute optimal strategies given by 8), after taking into account for
symmetry, into the Bellman’s equations 4), and then di¤erentiating 4) for the state

variables (pj t¡ 1;pit¡ 1 ). Using the …rst order conditions 5) to apply the Envelope
theorem, weobtain thefollowing systemof four Euler equations:

@Vit
@pit¡ 1

=
@¼¤it
@pit¡ 1

+

·
@¼¤it
@epj t

+ ¯
@Vit+1
@epj t

¸
@epj t
@pit¡ 1

for i; j =1;2and i 6= j (9.1)

@Vit
@pj t¡ 1

=
@¼¤it
@pj t¡ 1

+

·
@¼¤it
@epj t

+¯
@Vit+1
@epj t

¸
@epj t
@pj t¡ 1

for i; j = 1;2and i 6= j (9.2)

where thepro…t functions are given by¼¤it(epit(pit¡ 1;pj t¡ 1);epj t(pit¡ 1;pj t¡ 1);pit¡ 1):
Using equations 7.1) and 7.2) in the above Euler equations, and using the method
of undetermined coe¢ cients, we obtain ten non-linear equations in ten unknowns

parameters ai ;bi;ci;di ;ei and f i for i = 1;2 (seeAppendix): If a solutions for these
parameters exists, then the linear Markov perfect equilibrium given by 8) exists as
well. Given the fact that we have to deal with ten non-linear equations, to simplify
themathematical tractability of themodel, we restrict our analysis to a symmetric

Markov perfect equilibrium.14 Thisimpliesthat fromequations7.1) and7.2) wehave
b1= b2= b; c1= c2 = c; d1= d2= d; e1= e2= eand f1 = f 2= f : Thus, Markov
strategiesarealsosymmetric, that is, F1= F2=F;R1= R2=R andM1=M 2=M:
Supposethat asolution for theunknown parameters exists, and denotethis solution

with b¤; c¤;d¤; e¤ and f ¤: Using symmetry in theMarkov strategies, and using the
de…nitions given in the Appendix for the coe¢ cients F; R andM , we can solvefor
thesymmetricsteady statelevel of thesystemof…rst order di¤erenceequationsgiven
by 8):

p
mpe
i =

1

2

1+ 2̄ b¤

s ¡ ¯(d¤+e¤)
for i = 1;2 (10)

whereweassumes 6= ¯ (d¤+e¤). Theequilibriumin10) is thesteady-state linear
Markov perfect equilibrium of our model. Note that when s tends to in…nity the

equilibrium prices tend to zero. In the next section wewill show how to derive a
solution for theunknown parameters b¤; c¤;d¤; e¤ and f ¤. Then, wewill consider in
details theproperties that theequilibriumgiven by 10) exhibits.

14Strategic symmetric behaviour by …rms is a standard assumption in the literatureon dynamic

competition. Seefor example, J un and Vives (2001), Driskill and McA¤erty (1989) and Doganouglu

(1999) among the others. This assumption can be seen as a natural consequence of the fact that

…rms faceasymmetricdynamicproblem. However, weareaware that thepresenceof ten non-linear

equations implies that many equilibria, symmetric and not, can arise fromour model.
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3 Computation and P roperties of theMarkov Per-

fect Equilibrium

In this section we computemore in detail the linear Markov perfect equilibrium of
our model. We start with thederivation of theNash equilibriumof the static game
associated with our model without adjustment costs.15 This particular equilibrium
representsauseful benchmark that canbecomparedwith theMarkovperfect andthe

open-loopequilibriaof themodel and it will beuseful whenwill study theconvergence
properties of such equilibria when adjustment costs tend to zero. Assuming ¸ = 0;
the symmetric static equilibrium of the repeated game without adjustment costs,
denoted by ps; is given by:

ps =
1

2s
(11)

Aswemight expect, without adjustment costs, pricesin equilibriumarefunctions

of themeasure of substitutability between the two goods. As for the Markov per-
fect equilibrium, when goods are perfectly homogeneous (s tends to in…nity) static
equilibrium pricesarezero as in theclassical Bertrand model.

