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Abstract

Measuring factor productivity has been important in economics since its early 
days as a scientific discipline for a number of reasons. The first is the availability 
of systematically collected agricultural data after World War I, which allowed 
researchers to motivate and test newly developed methods. This data was col-
lected to fulfill the societal need to learn more about the farming sector, which 
was stuck in a deep economic crisis at that time. In addition, economists stressed 
that agricultural technologies approximate the key assumptions of production 
theory particularly well. To measure agricultural productivity the analyst must 
deal with tangible (land, labour, and capital) as well as intangible (e.g., manage-
ment abilities or unexpected weather shocks) production factors. Separating 
these two types of inputs and appropriately accounting for the latter is at the 
core of understanding agricultural production. Recent developments such as 
rising food prices and the decline in global productivity growth indicate that 
there is a societal need to understand and raise agricultural productivity again. 
Interestingly, these trends are accompanied by a new debate among economet-
ricians about basic methodological issues in measuring firm level productivity.

This debate is based on the fundamental idea of a mathematical relationship 
between the various inputs and output – the production function. While early 
work focused on the measurement of productivity itself, soon after the question 
was raised whether statistical methods exist to identify the individual contribu-
tion of inputs to the joint product. Because farmers usually control the input 
levels they want to apply, the different production factors are subject to an 
endogeneity problem. In addition, there is also a collinearity problem because 
the standard identifying assumptions underlying production function estima-
tion are usually not powerful enough to measure the productivities of different 
variable inputs at all. A third, often carelessly treated, problem arises because 
some parts of the data deviate significantly from the majority of observation. 
This outlier problem as well as the two identification issues bias production func-
tion estimates. Against this background, I take on a factor markets perspective 
to study the productivity of European Union agriculture. To this end, I exploit a 
panel data set of field crop farms originating from the EU’s Farm Accountancy 
Data Network. 

In the methodological portion, I first examine the plausibility of four established 
and innovative identification strategies within the field of agriculture. Recently 
suggested control function and dynamic panel data approaches provide entic-
ing conceptual improvements over traditional within and duality models. Sec-
ond, I analyse the general practice of coping with outliers. Usually only simple 
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procedures based on a single model variable are applied. However, I argue by 
example that a multivariate detection method controlling for all model dimen-
sions effectively removes outliers. Therefore, with the identification issues in 
mind, I propose a practical two-step approach to encounter these issues. First, 
I decontaminate the data with a multivariate non-parametric outlier detection 
procedure and second, I consistently estimate the parameters of the produc-
tion function.

In the empirical portion of this study, I start with an assessment of the tra-
ditional as well as the recent advanced identification approaches. I estimate 
production elasticities and factor shadow prices for a set of six EU member 
states. Even so, empirical implementation of new developments in produc-
tion function analysis do not always live up to expectations, especially in the 
case of the dynamic panel estimator. In most instances this estimator failed to 
identify reasonable elasticities for the (quasi-) fixed inputs. Fortunately, proxy 
approaches which are less demanding in terms of identification represent an 
interesting alternative for agricultural applications. In the EU sample available 
to me, high production elasticities for materials prevail. Generally, output reacts 
most elastically to materials inputs. Through further investigation of this factor, I 
find different rationing regimes in different EU member states. Shadow interest 
rates of materials is low in Denmark and the United Kingdom. However, they are 
significantly higher than typical market interest rates in France, Germany, Italy, 
and Spain. In all countries they also increased toward the end of the observed 
period. This finding is consistent with a view of tightening access to short-term 
capital, which was possibly induced or reinforced by the onset of the recent 
financial crisis. Marginal returns to land, labour, and fixed capital are typically 
low. To conclude, functioning factor markets play an important role in fostering 
productivity growth. Nevertheless, factor market operations are considerably 
heterogeneous across different EU member states.

In a further empirical study, I apply a particularly suitable multivariate outlier 
decontamination to a panel of East and West German field crop data. Results 
show that this procedure detects outliers outside the main bulk of observa-
tions as well as those located within the production set. I estimate and compare 
production functions for different subsamples of the data. These include such 
subsamples without any outlier removal as well as univariate and multivariate 
outlier control. In general, the multivariate outlier control delivers more reason-
able results with a higher precision in the estimation of some parameters and 
seems to mitigate the effects of multicollinearity – a feature of the input vari-
ables that I also analyse and discuss in-depth throughout this study.
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In the final empirical study, the focus is on the role of labour and the effect of 
its different qualities on productivity. In particular, I test for heterogeneous 
effects of family and hired labour for a set of eight EU member states. To this 
end, I estimate augmented production functions using “Farm Accountancy Data 
Network (FADN) data for the years 2001-2008. The results reject the notion that 
hired labour is generally less productive than family workers. In fact, farms with 
a higher share of hired workers are more productive than pure family farms 
in countries traditionally characterised by family labour, namely France, West 
Germany, and Poland. Here, an increase in reliance on hired labour or the shift 
of family labour to more productive tasks could raise productivity. This finding 
calls into question a main pillar of the received family farm theory, namely that 
the growth of hired labour force beyond family members is inhibited by rising 
supervision costs. For the United Kingdom, I find the classical case with family 
farms being more productive than those relying on hired labour. In this situation 
supervision by family members could increase productivity. In the other countries 
of the sample, there are no statistically different effects of either type of labour. 

Following my analyses, a number of policy implications unfold. As it turned out, 
materials is the most important input in European field crop farming. Hence, im-
proving the availability of working capital is the most promising way to increase 
agricultural productivity. This finding is also underlined by the shadow price 
analysis, which indicated that in a number of countries the estimated return 
on working capital is much above observed market interest rates. Therefore, 
policy reforms should aim to ease access to short-term credit. With regards 
to agricultural labour markets the results indicate for France, West Germany 
and Italy that hired workers perform the highly specialised tasks leading to an 
increase in agricultural productivity. Consequently, policy makers should focus 
on creating incentives for farms to hire such specialised labour. For instance, 
programs to qualify and hire specialised labour could improve their inflow into 
agricultural labour markets.

Keywords: Agricultural factor productivity; Labour productivity; Production 
function estimation; Outlier detection; Farm Accountancy Data Network; Euro-
pean Union
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1Introduction

1 Introduction

Productive tasks are at the heart of every economy. Therefore, it is only natural 
that economists have been interested in the evaluation of factor productivity – 
the weighted contribution of production factors to a marketable product – from 
its early days and onward. Adam Smith (1776/2010), one of the founding fathers 
of modern economic sciences, stressed the importance of labour specialisation 
in performing productive tasks. With regard to the measurement of factor pro-
ductivity, agricultural applications drove many methodological advancements 
in economics. These, among others, include the introduction of marginal pro-
ductivity theory by Johann Heinrich von Thünen in Germany around 1820, or 
early empirical estimations of agricultural technology by Tolley et al. (1924) in 
the United States. Within the subfield of econometrics, one might name the 
formal derivation of a test for constant returns to scale by Tintner (1944) and 
the invention of fixed-effects regression by Hoch (1955) and Mundlak (1961). 
Generally, the first half of the 20th century is marked by new methodologies 
developed with the agricultural sector in mind. This development is underlined 
in a variety of ways. The first is the availability of suitable microeconomic data 
after World War I that allowed motivation and testing of new approaches. At 
that time, statistical agencies started to systematically collect farm data to learn 
more about productivity and productivity growth in the farming sector. As this 
sector became stuck in a deep economic crisis, there was a societal need for in-
vestigations in the same. Finally, many economists stressed the special suitability 
of agricultural technologies in approximating the key assumptions of production 
theory such as diminishing marginal product of inputs and the substitutability 
of the same (Chambers, 1988).

Rising prices on world food markets in recent years have shown impressively that 
resources for agricultural production, on a global scale, are scarce (FAO, 2009; 
Djuric, 2014: 21-23). For instance, as of late there was news about exploding 
sugar prices in the Ukraine (Top agrar online, 2016). This trend is most likely 
reinforced by a decline in the global rate of productivity growth (Alston and 
Pardey, 2014). In addition, how farm productivity could be raised has recaptured 
attention of global media outlets such as the Economist (Parker, 2011), and 
food riots have been reported from several developing countries (e.g. Burkina 
Faso, Egypt, and Yemen). These recent developments signal that the aforemen-
tioned societal need is persistent. Interestingly, at more or less the same time, 
econometricians revived a discussion about basic methodological problems in 
identifying firm productivity. 
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This debate is based on the assumption that there is a continuous mathemati-
cal relationship, the production function, between the various inputs (e.g., land, 
labour, seed and fertiliser, and output), an idea that has been well known and 
widely built upon since the days of Cobb and Douglas (1928). Because this func-
tion is a theoretical construct and cannot readily be observed, it needs to be 
estimated. While the early work focused on the measurement of productivity 
itself (i.e., collecting data and constructing appropriate indexes of production 
factors) (cf. Tolley et al., 1924; Cobb and Douglas, 1928), soon after the ques-
tion was raised whether statistical tools are available that can identify how much 
the various factors actually contribute to the joint product.1 Marschak and An-
drews (1944) pointed out that production is subject to unobserved factors such 
as managerial abilities or unexpected weather shocks. Their presence impedes 
the estimation of production function parameters having causal interpretation. 
At the core of this ongoing debate is the issue of giving such intangible factors 
a tractable structure so that they can be separated from the tangible inputs of 
land, labour and capital. Obtaining valid figures of the structure of agricultural 
production is important for farmers and policy makers. It enables the researcher 
as well as these interest groups to understand and impose agricultural produc-
tivity growth.

Two issues fuel the recent debate. In the first issue the level of inputs applied is 
a control variable to the farmer which is potentially determined simultaneously 
with other unobserved events, or may depend on unobserved, omitted, vari-
ables. This endogeneity problem again moved to centre stage after Olley and 
Pakes (1996) (OP) suggested a non-parametric control function to proxy these 
unobservables, thus starting a new line of research on dealing with this classical 
identification problem. Furthermore, according to Bond and Söderbom (2005) 
as well as Ackerberg et al. (2007), typical production function identifying as-
sumptions are unable to carve out exogenous variation amenable to estimation 
from the different variable inputs. Hence, to induce such variation some sort 
of adjustment cost is necessary. The most recent contributions to tackle this 
so-called collinearity problem are papers by Wooldridge (2009) and Gandhi 
et al. (2011). Both authors try to solve the two identification problems simulta-
neously. The former takes the Olley and Pakes (1996) identification strategy as 
a starting point and modifies it as well as extends the identifying assumptions. 
The latter relies on an idea that has been around for many decades, the factor 
share regression.

1 The retrospective by Biddle (2012) points this out nicely.
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However, even though if the statistical identification is secured, other issues 
in estimation might emerge from the data itself. One such problem might be 
multicollinearity – high correlation between two or more variables. However, 
there is little that can be done about this other than re-specifying the model of 
interest (Wooldridge, 2006: 104). A second and by applied researchers more 
carelessly treated problem that might bias parameter estimates, is the presence 
of outliers in the data set, which is a ubiquitous feature of many real world data 
sets, and hence an issue in many empirical applications. For instance, such out-
liers might occur due to measurement errors, variations in the data-generating 
process, or misreporting. If they are not dealt with, estimators can be obscured 
arbitrarily by the presence of as little as one single outlier in the data set – an 
extreme case but perfectly possible, as many introductory textbooks in statistics 
suggest – thus leading to biased estimates. Moreover, in terms of estimating 
factor productivity, accounting for outliers ensures that the assumption of a 
homogenous production technology is maintained. 

In general, other than by being very pragmatic and not performing any outlier 
decontamination, there are two concurrent views on how to define and, con-
sequently, identify outliers. On the one hand, there are methods which assume 
that outlying observations follow a different distribution other than the one in 
which the researcher is interested. Methods in this category commonly aim at 
estimating some features of the target distribution while outlier detection is usu-
ally not their primary objective. However, such methods might produce biased 
results if the assumed distributional assumptions are not fulfilled. Many robust 
estimators for various models can be found in this category. For instance, see 
Rousseeuw and Leroy (1987); Barnett and Lewis (2000); Hampel et al. (2005); 
Maronna et al. (2006); and Huber and Ronchetti (2009) for an overview of 
such methods.

On the other hand, other approaches follow a more sample-oriented view on 
how to define an outlier. Universally, all of these methods interpret outliers as 
observations that differ substantially from the target observations (cf. Johnson, 
1992; Barnett and Lewis, 2000). Obviously, there are numerous proposals on 
how that difference can actually be quantified. A large number of these meth-
ods is based on some type of distance, either between any two observations 
or with respect to some reference point, but there are also other approaches 
(e.g., based on depth or on the empirical density) (Chandola et al., 2009). With 
these methods, the primary goal is indeed the identification of outliers. An ad-
ditional analysis can then be carried out on the identified non-outliers. Another 
major advantage of such approaches is their applicability without being limited 
to certain distributional assumptions of the data.



4 Introduction

1.1 Outline and summary of the thesis

1.1.1 Issues in estimating factor productivity

To provide a comprehensive assessment the above-mentioned issues, the iden-
tification and outlier problems, I take on the following approach. First, the vari-
ous methodological identification approaches and their properties within an 
agricultural context are discussed and evaluated (chapter 2.1). To this end, I 
review the central identifying assumptions maintained by six traditional and 
recent approaches to the estimation of production functions. A panel data per-
spective is assumed throughout because the data used in this work is a panel 
of firms observed for several years. Second, I start with an extensive survey of 
outlier treatment in empirical economic practice to assess the outlier issue. This 
survey includes studies exploiting microeconomic data sources from general, 
development, and agricultural economics. I proceed, by example, with outlining 
the effects of outliers on productivity analysis and provide a solution account-
ing for aggregate output and all input dimensions in agricultural production 
(chapter 2.2). Insights from chapter 2 are subsequently applied throughout the 
empirical chapters.

In the first empirical study, I apply the various methodological identification 
strategies to a panel data set on European agriculture. Throughout, I discuss 
whether theoretical considerations carry over to empirical production function 
estimation (chapter 4). Their plausibility in an agricultural context is the core of 
my discussion. The estimation techniques applied are the calculation of factor 
shares in farm revenue, ordinary least squares (OLS) as the “naïve” estimation 
standard providing baseline estimates, fixed-effects (within) regression, the 
dynamic panel data estimator by Blundell and Bond (2000) (BB), as well as the 
control function approaches by Levinsohn and Petrin (2003) (LP) and Wool-
dridge (2009) (WLP). I estimate all models for a Cobb-Douglas production func-
tion specification. In addition, a translog functional form is explored for the OLS, 
within, and WLP models. Hence, I arrive at a total of nine estimated models. 

Recently, there has been considerable research activity on new approaches in 
production function estimation and there have been comparative evaluations 
on such approaches using simulated data (cf. Van Biesebroeck, 2007). However, 
most researchers refrain from comparative evaluations employing real world 
data. If estimator developers provide empirical applications at all, they do so 
from highly specific contexts. For instance, Blundell and Bond (2000) use data 
on R&D-performing US manufacturing firms covering the years 1982 to 1989 
which has been employed by other researchers for methodological elaborations. 
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A similar situation may be observed for Levinsohn and Petrin (2003), who utilise 
data from Chilean firms. Use of this data set goes back to the early 1990s. Later, 
it was also utilised by Ackerberg et al. (2006) as well as Kasahara and Rodrigue 
(2008). The latter apply various panel data estimators to this data set, including 
dynamic panel and proxy approaches. By holding the data set constant, research-
ers control for variation induced by the same while evaluating new estimation 
strategies. Such an approach may be beneficial if the research interest is mainly 
methodological. Nevertheless, the true value only unfolds after application to 
data that is also of topical or political interest. In the present study, I attempt 
to fill this gap as it is among the first to apply a whole set of recently discussed 
estimators to a dataset that is highly relevant in a policy context.

The unique European database available for this study covers firm-level data 
from all EU member states that was collected by national agencies and con-
solidated centrally following the same harmonised procedure in all countries, 
thus making cross-country comparisons particularly meaningful. This is one of 
the first agricultural productivity studies to use this micro data to analyse fac-
tor productivity for several EU countries using a variety of techniques to attack 
different sources of biases. 

Surprisingly, while agriculture is a classical field of production function estima-
tion, few analyses have used the primal production function approach lately. 
This observation is attributed to the popularity of duality theory in agricultural 
economics starting in the 1970s Mundlak (2001). In contrast to the primal ap-
proach, in which the output elasticities of inputs are estimated, this approach 
recovers price elasticities of factor demand. Mundlak (2001) further notes the 
strong theoretical assumptions and methodological problems of duality, both 
of which restrict its usefulness. I elaborate on these issues below as well. Shum-
way (1995) argues that a key advantage of duality was the possibility to model 
more flexible functional forms or production technologies such as the translog. 
However, my results indicate that making the Cobb-Douglas specification more 
flexible by adding second-order terms of inputs does not provide any further 
insight. Whereas OLS and Wooldridge (2009) produced highly implausible re-
sults, there was little difference for the fixed-effects regression compared to 
the Cobb-Douglas case.

The empirical estimates paint a picture of low land and fixed capital output elas-
ticities throughout the European subsamples (chapter 4). On the other hand, the 
materials elasticity is quite high, around 0.7. This outcome is particularly promi-
nent for the estimators basing their identification strategy on adjustment costs, 
namely LP, WLP, and BB. The estimate for the labour output elasticity is some-
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where in between. In addition, because fertiliser and land are highly collinear, I 
adjust the materials definition to attack and mitigate multicollinearity problems 
while maintaining a correctly specified production function specification.

The results obtained in this study are consistent with other recent work on EU 
agriculture. For instance, in an analysis of Finnish dairy farms, Heikkilä et al. 
(2012) find that materials and fixed capital inputs are the most important fac-
tors in driving productivity. Rizov et al. (2013) confirms and extends this view 
to 15 EU member states. In an aggregation over different types of farms, they 
recover materials elasticities ranging between 0.59 (for Greece) and 0.87 (for 
Sweden) while labour and fixed capital output elasticities are rather low. In 
contrast, estimates by Mundlak et al. (2012) utilising a cross-country sample of 
developing and developed countries suggest that output reacts most elastically 
to land and fixed capital. 

The shadow price analysis reveals a heterogeneous picture across our EU sam-
ple of countries. In France, Spain, Italy, and Germany (East and West), I observe 
shadow interest rates of materials much above typical market interest rates, 
especially toward the end of the observed period – a view that is consistent with 
constrained access to funding. A possibly explanation for this finding might be 
the unfolding global financial crisis in 2007 and 2008 (Petrick and Kloss 2013c). 
The cross-country variation in these figures also reflects characteristics and in-
ner mechanisms of agricultural banking sectors in the different member states. 
For Denmark and the United Kingdom, returns to materials are low, suggesting 
an over-utilisation of such inputs. The remuneration of labour is generally below 
9 EUR/hour throughout the European sub-samples. The value of land fluctuates 
around 0 EUR/ha land, while fixed capital always displays a negative shadow 
interest rate. An exception to these general trends is to some extent Denmark.

In the conceptual section, I state that the established within and duality ap-
proaches pose (too) strong assumptions about the structure of agricultural pro-
duction and that the control function and dynamic panel data models provide 
more plausible identification strategies. Both approaches relate identification 
to adjustment costs that occur as a reaction to past productivity shocks. This 
adjustment cost is used to distill the necessary exogenous variation from the 
different inputs and make it useable for estimation purposes. The adjustment 
process is assumed to be completed in one period in the Levinsohn/Petrin and 
Wooldridge/Levinsohn/Petrin models while the Blundell/Bond model implies 
a multiperiod adjustment, making the latter more compelling in an agricultural 
context, even though the former is easier to implement. However, Blundell/
Bond often did not pass major specification tests and produced unreasonable 
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parameter estimates for land and fixed capital inputs in most of the country 
subsamples. In summary, my analysis showed that the theoretical plausibility 
and empirical robustness of the different identification strategies delineate a 
trade-off. 

In a second empirical study, the focus is on the bias induced by outliers while 
maintaining the primal production function perspective. To this end, I analyse 
the consequences of productivity estimates in light of their existence. I start 
with a working definition of the term “outlier” to have a meaningful delimita-
tion to non-outliers, which provides necessary and valuable information for the 
subsequent analysis. A typical way to deal with outliers is to exclude them from 
the estimation. Generally, as I discovered by evaluating an exhaustive sample 
of empirical economics papers, if decontamination is conducted it is almost 
always done on a single variable, i.e., univariate. Often ad hoc and handmade 
methods focusing on one variable of a more complex multivariate model are 
employed prior to the follow-up analysis (chapter 2.2.2). Therefore, the gen-
eral picture that was obtained from this survey suggests that outlier problems 
are somewhat “second rank” issues that are often neglected. However, simple 
univariate approaches do not consider the multivariate nature of the model at 
hand. This is a real drawback, as a simulated example, employed to illustrate 
the effects of outliers and different contamination schemes on productivity 
estimates, suggests (chapter 2.2.3). Therefore, I utilise a multivariate approach 
outlined in chapter 2.2.4.

Throughout, I propose a robust two-stage approach for estimating production 
functions, first by performing the outlier decontamination, and second by es-
timating the parameters of the production function. I apply this approach to a 
data set of East and West German field crop farms. While the literature on outlier 
detection methods is vast (Maronna et al., 2006) and other methods might be 
feasible as well (e.g., cluster analysis), I resort to a multivariate decontamination 
procedure following Kirschstein et al. (2013) for identifying the outliers. This 
method, which falls into the second category of how outliers are viewed and de-
fined, has already proven its effectiveness in an application to unsuccessful war-
ship designs (Liebscher and Kirschstein, 2012). Moreover, it is a non-parametric 
approach and therefore does not require special distributional assumptions that 
the data needs to fulfil and it offers computational advantages (especially for 
large data sets as the one analysed here), which makes it my preferred choice. 
After decontamination, production function parameters are estimated by the 
Wooldridge (2009) instrumental variable estimator to account for common 
identification issues. In particular, by holding the production function estima-
tor constant, meaningful insights are gained by comparing output elasticity es-
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timates arising after the application of the different decontamination schemes 
– uni- and multivariate – as well as no decontamination at all.

The proposed two-step approach allows for robust and consistent estimation 
of production functions. By applying a multivariate assessment of outliers, I am 
able to consider the whole spectrum (i.e., output and inputs) of agricultural pro-
duction. Therefore, I am not only able to find conventional outliers outside the 
main bulk of observations but also such outliers located within the production 
technology (chapter 5). The majority of outliers lies within this region. This is a 
major advantage compared to the common univariate strategies. By just drop-
ping observations beyond some threshold in a single dimension, the univariate 
procedure tends to misestimate the number of outliers in my specific application 
and consequently drops valuable information. Results suggest that small farms 
comprise a considerable amount of outliers. The advantage of the multivariate 
detection also carries over to the estimation, at least to some extent. Estimates 
based on the multivariately decontaminated sample result in improved results 
compared to those for the other samples (e.g., it allows for greater precision in 
the estimation of some parameters and seems to further mitigate the effects of 
multicollinearity). The latter observation is also confirmed by simulated example. 
In general, productivity estimates following the elimination of outliers convey 
that material inputs are the most important production factors in German agri-
culture. In summary, the main insight from this exercise is that a multivariate 
model of interest should comprise a multivariate outlier assessment.

Throughout this dissertation, I attempt to make methodological as well as em-
pirical contributions to the body of economic literature. My methodological con-
tribution is the first comparative evaluation of a number of recently proposed 
production function estimators within an agricultural context. My empirical 
contribution is a unique and updated set of estimated output elasticities as 
well as returns on factor use exploiting firm-level data for a sample of seven EU 
countries. Finally, following an assessment of the generally empirical practice as 
well as my own analysis and the evidence it produced, I propose and advocate 
an approach to productivity analysis that considers outliers in a multivariate 
manner prior to estimation.

1.1.2  The impact of labour force composition on farm productivity

Following the general analysis of factor productivity in EU agriculture, I turn my 
attention to the role of labour and its impact on productivity. How different types 
of labour affect farm output is the subject of the final empirical study of this dis-
sertation. The analysis builds again on my theoretical production function model.
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According to a widely accepted view, large-scale farming operations with many 
workers under a centralised management authority are economically inferior to 
smaller family-run businesses, at least in temperate zones (Hayami, 2010). The 
two maintained hypotheses of the underlying “family farm theory” are that (1) 
technological scale economies are typically exhausted before farm size exceeds 
the labour capacity of a family, and that (2) growth of the labour force beyond 
family members is inhibited by rising supervision costs. These hypotheses used 
to be supported by a large body of empirical literature from developed and de-
veloping countries (Brewster, 1950; Schmitt, 1991; Hayami and Otsuka, 1993; 
Allen and Lueck, 1998; Eastwood et al., 2010). For many decades after World 
War II, the economic and social superiority of family farms over agriculture based 
on hired labour was a widely held notion among researchers, governments, and 
international organisations. 

However, even in agricultural regions traditionally dominated by small to medium 
family farm operations, such as Western Europe or the US, farm sizes have been 
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Figure 1.1:  Change in the composition of the agricultural labour force in EU-27.