In order to derivethe properties of theMarkov perfect equilibrium given by 10)

weneed to…nda solution for theparameters of thevalue functionsb¤; c¤;d¤; e¤ and
f ¤:Despitetheanalytical tractability of linear quadraticgames, given theanalytical
di¢ culty to deal with the highly non-linear system of implicit functions, most of

the results that we are going to present are obtained using numerical methods.16

Numerical techniques are often used in dynamic games in state-space form, as in
J udd (1990) or Karp and Perlo¤ (1993). The presence of nonlinearity implies that
we must expect many solutions for the unknown parameters, and thus, multiple

Markov perfect equilibiria.17 In order to reducethismultiplicity, weconcentrate our
analysis to symmetric Markov perfect equilibria that areasymptotically stable as in
Driskill and McCa¤erty (1989) and J un and Vives (2001). An asymptotically stable
equilibrium is onewhere the equilibrium prices converge to a …nite stationary level

for every feasible initial condition.18 The symmetric optimal Markov strategies are

15This particular equilibrium is important because it represents a subgameperfect equilibriumof

the in…nite repeated game without adjustment costs associated with our model.
16In particular, we use the Newton’s method for nonlinear systems. The numerical analysis is

performedwith theuseof themathematical softwareMaple7. For an introduction to theNewton’s

method, seeCheney and Kincaid (1999), Ch.3.
17Unfortunately, in literature, there are no general results on the uniqueness of Markov perfect

equilibria in dynamic games. An interesting exception is Lokwood (1996) that provides su¢ cient

conditions for uniquenessof Markovperfect equilibria in a¢ ne-quadratic di¤erential gameswith one

statevariable.
18Given the lack of a transversality condition in the dynamic problem stated in De…nition 1, we

focus on asymptotically stableequilibria alsobecause in this caseweknow that theseequilibriawill

ful…l the tranversality condition even implicitly.
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given by:

epit =F +Rpj t¡ 1+Mpit¡ 1 for i; j =1;2and i 6= j (12)

Fromthese strategieswe can derivethe conditions for stability of thesymmetric
linear Markov perfect equilibrium:

Proposition 1 Assuming in 12) that (2s+ ¸ ¡ ¯d) 6= (s+ ¯e); then, this pair of
strategiesde…nesa stableequilibrium, if andonly if, theeigenvaluesof thesymmetric

matrix A =

·
M R

R M

¸

are in module less than one. This implies that conditions for

the stability of the system given by 12) are: (d¡ e) < 3s
¯ and (d+e)< s

¯ :

The result in Proposition 1 is derived from the theory of dynamic systems in
discretetime.19 Thecondition that (2s+¸ ¡ ¯d) 6= (s+¯e) assures that theparam-

eters of theMarkov strategies 12) arewell de…ned (see Appendix). Thus, when we
look for a solution of thesystemA3) de…ned in the Appendix, this solution should
respect the conditions in Proposition 1. Furthermore, we impose that at that solu-
tion, equilibrium prices cannot be negative. Given these conditions, we now focus

on the propertiesof our Markov perfect equilibriumwhen adjustment costs arepos-
itive and …nite. We solve the system A3) in the Appendix for given values of the
transportation cost, s, the discount factor ¯; and themeasure of adjustment costs
¸:20 Weconsider only real solutions for the unknown parameters, and we consider

only solutions that are locally isolated, or locally stable.21 Thus, we construct an
asymptotically stableMarkov perfect equilibriumnumerically instead of analytically
as in Drisckill and McCa¤erty (1989) and J un and Vives (2001). This allows us to
obtain a unique solution for theparameters b¤; c¤;d¤; e¤ and f ¤ and thus, a unique

Markov perfect equilibriumfor each set of values of thestructural parameters of the
model (s; ¯ and ¸): Given thedi¢ cult economic interpretation for theseparameters,
asampleof resultsisgiven in theAppendix. Herewereport the implicationsof those

solutions for thecoe¢ cientsof thesymmetricMarkov strategiesF;M and R:Weare
interested in particular on the coe¢ cient R that represents the e¤ect of one…rm’s
today choiceon the rival’s choice tomorrow.

Proposition 2 For a plausible range of the structural parameters of themodel s; ¯

and ¸, we have the following results at the stable solutions of the systemA3):

19Drisckill and McCa¤erty (1989) and J un and Vives (2001) construct an asymptotically stable

Markov equilibrium using similar conditions for di¤erential equations, called Routh-Hurwitz condi-

tions. For thecaseof a 2£ 2systemof di¤erenceequations, theseconditions imply that jdet(A)j < 1

and jdet(A) +1j < tr (A); where tr is the traceof matrix A.
20Most of our results arebased on avalueof ¯ close to 1, a value that we take from thenumerical

analysis of Karp and Perlo¤ (1993).
21In practice, we want that at oneparticular solution, if weperturb that solution, thesystemof

implicit functions A3) must remain close to zero.
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1) the coe¢ cients of theMarkovstrategies are alwayspositive;

2) R is …rst increasingand then decreasing in ¸: The higher s the higher the
persistence of the increasingphase;
3) R is decreasing in s when adjustment costs are small. R …rst increases and

then decreases in s

whenadjustment costs becomelarge: Thehigher ¸ thehigher thepersistenceof the
increasing

phase;
4) wehave alwaysM >R, however, the di¤erence (M ¡ R) is decreasing in s;

5) the coe¢ cient M is increasing in ¸ and decreasing in s;

The statements in Proposition 2aresummarised in the following table, in which
wereport a sampleof theresults of our numerical analysismadeon systemA3.

Table1. Numerical values for thecoe¢ cientsof Markov strategies.

s=0:5;¯ = 0:95
¸ F M R

0.1 0.924 0.104 0.044
0.5 0.704 0.313 0.099

0.8 0.567 0.401 0.111
1 0.541 0.446 0.115
2 0.362 0.588 0.117
5 0.174 0.757 0.093

10 0.092 0.852 0.064

s= 1;¯ =0:95
F M R

0.480 0.057 0.0265
0.414 0.204 0.0757

0.374 0.275 0.0919
0.352 0.313 0.0991
0.270 0.446 0.1154
0.154 0.633 0.1145

0.087 0.757 0.0931

s= 10;¯ = 0:95
F M R

0.049 0.006 0.003
0.049 0.031 0.015

0.048 0.047 0.022
0.048 0.058 0.026
0.046 0.104 0.044
0.041 0.204 0.075

0.033 0.313 0.099

In Proposition2, wehave identi…ed thestrategic behaviour of …rmswhen adjust-
ment costs arepositive and …nite. Not surprisingly, we havethat theoptimal price
choiceof a…rmisan increasingfunction in therival’spriceand this e¤ect iscaptured
by thecoe¢ cient R: Thus, thestrategic behaviour of the…rms in our model, is char-

acterised by intertemporal strategic complementarity. Furthermore, the size of the
e¤ect of strategiccomplementarity asafunction of ¸ followsabell-shaped curve. For
small adjustment costs, it increases, while, when adjustment costs becomehigher, it
decreases until it reaches zero as ¸ approaches in…nity. This is because, the bene…ts

of increasing prices today to a¤ect rival’s prices tomorrow, aremore than o¤set by
thecosts of adjustingprices. However, results 2) and 5) in theaboveProposition say
that this relationship depends on themeasureof product di¤erentiation s:When s
is high, competition between…rmsbecomes…ercer, sincesmall changes in prices can

havehugee¤ects on consumer’s demand. In this case, to sustain a crediblestrategy
of increasingpricesit is necessary tohavea relatively higher level of adjustment costs
than in the case in which s is small and …rms have higher market power. Finally,
result 4) in Proposition 2) says that as s increases, …rms tend to assign a relatively

higher weight to the rival’s price in their strategic behaviour than in the case in
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which products aremore di¤erentiated. FromProposition 2, we can identify theef-

fects of positiveadjustment costs on thesteady-stateMarkov perfect equilibrium of
our model. Themain result is stated in thefollowingProposition:

Proposition 3 When adjustment costs are positive and …nite, prices at the sym-
metric steady stateMarkov perfect equilibrium are always higher than prices in the
equilibrium of the repeated static game. This is true, even though, no adjustment

costs arepaid in the steady state.

The equilibrium valuesof theMarkov perfect and thecorresponding static Nash

equilibrium for thesame sample used in Table1arereported in thefollowing table.
Table2. Comparison between thesymmetricMarkov perfect and thecounterpart

static Nash equilibrium.

s=0:5;¯ = 0:95
¸ pmpe ps

0.1 1.086 1
0.5 1.199 1

0.8 1.225 1
1 1.234 1
2 1.233 1
5 1.168 1

10 1.106 1

s=1;¯ = 0:95
pmpe ps

0.525 0.5
0.575 0.5

0.592 0.5
0.599 0.5
0.615 0.5
0.609 0.5

0.582 0.5

s= 10;¯ =0:95
pmpe ps

0.0503 0.05
0.0513 0.05

0.0521 0.05
0.0525 0.05
0.0543 0.05
0.0570 0.05

0.0573 0.05

FromProposition3wecan say that in our dynamicgame, thepresenceof adjust-
ment costs and thehypothesisof Markov strategiescreateastrategic incentivefor the
…rms to deviate fromtheequilibriumof therepeated static gameeven if adjustment

costs are not paid in steady state. Theresult is a less competitivebehaviour by the
…rms in theMarkov equilibriumthan in the static case. The economic force behind
this result is the presence of intertemporal strategic complementarity that we have
analysed above. A …rm by pricinghigh today will induce high prices from therival

tomorrow, and thecost of adjusting prices lends credibility to this strategy, since it
is costly to deviate from that strategy. The result in Proposition 3) contrasts with
theonefound in dynamiccompetitionmodelswith sticky prices, wheregeneral price