Notes:  AWU, Annual Working Units. Family consists of permanent family labour including hold-
ers and members of the sole holder’s family. Permanent workers consist of regularly 
employed non-family members. Seasonal workers are comprised of irregularly employed 
non-family members.

Source: Author compilation based on European Commission (2012, 2013).
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growing and, more importantly, the share of hired workers in total labour force 
has been slowly but steadily increasing (Blanc et al., 2008; Darpeix et al., 2014). 
According to the latest figures by the European Commission (2013), regularly 
employed non-family members on average contributed 14.7 per cent of the 
total agricultural workload in the EU-27 in 2010, whereas irregularly employed 
non-family members contributed another 7.7 per cent. This share has been on 
the rise for years, especially with regard to regularly employed hired labour. 
These workers replace family members on a year-round basis rather than com-
plementing them during harvest time, a fact that calls into question the validity 
of hypothesis (2) outlined above (Figure 1.1).

The typical argument for different productivities of hired and family labour is 
based on the idea that both have diverging incentives. Hired labour are usually 
not residual claimants and their effort cannot commonly be observed because 
of the idiosyncracy of agricultural production (e.g., seasonality, weather effects). 
Therefore, hired labourers have incentives to “shirk”, resulting in effort levels 
that are only a fraction of those achieved by family labour. As a result, neither 
kind of labour is easily substituted. This perceived problem can be mitigated by 
hired labour supervision. Hence, transaction costs in the form of supervision 
costs arise, making farm production based on hired labour more expensive. On 
the other hand, the following argument in favour of hired labour is often over-
looked: growing farms with a larger stock of workers may allow more specialisa-
tion and the division of labour into distinct tasks (Allen and Lueck, 1998; Kimhi, 
2009). For example, family members might concentrate on management and/or 
supervision tasks, while hired labourers specialise in non-managerial tasks. To 
the extent that modern farming technologies allow such specialisation benefits, 
the productivity of hired labour may well exceed that of a family member who 
is a “jack of all trades but the master of none”.2 

Given these conflicting views, this study aims to revisit the relative superiority of 
family over hired labour by confronting the accepted wisdom with new empirical 
evidence (chapter 6). In exploring the relative productivity of family versus hired 
labour, I follow Bardhan (1973), Deolalikar and Vijverberg (1983, 1987), and 
Frisvold (1994), who investigated this question in the context of the developing 
country of India. Whereas these authors found evidence in favour of both argu-

2 Productivity differences may also be due to family members and workers possessing 
different levels of education and technical expertise. While the positive effects of 
farmers’ human capital on production decisions have been analysed, relatively little 
is known about the effects of workers’ education (Huffman and Orazem, 2007).
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ments presented in the preceding paragraph, supervision versus specialisation 
effects, I am primarily interested in their methodological approach. I follow these 
authors in using a parametric production function specification that accounts 
for heterogeneous labour impacts. This approach focuses on a single parameter 
of relative labour productivity and thus allows straightforward interpretation. 
Yet, my estimation technique goes beyond the received estimators used by the 
previous authors in tackling potential endogeneity problems. Deolalikar and  
Vijverberg as well as Frisvold resorted to traditional household/farm fixed effects 
approaches. Following my methodological and empirical insights on production 
function estimation, I focus on the estimation procedure introduced by Wool-
dridge (2009). My database is a panel originating from the Farm Accountancy 
Data Network (FADN) of eight EU member states: Denmark, France, Germany, 
Italy, Poland, Slovakia, Spain, and the United Kingdom. Germany is split into East 
and West. Data is available for the years 2001-2008. The sample of countries 
includes full-time arable farms and reflects the diverse farm structures prevalent 
in different member states. It comprises countries with traditional family-type 
farming (e.g., France and Italy) as well as a high share of hired labour (e.g., East 
Germany and Slovakia). The variability in farm structures across countries pro-
vides the necessary variance to study the influence of hired labour. I limit the 
analysis to arable farms to justify the assumption of a homogenous production 
technology. I compare the main results with the received ordinary least squares 
(OLS) approach. To my knowledge, there are no comparable studies for EU agri-
culture in the area of labour force heterogeneity to date. 

My results reject the notion that farms with a higher share of hired labour are 
generally less productive than those with more (or only) family workers, every-
thing else being equal. The most striking outcome is that farms with more hired 
labour are more productive than farms with less hired workers in countries 
traditionally characterised by family farms, namely France, West Germany, and 
Poland. In the rest of the countries, there are no statistically different effects of 
the composition of labour. As a side result, I find little evidence of non-constant 
technical returns to scale. Thus, farm growth in Europe may indeed be increas-
ingly driven by scale-neutral technologies which allow the realisation of gains 
from labour specialisation.

1.2 Organisation of the thesis

In this thesis, I assume a factor market perspective to analyse productivity in 
EU agriculture. I proceed as follows. In chapter 2, I evaluate issues in identify-
ing factor productivity. In chapter 2.1, I discuss the key identification problems 
(econometric in nature) that have motivated much of the methodological debate 
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in production function estimation as well as the four main assumptions invoked 
in the literature to address them. I proceed by outlining the statistical-in-nature 
outlier problem (chapter 2.2). This is accompanied by a survey of the general 
treatment of outliers in empirical economics. At this stage, I illustrate by example 
the consequences on production function parameter estimates in the presence 
of outlying observations in the data and review my decontamination approach. 
In chapter 3, I discuss the FADN database. Chapters 4 and 5 are comprised of an 
empirical assessment of factor productivity in EU agriculture, in which I provide a 
new view on factor output elasticities as well as returns on input use by utilising 
traditional as well as novel identification and outlier decontamination strategies 
in approaching the issues outlined in chapter 2. In chapter 6, I take the novel 
control function identification approach to study the impact of a farms’ labour 
force composition on its productivity to further extend the view on the role of 
labour in EU agriculture. Chapter 7 concludes. Throughout, this dissertation 
builds upon results from revised and extended versions of Petrick and Kloss 
(2013a) and Kloss and Petrick (2014) as well as Kloss et al. (2015).



2  Selected problems in estimating factor  
productivity

Throughout this chapter, I discuss major problems faced by analysts in estimating 
production functions within an agricultural context. I start with a presentation 
of the identification problems and evaluate traditional and recent solutions to 
these problems within this field of application. Next, I present the impact of 
outlying observations in the data on the estimation of production functions and 
solutions. I argue for a multivariate assessment of outliers because univariate 
methods are not necessarily able to capture all relevant outliers.

2.1  Identification problems in production function estimation and  
approaches to their solution3

In this subchapter, I focus on the methodological identification problems of pro-
duction functions. I essentially provide a typology of production factors, given 
the existence of appropriate data, dividing them into observable and unobserv-
able inputs. The unobservables are a source of two identification problems to 
be discussed. Making them tangible and separating them from the observables 
are the core aims for the researcher. Subsequently, I evaluate traditional and 
recent approaches to tackle these problems.

2.1.1 A typology of production factors

Agricultural production serves as a useful illustration for the different nature 
of production factors. For the ensuing discussion, two characteristics of these 
factors are of particular importance: 

a) their variability or the speed with which they can be adjusted, and 
b) whether they are observed by the econometrician.

Table 2.1 differentiates three categories of variability. Among the highly variable 
factors are intermediate inputs such as seed, fertiliser or concentrate fodder. 
These factors are typically included in farm-level datasets and thus observed 
by the econometrician (type I factors). In economic lingo, they are also called 
control variables because the decision maker (the farmer) can manipulate their 

3 This section is based on Petrick and Kloss (2013a). In particular, this previous research 
has been extended to a more complete treatment of the identification strategy pres-
ented in 2.1.6.
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level to achieve her objectives. Other highly variable control variables, such as 
work effort (type IV factors), may be hard to observe from the outside or dif-
ficult to measure. 

Other important factors are much less variable and are subject to adjustment 
costs (type II and V factors, depending on whether they are observed). For ex-
ample, land is often only available in limited quantities and subject to long-term 
rental agreements. Agriculture in Europe is typically organised in family farms 
on which labour is often highly immobile (Tocco et al., 2012) and may be influ-
enced significantly by life cycle considerations of the farm family (Glauben et al., 
2009). Agricultural credit markets suffer from informational asymmetries and 
may be characterised by rationing and high transaction costs (e.g., Benjamin 
and Phimister 2002; Petrick and Latruffe, 2006). Management has long been 
recognised as an important factor of production that is nevertheless difficult 
to measure (Mundlak, 1961).

A final group includes factors that are completely fixed in the long run, such as 
the geographic location of the farm or the quality of its soils (type III and VI fac-
tors). All the less variable factors (type II, III, V and VI) are called state variables 
because their value cannot be modified within a short-term planning horizon.

Highly variable Subject to adjust-
ment costs

Fixed

Observed by  
econometrician & 
farmer

Type I

Seed, fertiliser,  
chemicals, concentrate, 
livestock numbers

Type II

Land, labour,  
machinery, buildings

Type III

Geographical  
location

Typically unobserved 
by econometrician 
but known to the 
farmer

Type IV

Farmer’s effort, reac-
tion to environmental 
shocks 

Type V

Management  
knowledge and  
abilities, human  
capital of labour 
force, availability of 
a farm successor

Type VI

Soil quality, climatic 
conditions

Unobserved by 
econometrician & 
unanticipated by the 
farmer

Type VII

Weather events, rain-
fall, diseases, legal 
requirements

-- --

Source: Petrick and Kloss (2013a).

Table 2.1:  A typology of production factors in agriculture.
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As indicated in Table 2.1, there is an important distinction between the highly 
variable and unobserved factors type IV and VII. Some of these also come as a 
surprise to the farmer. They represent exogenous states (shocks) of the environ-
ment (type VII factors). However, the farmer’s reaction to these shocks will be 
endogenous (type IV factors) and are characterised by a high variability. This 
variability results from the fact that every (policy or environmental) shock is 
different by nature and requires a matching reaction.

2.1.2 Two problems of identification

To illustrate the involved problems, I start with a simple model of a farmer wish-
ing to produce an aggregate output. Denote 𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	

 the natural logarithm of farm 
i ’s output 𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	

 at time 𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	

, 𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	

 land use of this farm, 𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	

 labour, 𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	

 fixed capital, and 
𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	

 materials or working capital. These four production factors are observed by 
the econometrician. The variable 𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	

 is an aggregate, farm-specific, time-varying 
factor that is anticipated by the farmer at the time of decision making about 
current production, but unobserved by the econometrician. Without further 
specification, it compounds the effects of factors categorised as type IV to VI in 
Table 2.1. The 𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	

 is a productivity shock not anticipated by the farmer (and not 
observed, thus type VII), or simply measurement error. Assuming a log-linear 
structure of the model and the availability of panel data containing the observed 
output and inputs, the econometrician’s problem is to recover farm productivity 
determined by the following equation:
𝑦𝑦"#	 𝑌𝑌	 𝑡𝑡	 𝐴𝐴"#	 𝐿𝐿"#	 𝐾𝐾"#	 𝑀𝑀"#	 𝜔𝜔"#	 𝜀𝜀"#	

	

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#, 𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#	, (2-1)

where 𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	
	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	

 is the production function. It may best be understood as a farms’ 
technology to produce a marketable good. This concept extends naturally to 
whole industries by assuming homogeneity of technologies across farms. For 
instance, it is feasible to assume that field crop farms rely on more or less the 
same production technology.

Because  will likely be correlated with the other input choices, estimation of 
 (2-1) is subject to an endogeneity problem (Marschak and Andrews, 1944). The 
production elasticities of the observed factors are not identified because the 
compound error term 𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	

	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	

 is, in statistical parlance, not identically and inde-
pendently distributed (IID). Choosing an appropriate functional form for 𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	

	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	

 and 
regressing output on observed input levels using OLS will then produce biased 
estimates because this estimator technically neglects the presence of the 𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	

	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	

. In 
particular, input coefficients will be upward biased if there is serial correlation 
in 𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	

	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	

. This effect will be stronger the easier it is to adjust input use (Levinsohn 
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and Petrin 2003: 332). A typical OLS result may be that the coefficients of labour 
and materials are upward biased, while those of land and capital are downward 
biased. Much of the methodological literature on production function estima-
tion is concerned with precisely this issue. For further reading, see the survey 
and review by Griliches and Mairesse (1998).

According to the implicit theoretical setup so far, all observed factors are as-
sumed to be control variables and are treated as being fully flexible (as if they 
all belonged to type I). The typical assumption in the literature (e.g., Chambers, 
1988) then is that output and all factors are traded on perfectly competitive 
markets so that on each of the markets all farmers face the same price for the 
traded good. If farmers maximise profits defined as revenues from the sale of 
output minus costs of all inputs and 𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	

	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	

 is a monotonous and concave function, 
the canonical decision rule for allocating inputs is identical for all inputs and says 
that the marginal revenue product of each factor should equal its factor price. 
For example, this decision rule is as follows for materials:
𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	
	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	  (2-2)

with pY denoting the price of output and pM that of materials, respectively. Es-
timation of (2-1) requires the assumption that the technology represented by 
𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	
	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	

 is identical for all farmers included in the estimating sample. If all farmers 
also face the same price on each of the output and input markets, there is noth-
ing in the model that induces heterogeneous factor use across farms except 
for the unobserved 𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	

	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	

. This is the collinearity problem pointed out recently 
by Bond and Söderbom (2005) and Ackerberg et al. (2007).4 Factor use across 
firms varies only with the unobserved , so that again the different production 
elasticities are not identified.

I now review the main approaches found in the literature to deal with either of 
these identification problems. The discussion is guided by Table 2.2, which sum-
marises the four approaches I distinguish. After introducing each approach, I ask 
how plausible the specific identifying assumption is in the context of agriculture. 
I then evaluate the extent to which the two key identification problems presented 
before are addressed and how the resulting estimator can be applied in practice.

4 A very detailed exposition is Ackerberg et al. (2006).
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2.1.3 Additively separable, time-invariant firm characteristics

The key idea of this approach is that 𝑓𝑓(∙)	 𝜔𝜔&' + 𝜀𝜀&'	
	
𝑝𝑝+ ,-

,.
= 𝑝𝑝.,	

 can be further decomposed into:

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

, (2-3)

where 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 is a time-specific shock that is identical for all farms in t (likely a type VII 
event), 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 is a farm-specific fixed effect that does not vary over time (a type VI 
factor), and 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 is the remaining farm- and time-specific productivity shock (type 
VII). Think of 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 as representing common weather or policy shocks andcapturing 
soil quality or time-invariant preferences of the manager. In a farming context, 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 may represent local weather conditions that vary between farms and years. 
If they are not anticipated by the manager, 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 is subsumed into

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

. If the pro-
duction function is linearly separable in the logs of observed and unobserved 
factors, a commonly used functional form is Cobb-Douglas, so that the function 
can be written as 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

, with 
lowercase letters denoting logs, αX the coefficients to be estimated, and 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 a 
shorthand for the observed production factors 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

. Using panel data, 
a within transformation expresses all values as deviations from farm-specific 
means and thus eliminates 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 and all levels from the equation:

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

, (2-4)

where 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	, 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	, and 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	 denote farm-specific log means over time. The fixed effect 

is hence swept out of the equation. This was introduced by Hoch (1955) and 
Mundlak (1961) in a farming context to eliminate “management bias” from the 
production function equation. This model has found widespread application at 
different levels of aggregation. The effect of 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 is typically taken into account by 
including 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	 time dummies in the model; 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	 is the total number of observed 

time periods.5 An alternative to the within transformation is to estimate the 
model in first differences, as discussed by Wooldridge (2010: 321-326). In this 
way variables are transformed by subtracting the preceding or lagged value in 
econometric parlance value from the current one.

Mundlak et al. (2012: 146) present a recent application to agricultural produc-
tivity at the country level where the farm-specific fixed and year effects alone 
explained 98.5% of output variation. Even so, the question remains whether it 
is legitimate to assume that 

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#	
	
𝛾𝛾#	 𝜂𝜂"	 𝑣𝑣"#	 𝛾𝛾#	 	
	
𝑦𝑦"# = 𝛼𝛼+𝑎𝑎"# + 𝛼𝛼-𝑙𝑙"# + 𝛼𝛼/𝑘𝑘"# + 𝛼𝛼1𝑚𝑚"# + 𝛾𝛾# + 𝜂𝜂" + 𝜀𝜀"#,	
	
𝑋𝑋	 𝑋𝑋 ∈ 𝐴𝐴, 𝐿𝐿, 𝐾𝐾,𝑀𝑀 .	𝜂𝜂"	
	
𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼< 𝑥𝑥"# − 𝑥𝑥"< + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 (2-4)	
	
𝑦𝑦"	 𝑥𝑥"	 𝜀𝜀"	 𝛾𝛾#	 𝑇𝑇 − 1	 𝑣𝑣"#	

 is an innovation that is orthogonal (i.e., uncor-
related) to observed factor use so that all unobserved factors are indeed either 

5 This treatment is also applied in the subsequently outlined estimation strategies.
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time invariant or the same for all farms. Table 2.1 suggests that farm- and time-
specific unobserved effects which the farmer still takes into account when making 
input decisions (type IV and V) are very likely to be relevant. Examples include 
annual fluctuations in rainfall or pest occurrence as well as patterns of livestock 
health. Furthermore, applications in practice have found that the within trans-
formation removes (too) much variance from some of the variables, particularly 
those which display little variation over time. In agriculture, input levels of the 
type II production factors land, labour, and fixed capital often vary only little in 
time. As a consequence, the signal-to-noise ratio with regard to these factors 
is reduced and the estimated coefficients are biased downward (Griliches and 
Mairesse 1998: 180-185). Finally, without further assumptions, the collinearity 
problem is not addressed at all by this approach.

2.1.4 Profit maximisation and perfect competition

This approach imposes further microeconomic theory upon the data, including 
its main assumptions of profit maximisation and perfect competition on product 
and input markets. A key result of this theory is the first-order condition (2-2), 

which multiplied through with 𝑀𝑀
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If one further assumes constant returns to scale, (2-5) says that the production 
elasticity of each input (left-hand side) is equal to its value share in revenue (right-
hand side). All value shares add up to one. Given these assumptions, revenue 
shares of inputs are valid estimators of production elasticities. For the simple 
Cobb-Douglas technology, the problem of estimating production elasticities has 
thus been “solved” by the imposition of strong theoretical assumptions. However, 
production function estimates of elasticities in agriculture were often found to 
differ from observed revenue shares (Mundlak, 2001). These differences may 
even be an object of investigation, for example in studies of credit rationing 
(Petrick, 2005). Such studies thus require productivity estimation independent 
of the revenue share.

For more flexible functional forms, (2-5) has led to the widely applied share 
regression model. For example, if the production function is assumed to be 
translog, thus also including quadratic and cross terms of the variable inputs 
in logs, the first order condition yields the following share regression (again for 
the case of materials):
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equation can be derived for all production factors, thus constituting a system 
of equations amenable to estimation by imposing the parameter restrictions 
derived from theory (Berndt and Christensen, 1973; see Bonnieux, 1989 for 
an application to French agriculture). The estimation itself can then be carried 
out by a system estimator such as three-stage least squares (see Greene, 2011: 
369-374 for an introduction to system estimators).

Note that (2-6) is still subject to the endogeneity and collinearity of factors. The 
way out of these problems typical to this approach is finding appropriate instru-
ments for the input levels. The role of the instruments would be to distill the 
part out of m, a, l, and k that is not correlated with 
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part). In the given theoretical framework, the most natural candidates are factor 
prices, which were used to estimate systems of share equations such as (2-6) 
by two- and three-stage least squares (Antle and Capalbo, 1988). Given the 
possibility to also recover technology parameters from profit and cost func-
tions by means of duality theory (Chambers, 1988), there is now a large body 
of empirical literature with agricultural applications of this approach (see the 
critical review in Mundlak, 2001). 

Despite the applications in the literature, theoretical conditions that link primal 
production to dual profit or cost functions are often not met empirically, such as 
convexity in the former and concavity in the latter. Moreover, the use of prices 
to solve the two identification problems must be questioned on both theoreti-
cal and empirical grounds. To qualify as instruments, prices must not be endog-
enous to the decision problem of the farmer. This condition is usually ensured 
by the assumption of perfectly competitive markets on which atomistic agents 
have no price-setting power. In agriculture, it may hold for a number of output 
markets, but is very unlikely to prevail on most factor markets. For example, in 
many European countries farmland markets are known to be characterised by 
spatial oligopolies and strong government regulation (Huettel and Margarian, 
2009; Ciaian et al., 2012). As noted before, agricultural labour is usually very im-
mobile due to life-cycle considerations and specific human capital. Agricultural 
credit may be due to a rationing regime that depends on the credit history of 
the farmer or his ability to provide collateral. Hence, factor prices may not be 
exogenous and may depend on the farmer’s past and current decisions. Under 
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such conditions, the theoretical model underlying this approach is clearly too 
simplistic to allow straightforward identification of the production function.6

On the other hand, if factor markets were at least approximately working as 
postulated by the theoretical ideal, there should be little price variation across 
farms so that the value of prices for solving the endogeneity and collinearity 
problems is doubtful. In the first place, this is a theoretical argument – in per-
fect markets, there is no price variation across firms and so the different flex-
ible factors are not identified by the data generating process. In fact, empirical 
applications have shown that price variation is indeed often small and may be 
due to quality differentials (Griliches and Mairesse, 1998: 189). With regard to 
agricultural labour or land, it may be hard to find appropriate price series at all.

2.1.5 Heterogeneous frictions in factor adjustment

If prices are problematic instruments, another option is to look for a different 
source of exogenous variation that has explanatory power for productivity analy-
sis. Past decisions on factor use is one such source now routinely employed; it 
is based on the literature on dynamic panel data modeling (Arellano and Bond, 
1991; Blundell and Bond, 1998). This literature suggests that current variation 
in input use is caused by lagged adjustment to past productivity shocks. It thus 
introduces the history of input use as a source of identification which is plau-
sible if modifications of input levels are subject to adjustment costs (Bond and 
Söderbom, 2005). This approach effectively turns observed input levels into state 
variables (type II) and subjects them to an intertemporal optimisation problem. 
One way to account for costly adjustment is to allow serial correlation of the 
unobserved productivity characteristic of the firm, so that it could be written as:

𝑣𝑣"# = 𝜌𝜌𝑣𝑣"#&' + 𝑒𝑒"#,	with	 𝜌𝜌 < 1,	 	 (2-7)	
	
	 𝑦𝑦"# = 𝛼𝛼.𝑥𝑥"# − 𝛼𝛼.𝜌𝜌𝑥𝑥"#&' + 𝜌𝜌𝑦𝑦"#&' + 𝛾𝛾# − 𝜌𝜌𝛾𝛾#&'. +	
	
	 1 − 𝜌𝜌 𝜂𝜂" + 𝜀𝜀"#∗ .	 (2-8)	
	
	 𝑦𝑦"# = 𝜋𝜋'.. 𝑥𝑥"# + 𝜋𝜋6.. 𝑥𝑥"#&' + 𝜋𝜋7𝑦𝑦"#&' + 𝛾𝛾#∗ + 𝜂𝜂"∗ + 𝜀𝜀"#∗ ,	 (2-9)	
	
𝜋𝜋6. = −𝜋𝜋'.𝜋𝜋7	

, with , (2-7)

where ρ denotes the autoregressive parameter and eit is an independent mean 
zero innovation. Substituting (2-7) as well as (2-3) into a Cobb-Douglas specifica-
tion of (2-1), Blundell and Bond (2000) suggest a dynamic production function 
specification that can be estimated with a dynamic panel data estimator:

6 An important step to relax the rigid assumptions of this approach was the introduc-
tion of dynamic duality in studies of agricultural production (e.g., Thijssen, 1994; 
Sckokai and Moro, 2009). Conceptually, these studies build a bridge to the ap-
proaches described in subsequent sections. The empirical interest is often no longer 
on recovering factor productivities, however.
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Alternatively, this model can be written as:
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subject to the common factor restrictions that 
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Blundell and Bond (2000) use lagged levels and differences of inputs as instru-
ments in a general methods of moments (GMM) framework to estimate (2-8). If 
the 
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 are removed by first differencing (FD), this estimator allows the consistent 
recovery of all input elasticities in (2-1) as well as ρ. Blundell and Bond (2000) 
suggest the method of minimum distance to test whether the parameters esti-
mated by the unrestricted model (2-8) conform to the restrictions imposed by 
(2-9). A minimum distance estimate for (2-9) is chosen such that the distance 
between the coefficient estimates of the unrestricted and restricted model is 
minimal (Wooldridge 2010: 545-547).