stickiness creates a more competitive outcome in the subgame perfect equilibrium
than in the static Nash equilibrium. The main reason is that in our model, price
rigidity is modelled directly in the cost functions of the…rms and there is a credi-
bility e¤ect associatedwith adjustment costs that can sustain high equilibriumprice

strategies, while, this credibility e¤ect is absent with general price stickiness. We
can notice that as products become close substitute (s increases), thehigher is the
level of adjustment costs the higher is the di¤erence between pmpeand ps relatively
to the casewhere s is small. The intuition is the same as the one described above

to explain results 2) and 3) of Proposition 2). When s is high, …rms have a strong
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incentive to reducetheir pricesof a small amount in order to captureadditional de-

mand. Large adjustment costs can o¤set this incentive because the credibility of a
high price equilibrium strategy will be stronger. Obviously, we know already from
Proposition 2) that this credibility e¤ect is not increasingmonotonically with ¸, be-
causeasadjustment costsbecomeextremelyhigh, thecoe¢ cient R tends tozero. We

shall analyse this aspect in more detail when wewill consider the properties of the
Markovperfect equilibriumin thelimit game. Theresult in Proposition3) statesthat
when adjustment costs are positive, …rms are better o¤ in the steady stateMarkov
perfect equilibriumthan in thestatic Nash equilibriumof therepeated game. Thus,

the presence of positive adjustment costs can induce a tacit collusive behaviour by
…rms. However, this is true only if productsarenot homogeneous, that is s < 1 : If
productsareperfect substitute, wealreadyknow that theMarkovperfect equilibrium
givenby 10) converges tothestatic Nashequilibriumindependentlyof thevalueof ¸:

Moreover, in this case, both equilibria areequal to zero and wefall into theclassical
”Bertrand paradox”.

3.1 Markov Perfect Equilibrium in the Limit Game

Wenow consider the properties of theMarkov perfect equilibrium of our model in

di¤erent limit cases. Di¤erently from previous section, the results we are going to
show are obtained analytically. We start our analysis evaluating the steady state
Markov perfect equilibrium given by 10) in two limit cases, when adjustment costs

tend to zero (¸ ! 0); and when they are in…nite (¸ ! 1 ): This allowsus to de…ne
the convergence properties of the steady-stateMarkov perfect equilibrium given by
10) toward thestatic Nash equilibrium 11), that, asweknow fromthe introduction,
is an important issuefor the literatureon dynamiccompetition. In order to describe

thebehaviour of theequilibrium in 10) in thetwo limit games, we need to evaluate
thesystemA3) in theAppendix in thetwo extremeassumptions on the adjustment
costsparameter ¸: Theresults for our limit games arethefollowing:

Proposition 4 Whenadjustment coststends tozero(¸ ! 0); thesymmetric solution
for the unknown parameters is the following: b¤ = c¤ = d¤ = e¤ = f ¤ = 0; and the

steady-stateMarkov perfect equilibrium corresponds with the static Nash equilibrium
of therepeatedgame. Whenadjustment coststendto in…nity (¸ ! 1 ), thesymmetric
solution for theunknown parameters is: b¤= 1

2
; c=0; d¤= ¡ 2s; e¤= s; f ¤= 0; and

the steady-state Markov perfect equilibrium converges to the static Nash equilibrium

given by 10).

Proof (see Appendix). Theconvergenceof thesteady stateMarkov perfect equi-
librium toward the static Nash equilibriumwhen adjustment costs tend to zero, is
thesameresult as in Lapham andWare(1994), and it contradicts the results found
in continuous timemodels of dynamiccompetition. In our discretetimemodel, as in

LaphamandWare (1994), the discontinuity found in continuous timemodels, when
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adjustment costs tend to zero, disappears. This result is supported by thenumerical

analysis developed by Karp and Perlo¤ (1993), that gives also a possible explana-
tion of why discreteand continuous timebehavedi¤erently in the limit caseof zero
adjustment costs. In their model, they show that the steady-stateMarkov perfect
equilibriumbecomesmoresensitiveto ¸ whenwepass fromdiscretetimeto continu-

ous time. On theother hand, thesecond result is common indiscreteand continuous
timemodels, like in Maskin and T irole (1987) and Reynolds (1991). The economic
intuition behind this result is that: when adjustment costs become very large, the
extra costs to change prices strategically outweight the bene…ts, thus, …rms are in-

duced to behave nonstrategically and thesteady-state subgameperfect equilibrium
converges to the static solution. Of course, the casewith in…nite adjustment costs
is not very practical, especially for our purpose, sincewe aredealing with pricead-
justment costs that are normally associated with a small valueof ¸: However, this

limit result is important because it shows that our value functions are continuous
at in…nity22. Finally, we consider what happens to the steady stateMarkov perfect
equilibriumwhen ¯ tends to zero, that is, when only present matters for …rms. Fer-
shtman and Kamien (1987), usinga continuous timemodel with sticky prices, found

that whenonly present matters for …rmstheir stationary Markov perfect equilibrium
converges to the competitive outcome. On the other hand, Driskill and McCa¤erty
(1989), usingasimilar model but with adjustment costsin quantities, found that the
Markov perfect equilibriumconverges to thestatic Nash equilibriumof the repeated

gamewithout adjustment costs. In our model, we have thefollowing result:

Proposition 5 As ¯; the discount factor, tends to zero, the steady state Markov
perfect equilibrium given by 10) tends to the static Nash equilibrium of the repeated

gamewithout adjustment costs.

The proof of this Proposition can be easily seen taking the limit of theMarkov
perfect equilibriumin 10) for ¯ ! 0: In this case, it is simpleto seethat theresult is
thestatic Nash equilibrium givenby 11).

Aswemight expect, if futuredoesnot matter for…rms, theresult istheequilibrium
of theoneshot game. Weobtain aresult similar to theoneof Driskill andMcCa¤erty
(1989), however, if weallow products to behomogeneous our equilibriumconverges
to the competitive outcome as in Fershtman and Kamien (1989), that, in our case,

impliesequilibrium pricesequal to zero.

4 The Open-Loop Equilibrium

In thissectionwewill analysewhat arethee¤ectsof adjustment costs onequilibrium
price if we force…rms to behave using open-loop strategies. While Markov strate-
gies are feedback rules, open-loop strategies are trajectory, or path, strategies. In

22See J ensen and Lokwood (1998) for an analysis of discontinuity of value functions in dynamic

games.
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particular, open-loop strategies arefunctionsof the initial stateof thegame(that is

known a priori) and of the calendar time. Markov perfect and open-loop strategies
correspond to extremeassumptionsabout player’s capacities tomake commitments
about their futureactions. Under the open-loop information pattern, the period of
commitment is thesame as the planninghorizon, that in our case, is in…nite. That

is, at thebeginningof thegame, eachplayer must makea bindingcommitment about
theactions it will takeat all futuredates. Then, in general terms, a set of open-loop
strategies constitutesa Nash equilibrium if, for each player, the path towhich they
are committed is an optimal response to thepaths to which the other players have

committed themselves. An open-loop strategy for player i is an in…nite sequence
poli (pi0;pj0;t) = fpi1;pi2;:::;pit;:::g 2 <1 ,specifying the price level at every period
t over an in…nite horizon as a function of the initial price levels (pi0;pj0) and the
calendar time. Formally, we de…nean open-loop equilibriumin thefollowingway:

De…nition 2 A pair of open-loop strategies (pol1 ;p
ol
2 ) constitutes an open-loop equi-

librium of our game if and only if the following inequalities are satis…ed for each
player:

¦ i (p
ol
i ;p

ol
j ) ¸ ¦ i(pi;p

ol
j ) with i; j =1;2 and i 6= j

Typically theseequilibriaarenot subgameperfect byde…nition, then, theymayor

not may”timeconsistent”. Thereareexamplesof dynamicgames inwhich open-loop
equilibriaaresubgameperfect23, but in general when closed-loop strategiesarefeasi-
ble, subgameperfect equilibria will typically not be in open-loop strategies. In order
to solve for thesteady state open-loop equilibrium, we need to use the Pontryagin’s

maximumprincipleof theoptimal control theory, sinceit canbeshown that thereisa
closerelationship between derivation of anopen-loop equilibriumand solving jointly
di¤erent optimal control problems, onefor each player24.

Proposition 6 The steady-state open-loop equilibrium is in correspondence one-to-
onewith theNash equilibriumof the counterpart static game.