Note that the within transformation (chapter 2.1.3) assumes strict exogeneity 
of inputs which means that 
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(contrary to what is assumed in (2-7)). First differencing to eliminate fixed effects 
only assumes that input levels are sequentially exogeneous (i.e., transmission 
of 
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1982; Wooldridge, 2010: 321-326). FD is thus the typical approach to eliminate 
time invariant heterogeneity in GMM applications, as it allows input levels lagged 
more than two periods to be used as instruments for contemporaneous differ-
ences (Arellano and Bond, 1991). Of course, these instruments will only have 
power if there actually is such a transmission (e.g. motivated by adjustment 
costs). To increase the power of the GMM approach, Blundell and Bond (1998) 
have shown that in addition to past levels, lagged differences of inputs also can 
be used as instruments if they are orthogonal to the fixed effects (
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) – an as-
sumption which will hold if their variance is assumed to be, in the broadest sense, 
stationary Roodman (2009: 114-115). This leads to the systems GMM estimator 
for production functions presented in Blundell and Bond (2000) and applied 
by Hempell (2005). Hempell uses data on German service firms from 1994 to 
1999. In the empirical application of Blundell and Bond (2000), the preferred 
systems estimator produces a lower employment coefficient and a higher capi-
tal coefficient than OLS or within estimators, thus correcting the expected bias.
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If factor levels can suitably be instrumented by this approach, it addresses both 
the endogeneity and the collinearity problems. Contrary to the duality approach 
presented in section 2.1.4, it is much more plausible that the instruments pro-
posed here are actually valid in an agricultural context. There are important 
production factors in agriculture which are subject to adjustment costs (or “trans-
action costs”; type II variables in Table 2.1) and such costs should be an element 
in any plausible theory of agricultural factor markets. As the nature of these 
costs is likely to differ among factors (see section 2.1.1), it is also plausible that 
different factors of production display different dynamic paths of adjustment. 
This is a favourable condition for identification (Bond and Söderbom, 2005). It 
is only with regard to some intermediate inputs such as seed, fertiliser, plant 
protection, concentrate, or energy that factor use appears to be more flexible 
so that the assumption of adjustment costs may be harder to justify (type I fac-
tors). In sum, this estimator is a promising candidate for agricultural applications.

2.1.6  Monotonous coevolution of unobserved productivity shocks with ob-
served firm characteristics

The final method to be discussed here avoids the main disadvantage of any fixed 
effects approach to unobserved heterogeneity, which is the typically low vari-
ance of the transformed variables. However, it also does not rely on the strong 
a-priories about market structure of duality theory to identify the productivity 
parameters of interest. Rather, it attempts to proxy 
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𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, (2-10)

where 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is the pre-determined level of capital use at time t. The latter is as-
sumed to evolve according to 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, with 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 the depreciation 
rate. 

The function 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 can vary over time and is not parametrically restricted except 
that it needs to be monotonous in 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. This latter trait allows inversion of this 
function, so that:

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

,

where 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is now potentially observable and acts as a proxy for 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. Furthermore, 
it is assumed that unobserved productivity follows a first-order Markov process:



24 Selected problems in estimating factor productivity

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, (2-11)

where 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is an innovation (a type VII factor) uncorrelated with 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, but possibly 
correlated with the other factors in the production function. Because 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is a 
type II factor, the moment condition 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 can be used to identify 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

.

Given this setup, estimation proceeds in two stages. The basic idea is to jointly 
control for the influence of k and ω in the first stage and to recover the true 
coefficient of k as well as ω in the second. Referring again to the Cobb-Douglas 
example, all observed factors except capital are assumed to be fully variable 
type I factors. Their elasticities are determined in the first stage by substituting 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 into the production function and estimating:

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, (2-12)

where 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. In practice, 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is approximated by a low-order 
polynomial of i and k which controls for 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. Equation (2-12) shows that 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is 
assumed to be additively separable from the remaining variable inputs. Flexible 
functional forms involving interactions of all variable and fixed inputs (such as 
the translog) thus cannot be implemented with this procedure.

In the second stage, 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is determined in a series of steps (e.g., Petrin et al., 2004). 
First, using the parameters of 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 and a candidate value for 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, a prediction 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 
is computed for all periods. Next, 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is regressed on its lagged values to obtain 
a consistent predictor of that part of ω that is free of the innovation ξ. Finally, 
using the parameters of the variable factors from the first stage together with 
the prediction of the “clean” 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 and the moment condition 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
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 can be obtained by minimum distance.7 In their origi-
nal application to the US telecommunications equipment industry, Olley and 
Pakes (1996) show how this procedure yields lower labour coefficients than OLS 
and higher capital coefficients than within. In the only application to agriculture 
known to us, Kazukauskas et al. (2010) found for Irish dairy farms that the mate-
rials coefficient estimated with an OP procedure was lower than the OLS result.

7 This is the algorithm used in literature subsequent to Olley and Pakes (1996). In the 
original paper, it was combined with an exit and entry mechanism for firms which 
I ignore to simplify the exposition. Furthermore, the data does not allow to model 
such a mechanism because exit and entry are random in the FADN data base.



25Selected problems in estimating factor productivity

One problem that arises from using investment as a proxy is zero observations 
for certain years and firms. Levinsohn and Petrin (2003) therefore suggested 
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 in the previous algorithm. Again, 
the assumption is that materials evolve monotonously with the unobserved 
productivity characteristic, so that the effect of the latter can be inverted out. 
Materials is assumedly a type I factor and thus part of the production function. 
However, in the LP approach, its elasticity cannot be estimated in the first stage, 
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. Therefore, the additional moment condition 
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	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is postulated to obtain 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 in the second stage.

If the control function fully captures the influence of 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, it solves the endo-
geneity problem and provides a useful alternative to the fixed effects approaches 
described above. However, in agriculture, the assumptions on monotonicity and 
dynamic evolution of the productivity shock must be considered with caution. 
A key question is what exactly 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is representing and whether investment or 
material use are good proxies for it. If 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
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 stands for annually fluctuating, unob-
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) does not lead to more investment. The same is true for materials. 
The productivity enhancing reaction to environmental shocks in crop produc-
tion may sometimes be less input use (fertiliser, chemicals) rather than more. 
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 . 
Furthermore, the “memoryless” first-order Markov process appears unconvinc-
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 actually represents unobserved type V factors which are subject to 
adjustment costs. They evolve slowly and will typically have implications for the 
intertemporal optimisation problem, so that 
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 is also affected by them and 
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. In a farming context, this is likely 
to be the case, because investment decisions are usually influenced by long-term 
business strategies and/or the availability of a farm successor.

Another problem with the procedure suggested by OP and LP is that it does 
not solve the collinearity problem. As discussed at length by Ackerberg et al. 
(2006), unless one is willing to make very unintuitive assumptions on meas-
urement error or timing, there is no data generation process that separately 
identifies the coefficients of the type I factors in either of the two approaches. 
Ackerberg et al. therefore suggest giving up estimation of these coefficients in 
the first stage altogether, and invoke additional timing assumptions that justify 
moment conditions for estimating these coefficients in the second stage. In the 
framework of a translog specification, Gandhi et al. (2011) propose to estimate 
the coefficient for one free input from a share regression akin to equation (2-6) 
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and then to proceed in a similar way as described in this section to recover the 
other elasticities. Wooldridge (2009) suggests a simple procedure that borrows 
the identification strategy from OP and LP and modifies as well as extends the 
moment conditions to resolve the collinearity problem. Hence, this approach is 
referred to as the Wooldridge/Levinsohn/Petrin (WLP) estimator (Petrin and 
Levinsohn, 2012). Returning to the Cobb-Douglas example, it is again assumed 
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𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 to proxy ω exists such that 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

.8 Unlike 
LP who state 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, Wooldridge allows for:

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

              

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. (2-13)

Therefore, 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 is assumed to be orthogonal not only to current but also all past 
values of 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 and 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. In practical implementation as proposed by Wooldridge 
(2009), (2-13) is weakened in that only current realisations and one lag of the 
inputs are assumed to be uncorrelated with the 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

.

Furthermore, again the dynamics of the 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 are fully described by (2-11). A further 
condition about them is proposed by Wooldridge as follows:

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, (2-14)

where g is an unknown productivity function. Equation (2-14) together with (2-11) 
provides some deeper insight into the innovation 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. It states that this innova-
tion is uncorrelated with current and past realisations of 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 and past values of  

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 and 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. Note, these assumptions are necessary to obtain a consistent esti-
mate of 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 and 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 in the second stage of the LP procedure.

Now, the problem can be formulated in terms of two equations. The first is 
given by:

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. (2-15)

The second can be obtained by plugging the last identity of (2-14), 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, into the production function:

8 Wooldridge in contrary to Levinsohn/Petrin assumes that h is time invariant.
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	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

, (2-16)

where 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
	
ℎ ∙ 	 𝜔𝜔	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# 	𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"# = 0	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚",#2), … ,	
	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2), … , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") 	
	
= 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) = 𝑔𝑔 𝜔𝜔"#2) ≡ 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) ,	 	 (2-14)	
	
𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
	
𝑒𝑒"# = 𝜉𝜉"# + 𝜀𝜀"#	
	
𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. The moment conditions that hold for (15) are given by (13) 
and the ones that hold for (16) are: 

	 𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,	(2-10)	
	
𝑘𝑘"#	 𝑘𝑘"#() = 1 − 𝛿𝛿 𝑘𝑘"# + 𝑖𝑖"#		 	 𝛿𝛿	 𝑖𝑖# ∙ 	 𝜔𝜔"#	
	
	 𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,	
	
ℎ#	 𝜔𝜔"#	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#2) + 𝜉𝜉"#,	(2-11)	
	
𝜉𝜉"#	 𝑘𝑘"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	 𝛼𝛼7	 ℎ ∙ 	
	
	 𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼=𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (2-12)	
	
𝜙𝜙# = 𝛼𝛼7𝑘𝑘"# + ℎ# 𝑖𝑖"#, 𝑘𝑘"# 	 𝜙𝜙#	 𝜔𝜔"#	 𝜙𝜙#	
	
𝛼𝛼7	 𝜙𝜙#	 𝛼𝛼7	 𝜔𝜔"#	 ω	 ξ	 𝜔𝜔"#	 𝐸𝐸 	𝑘𝑘"#𝜉𝜉"# = 0	
	
𝛼𝛼7	 ℎ ∙ 	 𝐸𝐸 	𝑚𝑚"#2)𝜉𝜉"# = 0		 𝛼𝛼=	 𝜔𝜔"#	 𝑘𝑘"#	 	
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	 	 𝑎𝑎"), 𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 	 (2-13)	
	
𝑎𝑎,	𝑙𝑙,	𝑘𝑘,	 𝑚𝑚.	 𝜀𝜀"#	 𝜔𝜔"#	
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𝜉𝜉"#	 𝑎𝑎,	𝑙𝑙	 𝛼𝛼7	 𝛼𝛼=	 	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.	 (2-15)	
	
𝜔𝜔"# = 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝜉𝜉"#	
	
𝑦𝑦"# = 𝛼𝛼9𝑎𝑎"# + 𝛼𝛼;𝑙𝑙"# + 𝛼𝛼7𝑘𝑘"# + 𝛼𝛼=𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#2), 𝑘𝑘"#2) + 𝑒𝑒"#,	 (2-16)	
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𝐸𝐸 𝑒𝑒"#|𝑘𝑘"#, 𝑎𝑎"#2), 𝑙𝑙"#2), 𝑘𝑘"#2), 𝑚𝑚"#2),… , 𝑎𝑎"),𝑙𝑙"), 𝑘𝑘"), 𝑚𝑚") = 0.	 (2-17)	
	
𝑘𝑘	 𝑚𝑚;	 𝑎𝑎	 𝑎𝑎,	𝑙𝑙,	 𝑚𝑚	 ℎ	 𝑔𝑔	 ℎ	 𝑘𝑘,	

. (2-17)

Hence, in (2-15) and (2-16), current and past values of k ; past values of a, l, 
and m as well as functions of these can be used as instruments. Additionally, 
in (2-15) contemporaneous proxy variables and current realisations of a and l 
are valid instruments. Given this setup, the two equations (2-15) and (2-16) to-
gether with the moment conditions in (2-13) and (2-17) can be estimated within 
a GMM framework. Alternatively, one can identify the production function pa-
rameters by estimating (2-16) using IV estimation with instruments for a, l, and 
m (Wooldridge, 2009: 113). Petrin and Levinsohn (2012) employ this second 
approach. The control function h is approximated by low-order polynomials of 
first-order lags of m and k. The function g is assumed to be a random walk with 
drift (Wooldridge, 2009: 114).9

In (2-16), I proxy for h with lags rather than contemporaneous values of m and 
k, as is done in the traditional control function setup. This treatment allows for 
easy implementation of the translog functional form (Petrin and Levinsohn, 
2012: 718).

The assumption of costly factor adjustment is a cornerstone of both the dynamic 
panel data approach described in section 2.1.5 and the present one. In both cases, 
this assumption provides moment conditions necessary for consistent estima-
tion of the parameters. The main difference is that the former approach allows 
time-invariant fixed effects, whereas the latter does not. The former imposes 
a linear structure on the dynamic process, while it can be arbitrary in the lat-
ter. Even so, factor adjustment is assumed to occur in a single period in OP and 
followers, whereas the process covers many periods in the dynamic panel data 
models. In the light of agricultural applications, this may be one key advantage 
of the dynamic panel data approach.10

9 If 𝜔𝜔"# = 𝜆𝜆 + 𝜔𝜔"#'( + 𝜉𝜉"#,	, (2-16) becomes 𝑦𝑦"# = 𝜆𝜆 + 𝛼𝛼(𝑎𝑎"# + 𝛼𝛼*𝑙𝑙"# + 𝛼𝛼,𝑘𝑘"# + 𝛼𝛼.𝑚𝑚"# + ℎ 𝑚𝑚"#12, 𝑘𝑘"#12 + 𝑒𝑒"#.	
          𝑦𝑦"# = 𝜆𝜆 + 𝛼𝛼(𝑎𝑎"# + 𝛼𝛼*𝑙𝑙"# + 𝛼𝛼,𝑘𝑘"# + 𝛼𝛼.𝑚𝑚"# + ℎ 𝑚𝑚"#12, 𝑘𝑘"#12 + 𝑒𝑒"#.	.
10 Other subtle differences between the two approaches are discussed in Ackerberg 

et al. (2006).
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2.1.7 Interim evaluation of estimation approaches

The previous discussion has displayed the variety of assumptions invoked for 
addressing the endogeneity and collinearity problems inherent to production 
function estimation. In my opinion, the assumptions underlying within regres-
sion and the duality approach are fairly strong and implausible for the case of 
agriculture. Perhaps not surprisingly, they also often have not performed well 
in estimation practice. This insight shifts my attention to the promising new 
approaches using heterogeneous frictions in factor adjustment. I regard the 
presence of adjustment costs as particularly relevant for the production factors 
that are of key interest in agricultural applications. They also provide an inter-
esting link to more sophisticated theories of business structures in agriculture, 
which usually embody some form of adjustment frictions in agricultural factor 
use (such as Allen and Lueck, 2002 or Pollak, 1985). So far, there are almost 
no applications to agricultural data of these new estimators. In the empirical 
chapters I aim to fill this void.

2.2  Outlier problems and their solution in production function  
estimation

In this subchapter, I examine the consequences on estimation in presence of out-
liers in the data and evaluate different solutions to this problem. Even though I 
consider the estimation of production functions, the insights should also be rele-
vant to other model-driven empirical applications. After discussing the definition 
of an outlier, I survey the empirical practice for important data sources relevant 
in economics. This is accompanied by a simple empirical example illustrating the 
effects of outliers and different decontamination schemes on production func-
tion estimates. Finally, given my insights, I propose and outline the multivariate 
outlier decontamination procedure following Kirschstein et al. (2013).

2.2.1 The definition and identification of outliers

The presence of outliers in data is a severe problem because it biases estimates 
of parameters of interest. In many standard statistics textbooks there is an ex-
ample of the arithmetic mean being biased because of the occurence of outliers 
(see, for instance, Fahrmeir et al., 2004: 55). This problem carries over to more 
complex models (e.g. the specification and estimation of the conditional mean 
of a function of interest). Hence, it also affects my main interest, the identifica-
tion and estimation of production functions.

Outliers occur for for a variety of reasons including measurement errors, varia-
tions in the data generating process, or misreporting. In general, other than by 
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being very pragmatic and not performing any outlier decontamination, there 
are two concurrent views on how to define and, consequently, identify out-
liers.11 On the one hand, there are methods which assume a rigorous statistical 
model, in a sense that outliers are thought of as data coming from a different 
distribution (i.e., from something other than what the researcher is actually 
interested in). The whole data can then be understood as a mixture of two or 
more distributions, where the target distribution should comprise the majority of 
the probability mass. In contrast, if the outliers would constitute the majority, it 
would not be feasible to speak of outliers at all. In such cases the outliers should 
rather be considered as the distribution of interest. Methods falling into that 
category commonly aim at estimating some features of the target distribution 
while outlier detection is usually not their primary objective. Hence, it is more 
of an inherent by-product. If outliers are detected, they are identified with that 
precise model in mind, meaning that the methods in that category cannot be 
reasonably applied when the underlying (distributional) assumptions are not 
fulfilled (at least no useful results can be expected in that case). In this category, 
many robust estimators for various models can be found (see, e.g., Rousseeuw 
and Leroy (1987); Barnett and Lewis (2000); Hampel et al. (2005); Maronna 
et al. (2006); Huber and Ronchetti (2009) for an overview of such methods).

On the other hand, other methods follow a more sample-oriented view on how 
to define an outlier. Universally, all of these methods interpret outliers as ob-
servations that differ substantially from the target observations (cf. Johnson, 
1992; Barnett and Lewis, 2000). Obviously, there are numerous proposals on 
how that difference can actually be quantified. Many of these methods are based 
on some type of distance, either between any two observations or with respect 
to some reference point, but there are also other approaches (e.g., based on 
depth or on the empirical density). Members of this class of approaches include 
nearest neighbour or clustering based methods. Furthermore, these and other 
representatives such as the classification-based neural and Bayesian network 
approaches mostly originate from the computer science and data mining litera-
ture (Chandola et al., 2009). The primary goal is indeed the identification of 
outliers with these methods. An additional analysis might still be carried out on 
the identified non-outliers, though. The biggest advantage of methods falling 
into that category is that they can generally be applied without being limited to 
situations where certain distributional assumptions are fulfilled.

11 Not performing any outlier control is a common practice (see chapter 2.2.2).
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2.2.2  Going practice to outlier treatment in empirical economics

To obtain a general idea of how outliers have been treated within the field of 
(micro-)economics, I surveyed studies from two additional micro data sources 
that have approximately the same importance as the “Farm Accountancy Data 
Network” (FADN), my data source, in agricultural economics. For the FADN data, 
I reviewed studies from two recent research projects funded by the European 
Commission under FP7 which heavily employed this data set: “Farm Accoun-
tancy Cost Estimation and Policy Analysis of European Agriculture” (FACEPA) and 

“Factor Markets”. The former ran from 2008 to 2011, and the latter comprised 
the years 2010 to 2013. I reviewed working papers from the World Bank’s “Liv-
ing Standard Measurement Survey” (LSMS) studies for the field of develop-
ment economics, and I analysed studies employing data from the “German 
Socio-Economic Panel” (GSOEP) for the field of general economics. The GSOEP’s 

“SOEPapers” series is a collection of such work. I summarise the going practice 
of outlier treatment for a sample of work from these three data sources in Table 
2.3. I reviewed empirical studies (i.e., studies including a data analysis compo-
nent) for this sample.

Generally, the three data sources leave the assessment as well as handling of 
outliers to the researcher (Grosh and Munoz, 1996; Haisken-DeNew and Frick, 
2005; European Commission, 2010a). For the LSMS, Grosh and Munoz (1996, 
p. 125) are explicitly open about this view, explaining that “further treatment of 
these problems should be left to analysts, since there is no universally accept-
able solution to these problems”. This argument opens up many possibilities for 
researchers to deal with outliers. In addition, it explains why there are so many 
different ways to deal with outliers.

In empirical economic literature emerging from these sources, a large group 
of authors assess outliers by visual observation - which is usually only feasible 
for smaller data sets and two dimensions - and contextual reasoning. Based on 
these modes of operation they drop implausible cases (e.g., Deaton, 1981, 1988; 
Crosetto and Filippin, 2012; Obschonka et al., 2013; Oltmanns et al., 2014; 
Auer and Danzer, 2014). Other approaches involve the transformation of vari-
ables (e.g., logarithmisation), the application of influence measures or censoring 
of extreme values (cf. Schneck, 2011; Olper et al., 2012; Liverpool-Tasie et al., 
2015). Some authors remove outliers without stating their method of detection 
(e.g., Bauernschuster et al., 2011; Ciaian et al., 2011; Lang, 2012; Kemptner, 
2013; Arnold et al., 2014).

More structured approaches apply a two-step procedure by first identifying 
and removing extreme observations for a target variable (univariate outliers) 
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prior to the desired follow-up analysis. Therefore, some sort of threshold value 
is defined to separate outliers from the non-outliers. What distinguishes these 
methods is their statistical definition of such thresholds. The approach most 
commonly used among all empirical data sources is ’trimming’, either by remov-
ing some percentage of the data (usually 1% or 5%) at the top and/or bottom 
of the distribution of a single univariate measure central to the analysis or by 
applying a quantile-based rule (e.g., upper/lower quartile ± s·IQR with s being 
some scaling factor and IQR the interquartile range; e.g., Pfeiffer and Schulz, 
2011; Zibrowius, 2012; Schmitt, 2013; Sorgner and Fritsch, 2013; Guastel-
la and Moro, 2013; Oseni et al., 2014; Murphy and Oesch, 2015; Avdic and 

Table 2.3:  Outlier treatment in empirical economics.

Notes:  FACEPA: Farm Accountancy Cost Estimation and Policy Analysis, FADN: Farm Accountancy 
Data Network, GSOEP: German Socio-Economic Panel, LSMS: Living Standards Measure-
ment Survey.

Source: Author.

FADN LSMS GSOEP

Sample composition FACEPA (2009-2011); 
Factor Markets  
(2011-2013)

World Bank 
Living Standard 
Measurement Study 
(1980-2002) & Policy  
Research Working 
Paper (2010-2015)

SOEPapers  
(2011-2015)

Number of studies 
surveyed

36 129 396

Number of studies 
that deal with outliers

11 (≈30.6%) 23 (≈17.8%) 34 (≈8.6%)

Dominant  
decontamination  
approach

Univariate Univariate Univariate

Frequently  
used methods  
and examples

Trimming (Guastella 
and Moro, 2013; 
Petrick and Kloss, 
2013a), No method 
stated (Bakucs et al., 
2010; Ciaian, 2011)

Visual observation 
(Deaton, 1981, 1988); 
Trimming (Oseni et al., 
2014; Backiny-Yetna 
and McGee, 2015), 
Censoring of outliers 
(Liverpool-Tasie et al., 
2015)

Visual observa-
tion (Crosetto 
and Filippin, 2012; 
Obschonka et 
al., 2013), Trim-
ming (Pfeiffer 
and Schulz, 2011; 
Murphy and 
Oesch, 2015), No 
method stated 
(Lang, 2012; Ar-
nold et al., 2014)
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Bünnings, 2015;  Backiny-Yetna and McGee, 2015). However, univariate outlier 
identification approaches neglect the multivariate nature of many models that 
researchers specify. 

Most strikingly, the group of papers that does not mention any outlier control 
is by far the largest (e.g., Pitt, 1995; Alderman, 1998; Bauer et al., 2011; Car-
letto et al., 2011; Headey et al., 2012; Dustmann and Görlach, 2015; Schurer, 
2015). For instance, an outlier control was mentioned in only 8.6% of the sample 
comprising 396 studies that I reviewed from the SOEPapers data base (period 
2011 - 2015).

Another way is to incorporate the outlier problem directly into the estimator  by 
developing or applying a robust estimation procedure. Hübler (2012) applies 
a simple quantile regression estimator. This way, outliers are accounted for by 
using an appropriate estimation method. However, with the estimation of causal 
relationships in mind, this method is not feasible because it does not account 
for endogeneity and collinearity issues. Therefore, while this approach mitigates 
the outlier problem, it would not identify the causal relationship of interest. To 
develop a robust estimator capable of dealing with identification problems would 
require extensive work which is beyond the scope of this work.

Another two-step approach, and so far the only one to my knowledge which 
accounts for outliers in a multivariate manner using FADN data, has been used 
within the FACEPA project (Bahta et al., 2011). Their detection procedure em-
ploys the minimum covariance determinant (MCD) algorithm following Rous-
seeuw (1985). This approach is widely used in many fields of applied statistics 
as a simple search on Google Scholar. However, this approach imposes strict 
distributional assumptions on the data. Furthermore, their subsequently ap-
plied estimation procedure does not account for farm-specific heterogeneity.

In summary, no outlier control is mentioned in the majority of studies. In those 
studies that do mention a decontamination procedure, univariate methods 
prevail.

2.2.3 A simulated example

To demonstrate the effects of outliers on non-robust estimations, I discuss a 
simplified example. Therefore, I simulate a data set with 100 farms over seven 
periods. The data-generating process of the majority of observations is, hence, 
as follows: 
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To	demonstrate	the	effects	of	outliers	on	non-robust	estimations,	I	discuss	a	
simplified	example.	Therefore,	I	simulate	a	data	set	with	100	farms	over	seven	
periods.	The	data-generating	process	of	the	majority	of	observations	is,	hence,	as	
follows:		
	
	 𝑦𝑦"# = 0.4 ∙ 𝑙𝑙"# + 0.6 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-18)	
	
where	𝑦𝑦,	𝑙𝑙	and	𝑘𝑘	are	the	natural	logarithm	of	output,	labour,	and	capital;	𝜔𝜔"	
represents	unobserved	heterogeneity	with	𝜔𝜔"~𝑁𝑁 0, 25 ;	and	𝜀𝜀"#	is	the	remaining	

disturbance	following	𝑁𝑁 0,1 .
1
	The	labour	and	capital	inputs	are	random	

variables	with	𝑁𝑁 0, 4 .		
	
As	outliers,	two	data	sets	with	20	small	farms	over	the	7	time	periods	with	
𝜔𝜔"~𝑁𝑁 −5, 4 	and	𝑙𝑙"#, 𝑘𝑘"#~𝑁𝑁 −5, 9 	are	generated.	Finally,	I	arrive	at	two	
different	outlier-contaminated	data	samples	by	adding	the	outliers	to	the	raw	
sample.	In	the	first	outlier	data	set,	I	set	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# = 0	(sample	I)	and	in	the	
second	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# ≈ −1	(sample	II),	so	that	labour	and	capital	are	(almost	
perfect)	substitutes.	This	assumption	has	been	chosen	for	demonstrative	
purposes.	Please	note,	I	further	differentiate	in	this	way	to	illustrate	the	effects	of	
multicollinearity	on	outlier-infested	data	and	how	outlier	decontamination	is	able	
to	mitigate	such	effects.	As	I	will	demonstrate	later,	multicollinearity	is	an	
important	feature	in	the	FADN	data	employed	in	my	analyses.	In	both	samples	
the	production	function	for	the	outlier	sets	is:	
	
	 𝑦𝑦"# = 0.99 ∙ 𝑙𝑙"# + 0.01 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-19)	
	
i.e.,	in	both	sets	7 ∙ 20 = 140	observations	are	generated	by	(2-19)	which	are	
regarded	as	outlying	from	the	process	assumed	in	(2-18).	
	
I	present	fixed	effects	regression	results	to	control	for	unobserved	time	constant	
farm-specific	effects	(𝜔𝜔")	for	all	three	data	sets,	applying	a)	no	decontamination,	
b)	univariate	outlier	decontamination,	and	c)	multivariate	decontamination	using	
the	pMST	method	outlined	below	in	the	next	subchapter.	The	estimated	output	
elasticities	for	labour	and	capital	input	as	well	as	final	sample	size	are	
summarised	in	Table	Table	2.4.	
	

																																																																				
1 Throughout, I assume 𝑁𝑁 𝜇𝜇, 𝜎𝜎? , i.e. 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 . 
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represents	unobserved	heterogeneity	with	𝜔𝜔"~𝑁𝑁 0, 25 ;	and	𝜀𝜀"#	is	the	remaining	

disturbance	following	𝑁𝑁 0,1 .
1
	The	labour	and	capital	inputs	are	random	

variables	with	𝑁𝑁 0, 4 .		
	
As	outliers,	two	data	sets	with	20	small	farms	over	the	7	time	periods	with	
𝜔𝜔"~𝑁𝑁 −5, 4 	and	𝑙𝑙"#, 𝑘𝑘"#~𝑁𝑁 −5, 9 	are	generated.	Finally,	I	arrive	at	two	
different	outlier-contaminated	data	samples	by	adding	the	outliers	to	the	raw	
sample.	In	the	first	outlier	data	set,	I	set	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# = 0	(sample	I)	and	in	the	
second	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# ≈ −1	(sample	II),	so	that	labour	and	capital	are	(almost	
perfect)	substitutes.	This	assumption	has	been	chosen	for	demonstrative	
purposes.	Please	note,	I	further	differentiate	in	this	way	to	illustrate	the	effects	of	
multicollinearity	on	outlier-infested	data	and	how	outlier	decontamination	is	able	
to	mitigate	such	effects.	As	I	will	demonstrate	later,	multicollinearity	is	an	
important	feature	in	the	FADN	data	employed	in	my	analyses.	In	both	samples	
the	production	function	for	the	outlier	sets	is:	
	
	 𝑦𝑦"# = 0.99 ∙ 𝑙𝑙"# + 0.01 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-19)	
	
i.e.,	in	both	sets	7 ∙ 20 = 140	observations	are	generated	by	(2-19)	which	are	
regarded	as	outlying	from	the	process	assumed	in	(2-18).	
	
I	present	fixed	effects	regression	results	to	control	for	unobserved	time	constant	
farm-specific	effects	(𝜔𝜔")	for	all	three	data	sets,	applying	a)	no	decontamination,	
b)	univariate	outlier	decontamination,	and	c)	multivariate	decontamination	using	
the	pMST	method	outlined	below	in	the	next	subchapter.	The	estimated	output	
elasticities	for	labour	and	capital	input	as	well	as	final	sample	size	are	
summarised	in	Table	Table	2.4.	
	

																																																																				
1 Throughout, I assume 𝑁𝑁 𝜇𝜇, 𝜎𝜎? , i.e. 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 . 

 are generated. Finally, I arrive at two differ-
ent outlier-contaminated data samples by adding the outliers to the raw sample. 
In the first outlier data set, I set 

To	demonstrate	the	effects	of	outliers	on	non-robust	estimations,	I	discuss	a	
simplified	example.	Therefore,	I	simulate	a	data	set	with	100	farms	over	seven	
periods.	The	data-generating	process	of	the	majority	of	observations	is,	hence,	as	
follows:		
	
	 𝑦𝑦"# = 0.4 ∙ 𝑙𝑙"# + 0.6 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-18)	
	
where	𝑦𝑦,	𝑙𝑙	and	𝑘𝑘	are	the	natural	logarithm	of	output,	labour,	and	capital;	𝜔𝜔"	
represents	unobserved	heterogeneity	with	𝜔𝜔"~𝑁𝑁 0, 25 ;	and	𝜀𝜀"#	is	the	remaining	

disturbance	following	𝑁𝑁 0,1 .
1
	The	labour	and	capital	inputs	are	random	

variables	with	𝑁𝑁 0, 4 .		
	
As	outliers,	two	data	sets	with	20	small	farms	over	the	7	time	periods	with	
𝜔𝜔"~𝑁𝑁 −5, 4 	and	𝑙𝑙"#, 𝑘𝑘"#~𝑁𝑁 −5, 9 	are	generated.	Finally,	I	arrive	at	two	
different	outlier-contaminated	data	samples	by	adding	the	outliers	to	the	raw	
sample.	In	the	first	outlier	data	set,	I	set	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# = 0	(sample	I)	and	in	the	
second	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# ≈ −1	(sample	II),	so	that	labour	and	capital	are	(almost	
perfect)	substitutes.	This	assumption	has	been	chosen	for	demonstrative	
purposes.	Please	note,	I	further	differentiate	in	this	way	to	illustrate	the	effects	of	
multicollinearity	on	outlier-infested	data	and	how	outlier	decontamination	is	able	
to	mitigate	such	effects.	As	I	will	demonstrate	later,	multicollinearity	is	an	
important	feature	in	the	FADN	data	employed	in	my	analyses.	In	both	samples	
the	production	function	for	the	outlier	sets	is:	
	
	 𝑦𝑦"# = 0.99 ∙ 𝑙𝑙"# + 0.01 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-19)	
	
i.e.,	in	both	sets	7 ∙ 20 = 140	observations	are	generated	by	(2-19)	which	are	
regarded	as	outlying	from	the	process	assumed	in	(2-18).	
	
I	present	fixed	effects	regression	results	to	control	for	unobserved	time	constant	
farm-specific	effects	(𝜔𝜔")	for	all	three	data	sets,	applying	a)	no	decontamination,	
b)	univariate	outlier	decontamination,	and	c)	multivariate	decontamination	using	
the	pMST	method	outlined	below	in	the	next	subchapter.	The	estimated	output	
elasticities	for	labour	and	capital	input	as	well	as	final	sample	size	are	
summarised	in	Table	Table	2.4.	
	

																																																																				
1 Throughout, I assume 𝑁𝑁 𝜇𝜇, 𝜎𝜎? , i.e. 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 . 

 (sample I) and in the second 

To	demonstrate	the	effects	of	outliers	on	non-robust	estimations,	I	discuss	a	
simplified	example.	Therefore,	I	simulate	a	data	set	with	100	farms	over	seven	
periods.	The	data-generating	process	of	the	majority	of	observations	is,	hence,	as	
follows:		
	
	 𝑦𝑦"# = 0.4 ∙ 𝑙𝑙"# + 0.6 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-18)	
	
where	𝑦𝑦,	𝑙𝑙	and	𝑘𝑘	are	the	natural	logarithm	of	output,	labour,	and	capital;	𝜔𝜔"	
represents	unobserved	heterogeneity	with	𝜔𝜔"~𝑁𝑁 0, 25 ;	and	𝜀𝜀"#	is	the	remaining	

disturbance	following	𝑁𝑁 0,1 .
1
	The	labour	and	capital	inputs	are	random	

variables	with	𝑁𝑁 0, 4 .		
	
As	outliers,	two	data	sets	with	20	small	farms	over	the	7	time	periods	with	
𝜔𝜔"~𝑁𝑁 −5, 4 	and	𝑙𝑙"#, 𝑘𝑘"#~𝑁𝑁 −5, 9 	are	generated.	Finally,	I	arrive	at	two	
different	outlier-contaminated	data	samples	by	adding	the	outliers	to	the	raw	
sample.	In	the	first	outlier	data	set,	I	set	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# = 0	(sample	I)	and	in	the	
second	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# ≈ −1	(sample	II),	so	that	labour	and	capital	are	(almost	
perfect)	substitutes.	This	assumption	has	been	chosen	for	demonstrative	
purposes.	Please	note,	I	further	differentiate	in	this	way	to	illustrate	the	effects	of	
multicollinearity	on	outlier-infested	data	and	how	outlier	decontamination	is	able	
to	mitigate	such	effects.	As	I	will	demonstrate	later,	multicollinearity	is	an	
important	feature	in	the	FADN	data	employed	in	my	analyses.	In	both	samples	
the	production	function	for	the	outlier	sets	is:	
	
	 𝑦𝑦"# = 0.99 ∙ 𝑙𝑙"# + 0.01 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-19)	
	
i.e.,	in	both	sets	7 ∙ 20 = 140	observations	are	generated	by	(2-19)	which	are	
regarded	as	outlying	from	the	process	assumed	in	(2-18).	
	
I	present	fixed	effects	regression	results	to	control	for	unobserved	time	constant	
farm-specific	effects	(𝜔𝜔")	for	all	three	data	sets,	applying	a)	no	decontamination,	
b)	univariate	outlier	decontamination,	and	c)	multivariate	decontamination	using	
the	pMST	method	outlined	below	in	the	next	subchapter.	The	estimated	output	
elasticities	for	labour	and	capital	input	as	well	as	final	sample	size	are	
summarised	in	Table	Table	2.4.	
	

																																																																				
1 Throughout, I assume 𝑁𝑁 𝜇𝜇, 𝜎𝜎? , i.e. 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 . 

 (sample II), so that labour and capital are (almost perfect) substi-
tutes. This assumption has been chosen for demonstrative purposes. Please note, 
I further differentiate in this way to illustrate the effects of multicollinearity on 
outlier-infested data and how outlier decontamination is able to mitigate such 
effects. As I will demonstrate later, multicollinearity is an important feature in 
the FADN data employed in my analyses. In both samples the production func-
tion for the outlier sets is:

To	demonstrate	the	effects	of	outliers	on	non-robust	estimations,	I	discuss	a	
simplified	example.	Therefore,	I	simulate	a	data	set	with	100	farms	over	seven	
periods.	The	data-generating	process	of	the	majority	of	observations	is,	hence,	as	
follows:		
	
	 𝑦𝑦"# = 0.4 ∙ 𝑙𝑙"# + 0.6 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-18)	
	
where	𝑦𝑦,	𝑙𝑙	and	𝑘𝑘	are	the	natural	logarithm	of	output,	labour,	and	capital;	𝜔𝜔"	
represents	unobserved	heterogeneity	with	𝜔𝜔"~𝑁𝑁 0, 25 ;	and	𝜀𝜀"#	is	the	remaining	

disturbance	following	𝑁𝑁 0,1 .
1
	The	labour	and	capital	inputs	are	random	

variables	with	𝑁𝑁 0, 4 .		
	
As	outliers,	two	data	sets	with	20	small	farms	over	the	7	time	periods	with	
𝜔𝜔"~𝑁𝑁 −5, 4 	and	𝑙𝑙"#, 𝑘𝑘"#~𝑁𝑁 −5, 9 	are	generated.	Finally,	I	arrive	at	two	
different	outlier-contaminated	data	samples	by	adding	the	outliers	to	the	raw	
sample.	In	the	first	outlier	data	set,	I	set	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# = 0	(sample	I)	and	in	the	
second	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# ≈ −1	(sample	II),	so	that	labour	and	capital	are	(almost	
perfect)	substitutes.	This	assumption	has	been	chosen	for	demonstrative	
purposes.	Please	note,	I	further	differentiate	in	this	way	to	illustrate	the	effects	of	
multicollinearity	on	outlier-infested	data	and	how	outlier	decontamination	is	able	
to	mitigate	such	effects.	As	I	will	demonstrate	later,	multicollinearity	is	an	
important	feature	in	the	FADN	data	employed	in	my	analyses.	In	both	samples	
the	production	function	for	the	outlier	sets	is:	
	
	 𝑦𝑦"# = 0.99 ∙ 𝑙𝑙"# + 0.01 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-19)	
	
i.e.,	in	both	sets	7 ∙ 20 = 140	observations	are	generated	by	(2-19)	which	are	
regarded	as	outlying	from	the	process	assumed	in	(2-18).	
	
I	present	fixed	effects	regression	results	to	control	for	unobserved	time	constant	
farm-specific	effects	(𝜔𝜔")	for	all	three	data	sets,	applying	a)	no	decontamination,	
b)	univariate	outlier	decontamination,	and	c)	multivariate	decontamination	using	
the	pMST	method	outlined	below	in	the	next	subchapter.	The	estimated	output	
elasticities	for	labour	and	capital	input	as	well	as	final	sample	size	are	
summarised	in	Table	Table	2.4.	
	

																																																																				
1 Throughout, I assume 𝑁𝑁 𝜇𝜇, 𝜎𝜎? , i.e. 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 . 

, (2-19)

i.e., in both sets 

To	demonstrate	the	effects	of	outliers	on	non-robust	estimations,	I	discuss	a	
simplified	example.	Therefore,	I	simulate	a	data	set	with	100	farms	over	seven	
periods.	The	data-generating	process	of	the	majority	of	observations	is,	hence,	as	
follows:		
	
	 𝑦𝑦"# = 0.4 ∙ 𝑙𝑙"# + 0.6 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-18)	
	
where	𝑦𝑦,	𝑙𝑙	and	𝑘𝑘	are	the	natural	logarithm	of	output,	labour,	and	capital;	𝜔𝜔"	
represents	unobserved	heterogeneity	with	𝜔𝜔"~𝑁𝑁 0, 25 ;	and	𝜀𝜀"#	is	the	remaining	

disturbance	following	𝑁𝑁 0,1 .
1
	The	labour	and	capital	inputs	are	random	

variables	with	𝑁𝑁 0, 4 .		
	
As	outliers,	two	data	sets	with	20	small	farms	over	the	7	time	periods	with	
𝜔𝜔"~𝑁𝑁 −5, 4 	and	𝑙𝑙"#, 𝑘𝑘"#~𝑁𝑁 −5, 9 	are	generated.	Finally,	I	arrive	at	two	
different	outlier-contaminated	data	samples	by	adding	the	outliers	to	the	raw	
sample.	In	the	first	outlier	data	set,	I	set	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# = 0	(sample	I)	and	in	the	
second	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# ≈ −1	(sample	II),	so	that	labour	and	capital	are	(almost	
perfect)	substitutes.	This	assumption	has	been	chosen	for	demonstrative	
purposes.	Please	note,	I	further	differentiate	in	this	way	to	illustrate	the	effects	of	
multicollinearity	on	outlier-infested	data	and	how	outlier	decontamination	is	able	
to	mitigate	such	effects.	As	I	will	demonstrate	later,	multicollinearity	is	an	
important	feature	in	the	FADN	data	employed	in	my	analyses.	In	both	samples	
the	production	function	for	the	outlier	sets	is:	
	
	 𝑦𝑦"# = 0.99 ∙ 𝑙𝑙"# + 0.01 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-19)	
	
i.e.,	in	both	sets	7 ∙ 20 = 140	observations	are	generated	by	(2-19)	which	are	
regarded	as	outlying	from	the	process	assumed	in	(2-18).	
	
I	present	fixed	effects	regression	results	to	control	for	unobserved	time	constant	
farm-specific	effects	(𝜔𝜔")	for	all	three	data	sets,	applying	a)	no	decontamination,	
b)	univariate	outlier	decontamination,	and	c)	multivariate	decontamination	using	
the	pMST	method	outlined	below	in	the	next	subchapter.	The	estimated	output	
elasticities	for	labour	and	capital	input	as	well	as	final	sample	size	are	
summarised	in	Table	Table	2.4.	
	

																																																																				
1 Throughout, I assume 𝑁𝑁 𝜇𝜇, 𝜎𝜎? , i.e. 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 . 

 observations are generated by (2-19) which are 
regarded as outlying from the process assumed in (2-18).

12 Throughout, I assume 

To	demonstrate	the	effects	of	outliers	on	non-robust	estimations,	I	discuss	a	
simplified	example.	Therefore,	I	simulate	a	data	set	with	100	farms	over	seven	
periods.	The	data-generating	process	of	the	majority	of	observations	is,	hence,	as	
follows:		
	
	 𝑦𝑦"# = 0.4 ∙ 𝑙𝑙"# + 0.6 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-18)	
	
where	𝑦𝑦,	𝑙𝑙	and	𝑘𝑘	are	the	natural	logarithm	of	output,	labour,	and	capital;	𝜔𝜔"	
represents	unobserved	heterogeneity	with	𝜔𝜔"~𝑁𝑁 0, 25 ;	and	𝜀𝜀"#	is	the	remaining	

disturbance	following	𝑁𝑁 0,1 .
1
	The	labour	and	capital	inputs	are	random	

variables	with	𝑁𝑁 0, 4 .		
	
As	outliers,	two	data	sets	with	20	small	farms	over	the	7	time	periods	with	
𝜔𝜔"~𝑁𝑁 −5, 4 	and	𝑙𝑙"#, 𝑘𝑘"#~𝑁𝑁 −5, 9 	are	generated.	Finally,	I	arrive	at	two	
different	outlier-contaminated	data	samples	by	adding	the	outliers	to	the	raw	
sample.	In	the	first	outlier	data	set,	I	set	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# = 0	(sample	I)	and	in	the	
second	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# ≈ −1	(sample	II),	so	that	labour	and	capital	are	(almost	
perfect)	substitutes.	This	assumption	has	been	chosen	for	demonstrative	
purposes.	Please	note,	I	further	differentiate	in	this	way	to	illustrate	the	effects	of	
multicollinearity	on	outlier-infested	data	and	how	outlier	decontamination	is	able	
to	mitigate	such	effects.	As	I	will	demonstrate	later,	multicollinearity	is	an	
important	feature	in	the	FADN	data	employed	in	my	analyses.	In	both	samples	
the	production	function	for	the	outlier	sets	is:	
	
	 𝑦𝑦"# = 0.99 ∙ 𝑙𝑙"# + 0.01 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-19)	
	
i.e.,	in	both	sets	7 ∙ 20 = 140	observations	are	generated	by	(2-19)	which	are	
regarded	as	outlying	from	the	process	assumed	in	(2-18).	
	
I	present	fixed	effects	regression	results	to	control	for	unobserved	time	constant	
farm-specific	effects	(𝜔𝜔")	for	all	three	data	sets,	applying	a)	no	decontamination,	
b)	univariate	outlier	decontamination,	and	c)	multivariate	decontamination	using	
the	pMST	method	outlined	below	in	the	next	subchapter.	The	estimated	output	
elasticities	for	labour	and	capital	input	as	well	as	final	sample	size	are	
summarised	in	Table	Table	2.4.	
	

																																																																				
1 Throughout, I assume 𝑁𝑁 𝜇𝜇, 𝜎𝜎? , i.e. 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 . , i.e. 

To	demonstrate	the	effects	of	outliers	on	non-robust	estimations,	I	discuss	a	
simplified	example.	Therefore,	I	simulate	a	data	set	with	100	farms	over	seven	
periods.	The	data-generating	process	of	the	majority	of	observations	is,	hence,	as	
follows:		
	
	 𝑦𝑦"# = 0.4 ∙ 𝑙𝑙"# + 0.6 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-18)	
	
where	𝑦𝑦,	𝑙𝑙	and	𝑘𝑘	are	the	natural	logarithm	of	output,	labour,	and	capital;	𝜔𝜔"	
represents	unobserved	heterogeneity	with	𝜔𝜔"~𝑁𝑁 0, 25 ;	and	𝜀𝜀"#	is	the	remaining	

disturbance	following	𝑁𝑁 0,1 .
1
	The	labour	and	capital	inputs	are	random	

variables	with	𝑁𝑁 0, 4 .		
	
As	outliers,	two	data	sets	with	20	small	farms	over	the	7	time	periods	with	
𝜔𝜔"~𝑁𝑁 −5, 4 	and	𝑙𝑙"#, 𝑘𝑘"#~𝑁𝑁 −5, 9 	are	generated.	Finally,	I	arrive	at	two	
different	outlier-contaminated	data	samples	by	adding	the	outliers	to	the	raw	
sample.	In	the	first	outlier	data	set,	I	set	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# = 0	(sample	I)	and	in	the	
second	𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙"#, 𝑘𝑘"# ≈ −1	(sample	II),	so	that	labour	and	capital	are	(almost	
perfect)	substitutes.	This	assumption	has	been	chosen	for	demonstrative	
purposes.	Please	note,	I	further	differentiate	in	this	way	to	illustrate	the	effects	of	
multicollinearity	on	outlier-infested	data	and	how	outlier	decontamination	is	able	
to	mitigate	such	effects.	As	I	will	demonstrate	later,	multicollinearity	is	an	
important	feature	in	the	FADN	data	employed	in	my	analyses.	In	both	samples	
the	production	function	for	the	outlier	sets	is:	
	
	 𝑦𝑦"# = 0.99 ∙ 𝑙𝑙"# + 0.01 ∙ 𝑘𝑘"# + 𝜔𝜔" + 𝜀𝜀"#,	 (2-19)	
	
i.e.,	in	both	sets	7 ∙ 20 = 140	observations	are	generated	by	(2-19)	which	are	
regarded	as	outlying	from	the	process	assumed	in	(2-18).	
	
I	present	fixed	effects	regression	results	to	control	for	unobserved	time	constant	
farm-specific	effects	(𝜔𝜔")	for	all	three	data	sets,	applying	a)	no	decontamination,	
b)	univariate	outlier	decontamination,	and	c)	multivariate	decontamination	using	
the	pMST	method	outlined	below	in	the	next	subchapter.	The	estimated	output	
elasticities	for	labour	and	capital	input	as	well	as	final	sample	size	are	
summarised	in	Table	Table	2.4.	
	

																																																																				
1 Throughout, I assume 𝑁𝑁 𝜇𝜇, 𝜎𝜎? , i.e. 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 . .

Table 2.4:  Results of simulated production function estimation.

Notes:  *** (**, *) significant at the 1% (5%, 10%) level. The univariate decontamination 
is based on the average capital productivity per farm. I exclude values outside [Q1-
1.5∙IQR;Q3+1.5∙IQR]. The multivariate decontamination is based on the pMST procedure 
discussed below. Estimation samples include farms with a minimum panel representation 
of four years.

Source: Author. 

Decontamina-
tion scheme

Raw sample Sample I Sample II

N Labour Capital N Labour Capital N Labour Capital

Without 700 0.41*** 0.61*** 840 0.28*** 0.73*** 840 0.22*** 0.80***

Univariate 526 0.39*** 0.62*** 677 0.24*** 0.74*** 711 0.20*** 0.78***

Multivariate 498 0.40*** 0.61*** 539 0.42*** 0.62*** 534 0.41*** 0.62***
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I present fixed effects regression results to control for unobserved time constant 
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i.e.,	in	both	sets	7 ∙ 20 = 140	observations	are	generated	by	(2-19)	which	are	
regarded	as	outlying	from	the	process	assumed	in	(2-18).	
	
I	present	fixed	effects	regression	results	to	control	for	unobserved	time	constant	
farm-specific	effects	(𝜔𝜔")	for	all	three	data	sets,	applying	a)	no	decontamination,	
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elasticities	for	labour	and	capital	input	as	well	as	final	sample	size	are	
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1 Throughout, I assume 𝑁𝑁 𝜇𝜇, 𝜎𝜎? , i.e. 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 . 

 for all three data sets, applying a) no decontamina-
tion, b) univariate outlier decontamination, and c) multivariate decontamination 
using the pMST method outlined below in the next subchapter. The estimated 
output elasticities for labour and capital input as well as final sample size are 
summarised in Table Table 2.4.