Proof. We need to solve a joint optimal control problem for both …rms. The
Hamiltonians are25:

H i = ¯ t¼it(pit;pj t;pit¡ 1)+ ¹ ii (t)(pit ¡ pit¡ 1) + ¹ i j (t)(pj t ¡ pj t¡ 1) with i ; j = 1;2and i 6= j

(13)

23Cellini and Lambertini (2001.b) show that in a di¤erential oligopoly game with capital accu-

mulation, Markov perfect and open-loop equilibria are thesame if thedynamic of theaccumulation

takes the forma’ la Nerlove-Arrow or a’ la Ramsey.
24For a detailed analysis, seeBasar and Olsder (1995), Ch.6.
25A formalization of the Maximum Principle in discrete time can be found in Leonard and Van

Long (1998), Ch. 4.
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Thecorrespondingnecessary conditions for an open-loop solution are:

@H i

@pit
= ¯ t

@¼it(pit;pj t;pit¡ 1)

@pit
+¹ ii (t) = 0

¹ i i(t) ¡ ¹ i i(t ¡ 1) = ¡
@H i

@pit¡ 1
= ¡ ¯ t

@¼it(pit;pj t;pit¡ 1)

@pit¡ 1
+ ¹ ii (t)

¹ i j (t) ¡ ¹ i j (t ¡ 1) = ¡
@H i

@pj t¡ 1
= ¹ i j (t) (14)

in steady state we have ¹ i i(t) = ¹ i i(t ¡ 1), ¹ ij (t) = ¹ i j (t ¡ 1), pit = pit¡ 1 and
pj t = pj t¡ 1: Thus, from the last two conditions we obtain ¹ i i(t) = ¹ i j (t) = 0: Using
this results, wecan seethat in steady state, the initial problemreduces to thestatic

maximizationproblem(
@¼i t(pi t;pj t)

@pit
=0). Q.E.D.

Thus, thereisadirect correspondencebetween thesteadystateopen-loopandthe
static Nash equilibrium of our model. In a stationary open-loop equilibrium there
areno strategic incentives to deviate fromthe static outcome of themodel without

adjustment costs. Themain reason is that open-loop strategies are independent on
state variables and then, there is noway to a¤ect rival’s choicetomorrow changing
strategy today as in Markov strategies. The same result has been found by Driskill
and McCa¤erty (1989) and J unandVives (2001) usingdi¤erent modelsbut it di¤ers

fromthe one in Fershtmanand Kamien (1987) and Cellini and Lambertini (2001.a),
since in their models, the open-loop solution implies higher output than the static
solution, and they coincideonlywhen thepricelevel canadjust instantaneously. This
di¤erence is mainly due to the di¤erent speci…cation of the transition law attached

to the costate variables in the Hamiltonian system. In our model, as in Driskill
and McCa¤erty(1989) and J un and Vives (2001), this transition law is simply the
de…nition of …rst di¤erence in prices,26 while in Fershtman and Kamien (1987) and
Cellini and Lambertini (2001.a), this transition law is thedi¤erencebetween current

pricelevel and thepriceonthedemandfunctionforeachlevel of output. Finally, from
a regulation point of view, if it could be possible to force…rms to behaveaccording
to open-loop strategies it would be possible to increase the level of competition in
equilibrium alsowith thepresenceof positiveadjustment costs.

5 Conclusion

In this paper wehavedeveloped a dynamic duopolymodel of pricecompetition over
an in…nite horizon, with symmetric and convex price adjustment costs and spatially

26Obviously, in Driskill andMcCa¤erty (1989) and J un and Vives (2001) the transition law is the

timederivativeof prices.
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di¤erentiated products. We have concentrated our analysis on the strategic interac-

tion between…rms in a linear quadratic di¤erence gameusing two di¤erent equilib-
riumconcepts: Markov perfect equilibrium, that has theproperty of being subgame
perfect, and theopen-loopequilibrium, that is normally not subgameperfect. Given
theexistence of adjustment costs in prices, in the steady stateMarkov perfect equi-

librium there is a strategic incentive for …rms to deviate from the repeated static
Nash solution even if no adjustment costs arepaid in equilibrium. In particular, we
have shown that the steady state price equilibrium, and then, the level of compe-
tition, is lower in the stationary Markov equilibrium than in the counterpart static

Nash solutionwithout adjustment costs. Theeconomic forcebehind this result isthe
presence of intertemporal strategic complementarity. A …rm by pricing high today
will induce high prices from the rival tomorrow. Moreover, the presence of adjust-
ment costs leads to credibility in strategies that imply higher prices in equilibrium,

for each…rm, than in thecaseof static Nashequilibrium. This implies that …rmsare
better o¤ when adjustment costs arepositiveand they behave according to Markov
strategies and that thepresence of these adjustment costs can sustain collusive be-
haviour. However, this is trueonly if productsarenot homogeneous. If productsare

perfect substitutes, thesteady stateMarkov perfect equilibriumalwayscoincidewith
thestatic Nash equilibriumof therepeated gamewithout adjustment costs and we
fall into the classical ”Bertrand paradox”. The incentive to deviate from the static
equilibrium is absent oncewe consider open-loop strategies. Indeed, the stationary

open-loop equilibriumof our model is always in correspondenceone-to-onewith the
Nash equilibrium of thestatic game. In addition, we have shown that when adjust-
ment costs tend to zero or to in…nity, the limit of our Markov perfect equilibrium

converges to the static Nash equilibrium. The former result, con…rmed by Lapham
and Ware (1994), seems to be peculiar of discrete timemodels, since in continuous
timemodels thereis adiscontinuity in the limit of theMarkov perfect equilibriumas
adjustment costs tend to zero. A number of extensions can bemadein our analysis.