Given an appropriate estimator that controls for unobserved heterogeneity, 
I am able to recover the ’true’ production function parameters, as given in 
(2-18), rather precisely for both contaminated samples with the multivariate 
decontamination method. Univariate decontamination yields no improvement 
in estimation accuracy. In fact, results are close to the sample without decon-
tamination. Hence, this simple procedure fails to detect the meaningful outliers 
in a sense that it cannot detect outliers in dimensions other than the one under 
consideration. Therefore, without even applying multivariate decontamination, 
a relatively small number of outliers (about 16.7 per cent in this example) se-
verely biases the estimates.13 

Multicollinearity (sample II) increases the problem which results in even more 
biased estimates. However, multivariate decontamination is able to identify the 
outliers correctly in this case, too. In particular, this example demonstrates that 
the presence of multicollinearity does not interfere with the multivariate detec-
tion procedures’ ability to identify outliers correctly, even in this extreme case 
of almost perfect correlation between the inputs. Moreover, to put it differently, 
the pMST procedure might also mitigate multicollinearity. This, as illustrated 
in this example, works especially well if the outliers are the (major) source of 
multicollinearity in the data. 

In summary, only after controlling for both unobserved heterogeneity and the 
effects of outliers I am capable of obtaining reliable output elasticity estimates. 
Hence, these two issues have to be treated separately. Given the results of this 
simple example, an effective outlier decontamination can only be conducted 
if all model dimensions are considered (i.e., multivariate outlier detection is 
conducted). 

13 This is close to the number of outliers that is observed for West Germany (see chapter 
5.2.1).
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2.2.4 Decontamination by pruning the minimum spanning tree

Robust statistical methods are designed to deliver unbiased estimates of meas-
ures of interest in the presence of contaminated data sets. A general two-step-
approach is, therefore, to identify an outlier-free subsample first. This step 
can be called decontamination. In turn, observations not belonging to the un-
contaminated subsample are suspected to be outliers. In contrast to outlier 
detection approaches, this procedure tries to find an outlier-free subsample 
instead of outliers. This way, I accept the risk to falsely discard non-outlying ob-
servations in favor of a (most likely) outlier-free subsample. A robust estimator 
relying on a non-parametric decontamination procedure is the pMST estimator 
which is a robust estimator of multivariate location and scatter (Kirschstein et 
al., 2013).14 The decontamination results from pruning of the so called Mini-
mum Spanning Tree (MST) of a data set. The idea is that each observation of a 
data set represents a point in Euclidean space whereby its coordinates are the 
observation’s values in each dimension. Note that in a panel data context, an 
observation corresponds to an entry in the data base (e.g., a farm’s record of 
labour, land, materials, and capital use in a certain year).15 For qualifying obser-
vations to be outlying, the pMST procedure implies that outliers are isolated 
with respect to similar observations. Similarity is here defined as the Euclidiean 
distance between two observations. Similar observations can be interpreted 
as neighbours. The spanning tree concept is used to identify the observations’ 
neighbourhoods. See Figure 2.1 for a graphic illustration in two dimensions. In 
this illustration one can see that this concept is intuitive to the outlier definition 
as observations differing substantially from target observations. The aim is to 
select a minimal set of connections between observations such that all observa-
tions are connected with each other. Among all spanning trees, the minimum 
spanning tree has smallest weight; this means the sum of the lengths of all con-
nections is minimal. For decontamination, the pMST procedure then iteratively 
deletes the longest connections in the MST until a certain threshold is reached 
(see below). The largest (still connected) fraction of the original MST is finally 
retained as the non-outlying part of the original data set. A formal description 
of the algorithm follows. 

14 The code is reproduced in appendix D.
15 In the formal presentation, I resign from using a time index to prevent a too cluttered 

notation.
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Formally, given a data set X of  points in dimension p, i.e. X =  Formally,	given	a	data	set	𝐗𝐗	of	𝑛𝑛	points	in	dimension	𝑝𝑝,	i.e.	𝐗𝐗 = 𝐱𝐱&, … , 𝐱𝐱) ,	and	
all	pairwise	links	(edges)	𝐄𝐄	(i.e.𝐄𝐄 ∋ 𝑒𝑒-. = 𝐱𝐱-, 𝐱𝐱. 	with	𝑖𝑖, 𝑗𝑗 = 1, . . . , 𝑛𝑛	and	𝑖𝑖 ≠ 𝑗𝑗),	the	
MST	is	defined	as	the	graph	𝐆𝐆 = (𝐗𝐗, 𝐄𝐄∗)	connecting	all	points	of	𝐗𝐗	such	that	its	
total	length	is	minimised,	i.e.	argmin

𝐄𝐄∗⊂𝐄𝐄
𝑤𝑤 𝑒𝑒-.@AB∈𝐄𝐄∗ .	Typically,	the	weight	(𝑤𝑤)	

of	an	edge	𝑒𝑒-. = xE, xF 	is	the	Euclidean	distances	between	𝐱𝐱-	and	𝐱𝐱𝒋𝒋	such	that	

𝑤𝑤 𝑒𝑒-. = 𝐱𝐱- − 𝐱𝐱. ∙ 𝐱𝐱- − 𝐱𝐱. ′.	From	this	fact	follows	that	Euclidean	distances	

are	meaningful	for	the	data	set	(i.e.	all	variables	are	estimated	on	the	same,	or	at	
least	a	similar,	scale).	The	term	connected	refers	to	the	property	that	there	must	
be	a	path	–	a	sequence	of	edges	–	in	𝐆𝐆	between	any	two	points	of	𝐗𝐗.	It	can	be	
proven	that	the	number	of	edges	in	G	is	always	 𝐄𝐄∗ = 𝑛𝑛 − 1	(JUNGNICKEL,	2008).	
Moreover,	it	can	be	shown	that	the	MST	is	unique	if	all	edges	in	𝐄𝐄	have	unique	
weights.	The	MST	can	be	efficiently	computed	even	for	large	data	sets.	See	
e.g.	JUNGNICKEL	(2008)	for	a	review	of	efficient	algorithms.		
Given	the	MST,	pruning	is	realised	by	successively	deleting	edges	in	𝐆𝐆	according	
to	their	length.	Therefore,	in	the	first	iteration	the	longest	edge	is	removed,	in	the	
second	iteration	the	second	longest	edge,	and	so	on.	This	way	𝐆𝐆	is	split	into	
several	subgraphs	which	are	not	connected	among	each	other.	During	the	
pruning	process,	the	subgraphs’	cardinality	(i.e.,	the	corresponding	number	of	
observations)	declines.	The	pruning	process	is	stopped	if,	by	deleting	the	next	
edge,	the	cardinality	of	the	largest	subgraph	would	fall	below	 (𝑛𝑛 + 𝑝𝑝 + 1)/2 .	
Stopping	at	this	bound	assures	that	subsequently	applied	estimators	achieve	a	
maximum	breakdown	point	(i.e.,	they	are	resistant	against	a	maximum	level	of	
contamination.	The	largest	subgraph	at	this	point	contains	more	than	or	exactly	
(𝑛𝑛 + 𝑝𝑝 + 1)/2 	observations	and	is	denoted	by	𝐆𝐆∗ = (𝐗𝐗′, 𝐄𝐄′)	with	𝐗𝐗^′ ⊂ 𝐗𝐗	and	
𝐄𝐄O ⊂ 𝐄𝐄∗.	This	approach	was	first	proposed	by	BENNETT	and	WILLEMAIN	(2001).	A	
discussion	on	the	robustness	properties	of	the	associated	estimators	can	be	
found	in	KIRSCHSTEIN	et	al.	(2013).	Problematically,	in	most	real-world	data	sets	
much	less	than	𝑛𝑛 − (𝑛𝑛 + 𝑝𝑝 + 1)/2 	outliers	occur.	To	avoid	low	efficiency	of	
robust	estimators,	reweighting	procedures	were	proposed	to	enlarge	the	
uncontaminated	subsample.	
For	MST-based	outlier	decontamination,	reweighting	implies	that	a	critical	edge	
length	𝑤𝑤P

QR-S	has	to	be	determined	up	to	which	(with	a	certain	probability	𝛼𝛼)	the	
MST	consists	of	uncontaminated	observations	only.	To	estimate	𝑤𝑤P

QR-S,	a	non-
parametric	approach	relying	on	a	finite	sample	version	of	Chebychev’s	inequality	
is	described	in	LIEBSCHER	and	KIRSCHSTEIN	(2014).	The	main	idea	is	to	estimate	𝑤𝑤P

QR-S	
based	on	the	mean	edge	length	𝜇𝜇V	and	the	edge	lengths’	standard	deviation	𝜎𝜎V.	
The	parameters	𝜇𝜇Vand	𝜎𝜎V	are	estimated	based	on	the	edge	set	𝐄𝐄′	of	the	initial	

robust	subset	of	𝐆𝐆′,	for	𝑤𝑤P
QR-S	follows	𝑤𝑤P

QR-S = 𝜇𝜇V + XYZ&
XY∙ &ZP ZX

∙ 𝜎𝜎V	where	𝑚𝑚	

denotes	the	cardinality	of	𝐄𝐄′.	Once	𝑤𝑤P
QR-S	is	determined,	𝐆𝐆′	is	rebuilt	by	attaching	

all	edges	of	𝐆𝐆	with	edge	weights	smaller	than	or	equal	to	𝑤𝑤P
QR-S.	This	way,	a	still	

robust	but	larger	subgraph	(say	𝐆𝐆′′)	is	determined	whose	associated	observations	
are	considered	as	the	outlier-free	subsample	used	in	further	analyses.	
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discussion	on	the	robustness	properties	of	the	associated	estimators	can	be	
found	in	KIRSCHSTEIN	et	al.	(2013).	Problematically,	in	most	real-world	data	sets	
much	less	than	𝑛𝑛 − (𝑛𝑛 + 𝑝𝑝 + 1)/2 	outliers	occur.	To	avoid	low	efficiency	of	
robust	estimators,	reweighting	procedures	were	proposed	to	enlarge	the	
uncontaminated	subsample.	
For	MST-based	outlier	decontamination,	reweighting	implies	that	a	critical	edge	
length	𝑤𝑤P

QR-S	has	to	be	determined	up	to	which	(with	a	certain	probability	𝛼𝛼)	the	
MST	consists	of	uncontaminated	observations	only.	To	estimate	𝑤𝑤P

QR-S,	a	non-
parametric	approach	relying	on	a	finite	sample	version	of	Chebychev’s	inequality	
is	described	in	LIEBSCHER	and	KIRSCHSTEIN	(2014).	The	main	idea	is	to	estimate	𝑤𝑤P

QR-S	
based	on	the	mean	edge	length	𝜇𝜇V	and	the	edge	lengths’	standard	deviation	𝜎𝜎V.	
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all	edges	of	𝐆𝐆	with	edge	weights	smaller	than	or	equal	to	𝑤𝑤P
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e.g.	JUNGNICKEL	(2008)	for	a	review	of	efficient	algorithms.		
Given	the	MST,	pruning	is	realised	by	successively	deleting	edges	in	𝐆𝐆	according	
to	their	length.	Therefore,	in	the	first	iteration	the	longest	edge	is	removed,	in	the	
second	iteration	the	second	longest	edge,	and	so	on.	This	way	𝐆𝐆	is	split	into	
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Stopping	at	this	bound	assures	that	subsequently	applied	estimators	achieve	a	
maximum	breakdown	point	(i.e.,	they	are	resistant	against	a	maximum	level	of	
contamination.	The	largest	subgraph	at	this	point	contains	more	than	or	exactly	
(𝑛𝑛 + 𝑝𝑝 + 1)/2 	observations	and	is	denoted	by	𝐆𝐆∗ = (𝐗𝐗′, 𝐄𝐄′)	with	𝐗𝐗^′ ⊂ 𝐗𝐗	and	
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(Jungnickel, 2008). Moreover, it can be shown that the MST is unique if all 
edges in E have unique weights. The MST can be efficiently computed even for 
large data sets. See e.g. Jungnickel (2008) for a review of efficient algorithms. 
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Figure 2.1: Illustration of pMST procedure.

Notes: Left panel: minimum spanning tree. Right panel: pruned minimum spanning tree.
Source: Author.
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37Selected problems in estimating factor productivity

Given the MST, pruning is realised by successively deleting edges in G accord-
ing to their length. Therefore, in the first iteration the longest edge is removed, 
in the second iteration the second longest edge, and so on. This way G is split 
into several subgraphs which are not connected among each other. During the 
pruning process, the subgraphs’ cardinality (i.e., the corresponding number of 
observations) declines. The pruning process is stopped if, by deleting the next 
edge, the cardinality of the largest subgraph would fall below 

Formally,	given	a	data	set	𝐗𝐗	of	𝑛𝑛	points	in	dimension	𝑝𝑝,	i.e.	𝐗𝐗 = 𝐱𝐱&, … , 𝐱𝐱) ,	and	
all	pairwise	links	(edges)	𝐄𝐄	(i.e.𝐄𝐄 ∋ 𝑒𝑒-. = 𝐱𝐱-, 𝐱𝐱. 	with	𝑖𝑖, 𝑗𝑗 = 1, . . . , 𝑛𝑛	and	𝑖𝑖 ≠ 𝑗𝑗),	the	
MST	is	defined	as	the	graph	𝐆𝐆 = (𝐗𝐗, 𝐄𝐄∗)	connecting	all	points	of	𝐗𝐗	such	that	its	
total	length	is	minimised,	i.e.	argmin

𝐄𝐄∗⊂𝐄𝐄
𝑤𝑤 𝑒𝑒-.@AB∈𝐄𝐄∗ .	Typically,	the	weight	(𝑤𝑤)	

of	an	edge	𝑒𝑒-. = xE, xF 	is	the	Euclidean	distances	between	𝐱𝐱-	and	𝐱𝐱𝒋𝒋	such	that	

𝑤𝑤 𝑒𝑒-. = 𝐱𝐱- − 𝐱𝐱. ∙ 𝐱𝐱- − 𝐱𝐱. ′.	From	this	fact	follows	that	Euclidean	distances	

are	meaningful	for	the	data	set	(i.e.	all	variables	are	estimated	on	the	same,	or	at	
least	a	similar,	scale).	The	term	connected	refers	to	the	property	that	there	must	
be	a	path	–	a	sequence	of	edges	–	in	𝐆𝐆	between	any	two	points	of	𝐗𝐗.	It	can	be	
proven	that	the	number	of	edges	in	G	is	always	 𝐄𝐄∗ = 𝑛𝑛 − 1	(JUNGNICKEL,	2008).	
Moreover,	it	can	be	shown	that	the	MST	is	unique	if	all	edges	in	𝐄𝐄	have	unique	
weights.	The	MST	can	be	efficiently	computed	even	for	large	data	sets.	See	
e.g.	JUNGNICKEL	(2008)	for	a	review	of	efficient	algorithms.		
Given	the	MST,	pruning	is	realised	by	successively	deleting	edges	in	𝐆𝐆	according	
to	their	length.	Therefore,	in	the	first	iteration	the	longest	edge	is	removed,	in	the	
second	iteration	the	second	longest	edge,	and	so	on.	This	way	𝐆𝐆	is	split	into	
several	subgraphs	which	are	not	connected	among	each	other.	During	the	
pruning	process,	the	subgraphs’	cardinality	(i.e.,	the	corresponding	number	of	
observations)	declines.	The	pruning	process	is	stopped	if,	by	deleting	the	next	
edge,	the	cardinality	of	the	largest	subgraph	would	fall	below	 (𝑛𝑛 + 𝑝𝑝 + 1)/2 .	
Stopping	at	this	bound	assures	that	subsequently	applied	estimators	achieve	a	
maximum	breakdown	point	(i.e.,	they	are	resistant	against	a	maximum	level	of	
contamination.	The	largest	subgraph	at	this	point	contains	more	than	or	exactly	
(𝑛𝑛 + 𝑝𝑝 + 1)/2 	observations	and	is	denoted	by	𝐆𝐆∗ = (𝐗𝐗′, 𝐄𝐄′)	with	𝐗𝐗^′ ⊂ 𝐗𝐗	and	
𝐄𝐄O ⊂ 𝐄𝐄∗.	This	approach	was	first	proposed	by	BENNETT	and	WILLEMAIN	(2001).	A	
discussion	on	the	robustness	properties	of	the	associated	estimators	can	be	
found	in	KIRSCHSTEIN	et	al.	(2013).	Problematically,	in	most	real-world	data	sets	
much	less	than	𝑛𝑛 − (𝑛𝑛 + 𝑝𝑝 + 1)/2 	outliers	occur.	To	avoid	low	efficiency	of	
robust	estimators,	reweighting	procedures	were	proposed	to	enlarge	the	
uncontaminated	subsample.	
For	MST-based	outlier	decontamination,	reweighting	implies	that	a	critical	edge	
length	𝑤𝑤P

QR-S	has	to	be	determined	up	to	which	(with	a	certain	probability	𝛼𝛼)	the	
MST	consists	of	uncontaminated	observations	only.	To	estimate	𝑤𝑤P

QR-S,	a	non-
parametric	approach	relying	on	a	finite	sample	version	of	Chebychev’s	inequality	
is	described	in	LIEBSCHER	and	KIRSCHSTEIN	(2014).	The	main	idea	is	to	estimate	𝑤𝑤P

QR-S	
based	on	the	mean	edge	length	𝜇𝜇V	and	the	edge	lengths’	standard	deviation	𝜎𝜎V.	
The	parameters	𝜇𝜇Vand	𝜎𝜎V	are	estimated	based	on	the	edge	set	𝐄𝐄′	of	the	initial	

robust	subset	of	𝐆𝐆′,	for	𝑤𝑤P
QR-S	follows	𝑤𝑤P

QR-S = 𝜇𝜇V + XYZ&
XY∙ &ZP ZX

∙ 𝜎𝜎V	where	𝑚𝑚	

denotes	the	cardinality	of	𝐄𝐄′.	Once	𝑤𝑤P
QR-S	is	determined,	𝐆𝐆′	is	rebuilt	by	attaching	

all	edges	of	𝐆𝐆	with	edge	weights	smaller	than	or	equal	to	𝑤𝑤P
QR-S.	This	way,	a	still	

robust	but	larger	subgraph	(say	𝐆𝐆′′)	is	determined	whose	associated	observations	
are	considered	as	the	outlier-free	subsample	used	in	further	analyses.	
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MST	is	defined	as	the	graph	𝐆𝐆 = (𝐗𝐗, 𝐄𝐄∗)	connecting	all	points	of	𝐗𝐗	such	that	its	
total	length	is	minimised,	i.e.	argmin
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of	an	edge	𝑒𝑒-. = xE, xF 	is	the	Euclidean	distances	between	𝐱𝐱-	and	𝐱𝐱𝒋𝒋	such	that	
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are	meaningful	for	the	data	set	(i.e.	all	variables	are	estimated	on	the	same,	or	at	
least	a	similar,	scale).	The	term	connected	refers	to	the	property	that	there	must	
be	a	path	–	a	sequence	of	edges	–	in	𝐆𝐆	between	any	two	points	of	𝐗𝐗.	It	can	be	
proven	that	the	number	of	edges	in	G	is	always	 𝐄𝐄∗ = 𝑛𝑛 − 1	(JUNGNICKEL,	2008).	
Moreover,	it	can	be	shown	that	the	MST	is	unique	if	all	edges	in	𝐄𝐄	have	unique	
weights.	The	MST	can	be	efficiently	computed	even	for	large	data	sets.	See	
e.g.	JUNGNICKEL	(2008)	for	a	review	of	efficient	algorithms.		
Given	the	MST,	pruning	is	realised	by	successively	deleting	edges	in	𝐆𝐆	according	
to	their	length.	Therefore,	in	the	first	iteration	the	longest	edge	is	removed,	in	the	
second	iteration	the	second	longest	edge,	and	so	on.	This	way	𝐆𝐆	is	split	into	
several	subgraphs	which	are	not	connected	among	each	other.	During	the	
pruning	process,	the	subgraphs’	cardinality	(i.e.,	the	corresponding	number	of	
observations)	declines.	The	pruning	process	is	stopped	if,	by	deleting	the	next	
edge,	the	cardinality	of	the	largest	subgraph	would	fall	below	 (𝑛𝑛 + 𝑝𝑝 + 1)/2 .	
Stopping	at	this	bound	assures	that	subsequently	applied	estimators	achieve	a	
maximum	breakdown	point	(i.e.,	they	are	resistant	against	a	maximum	level	of	
contamination.	The	largest	subgraph	at	this	point	contains	more	than	or	exactly	
(𝑛𝑛 + 𝑝𝑝 + 1)/2 	observations	and	is	denoted	by	𝐆𝐆∗ = (𝐗𝐗′, 𝐄𝐄′)	with	𝐗𝐗^′ ⊂ 𝐗𝐗	and	
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robust	estimators,	reweighting	procedures	were	proposed	to	enlarge	the	
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For	MST-based	outlier	decontamination,	reweighting	implies	that	a	critical	edge	
length	𝑤𝑤P

QR-S	has	to	be	determined	up	to	which	(with	a	certain	probability	𝛼𝛼)	the	
MST	consists	of	uncontaminated	observations	only.	To	estimate	𝑤𝑤P

QR-S,	a	non-
parametric	approach	relying	on	a	finite	sample	version	of	Chebychev’s	inequality	
is	described	in	LIEBSCHER	and	KIRSCHSTEIN	(2014).	The	main	idea	is	to	estimate	𝑤𝑤P

QR-S	
based	on	the	mean	edge	length	𝜇𝜇V	and	the	edge	lengths’	standard	deviation	𝜎𝜎V.	
The	parameters	𝜇𝜇Vand	𝜎𝜎V	are	estimated	based	on	the	edge	set	𝐄𝐄′	of	the	initial	

robust	subset	of	𝐆𝐆′,	for	𝑤𝑤P
QR-S	follows	𝑤𝑤P

QR-S = 𝜇𝜇V + XYZ&
XY∙ &ZP ZX

∙ 𝜎𝜎V	where	𝑚𝑚	

denotes	the	cardinality	of	𝐄𝐄′.	Once	𝑤𝑤P
QR-S	is	determined,	𝐆𝐆′	is	rebuilt	by	attaching	

all	edges	of	𝐆𝐆	with	edge	weights	smaller	than	or	equal	to	𝑤𝑤P
QR-S.	This	way,	a	still	

robust	but	larger	subgraph	(say	𝐆𝐆′′)	is	determined	whose	associated	observations	
are	considered	as	the	outlier-free	subsample	used	in	further	analyses.	
	

 has to be determined up to which (with a certain probability α) the 
MST consists of uncontaminated observations only. To estimate 

Formally,	given	a	data	set	𝐗𝐗	of	𝑛𝑛	points	in	dimension	𝑝𝑝,	i.e.	𝐗𝐗 = 𝐱𝐱&, … , 𝐱𝐱) ,	and	
all	pairwise	links	(edges)	𝐄𝐄	(i.e.𝐄𝐄 ∋ 𝑒𝑒-. = 𝐱𝐱-, 𝐱𝐱. 	with	𝑖𝑖, 𝑗𝑗 = 1, . . . , 𝑛𝑛	and	𝑖𝑖 ≠ 𝑗𝑗),	the	
MST	is	defined	as	the	graph	𝐆𝐆 = (𝐗𝐗, 𝐄𝐄∗)	connecting	all	points	of	𝐗𝐗	such	that	its	
total	length	is	minimised,	i.e.	argmin

𝐄𝐄∗⊂𝐄𝐄
𝑤𝑤 𝑒𝑒-.@AB∈𝐄𝐄∗ .	Typically,	the	weight	(𝑤𝑤)	

of	an	edge	𝑒𝑒-. = xE, xF 	is	the	Euclidean	distances	between	𝐱𝐱-	and	𝐱𝐱𝒋𝒋	such	that	

𝑤𝑤 𝑒𝑒-. = 𝐱𝐱- − 𝐱𝐱. ∙ 𝐱𝐱- − 𝐱𝐱. ′.	From	this	fact	follows	that	Euclidean	distances	

are	meaningful	for	the	data	set	(i.e.	all	variables	are	estimated	on	the	same,	or	at	
least	a	similar,	scale).	The	term	connected	refers	to	the	property	that	there	must	
be	a	path	–	a	sequence	of	edges	–	in	𝐆𝐆	between	any	two	points	of	𝐗𝐗.	It	can	be	
proven	that	the	number	of	edges	in	G	is	always	 𝐄𝐄∗ = 𝑛𝑛 − 1	(JUNGNICKEL,	2008).	
Moreover,	it	can	be	shown	that	the	MST	is	unique	if	all	edges	in	𝐄𝐄	have	unique	
weights.	The	MST	can	be	efficiently	computed	even	for	large	data	sets.	See	
e.g.	JUNGNICKEL	(2008)	for	a	review	of	efficient	algorithms.		
Given	the	MST,	pruning	is	realised	by	successively	deleting	edges	in	𝐆𝐆	according	
to	their	length.	Therefore,	in	the	first	iteration	the	longest	edge	is	removed,	in	the	
second	iteration	the	second	longest	edge,	and	so	on.	This	way	𝐆𝐆	is	split	into	
several	subgraphs	which	are	not	connected	among	each	other.	During	the	
pruning	process,	the	subgraphs’	cardinality	(i.e.,	the	corresponding	number	of	
observations)	declines.	The	pruning	process	is	stopped	if,	by	deleting	the	next	
edge,	the	cardinality	of	the	largest	subgraph	would	fall	below	 (𝑛𝑛 + 𝑝𝑝 + 1)/2 .	
Stopping	at	this	bound	assures	that	subsequently	applied	estimators	achieve	a	
maximum	breakdown	point	(i.e.,	they	are	resistant	against	a	maximum	level	of	
contamination.	The	largest	subgraph	at	this	point	contains	more	than	or	exactly	
(𝑛𝑛 + 𝑝𝑝 + 1)/2 	observations	and	is	denoted	by	𝐆𝐆∗ = (𝐗𝐗′, 𝐄𝐄′)	with	𝐗𝐗^′ ⊂ 𝐗𝐗	and	
𝐄𝐄O ⊂ 𝐄𝐄∗.	This	approach	was	first	proposed	by	BENNETT	and	WILLEMAIN	(2001).	A	
discussion	on	the	robustness	properties	of	the	associated	estimators	can	be	
found	in	KIRSCHSTEIN	et	al.	(2013).	Problematically,	in	most	real-world	data	sets	
much	less	than	𝑛𝑛 − (𝑛𝑛 + 𝑝𝑝 + 1)/2 	outliers	occur.	To	avoid	low	efficiency	of	
robust	estimators,	reweighting	procedures	were	proposed	to	enlarge	the	
uncontaminated	subsample.	
For	MST-based	outlier	decontamination,	reweighting	implies	that	a	critical	edge	
length	𝑤𝑤P

QR-S	has	to	be	determined	up	to	which	(with	a	certain	probability	𝛼𝛼)	the	
MST	consists	of	uncontaminated	observations	only.	To	estimate	𝑤𝑤P

QR-S,	a	non-
parametric	approach	relying	on	a	finite	sample	version	of	Chebychev’s	inequality	
is	described	in	LIEBSCHER	and	KIRSCHSTEIN	(2014).	The	main	idea	is	to	estimate	𝑤𝑤P

QR-S	
based	on	the	mean	edge	length	𝜇𝜇V	and	the	edge	lengths’	standard	deviation	𝜎𝜎V.	
The	parameters	𝜇𝜇Vand	𝜎𝜎V	are	estimated	based	on	the	edge	set	𝐄𝐄′	of	the	initial	

robust	subset	of	𝐆𝐆′,	for	𝑤𝑤P
QR-S	follows	𝑤𝑤P

QR-S = 𝜇𝜇V + XYZ&
XY∙ &ZP ZX

∙ 𝜎𝜎V	where	𝑚𝑚	

denotes	the	cardinality	of	𝐄𝐄′.	Once	𝑤𝑤P
QR-S	is	determined,	𝐆𝐆′	is	rebuilt	by	attaching	

all	edges	of	𝐆𝐆	with	edge	weights	smaller	than	or	equal	to	𝑤𝑤P
QR-S.	This	way,	a	still	

robust	but	larger	subgraph	(say	𝐆𝐆′′)	is	determined	whose	associated	observations	
are	considered	as	the	outlier-free	subsample	used	in	further	analyses.	
	

, a non-
parametric approach relying on a finite sample version of Chebychev’s inequal-
ity is described in Liebscher and Kirschstein (2014). The main idea is to estimate 

Formally,	given	a	data	set	𝐗𝐗	of	𝑛𝑛	points	in	dimension	𝑝𝑝,	i.e.	𝐗𝐗 = 𝐱𝐱&, … , 𝐱𝐱) ,	and	
all	pairwise	links	(edges)	𝐄𝐄	(i.e.𝐄𝐄 ∋ 𝑒𝑒-. = 𝐱𝐱-, 𝐱𝐱. 	with	𝑖𝑖, 𝑗𝑗 = 1, . . . , 𝑛𝑛	and	𝑖𝑖 ≠ 𝑗𝑗),	the	
MST	is	defined	as	the	graph	𝐆𝐆 = (𝐗𝐗, 𝐄𝐄∗)	connecting	all	points	of	𝐗𝐗	such	that	its	
total	length	is	minimised,	i.e.	argmin

𝐄𝐄∗⊂𝐄𝐄
𝑤𝑤 𝑒𝑒-.@AB∈𝐄𝐄∗ .	Typically,	the	weight	(𝑤𝑤)	

of	an	edge	𝑒𝑒-. = xE, xF 	is	the	Euclidean	distances	between	𝐱𝐱-	and	𝐱𝐱𝒋𝒋	such	that	

𝑤𝑤 𝑒𝑒-. = 𝐱𝐱- − 𝐱𝐱. ∙ 𝐱𝐱- − 𝐱𝐱. ′.	From	this	fact	follows	that	Euclidean	distances	

are	meaningful	for	the	data	set	(i.e.	all	variables	are	estimated	on	the	same,	or	at	
least	a	similar,	scale).	The	term	connected	refers	to	the	property	that	there	must	
be	a	path	–	a	sequence	of	edges	–	in	𝐆𝐆	between	any	two	points	of	𝐗𝐗.	It	can	be	
proven	that	the	number	of	edges	in	G	is	always	 𝐄𝐄∗ = 𝑛𝑛 − 1	(JUNGNICKEL,	2008).	
Moreover,	it	can	be	shown	that	the	MST	is	unique	if	all	edges	in	𝐄𝐄	have	unique	
weights.	The	MST	can	be	efficiently	computed	even	for	large	data	sets.	See	
e.g.	JUNGNICKEL	(2008)	for	a	review	of	efficient	algorithms.		
Given	the	MST,	pruning	is	realised	by	successively	deleting	edges	in	𝐆𝐆	according	
to	their	length.	Therefore,	in	the	first	iteration	the	longest	edge	is	removed,	in	the	
second	iteration	the	second	longest	edge,	and	so	on.	This	way	𝐆𝐆	is	split	into	
several	subgraphs	which	are	not	connected	among	each	other.	During	the	
pruning	process,	the	subgraphs’	cardinality	(i.e.,	the	corresponding	number	of	
observations)	declines.	The	pruning	process	is	stopped	if,	by	deleting	the	next	
edge,	the	cardinality	of	the	largest	subgraph	would	fall	below	 (𝑛𝑛 + 𝑝𝑝 + 1)/2 .	
Stopping	at	this	bound	assures	that	subsequently	applied	estimators	achieve	a	
maximum	breakdown	point	(i.e.,	they	are	resistant	against	a	maximum	level	of	
contamination.	The	largest	subgraph	at	this	point	contains	more	than	or	exactly	
(𝑛𝑛 + 𝑝𝑝 + 1)/2 	observations	and	is	denoted	by	𝐆𝐆∗ = (𝐗𝐗′, 𝐄𝐄′)	with	𝐗𝐗^′ ⊂ 𝐗𝐗	and	
𝐄𝐄O ⊂ 𝐄𝐄∗.	This	approach	was	first	proposed	by	BENNETT	and	WILLEMAIN	(2001).	A	
discussion	on	the	robustness	properties	of	the	associated	estimators	can	be	
found	in	KIRSCHSTEIN	et	al.	(2013).	Problematically,	in	most	real-world	data	sets	
much	less	than	𝑛𝑛 − (𝑛𝑛 + 𝑝𝑝 + 1)/2 	outliers	occur.	To	avoid	low	efficiency	of	
robust	estimators,	reweighting	procedures	were	proposed	to	enlarge	the	
uncontaminated	subsample.	
For	MST-based	outlier	decontamination,	reweighting	implies	that	a	critical	edge	
length	𝑤𝑤P

QR-S	has	to	be	determined	up	to	which	(with	a	certain	probability	𝛼𝛼)	the	
MST	consists	of	uncontaminated	observations	only.	To	estimate	𝑤𝑤P

QR-S,	a	non-
parametric	approach	relying	on	a	finite	sample	version	of	Chebychev’s	inequality	
is	described	in	LIEBSCHER	and	KIRSCHSTEIN	(2014).	The	main	idea	is	to	estimate	𝑤𝑤P

QR-S	
based	on	the	mean	edge	length	𝜇𝜇V	and	the	edge	lengths’	standard	deviation	𝜎𝜎V.	
The	parameters	𝜇𝜇Vand	𝜎𝜎V	are	estimated	based	on	the	edge	set	𝐄𝐄′	of	the	initial	

robust	subset	of	𝐆𝐆′,	for	𝑤𝑤P
QR-S	follows	𝑤𝑤P

QR-S = 𝜇𝜇V + XYZ&
XY∙ &ZP ZX

∙ 𝜎𝜎V	where	𝑚𝑚	

denotes	the	cardinality	of	𝐄𝐄′.	Once	𝑤𝑤P
QR-S	is	determined,	𝐆𝐆′	is	rebuilt	by	attaching	

all	edges	of	𝐆𝐆	with	edge	weights	smaller	than	or	equal	to	𝑤𝑤P
QR-S.	This	way,	a	still	

robust	but	larger	subgraph	(say	𝐆𝐆′′)	is	determined	whose	associated	observations	
are	considered	as	the	outlier-free	subsample	used	in	further	analyses.	
	

 based on the mean edge length 

Formally,	given	a	data	set	𝐗𝐗	of	𝑛𝑛	points	in	dimension	𝑝𝑝,	i.e.	𝐗𝐗 = 𝐱𝐱&, … , 𝐱𝐱) ,	and	
all	pairwise	links	(edges)	𝐄𝐄	(i.e.𝐄𝐄 ∋ 𝑒𝑒-. = 𝐱𝐱-, 𝐱𝐱. 	with	𝑖𝑖, 𝑗𝑗 = 1, . . . , 𝑛𝑛	and	𝑖𝑖 ≠ 𝑗𝑗),	the	
MST	is	defined	as	the	graph	𝐆𝐆 = (𝐗𝐗, 𝐄𝐄∗)	connecting	all	points	of	𝐗𝐗	such	that	its	
total	length	is	minimised,	i.e.	argmin

𝐄𝐄∗⊂𝐄𝐄
𝑤𝑤 𝑒𝑒-.@AB∈𝐄𝐄∗ .	Typically,	the	weight	(𝑤𝑤)	

of	an	edge	𝑒𝑒-. = xE, xF 	is	the	Euclidean	distances	between	𝐱𝐱-	and	𝐱𝐱𝒋𝒋	such	that	

𝑤𝑤 𝑒𝑒-. = 𝐱𝐱- − 𝐱𝐱. ∙ 𝐱𝐱- − 𝐱𝐱. ′.	From	this	fact	follows	that	Euclidean	distances	

are	meaningful	for	the	data	set	(i.e.	all	variables	are	estimated	on	the	same,	or	at	
least	a	similar,	scale).	The	term	connected	refers	to	the	property	that	there	must	
be	a	path	–	a	sequence	of	edges	–	in	𝐆𝐆	between	any	two	points	of	𝐗𝐗.	It	can	be	
proven	that	the	number	of	edges	in	G	is	always	 𝐄𝐄∗ = 𝑛𝑛 − 1	(JUNGNICKEL,	2008).	
Moreover,	it	can	be	shown	that	the	MST	is	unique	if	all	edges	in	𝐄𝐄	have	unique	
weights.	The	MST	can	be	efficiently	computed	even	for	large	data	sets.	See	
e.g.	JUNGNICKEL	(2008)	for	a	review	of	efficient	algorithms.		
Given	the	MST,	pruning	is	realised	by	successively	deleting	edges	in	𝐆𝐆	according	
to	their	length.	Therefore,	in	the	first	iteration	the	longest	edge	is	removed,	in	the	
second	iteration	the	second	longest	edge,	and	so	on.	This	way	𝐆𝐆	is	split	into	
several	subgraphs	which	are	not	connected	among	each	other.	During	the	
pruning	process,	the	subgraphs’	cardinality	(i.e.,	the	corresponding	number	of	
observations)	declines.	The	pruning	process	is	stopped	if,	by	deleting	the	next	
edge,	the	cardinality	of	the	largest	subgraph	would	fall	below	 (𝑛𝑛 + 𝑝𝑝 + 1)/2 .	
Stopping	at	this	bound	assures	that	subsequently	applied	estimators	achieve	a	
maximum	breakdown	point	(i.e.,	they	are	resistant	against	a	maximum	level	of	
contamination.	The	largest	subgraph	at	this	point	contains	more	than	or	exactly	
(𝑛𝑛 + 𝑝𝑝 + 1)/2 	observations	and	is	denoted	by	𝐆𝐆∗ = (𝐗𝐗′, 𝐄𝐄′)	with	𝐗𝐗^′ ⊂ 𝐗𝐗	and	
𝐄𝐄O ⊂ 𝐄𝐄∗.	This	approach	was	first	proposed	by	BENNETT	and	WILLEMAIN	(2001).	A	
discussion	on	the	robustness	properties	of	the	associated	estimators	can	be	
found	in	KIRSCHSTEIN	et	al.	(2013).	Problematically,	in	most	real-world	data	sets	
much	less	than	𝑛𝑛 − (𝑛𝑛 + 𝑝𝑝 + 1)/2 	outliers	occur.	To	avoid	low	efficiency	of	
robust	estimators,	reweighting	procedures	were	proposed	to	enlarge	the	
uncontaminated	subsample.	
For	MST-based	outlier	decontamination,	reweighting	implies	that	a	critical	edge	
length	𝑤𝑤P

QR-S	has	to	be	determined	up	to	which	(with	a	certain	probability	𝛼𝛼)	the	
MST	consists	of	uncontaminated	observations	only.	To	estimate	𝑤𝑤P

QR-S,	a	non-
parametric	approach	relying	on	a	finite	sample	version	of	Chebychev’s	inequality	
is	described	in	LIEBSCHER	and	KIRSCHSTEIN	(2014).	The	main	idea	is	to	estimate	𝑤𝑤P

QR-S	
based	on	the	mean	edge	length	𝜇𝜇V	and	the	edge	lengths’	standard	deviation	𝜎𝜎V.	
The	parameters	𝜇𝜇Vand	𝜎𝜎V	are	estimated	based	on	the	edge	set	𝐄𝐄′	of	the	initial	

robust	subset	of	𝐆𝐆′,	for	𝑤𝑤P
QR-S	follows	𝑤𝑤P

QR-S = 𝜇𝜇V + XYZ&
XY∙ &ZP ZX

∙ 𝜎𝜎V	where	𝑚𝑚	

denotes	the	cardinality	of	𝐄𝐄′.	Once	𝑤𝑤P
QR-S	is	determined,	𝐆𝐆′	is	rebuilt	by	attaching	

all	edges	of	𝐆𝐆	with	edge	weights	smaller	than	or	equal	to	𝑤𝑤P
QR-S.	This	way,	a	still	

robust	but	larger	subgraph	(say	𝐆𝐆′′)	is	determined	whose	associated	observations	
are	considered	as	the	outlier-free	subsample	used	in	further	analyses.	
	

 and the edge lengths’ standard devia-
tion 

Formally,	given	a	data	set	𝐗𝐗	of	𝑛𝑛	points	in	dimension	𝑝𝑝,	i.e.	𝐗𝐗 = 𝐱𝐱&, … , 𝐱𝐱) ,	and	
all	pairwise	links	(edges)	𝐄𝐄	(i.e.𝐄𝐄 ∋ 𝑒𝑒-. = 𝐱𝐱-, 𝐱𝐱. 	with	𝑖𝑖, 𝑗𝑗 = 1, . . . , 𝑛𝑛	and	𝑖𝑖 ≠ 𝑗𝑗),	the	
MST	is	defined	as	the	graph	𝐆𝐆 = (𝐗𝐗, 𝐄𝐄∗)	connecting	all	points	of	𝐗𝐗	such	that	its	
total	length	is	minimised,	i.e.	argmin

𝐄𝐄∗⊂𝐄𝐄
𝑤𝑤 𝑒𝑒-.@AB∈𝐄𝐄∗ .	Typically,	the	weight	(𝑤𝑤)	

of	an	edge	𝑒𝑒-. = xE, xF 	is	the	Euclidean	distances	between	𝐱𝐱-	and	𝐱𝐱𝒋𝒋	such	that	

𝑤𝑤 𝑒𝑒-. = 𝐱𝐱- − 𝐱𝐱. ∙ 𝐱𝐱- − 𝐱𝐱. ′.	From	this	fact	follows	that	Euclidean	distances	

are	meaningful	for	the	data	set	(i.e.	all	variables	are	estimated	on	the	same,	or	at	
least	a	similar,	scale).	The	term	connected	refers	to	the	property	that	there	must	
be	a	path	–	a	sequence	of	edges	–	in	𝐆𝐆	between	any	two	points	of	𝐗𝐗.	It	can	be	
proven	that	the	number	of	edges	in	G	is	always	 𝐄𝐄∗ = 𝑛𝑛 − 1	(JUNGNICKEL,	2008).	
Moreover,	it	can	be	shown	that	the	MST	is	unique	if	all	edges	in	𝐄𝐄	have	unique	
weights.	The	MST	can	be	efficiently	computed	even	for	large	data	sets.	See	
e.g.	JUNGNICKEL	(2008)	for	a	review	of	efficient	algorithms.		
Given	the	MST,	pruning	is	realised	by	successively	deleting	edges	in	𝐆𝐆	according	
to	their	length.	Therefore,	in	the	first	iteration	the	longest	edge	is	removed,	in	the	
second	iteration	the	second	longest	edge,	and	so	on.	This	way	𝐆𝐆	is	split	into	
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proven	that	the	number	of	edges	in	G	is	always	 𝐄𝐄∗ = 𝑛𝑛 − 1	(JUNGNICKEL,	2008).	
Moreover,	it	can	be	shown	that	the	MST	is	unique	if	all	edges	in	𝐄𝐄	have	unique	
weights.	The	MST	can	be	efficiently	computed	even	for	large	data	sets.	See	
e.g.	JUNGNICKEL	(2008)	for	a	review	of	efficient	algorithms.		
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discussion	on	the	robustness	properties	of	the	associated	estimators	can	be	
found	in	KIRSCHSTEIN	et	al.	(2013).	Problematically,	in	most	real-world	data	sets	
much	less	than	𝑛𝑛 − (𝑛𝑛 + 𝑝𝑝 + 1)/2 	outliers	occur.	To	avoid	low	efficiency	of	
robust	estimators,	reweighting	procedures	were	proposed	to	enlarge	the	
uncontaminated	subsample.	
For	MST-based	outlier	decontamination,	reweighting	implies	that	a	critical	edge	
length	𝑤𝑤P
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QR-S,	a	non-
parametric	approach	relying	on	a	finite	sample	version	of	Chebychev’s	inequality	
is	described	in	LIEBSCHER	and	KIRSCHSTEIN	(2014).	The	main	idea	is	to	estimate	𝑤𝑤P
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based	on	the	mean	edge	length	𝜇𝜇V	and	the	edge	lengths’	standard	deviation	𝜎𝜎V.	
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. This 
way, a still robust but larger subgraph (say G'') is determined whose associated 
observations are considered as the outlier-free subsample used in further anal-
yses.





3 Database

The FADN provides a farm level data set that holds accountancy data for 25 of 
the 28 EU member states. Each year about 80,000 farms are sampled. They 
represent a population of about 5 million farms in the member states. In each 
member state a liaison agency is responsible for the data collection and trans-
mission, which consists of about 1,000 variables including structural, economic, 
and financial data. Many aggregate variables can be partitioned into its various 
components as the data additionally includes these. A stratified sample is ob-
tained to account for the heterogeneity of farms and to maintain representative-
ness for agriculture in the European Union. The stratification criteria are region, 
economic size, and type of farming.

The farm universe consists of all farms with more than one hectare or those with 
less than one hectare that provide the market with a specified amount of out-
put. All non-commercial farms are excluded from this universe to arrive at the 
field of observation from which the data will be sampled. A farm must exceed 
a certain economic size to be classified as a commercial farm. It is measured in 
economic size units (ESU). One ESU represents a certain amount in euros and is 
periodically adjusted for inflation. The concept of standard gross margin (SGM) 
is used to determine the economic size of farms. To this end, liaison agencies 
assign SGM coefficients “on a regional basis for more than 90 separate crop 
and livestock items” (European Commission, 2010a). The SGM of a crop farm 
is then the sum of the product of a particular SGM coefficient times the respec-
tive number of hectares (European Commission, 2014). In addition, farms are 
classified by type of farming (TF).

Even though the FADN is a stratified sample, there is no need to use a sample 
weighting scheme for estimation. In my analyses, I employ a structural modeling 
approach, that is, I estimate the parameters of a theoretically motivated model. 
Hence, as long as the conditional mean is correctly specified and stratification is 
not based on the dependent variable of the model (total output) my estimates 
have causal interpretation regardless whether weighting is applied or not (Cam-
eron and Trivedi, 2005: 820-823). While the latter is clearly not the case, the 
former will be achieved by the appropriate estimation strategies outlined in 
chapter 2.1, as with these I am able to carve out and utilise exogenous variation 
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for the purpose of estimation. Virtually all empirical work employing FADN data 
implicitly adopts this perspective; see, for instance, Swinnen and Knops (2013).16

In the present work, I only use field crop farms (TF1) (i.e., the farm’s operation 
is the core activity for the farmer with at least 40 operating hours per week) 
(European Commission, 2014; FADN data). I do this to justify the assumption 
of a homogenous state of technology across farms. Now one might argue that 
focusing only on field crop farms might introduce selection bias in my estimates. 
However, the statements I make are only with regards to the population of field 
crop farms and not the population including all possible types of farms. Therefore, 
my results should not suffer from sample selection bias. Furthermore, sample 
selection bias only occurs if sampling is based on a variable endogenous to the 
model under consideration (cf. Cameron and Trivedi, 2005: 42-43). In this study, 
I sampled on farm types, which is exogenous to the production function model.

The sample of countries is selected to reflect the diverse farm sizes and structures 
in EU agriculture (Table 3.1). The range is from small-scale family farms in Italy, 
Spain, and West Germany to medium-sized commercial farms in Denmark, France, 
and the UK to large-scale and mostly corporate farms in East Germany (European 
Commission, 2012). It is the heterogeneity of these structures across countries 
that makes comparisons with regard to productivity particularly insightful. As 
East and West Germany are structurally so distinct (Mathijs and Swinnen, 2001), 
I treat them separately throughout the analysis. East Germany contains the five 
federal states of Mecklenburg-West Pomerania, Brandenburg, Saxony-Anhalt, 
Thuringia, and Saxony. West Germany contains all of the other states except Berlin 
and Bremen, which are not represented in the FADN data. Therefore, through-
out the empirical chapters, I can choose from the following sample of countries:

• Denmark (DK), 
• France (FR), 
• Germany East (DEE),
• Germany West (DEW), 
• Italy (IT), 
• Poland (POL),
• Slovakia (SVK),
• Spain (ES), and the 
• United Kingdom (UK).

16 Swinnen and Knops (2013) is an edited volume which consists of empirical studies 
utilising FADN data, among others.
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The raw data provided by FADN was arranged in a way that panel data estimators 
can be applied. For every country (region in case of Germany) in the study, I cre-
ated a panel data set covering the years from 2001 up to 2008. Essentially, the 
data was available in yearly cross sections (i.e., one data file per year and coun-
try). To arrive at the final data file for every country, I appended the individual 
cross sections and sorted the data by farm identification number (variable A3) 
and year. A small number of duplicates in the data were dropped.17 The panels 
for Poland and Slovakia cover only five years as FADN data collection for these 
countries started only in 2004.

All monetary values were deflated to real values in 2005 prices using respective 
price indices. Price indices were extracted from the Eurostat online database and 
merged with the country panels. Output was deflated by the agricultural output 
price index. Fixed capital was deflated by the agricultural input price index for 
goods and services contributing to agricultural investment, and materials by 
the agricultural input price index for goods and services currently consumed in 
agriculture. Revenue shares were all calculated in nominal terms. Detailed vari-
able definitions and descriptive statistics for the data employed are given in the 
upcoming empirical chapters.

17 Duplicates likely arise because farms run legally separate operations in several regions.

Country Farm structures Degree of farm commercialisation

Denmark Medium-scale farms High

France Medium-scale farms Medium

Germany Small- to medium-scale farms (West) Medium (West)

Large corporate farms (East) High (East)

Italy Small-scale family farms Medium

Poland Small-scale family farms Low

Slovakia Large corporate farms High

Spain Small- to medium-scale farms Medium

UK Medium-scale farms High

Table 3.1: Farm structures in the selected countries.

Source: Author compilation based on European Commission (2010b), FADN data.





4  Assessment of factor productivities in EU agri-
culture

In this section, I present the empirical production function estimates for the 
estimators outlined and discussed in chapter 2.1. I produce separate results 
for Denmark, France, Germany (East and West), Italy, Spain, and the United 
Kingdom. In the following chapter 4.1, I briefly present the model specification 
before I move on to a discussion of the actual data set employed for estimation 
purposes. In chapter 4.2, I proceed with an extensive exposition of the results.

4.1 Model specification and data

To estimate a production function given by (2-1), I need to specify a functional 
form. Initially, I assume a Cobb-Douglas functional form that is successively ex-
tended to a translog specification by adding interaction terms of the different 
inputs with each other as well as itself to the model equation.