Linear quadratic games do not performwell when uncertainty is considered. These
particularmodels allow for speci…cshocks in thetransition equation but they cannot
deal, for instance, with shocks to the demand function. A natural extension of our
analysis could be to relax the hypothesis of linearity of the strategies to allow for

demand uncertainty. Another possibleextension could bethe analysis of the e¤ects
of asymmetricadjustment costsbetween…rms, sincethis could giverisetoa possible
set of asymmetric steady stateoutcomes.
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Appendix

In this section wederive the equations for the unknown parametersof the value

functionsbi ;ci ;di ;ei and f i that aretosolvedtocomputeaMarkovperfect equilibrium
in our model. We start with thesolution of the two …rst0order conditions given by
5) in thepaper. Usingthederivativesof thevaluefunctions7.1) and 7.2) into5) and
calculating the relevant derivatives of the payo¤ functions, we obtain the following

system of equations:

pit = A i +B ipj t+Cipit¡ 1; for i ; j =1;2and i 6= j : (A1)

wherethecoe¢ cientsA i;B i and Ci havethefollowing functional form:

A i =
1
2
+ ¯bi

(2s+¸ ¡ ¯di)
; B i =

(s+ ¯ei)

(2s+¸ ¡ ¯di)
; Ci =

¸

(2s+¸ ¡ ¯di)

and whereweassumethat 2s+ ¸ 6= ¯di:

Wecan solvethesystemA.1) for pit as afunction of thestatevariablespit¡ 1 and
pj t¡ 1, for i; j = 1;2 and i 6= j : The solution is the pair of linear Markov strategies
given by 8) in thepaper that wereport herefor simplicity of exposition:

epit = Fi +Ripj t¡ 1+M ipit¡ 1 for i ; j = 1;2and i 6= j

where

Fi =
A i

1¡ B i

; Ri =
BiCi

(1¡ B2
i )
; M i =

Ci

(1¡ B2
i )
; for i; j = 1;2and i 6= j

(A2)

and whereweassumeBi 6= 1; that implies that (2s+¸ ¡ ¯d) 6= (s+¯e):
Using 7) into the Euler equations 9), and then using 8), we can obtain four

equations that depend only on thestatevariables, pit¡ 1; with i = 1;2: Rearranging

and matching the coe¢ cients associated with the state variables as well as for the
various constant terms, we obtain the following non-linear system of ten implicit
equations in ten unknowns, bi;ci;di;ei and f i :

0= s(Rj ¡ M i )Fi ¡ bi +M j

·
1

2
¡ s(Fi ¡ Fj )

¸

¡ ¸ (M i ¡ 1)Fi +¯Rj [Fi (s+ei + f i )+ci]

0= s(M j ¡ Ri )Fi ¡ ci +
1

2
Rj ¡ ¸ (Fj - j )+ ¯Ri

·
1

2
¡ Fi (2s+¸ +di) +Fj (s+ei )+bi

¸
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0= s(Rj ¡ M i)M i ¡ di ¡ sM j [M j ¡ Rj ]¡ ¸ (M i ¡ 1)
2
+ ¯Rj [M i (s+ei) +f iRj ]

0= s(Rj ¡ M i )Ri ¡ ei ¡ sM j [Ri ¡ M j ]¡ ¸ (M i ¡ 1)Ri + ¯Rj [Rj (s+ei ) +f iM i]

0= s(Ri ¡ M j )Ri ¡ f i ¡ sRi (Ri ¡ M j ) ¡ ¸R2
i + ¯Ri [M j (s+ei) ¡ Ri (2s+ ¸ ¡ d1)]

(A3)

wherefor all theequationswehavethat i; j = 1;2and i 6= j : Imposingsymmetry,
that is b1= b2=b; c1= c2=c; d1=d2=d; e1= e2= e, f1= f 2= f ; F1=F2= F;
R1= R2= R andM1 =M2=M; implies that thesteady stateassociated with the
system in 8) is givenby:

p
mpe
i =

F

1¡ (M +R)
(A4)

and substituting the de…nitions for thecoe¢ cients F; R and M given above, we
…nd equation 10) in thepaper.