The variables and their measurement are readily available in the codebooks 
provided by FADN (European Commission, 2008, 2011). Output is measured 
as the total farm output in euros. Labour is measured by the time worked in 
hours by total labour input on the farm, including both hired and family labour. 
The total utilised agricultural area is my land input in ha. It includes owned and 
rented land, and land in sharecropping.

A persistent issue in estimating production functions has been the specification 
of the capital variable. Typically, some simple measures of input quantities (such 
as fertilisers or pesticides) and machinery use (such as fuel expenses or tractor 
hours) are used in cross-sectional studies. In this study, the materials or working 
capital input is proxied by total intermediate consumption in euros. It consists 
of total specific costs, including costs for seeds and seedlings, crop protection 
and other crop specific costs, as well as overheads arising from production in 
the accounting year. In particular, they consist of costs for fuel and electricity. I 
do not include the costs for fertiliser in the materials input. Land and fertiliser 
are highly correlated. This observation implies that these two inputs are applied 
in more or less fixed ratios on the majority of farms, which, in return, might 
induce a multicollinearity problem in the estimations. I discuss and elaborate 
on this perceived problem below. To this end, I show that multicollinearity is an 
issue and demonstrate the effects of such problems on estimation by referring 
to a previous specification of Petrick and Kloss (2013a) that includes fertiliser. 
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Nevertheless, even though fertiliser inputs are not included, the effect of this 
input is captured by the land input.

Furthermore, in order to be a suitable proxy, materials should be increasing in 
unobserved productivity at least for a subset of the data (Olley and Pakes, 1996: 
1265). This is generally the case for my data sample. I show this for every country 
of the sample in the appendix of this chapter (Figure A1 – Figure A7). All sample 
countries display extended periods of increasing materials use (e.g., Denmark 
from 2001 to 2005 or France from 2003 to 2007). For Italy (from 2001 to 2003) 
and the United Kingdom (from 2001 to 2004) these periods are short. However, 
for Italy, the sample size to calculate these figures is rather low as there are 
many missing values in the individual components of the materials input used 
for this illustration.18 The monotonicity condition is particularly well met in Spain 
and Germany (East and West). Consistent with most of the recent literature on 
production function estimation with firm level data (such as Olley and Pakes, 
1996; Blundell and Bond, 2000; Levinsohn and Petrin, 2003), I approximate 
fixed capital inputs by using the opening valuation of assets. In this case, I took 
the asset value of machinery and buildings from the FADN data.

To calculate revenue shares, I needed factor prices for labour, land, and capital. 
These were taken from the actually paid wage to hired farm workers, the actu-
ally paid rent per hectare of rented land, and the actually paid interest per debt 
capital. Because there were many missing values, I calculated median factor 
prices per FADN region (variable A1) and imputed these to all farms in that re-
gion. There is zero variation (in terms of standard deviation in the factor prices 
because Denmark is an FADN region on its own (Table A1). Table 4.1 summarises 
the variable definitions and gives the actual FADN codes.

Outliers were identified on the basis of the fixed capital productivity per farm 
(real SE131/(real (L.SE450 + L.SE455))). Observations were dropped for the pro-
duction function estimation if their value was beyond the upper or lower quartile 
± 1.5 times the interquartile range (IQR).19 Furthermore, as the novel control func-
tion and dynamic panel data identification assume dynamic factor adjustment 
from one period to the other, I only included farms which had some minimum 
panel representation in the data. Farms had to be present in the data for at 

18 In order to compass this issue in the estimation stage, I take the “full” materials input 
(SE275) and subtract the cost for fertiliser inputs (SE295).

19 A detailed explanation and motivation of this rule is given in chapters 2 and 5,  
respectively.
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least four consecutive years. In total, 23,942 observations were included in the 
EU-wide sample. Descriptive statistics including the data patterns of the panels 
are given in the appendix (Table A1). The numbers on output and land generally 
confirm the picture conveyed about farm size and agricultural structures in the 
considered member states. In particular, the figures for East Germany are ex-
tremely large compared to the other countries. Hence, here the legacy of state 
collective farms still prevails. 

FADN code Variable description

Outputs
SE131 Total output (EUR)

Inputs

SE011 Labour input (hours)

SE025 Total utilised agricultural area (ha) = land

F72 + SE300 +  
SE305 + SE336

Costs for seed and seedlings + crop protection + other crop-specific 
costs + overheads (EUR) = materials

L.SE450 + L.SE455 Opening valuation of machinery and buildings (EUR) = fixed capital

Factor prices

SE370/SE021 Wage per hour (EUR)

SE375/SE030 Land rent per ha (EUR)

SE380/SE485*100 Interest on capital (%)

Table 4.1: Definition of variables.

Note: L. denotes the one-year lag.
Source: Author, FADN data.
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4.2 Results20

4.2.1 Overview

For this study, I estimated nine models per country: Output shares, OLS Cobb-
Douglas, OLS translog, within Cobb-Douglas, within translog, LP Cobb-Douglas, 
WLP Cobb-Douglas, WLP translog, and BB Cobb-Douglas. The within translog 
was obtained by interacting the groupwise demeaned logs of factors and us-
ing an appropriate degree of freedom correction in order to get cluster robust 
standard errors. Other than by simply calling a build-in fixed effects panel esti-
mation command with the interacted variables in logs, this procedure ensures 
that levels are effectively eliminated from the regression.21 

Table 4.2 displays a summary evaluation of the estimators with regard to the 
estimated production elasticities and returns to scale. The performance of the 
translog specifications and the dynamic panel data model is given particular 
attention. Generally, the objective was to detect systematic differences across 
estimators and countries, and to assess their practical implementation. Detailed 
results tables are presented in appendix A, which includes an overview table for 
each country containing the results for the eight models, plus an additional table 
for each country including more in-depth diagnostic results for the BB model.

All estimations were performed with Stata 12. For the LP estimator, I used the 
user-written routine levpet (Petrin et al., 2004). To implement the WLP esti-
mator the ivreg2 routine by Baum et al. (2007b) was utilised as demonstrated 
in Petrin and Levinsohn (2012). This procedure includes lags of inputs up to the 
second order. Therefore, the panel length is reduced by two years. The BB es-
timator was implemented with xtabond2 by Roodman (2009) using the h(2) 
option, and combined with Söderbom’s (2009) md _ ar1 minimum distance 
estimator. For the Cobb-Douglas within regression, I used the build-in xtreg 
command. To accommodate the necessary changes for the Translog within re-
gression, I applied a hand coded solution as outlined previously. The implemen-
tation of theses estimators is outlined in appendix D. To maintain a maximum 

20 This section is based in part on previous research of Petrick and Kloss (2013a, d). It 
has been extended in various directions; among others it includes insights concern-
ing the multicollinearity of inputs, the mitigation of this problem, extended empirical 
applications of the control function estimation approach, and a more elaborate view 
on shadow prices in EU crop farming.

21 Note, the build-in Stata routine would first interact and then demean the resulting 
interaction.
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of comparability and homogeneity of the estimation samples as well as utilising 
the highest amount of data as possible for estimation, I proceeded as follows. 
Estimations for all estimators, except for the WLP estimator, are based on the 
BB estimation sample. Since this estimator implies a dynamic specification with 
first order lags of inputs and the dependent variable, the effective panel length 
is reduced by one year. I did not impose this restriction for the WLP procedure, 
which includes lags of inputs up to the second order. Hence, the difference be-
tween the WLP estimation sample and the sample employed for all other esti-
mators is one round of observations as depicted by the tables in the appendix. 

As a general tendency, factor elasticities were found to be low for land and 
capital, high for materials, and somewhere in between for labour (Table 4.2 and 
Table 4.3). Hence, materials are the key drivers of crop productivity. Estimates 
for the first two of these factors are in the range of 0.2 and lower, sometimes 
not significantly different from zero. The production elasticity of materials is 
typically between 0.7 and 1.0. Estimates for the labour elasticities usually fluc-
tuate at around 0.2.

The estimates support the conventional wisdom that OLS tends to be upward 
biased for particularly variable factors. In the present data, this primarily applies 
to materials, the OLS estimate of which is (except for Denmark) higher than its 
revenue share. It may be taken as evidence for the existence of serially correlated, 
unobservable factors (Olley and Pakes 1996: 1274). The opposite downward bias 
is found for capital in the within estimator, which is typically below the revenue 
share. This tendency is also in line with previous studies and can be attributed 
to the low variance of capital over time (Griliches and Hausman, 1986).

The LP estimator commonly produces a lower elasticity for materials than OLS, 
the only exception being the United Kingdom. The WLP estimator excepts France, 
East Germany, and Spain. LP and WLP estimates are typically very similar, which 
makes me confident of the proxy variable identification strategy. These models 
may thus be taken as plausible alternatives to the received estimators. However, 
the WLP estimator has a few more advantages, giving this estimator an edge over 
the LP model. First, the former is occasionally more successful in identifying the 
capital coefficient (East Germany and Spain) or estimates said coefficient with 
a lower standard error, that is, higher precision (West Germany, Italy and the 
United Kingdom). Second, by applying the WLP estimator it is possible to rely on 
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analytic standard errors rather than on bootstrapped errors.22 Such standard 
errors are obtained by repeated sampling from the data (Greene, 2011: 651-655). 
Finally, on theoretical grounds, the WLP model further corrects for collinearity, 
a trait that is not available in the LP model (see section 2.1.6). 

Estimated elasticities of scale fluctuate around 1.0, with a higher value ob-
served only for Spain. In this case, the hypothesis of constant returns to scale 
is rejected at the 5 per cent significance level based on WLP results. Given the 
previous findings on production elasticities, OLS returns to scale estimates tend 
to be higher than within estimates. Overall, the scale elasticity in European crop 
farming appears to be close to one. Therefore, there is evidence that this type 
of farming may be characterised by constant returns to scale.

I report the production elasticities estimated by the WLP procedure for all sub-
samples in Table 4.3 and compare them with two rather distinct agricultural 
benchmark studies. Heady and Dillon (1961) is an early collection of OLS Cobb-
Douglas production function estimates. It is based on farm-level data from 32 
countries around the world, with a focus on North America, Australia, and In-
dia, and represents one of the most comprehensive collections of production 
elas ticity estimates ever published. Table 4.3 simply reports the overall mean 
elasticities of all 32 studies. It should be noted that these studies display con-
siderable variation among themselves (see the extensive discussion in Heady 
and Dillon (1961: 585-643)). Mundlak et al. (2012) is a recent cross-country 
regression of a Cobb-Douglas production function based on the within estimator. 
The authors use data from 30 developing and developed countries from 1972 
to 2000. Against these benchmarks from the literature, Table 4.3 illustrates a 
number of interesting tendencies:

• A comparatively low production elasticity of labour prevails throughout the 
EU samples and was also found by Heady and Dillon as well as Mundlak 
et al. Denmark is an exception to that.

• The production elasticity of land is much lower in the EU than in the bench-
mark studies.

22 Note, this reliance is possible because the WLP estimator is implemented by utilising 
the well-established instrumental variable estimation framework. See, for example, 
Cameron and Trivedi (2005: 95-103). 
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• The production elasticity of materials is much higher in the EU than in the 
benchmark studies.

• The Mundlak et al. study reveals remarkably low elasticities for labour and 
materials. Despite the use of the within approach, the capital elasticity is 
surprisingly high. The low materials coefficient can be explained by the fact 
that the dependent variable in their model is value added.

4.2.2 The roles of materials and land in EU field crop farms

Throughout this chapter, I use a materials definition that does not include fer-
tiliser inputs. While it would certainly be desirable to have a variable of total 
intermediate consumption that includes this input, such a specification occasion-
ally produces inconsistent results from a theoretical point of view. To elaborate 
on this, I refer to the previous work of Petrick and Kloss (2013a), who utilise a 
materials input including fertiliser. As I employ the same data as these authors, 
direct comparisons are possible and particularly meaningful. Furthermore, I am 
able to perform additional diagnostics. The results of these analyses are sum-
marised in Table 4.4.

Several EU countries in the Petrick and Kloss (2013a: 17) study display negative 
and statistically significant estimates for the land output elasticity in conjunction 

DK FR DEE DEW IT ES UK Heady 
Dillon 
(1961)

Mund-
lak et al. 
(2012)

Labour 0.62 0.17 0.04# 0.22 0.32 0.42 0.19 0.21 0.01#

Land 0.23 0.04 -0.03# -0.01# -0.01# 0.08 0.17 0.38 0.44

Materials 0.00# 0.80 1.08 0.77 0.51 0.73 0.62# 0.39 0.10

Capital 0.10# 0.12 0.08 0.09 0.02# 0.08 0.10# -- 0.46

Ret. to Scale 0.95 1.13 1.17 1.08 0.84 1.30 1.09 0.98 1.00*

Table 4.3:  Agricultural production elasticities in comparison.

Notes: Results for field crop farms in EU countries based on Wooldridge/Levinsohn/Petrin 
(WLP) estimator. Heady and Dillon (1961) represents mean elasticities from a sample of 32 cross-
sectional Cobb Douglas estimates originating from various countries (their table 17.15). Mundlak 
et al. (2012) based on a cross country regression of 30 countries for 1972-2000, using value added 
as dependent variable and the within estimator (their table 2, first column). * imposed on model. 
# not significantly different from zero at conventional confidence levels.
Source: Author.
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with relatively high materials coefficients, particularly in France, Germany (East 
and West) and Italy;the results presented in Table 4.3 and the appendix do not 
suffer from that problem. In addition, partial correlations between these two 
inputs are the highest among all partial correlations for all countries of my EU 
sample (Table 4.4). Variance inflation factors (VIF) suggest that there is a neg-
ligible degree of multicollinearity among the land and materials input in Spain; a 
slight degree of multicollinearity in France, West Germany, Italy, and the United 
Kingdom; as well as considerable multicollinearity among these inputs in Den-
mark and East Germany.23 This multicollinearity problem has differing effects on 
the estimates, but France, Italy, and Germany display statistically significantly 
negative land coefficients. From a statistical point of view, it seems that much 
variation of the land input is captured by the materials input. The parameter 
estimates for the materials input should be more or less stable after dropping 
the land input from the production function in a situation characterised by 
multicollinearity; remember both inputs are applied in an almost fixed ratio.

To further investigate this issue, I re-estimated the production functions with-
out the land input. Indeed, materials estimates are similar in all cases. Absolute 
differences in materials estimates between the specification with and without 
the land input fluctuate around 0.08 among countries; the only exception is East 
Germany with a difference of 0.29 (Table 4.4). The negative land coefficient thus 
appears to be an artefact of multicollinearity among materials and land.

23 There are many rules of thumb in the analysis of multicollinearity. Here, I resort to 
the rule that the largest VIF is larger than 10 and that the average VIF is bigger than 1 
(Chatterjee and Hadi, 2006: 236-238).
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A straightforward interpretation of this finding is that EU field crop farms typically 
employ closely intertwined packages of land and materials in their production 
process. Particularly in France, Germany and Italy, the intensity of these inputs 
is relatively homogeneous across farms, which makes the statistical isolation of 
separate land and materials effects on output difficult. The analysis revealed 
that fertiliser is the main driver of the multicollinearity problem. Therefore, it 
is a feasible solution to exclude this input from the materials specification to 
mitigate multicollinearity of land and materials. At the same time, the high cor-
relation between these two inputs implies that one can control for the effect of 
fertiliser by including the land input in the production function. Therefore, my 
results should not be affected by any omitted variable bias.24 

4.2.3 Functional form: Cobb Douglas vs. translog

The results on the translog specification display remarkably uniform features 
across countries. The within translog elasticities were at sample means typically 
close to the within Cobb Douglas, and the interaction terms of the translog were 
often not jointly different from zero. The OLS translog, on the other hand, pro-
duced unreasonable results throughout, for instance, reflected in the coexistence 
of negative production elasticities for some factors and elasticities bigger than 
one for others (at sample means). Similarly unreasonable results are observed 
for the WLP translog. In this model, not a single country displayed interaction 
terms that were jointly significantly different from zero. Additionally, I applied 
the Kleibergen and Paap (2006) under-identification test to the WLP translog 
model. This produces a lagrange multiplier test statistic which tests whether the 
model equation is identified (i.e., the excluded instruments are correlated with 
the endogenous regressors).25 It can be interpreted as a test whether the lags 
of land, labour, and materials are suitable instruments for their contemporane-
ous counterparts. Failing to reject the null hypothesis that the equation is uni-
dentified implies an increased bias in the estimated coefficients. They are then 
biased in the same direction as the OLS estimator (Baum et al., 2007a). While 
the null hypothesis was always rejected at the 5 per cent significance level in 

24 Omitted variable bias is the result of omitting a relevant regressor. Such an omission 
will result in the error term picking up the effect of the omitted variable, which, in 
return, will violate the IID assumption of the same.

25 “Excluded” means that these instruments are not part of the model equation. Note, 
tests for over-identification restrictions could not be performed because the WLP 
model is just identified, meaning that the number of instruments is equal to the 
number of endogenous regressors (cf. Cameron and Trivedi, 2005: 100).
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the Cobb-Douglas model, that was not the case with Denmark, East Germany, 
and the United Kingdom in the translog model (Table 4.5).

To summarise, the translog specification does not perform well. The findings are 
in line with other recent studies utilising FADN data with this functional form  
(cf. Zhengfei et al., 2006; Latruffe and Nauges, 2013). The prime reason for 
these difficulties might again be multicollinearity, which supposedly inflames 
again in the translog model, as many more parameters that include different 
variants of inputs must be estimated. While I cannot ultimately decide whether 
the true data generation process followed a translog technology, I can say that 
farm-level data typically does not allow estimating its parameters. This makes 
the translog a less credible functional form for applied work.

4.2.4 Dynamic panel data estimation

I examined the performance of the BB estimator in some detail. I present results 
for the unrestricted and the restricted model along with Arellano-Bond tests 
for serial correlation of error terms. If the model is correctly specified, the test 
should reject autocorrelation of order one but not of order two (Arellano and 
Bond, 1991). I also apply Hansen’s over-identification (OID) test for instrument 
validity (Hansen, 1982). While serial correlation of the error terms for the mo-
dels was only a problem in Spain and the common factor restriction was never 

Country Cobb-Douglas Translog

Denmark <0.001 0.410

France <0.001 0.012

East Germany <0.001 0.105

West Germany <0.001 <0.001

Italy <0.001 <0.001

Spain <0.001 <0.001

United Kingdom <0.001 0.624

Table 4.5:  Results for the Kleinbergen/Paap under-identification test.

Notes:  P-values for the Kleibergen and Paap (2006) under-identification test.
Source:  Author.
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rejected, the Hansen OID test of instrument validity was not passed in four in-
stances – France, West Germany, Italy, and Spain.26 

To allow further diagnosis, simple autoregressive models of order one (AR(1)) 
were estimated separately for all factors and output, following Blundell and 
Bond (2000). Labour and land were found to be highly persistent, which makes 
dynamic panel data estimation a natural option. Moreover, I regressed the dif-
ferences of the latest available year on the lagged levels of all available previous 
years and the latest available levels on all available lagged differences of previous 
years. The reported p-values and coefficients of determination allow an insight 
into the explanatory power of the instrument sets. Generally, the instrument 
performance was better for levels (instrumented by differences) than for differ-
ences (instrumented by levels). System GMM approaches which do not only use 
differences but also levels for instrumentation (Blundell and Bond, 1998) are 
thus warranted. Even so, the elasticities of the persistent factors labour, land, 
and capital could often not be identified. For Spain and Italy, even the estimated 
land coefficient is statistically significantly different from zero – probably a direct 
cause of the major specification tests failing.27 Parameters were very sensitive 
to the composition of the sample and the precise specification of the estimator. 
Occasionally, dynamic factor evolution apparently followed an explosive process, 
as the AR(1) coefficient was estimated to be bigger than one. On the other hand, 
the estimates for materials appear very reasonable throughout, as they were 
typically somewhere between the OLS and within results. It is here that the BB 
estimator can likely claim some superiority. 

There are some noteworthy findings for Denmark compared to the other coun-
tries and estimators. Here the materials elasticity was lower than the materials’ 
revenue share. Shares add up to the extremely high value of 2.07 (which is ac-
tually inconsistent with the interpretation as shares). This outcome may be an 
artifact of systematically higher imputed factor prices than in other countries. 
The unbalanced panel pattern of Denmark made it difficult to perform the di-
agnostic regressions on the explanatory power of the lagged instruments in the 
BB approach. Admittedly, the capital coefficient in such regressions is relatively 
low (0.52), a result that is only undercut by the figure for East Germany. Even 

26 That is assuming a 5 per cent significance level.
27 For both countries, the Hansen OID test fails, while for Spain the Arellano-Bond test 

for second order serial correlation also gives rise to concern. The latter result might 
also explain the negative estimate for ρ and hints at some serious problems of the 
dynamic panel data estimation.
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so, compared to the control function estimation approaches the BB estimator 
is able to identify a materials output elasticity. The reason LP and WLP estima-
tors leaving the materials elasticity unidentified might be explained by the non-
parametric control function utilised in these estimators. In this function higher 
order and interaction terms of materials enter so that the same captures much 
of the explaining variance. Hence, there is not enough variation left for the sole 
materials input. Furthermore, there is also an extreme materials coefficient de-
crease in size from LP to WLP which might be explained by the lower sample size 
of the latter and consequently reinforces the problem. Given that specification 
tests do not fail and the materials coefficient is close to the within regression, 
the BB coefficient for this parameter is a more plausible candidate.

4.2.5 Analysis of shadow prices of production factors

4.2.5.1 Theoretical considerations

A simple theoretical model of farm production that is subject to a generalised 
input constraint can usefully illustrate the factor market perspective on agricul-
tural productivity. It serves as a motivation for the upcoming empirical analysis. 
Assume a farmer maximises profit by producing one output with one input. Profit 
is then defined as revenue minus the costs of the input. Following Petrick (2003: 
174-175), one can write:

A	simple	theoretical	model	of	farm	production	that	is	subject	to	a	generalised	
input	constraint	can	usefully	illustrate	the	factor	market	perspective	on	
agricultural	productivity.	It	serves	as	a	motivation	for	the	upcoming	empirical	
analysis.	Assume	a	farmer	maximises	profit	by	producing	one	output	with	one	
input.	Profit	is	then	defined	as	revenue	minus	the	costs	of	the	input.	Following	
PETRICK	(2003:	174-175),	one	can	write:	
	 𝑚𝑚𝑚𝑚𝑚𝑚$ 𝜋𝜋 = 𝑝𝑝(𝑓𝑓 𝑚𝑚 − 𝑝𝑝𝑚𝑚,	subject	to	 (4-1)	
	 𝑚𝑚 − 𝑚𝑚 ≥ 0,	 (4-2)	
where	𝜋𝜋	is	profit,	𝑝𝑝(	is	the	output	price,	𝑓𝑓	the	production	function,	x	input	use,	p	
the	input	price	observed	in	the	market,	and	𝑚𝑚	the	generalised	input	constraint.	
This	input	constraint	captures	the	general	observation	that	most	agricultural	
production	factors	cannot	be	adjusted	instantaneously	but	rather	are	subject	to	
more	or	less	pronounced	adjustment	costs.	For	example,	land	is	often	available	in	
limited	quantities	only	and	subject	to	long-term	rental	agreements.	Agricultural	
credit	markets	suffer	from	informational	asymmetries	and	may	be	characterised	
by	rationing	and	high	transaction	costs	(see,	e.g.,	BENJAMIN	and	PHIMISTER,	2002;	
PETRICK	and	LATRUFFE,	2006;	CURTISS,	2012).		
I	assume	that	𝑓𝑓	is	monotonically	increasing	and	concave	in	x.	Solving	the	
optimisation	problem	given	by	(4-1)	and	(4-2)	through	the	Lagrangean	L	yields	
𝐿𝐿 = 𝑝𝑝(𝑓𝑓 𝑚𝑚 − 𝑝𝑝𝑚𝑚 + 𝜆𝜆(𝑚𝑚 − 𝑚𝑚),	where	𝜆𝜆	is	the	Lagrange	multiplier.	Assuming	that	
(4-2)	is	binding,	I	obtain	the	first-order	condition	34

3$
= 𝑝𝑝( 35

3$
− 𝑝𝑝 + 𝜆𝜆 = 0.	