Weusenumerical techniques tosolvethesystemA3). In particular, weadopt the
iterativeNewton’smethod. To solvesystemA3), we…rst de…nedi¤erent set of values
for thestructural parametersof themodel, (s;¸ and ¯) :WeevaluatethesystemA3)
for these values and then we look for the corresponding solution for the parameters

b;c; d; e and f using theNewton algorithm. Using the restrictions described in the
paper weare ableto obtain a unique solution for any set of values of thestructural
parameters. Inour analysisthevalueof¯ is…xedto0:95asin KarpandPerlo¤(1993).
The parameters s and ¸ varies from 0 to 1000with di¤erent length of variation. A

sampleof theresults is reported in thefollowing tables:
TableA1). Solution for theparametersb;c; d; eand f given values for s;¸ and ¯

s=0:5;¯ =0:95 s=1;¯ = 0:95

¸ b c d e f b c d e f

0.1 0.129 0.049 -0.084 0.006 0.0024 0.072 0.02 -0.09 0.004 0.001
0.5 0.373 0.125 -0.286 0.062 0.0162 0.252 0.09 -0.35 0.052 0.016
1 0.488 0.146 -0.423 0.127 0.0248 0.373 0.12 -0.57 0.125 0.032
2 0.552 0.139 -0.567 0.219 0.028 0.486 0.13 -0.84 0.255 0.049

5 0.554 0.097 -0.740 0.341 0.019 0.556 0.10 -1.22 0.501 0.054
10 0.535 0.063 -0.842 0.409 0.010 0.551 0.07 -1.48 0.683 0.038
25 0.516 0.031 -0.927 0.461 0.003 0.528 0.04 -1.73 0.851 0.016
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TableA2). Solution for theparametersb;c; d; eand f given values for s;¸ and ¯

s= 10;¯ = 0:95 s= 100;¯ = 0:95

¸ b c d e f b c d e f
0.1 0.008 0.003 -0.09 0.0005 0.0002 0.0008 0.0003 -0.09 0.00005 0.00002

0.5 0.038 0.015 -0.47 0.0118 0.0046 0.0041 0.0016 -0.49 0.0013 0.0005
1 0.072 0.027 -0.90 0.0416 0.0159 0.0081 0.0032 -0.98 0.0053 0.0021
2 0.12 0.045 -1.68 0.134 0.0487 0.016 0.0063 -1.95 0.0206 0.0082
5 0.24 0.028 -3.53 0.526 0.165 0.0383 0.0118 -4.75 0.118 0.0465

10 0.33 -0.19 -5.72 1.254 0.325 0.071 -0.014 -9.09 0.416 0.159
25 0.30 -1.45 -8.28 3.100 0.536 0.104 -0.816 -20.3 1.913 0.676

P roof of P roposition 4. First of all, we imposesymmetry in the systemA3).
Then, weconsider thecaseinwhich¸ ! 0:EvaluatingthetermC at ¸ = 0weclearly
obtain that C(¸=0) =0, and using this fact into thede…nitionsof R andM , wehave
that R(¸=0) =0; M(¸=0) = 0: Thus, irrespectiveof thevalueof F; usingR(¸=0) = 0;

M(¸=0) = 0 into system A3) we have: b¤ = c¤ = d¤ = e¤ = f ¤ = 0: Furthermore,
as in Lapham and Ware (1994), the J acobian matrix associated with that system
is an identity matrix, and thus, non singular. This implies, that at ¸ close to zero,
thesolution for theunknown parameters is a continuous function of ¸: Substituting

b¤= d¤= e¤ = 0 into 10) in the paper, wesee that theMarkov perfect equilibrium
becomesequal to 1

2s; that is thestatic Nash equilibriumgiven by 11). Now consider
thecase inwhich ¸ ! 1 : Takingthe limit for ¸ ! 1 of thecoe¢ cientsA;B andC ,

weobtain lim
¸ ! 1

A = 0; lim
¸! 1

B = 0 and lim
¸ ! 1

C = 1: Applying thewell known rules for

limits, we have that lim
¸ ! 1

F = 0; lim
¸! 1

R = 0 and lim
¸! 1

M = 1: Thus, taking the limit

for ¸ ! 1 of the implicit functions in thesystemA3) gives thefollowing results for

the unknown parameters: b¤ = 1=2; c¤ = 0; d¤ = ¡ 2s ;e¤ = s and f ¤ = 0: Again,
substituting this fact into the Markov perfect equilibrium given by 10) we can see
that it coincides with thestatic Nash equilibrium11). Obviously, wecan obtain the
samelimit result for theMarkov perfect equilibrium, taking the limit for ¸ ! 1 of

A4) and applying theHospital’s rule.
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