Rearranging	leads	to:	

	 𝑝𝑝( 35
3$
= 𝑝𝑝∗ > 𝑝𝑝,	with	𝑝𝑝∗ ≡ 𝑝𝑝 + 𝜆𝜆.	 (4-3)	

I	define	𝑝𝑝∗	as	the	shadow	price	of	the	on-farm	production	factor.	It	represents	
the	willingness	to	pay	for	this	input.1	With	a	more	severe	input	constraint,	the	
decision	price	for	input	use	is	increasing	and	use	of	that	factor	is	reduced.	For	
instance,	farmers	may	face	a	credit	constraint	if	they	are	unable	to	provide	
sufficient	collateral	which	would	help	to	mitigate	the	above	mentioned	
informational	asymmetries.	
The	above	model	serves	as	a	useful	motivation	for	the	empirical	measurement	of	
factor	productivity	and	factor	market	imperfections	in	agriculture.	The	practical	
implementation	involves	the	use	of	an	estimate	of	the	shadow	price	to	study	
drivers	and	impacts	of	factor	use.	It	requires	a	consistent	estimate	of	the	
production	function	as	well	as	reliable	data	on	input	use	and	factor	prices.	The	
empirical	relation	𝑝𝑝∗ > 𝑝𝑝	is	a	measure	of	on-farm	input	productivity	and	the	
severity	of	supply	rationing.		
By	similar	reasoning,	a	release	constraint	also	could	be	modelled.	𝑝𝑝∗ < 𝑝𝑝	would	
then	be	evidence	of	a	resource	over-utilisation.	This	may,	for	example,	be	due	to	
non-pecuniary	benefits	of	input	use	(tractors	as	prestige	objects)	or	the	wish	to	
provide	safeguards	against	production	risk	(use	of	insurance	contracts,	
precautionary	investment	in	powerful	machinery	to	mitigate	production	peaks;	
WITZKE,	1993:	157).	AURBACHER	et	al.	(2011)	have	recently	shown	that	farmers	
trapped	in	small	agricultural	structures	may	be	unable	to	coordinate	on	

																																																																				
1		 Note,	𝜆𝜆	might	be	interpreted	as	the	“shadow	component”	in	𝑝𝑝∗.	
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where π is profit, py is the output price, f the production function, 𝑥 input use, 
p the input price observed in the market, and 
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production	function	as	well	as	reliable	data	on	input	use	and	factor	prices.	The	
empirical	relation	𝑝𝑝∗ > 𝑝𝑝	is	a	measure	of	on-farm	input	productivity	and	the	
severity	of	supply	rationing.		
By	similar	reasoning,	a	release	constraint	also	could	be	modelled.	𝑝𝑝∗ < 𝑝𝑝	would	
then	be	evidence	of	a	resource	over-utilisation.	This	may,	for	example,	be	due	to	
non-pecuniary	benefits	of	input	use	(tractors	as	prestige	objects)	or	the	wish	to	
provide	safeguards	against	production	risk	(use	of	insurance	contracts,	
precautionary	investment	in	powerful	machinery	to	mitigate	production	peaks;	
WITZKE,	1993:	157).	AURBACHER	et	al.	(2011)	have	recently	shown	that	farmers	
trapped	in	small	agricultural	structures	may	be	unable	to	coordinate	on	

																																																																				
1		 Note,	𝜆𝜆	might	be	interpreted	as	the	“shadow	component”	in	𝑝𝑝∗.	

 the generalised input constraint. 
This input constraint captures the general observation that most agricultural 
production factors cannot be adjusted instantaneously but rather are subject to 
more or less pronounced adjustment costs. For example, land is often available in 
limited quantities only and subject to long-term rental agreements. Agricultural 
credit markets suffer from informational asymmetries and may be characterised 
by rationing and high transaction costs (see, e.g., Benjamin and Phimister, 2002; 
Petrick and Latruffe, 2006; Curtiss, 2012). 

I assume that f is monotonically increasing and concave in 𝑥. Solving the op-
timisation problem given by (4-1) and (4-2) through the Lagrangean L  yields 

A	simple	theoretical	model	of	farm	production	that	is	subject	to	a	generalised	
input	constraint	can	usefully	illustrate	the	factor	market	perspective	on	
agricultural	productivity.	It	serves	as	a	motivation	for	the	upcoming	empirical	
analysis.	Assume	a	farmer	maximises	profit	by	producing	one	output	with	one	
input.	Profit	is	then	defined	as	revenue	minus	the	costs	of	the	input.	Following	
PETRICK	(2003:	174-175),	one	can	write:	
	 𝑚𝑚𝑚𝑚𝑚𝑚$ 𝜋𝜋 = 𝑝𝑝(𝑓𝑓 𝑚𝑚 − 𝑝𝑝𝑚𝑚,	subject	to	 (4-1)	
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where	𝜋𝜋	is	profit,	𝑝𝑝(	is	the	output	price,	𝑓𝑓	the	production	function,	x	input	use,	p	
the	input	price	observed	in	the	market,	and	𝑚𝑚	the	generalised	input	constraint.	
This	input	constraint	captures	the	general	observation	that	most	agricultural	
production	factors	cannot	be	adjusted	instantaneously	but	rather	are	subject	to	
more	or	less	pronounced	adjustment	costs.	For	example,	land	is	often	available	in	
limited	quantities	only	and	subject	to	long-term	rental	agreements.	Agricultural	
credit	markets	suffer	from	informational	asymmetries	and	may	be	characterised	
by	rationing	and	high	transaction	costs	(see,	e.g.,	BENJAMIN	and	PHIMISTER,	2002;	
PETRICK	and	LATRUFFE,	2006;	CURTISS,	2012).		
I	assume	that	𝑓𝑓	is	monotonically	increasing	and	concave	in	x.	Solving	the	
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𝐿𝐿 = 𝑝𝑝(𝑓𝑓 𝑚𝑚 − 𝑝𝑝𝑚𝑚 + 𝜆𝜆(𝑚𝑚 − 𝑚𝑚),	where	𝜆𝜆	is	the	Lagrange	multiplier.	Assuming	that	
(4-2)	is	binding,	I	obtain	the	first-order	condition	34

3$
= 𝑝𝑝( 35

3$
− 𝑝𝑝 + 𝜆𝜆 = 0.	

Rearranging	leads	to:	

	 𝑝𝑝( 35
3$
= 𝑝𝑝∗ > 𝑝𝑝,	with	𝑝𝑝∗ ≡ 𝑝𝑝 + 𝜆𝜆.	 (4-3)	

I	define	𝑝𝑝∗	as	the	shadow	price	of	the	on-farm	production	factor.	It	represents	
the	willingness	to	pay	for	this	input.1	With	a	more	severe	input	constraint,	the	
decision	price	for	input	use	is	increasing	and	use	of	that	factor	is	reduced.	For	
instance,	farmers	may	face	a	credit	constraint	if	they	are	unable	to	provide	
sufficient	collateral	which	would	help	to	mitigate	the	above	mentioned	
informational	asymmetries.	
The	above	model	serves	as	a	useful	motivation	for	the	empirical	measurement	of	
factor	productivity	and	factor	market	imperfections	in	agriculture.	The	practical	
implementation	involves	the	use	of	an	estimate	of	the	shadow	price	to	study	
drivers	and	impacts	of	factor	use.	It	requires	a	consistent	estimate	of	the	
production	function	as	well	as	reliable	data	on	input	use	and	factor	prices.	The	
empirical	relation	𝑝𝑝∗ > 𝑝𝑝	is	a	measure	of	on-farm	input	productivity	and	the	
severity	of	supply	rationing.		
By	similar	reasoning,	a	release	constraint	also	could	be	modelled.	𝑝𝑝∗ < 𝑝𝑝	would	
then	be	evidence	of	a	resource	over-utilisation.	This	may,	for	example,	be	due	to	
non-pecuniary	benefits	of	input	use	(tractors	as	prestige	objects)	or	the	wish	to	
provide	safeguards	against	production	risk	(use	of	insurance	contracts,	
precautionary	investment	in	powerful	machinery	to	mitigate	production	peaks;	
WITZKE,	1993:	157).	AURBACHER	et	al.	(2011)	have	recently	shown	that	farmers	
trapped	in	small	agricultural	structures	may	be	unable	to	coordinate	on	
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that (4-2) is binding, I obtain the first-order condition 
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agricultural	productivity.	It	serves	as	a	motivation	for	the	upcoming	empirical	
analysis.	Assume	a	farmer	maximises	profit	by	producing	one	output	with	one	
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	 𝑚𝑚𝑚𝑚𝑚𝑚$ 𝜋𝜋 = 𝑝𝑝(𝑓𝑓 𝑚𝑚 − 𝑝𝑝𝑚𝑚,	subject	to	 (4-1)	
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where	𝜋𝜋	is	profit,	𝑝𝑝(	is	the	output	price,	𝑓𝑓	the	production	function,	x	input	use,	p	
the	input	price	observed	in	the	market,	and	𝑚𝑚	the	generalised	input	constraint.	
This	input	constraint	captures	the	general	observation	that	most	agricultural	
production	factors	cannot	be	adjusted	instantaneously	but	rather	are	subject	to	
more	or	less	pronounced	adjustment	costs.	For	example,	land	is	often	available	in	
limited	quantities	only	and	subject	to	long-term	rental	agreements.	Agricultural	
credit	markets	suffer	from	informational	asymmetries	and	may	be	characterised	
by	rationing	and	high	transaction	costs	(see,	e.g.,	BENJAMIN	and	PHIMISTER,	2002;	
PETRICK	and	LATRUFFE,	2006;	CURTISS,	2012).		
I	assume	that	𝑓𝑓	is	monotonically	increasing	and	concave	in	x.	Solving	the	
optimisation	problem	given	by	(4-1)	and	(4-2)	through	the	Lagrangean	L	yields	
𝐿𝐿 = 𝑝𝑝(𝑓𝑓 𝑚𝑚 − 𝑝𝑝𝑚𝑚 + 𝜆𝜆(𝑚𝑚 − 𝑚𝑚),	where	𝜆𝜆	is	the	Lagrange	multiplier.	Assuming	that	
(4-2)	is	binding,	I	obtain	the	first-order	condition	34
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= 𝑝𝑝∗ > 𝑝𝑝,	with	𝑝𝑝∗ ≡ 𝑝𝑝 + 𝜆𝜆.	 (4-3)	

I	define	𝑝𝑝∗	as	the	shadow	price	of	the	on-farm	production	factor.	It	represents	
the	willingness	to	pay	for	this	input.1	With	a	more	severe	input	constraint,	the	
decision	price	for	input	use	is	increasing	and	use	of	that	factor	is	reduced.	For	
instance,	farmers	may	face	a	credit	constraint	if	they	are	unable	to	provide	
sufficient	collateral	which	would	help	to	mitigate	the	above	mentioned	
informational	asymmetries.	
The	above	model	serves	as	a	useful	motivation	for	the	empirical	measurement	of	
factor	productivity	and	factor	market	imperfections	in	agriculture.	The	practical	
implementation	involves	the	use	of	an	estimate	of	the	shadow	price	to	study	
drivers	and	impacts	of	factor	use.	It	requires	a	consistent	estimate	of	the	
production	function	as	well	as	reliable	data	on	input	use	and	factor	prices.	The	
empirical	relation	𝑝𝑝∗ > 𝑝𝑝	is	a	measure	of	on-farm	input	productivity	and	the	
severity	of	supply	rationing.		
By	similar	reasoning,	a	release	constraint	also	could	be	modelled.	𝑝𝑝∗ < 𝑝𝑝	would	
then	be	evidence	of	a	resource	over-utilisation.	This	may,	for	example,	be	due	to	
non-pecuniary	benefits	of	input	use	(tractors	as	prestige	objects)	or	the	wish	to	
provide	safeguards	against	production	risk	(use	of	insurance	contracts,	
precautionary	investment	in	powerful	machinery	to	mitigate	production	peaks;	
WITZKE,	1993:	157).	AURBACHER	et	al.	(2011)	have	recently	shown	that	farmers	
trapped	in	small	agricultural	structures	may	be	unable	to	coordinate	on	
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A	simple	theoretical	model	of	farm	production	that	is	subject	to	a	generalised	
input	constraint	can	usefully	illustrate	the	factor	market	perspective	on	
agricultural	productivity.	It	serves	as	a	motivation	for	the	upcoming	empirical	
analysis.	Assume	a	farmer	maximises	profit	by	producing	one	output	with	one	
input.	Profit	is	then	defined	as	revenue	minus	the	costs	of	the	input.	Following	
PETRICK	(2003:	174-175),	one	can	write:	
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	 𝑚𝑚 − 𝑚𝑚 ≥ 0,	 (4-2)	
where	𝜋𝜋	is	profit,	𝑝𝑝(	is	the	output	price,	𝑓𝑓	the	production	function,	x	input	use,	p	
the	input	price	observed	in	the	market,	and	𝑚𝑚	the	generalised	input	constraint.	
This	input	constraint	captures	the	general	observation	that	most	agricultural	
production	factors	cannot	be	adjusted	instantaneously	but	rather	are	subject	to	
more	or	less	pronounced	adjustment	costs.	For	example,	land	is	often	available	in	
limited	quantities	only	and	subject	to	long-term	rental	agreements.	Agricultural	
credit	markets	suffer	from	informational	asymmetries	and	may	be	characterised	
by	rationing	and	high	transaction	costs	(see,	e.g.,	BENJAMIN	and	PHIMISTER,	2002;	
PETRICK	and	LATRUFFE,	2006;	CURTISS,	2012).		
I	assume	that	𝑓𝑓	is	monotonically	increasing	and	concave	in	x.	Solving	the	
optimisation	problem	given	by	(4-1)	and	(4-2)	through	the	Lagrangean	L	yields	
𝐿𝐿 = 𝑝𝑝(𝑓𝑓 𝑚𝑚 − 𝑝𝑝𝑚𝑚 + 𝜆𝜆(𝑚𝑚 − 𝑚𝑚),	where	𝜆𝜆	is	the	Lagrange	multiplier.	Assuming	that	
(4-2)	is	binding,	I	obtain	the	first-order	condition	34
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I	define	𝑝𝑝∗	as	the	shadow	price	of	the	on-farm	production	factor.	It	represents	
the	willingness	to	pay	for	this	input.1	With	a	more	severe	input	constraint,	the	
decision	price	for	input	use	is	increasing	and	use	of	that	factor	is	reduced.	For	
instance,	farmers	may	face	a	credit	constraint	if	they	are	unable	to	provide	
sufficient	collateral	which	would	help	to	mitigate	the	above	mentioned	
informational	asymmetries.	
The	above	model	serves	as	a	useful	motivation	for	the	empirical	measurement	of	
factor	productivity	and	factor	market	imperfections	in	agriculture.	The	practical	
implementation	involves	the	use	of	an	estimate	of	the	shadow	price	to	study	
drivers	and	impacts	of	factor	use.	It	requires	a	consistent	estimate	of	the	
production	function	as	well	as	reliable	data	on	input	use	and	factor	prices.	The	
empirical	relation	𝑝𝑝∗ > 𝑝𝑝	is	a	measure	of	on-farm	input	productivity	and	the	
severity	of	supply	rationing.		
By	similar	reasoning,	a	release	constraint	also	could	be	modelled.	𝑝𝑝∗ < 𝑝𝑝	would	
then	be	evidence	of	a	resource	over-utilisation.	This	may,	for	example,	be	due	to	
non-pecuniary	benefits	of	input	use	(tractors	as	prestige	objects)	or	the	wish	to	
provide	safeguards	against	production	risk	(use	of	insurance	contracts,	
precautionary	investment	in	powerful	machinery	to	mitigate	production	peaks;	
WITZKE,	1993:	157).	AURBACHER	et	al.	(2011)	have	recently	shown	that	farmers	
trapped	in	small	agricultural	structures	may	be	unable	to	coordinate	on	
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. (4-3)

I define p* as the shadow price of the on-farm production factor. It represents 
the willingness to pay for this input.28 With a more severe input constraint, the 
decision price for input use is increasing and use of that factor is reduced. For 
instance, farmers may face a credit constraint if they are unable to provide suf-
ficient collateral which would help to mitigate the above mentioned informa-
tional asymmetries.

The above model serves as a useful motivation for the empirical measurement 
of factor productivity and factor market imperfections in agriculture. The prac-
tical implementation involves the use of an estimate of the shadow price to 
study drivers and impacts of factor use. It requires a consistent estimate of the 
production function as well as reliable data on input use and factor prices. The 
empirical relation p* > p is a measure of on-farm input productivity and the 
severity of supply rationing. 

By similar reasoning, a release constraint also could be modelled. p* < p would 
then be evidence of a resource over-utilisation. This may, for example, be due to 
non-pecuniary benefits of input use (tractors as prestige objects) or the wish to 
provide safeguards against production risk (use of insurance contracts, precau-
tionary investment in powerful machinery to mitigate production peaks; Witzke, 
1993: 157). Aurbacher et al. (2011) have recently shown that farmers trapped in 
small agricultural structures may be unable to coordinate on machinery sharing 
and thus may hold inefficiently high stocks of machinery. Furthermore, agricul-
ture in Europe is typically organised in family farms on which labour is often 
highly immobile (Tocco et al., 2012). Furthermore, on-farm labour may also be 
influenced significantly by life cycle considerations of the farm family (Glauben 
et al., 2009).

4.2.5.2 Empirical results

Based on the theoretical results from the preceding section, I arrive at estimates 
of the farm-individual shadow prices (p ̂ *) for the different inputs by multiplying 
the production elasticities obtained from the Wooldridge/Levinsohn/Petrin 

28 Note, λ might be interpreted as the “shadow component” in p*.
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estimator with the farm-specific average factor productivities.29 Following Cart-
er and Wiebe (1990), this gives the respective shadow prices holding all other 
production factors constant for profit maximizing farmers. Net returns equal 
to the marginal value product minus one were calculated for the materials and 
capital variable, so that they can be compared with common market interest 

29 The choice of estimator for calculating shadow prices is important as biases in es-
timates of output elasticities carry over to the calculation of shadow prices. See 
Petrick and Kloss (2013d: 330-331) for an example of how a biased estimate leads 
to wrong conclusions regarding constraint access to capital.
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Figure 4.1:  Distribution of shadow wages per country and year.

Notes:   Results based on Wooldridge/Levinsohn/Petrin estimator. Dots (squares, triangles, circles, 
diamonds) denote median. The bars represent the lower and upper quartiles, respectively.

Source:  Author based on Petrick and Kloss (2013d).
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rates for credit.30 The distribution of the shadow prices for the four input fac-
tors is illustrated in Figures 4.1-4.5 by using plots displaying the median and first 
and third quartiles of the distribution. The plots depict the evolution of these 
marginal returns to input use for every country in the sample by year to allow 
for cross country as well as dynamic comparisons.

30 This treatment is motivated by a number of studies, including Sial and Carter (1996: 
783) and Petrick (2004: 81-83). In the theoretical model presented in 4.2.5.1, one 
can account for it by assuming that the output is produced by a single credit financed 
input. This assumption is plausible in light of the sequential nature of agricultural 
production due to which some materials inputs must be financed upfront. Again, 
profit is defined as revenue minus costs. Hence, the costs are now the repayment 
of credit and the interest. Then in (4-1), I write 

Based	on	the	theoretical	results	from	the	preceding	section,	I	arrive	at	estimates	
of	the	farm-individual	shadow	prices	(𝑝𝑝∗)	for	the	different	inputs	by	multiplying	
the	production	elasticities	obtained	from	the	WOOLDRIDGE/LEVINSOHN/PETRIN	
estimator	with	the	farm-specific	average	factor	productivities.1	Following	CARTER	
and	WIEBE	(1990),	this	gives	the	respective	shadow	prices	holding	all	other	
production	factors	constant	for	profit	maximizing	farmers.	Net	returns	equal	to	
the	marginal	value	product	minus	one	were	calculated	for	the	materials	and	
capital	variable,	so	that	they	can	be	compared	with	common	market	interest	
rates	for	credit.2	The	distribution	of	the	shadow	prices	for	the	four	input	factors	is	
illustrated	in	Figures	4.1-4.5	by	using	plots	displaying	the	median	and	first	and	
third	quartiles	of	the	distribution.	The	plots	depict	the	evolution	of	these	marginal	
returns	to	input	use	for	every	country	in	the	sample	by	year	to	allow	for	cross	
country	as	well	as	dynamic	comparisons.	
	

																																																																				
1		 The	choice	of	estimator	for	calculating	shadow	prices	is	important	as	biases	in	estimates	

of	output	elasticities	carry	over	to	the	calculation	of	shadow	prices.	See	PETRICK	and	KLOSS	
(2013d:	330-331)	for	an	example	of	how	a	biased	estimate	leads	to	wrong	conclusions	
regarding	constraint	access	to	capital.	

2		 This	treatment	is	motivated	by	a	number	of	studies,	including	SIAL	and	CARTER	(1996:	783)	
and	PETRICK	(2004:	81-83).	In	the	theoretical	model	presented	in	Fehler!	Verweisquelle	
konnte	nicht	gefunden	werden.,	one	can	account	for	it	by	assuming	that	the	output	is	
produced	by	a	single	credit	financed	input.	This	assumption	is	plausible	in	light	of	the	
sequential	nature	of	agricultural	production	due	to	which	some	materials	inputs	must	
be	financed	upfront.	Again,	profit	is	defined	as	revenue	minus	costs.	Hence,	the	costs	
are	now	the	repayment	of	credit	and	the	interest.	Then	in	(4-1),	I	write	𝑝𝑝 = 1 + 𝑟𝑟,	where	
𝑟𝑟	 is	the	market	 interest	rate.	The	solution	(4-3)	 is:	𝑝𝑝' ()

(*
= 1 + 𝑟𝑟∗ > 1 + 𝑟𝑟,	with	𝑟𝑟∗ ≡

𝑟𝑟 + 𝜆𝜆.	𝑟𝑟∗,	the	shadow	interest	rate,	is	then	𝑟𝑟∗ = 𝑝𝑝' ()
(*
− 1,	the	marginal	value	product	

minus	1.	
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Figure 4.2:  Distribution of shadow land rents per country and year.

Notes:  Results based on Wooldridge/Levinsohn/Petrin estimator. Dots (squares, triangles, circles, 
diamonds) denote median. The bars represent the lower and upper quartiles, respectively.

Source: Author based on Petrick and Kloss (2013d).
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Figure 4.3:  Distribution of shadow interest rates of materials per country and year.

Notes:  Results based on Wooldridge/Levinsohn/Petrin estimator. Dots (squares, triangles, circles, 
diamonds) denote median. The bars represent the lower and upper quartiles, respectively.

Source: Author based on Petrick and Kloss (2013d).
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Figure 4.4:  Distribution of shadow interest rates of materials for Denmark.

Notes:  Results based on Blundell/Bond estimator. Dots denote median. The bars represent the 
lower and upper quartiles, respectively.

Source: Author.



62 Assessment of factor productivities in EU agriculture

-1
00

-9
0

-8
0

-7
0

Sh
ad

ow
 in

te
re

st
 ra

te
 %

 p
.a

.

2001 2002 2003 2004 2005 2006 2007 2008
 

Denmark France
Germany E Germany W
Italy Spain
UK

Figure 4.5:  Distribution of shadow interest rates of capital per country and year.

Notes:  Results based on Wooldridge/Levinsohn/Petrin estimator. Dots (squares, triangles, circles, 
diamonds) denote median. The bars represent the lower and upper quartiles, respectively.

Source: Author based on Petrick and Kloss (2013d).
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The findings from the plots are not too surprising given the results on output 
elasticities presented in the previous subchapters. The shadow prices of the 
factors labour, land, and fixed capital tend to be quite low. The median shadow 
wage in agriculture is below 9 EUR/hour in France, West Germany, Spain, and the 
UK throughout the years; in Italy it is below 5 EUR/hour for most of the period. 
East Germany displays particularly low values with numbers below 2 EUR/hour. 
Denmark stands out with a value fluctuating at around 30 EUR/hour. Shadow 
land rents are only minimally different from zero throughout. Shadow prices of 
fixed capital are negative in all subsamples, with medians per country and year 
in the range of -85 to -100 per cent. Furthermore, there is considerable variation 
for some of the country subsamples.

The distributional plots on the marginal return to materials deserve a closer look 
(Figure 4.3 and Figure 4.4). As materials use is variable on a short-term basis, it re-
acts quickly to fluctuations in the economic environment. In the observed study 
period, the financial crisis was epitomised by the emerging US subprime crisis 
in 2007 and the collapse of the investment bank Lehman Brothers in 2008. The 
shock waves of the crisis hurt the various EU member countries quite differently, 
and there is little analysis available so far regarding how they affected access 
to working capital in agriculture. Indeed, both the cross country as well as the 
dynamic variation reveal interesting patterns in this regard.31 Across countries, 
Denmark and the United Kingdom are the only countries where the median farm 
exhibited negative marginal returns on working capital throughout most of the 
periods. This is consistent with an excess capital use and the absence of funding 
constraints, and possibly reflects the strong position of the Danish agricultural 
banking sector, which is based on a mortgage-banking model, during the crisis. 
A similarly strong banking sector is present in the UK. For both countries, I ob-
serve increasing shadow rates right before or during the crisis. However, Danish 
farms are typically much more highly leveraged than their European counterparts 
(Petrick and Kloss, 2013c). Danish farms were thus hit harder by the emerging 
financial crisis, consistent with a sharp increase in shadow rates in the year 2008 
in Figure 4.4. At the other end of the spectrum, farms in Spain and East Germany 

31 Because the WLP estimator was not able to identify a materials output elasticity in 
the case of Denmark, the shadow price of working capital of this country is somewhat 
predetermined. Remember, a coefficient close to zero will also produce a marginal 
value product close to zero; subtracting one will then result in a shadow interest 
rate close to minus one (-100 per cent). Indeed, this is exactly what is observed in my 
calculations (Figure 4.3). Given that the BB estimator produces a plausible materi-
als coefficient (see section 4.2.4), I interpret and compare the shadow interest rate 
based on this estimator for Denmark (Figure 4.4).
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show high shadow rates on working capital, with an upward tendency over the 
observed period. Also many Italian farms are in the range above 50 per cent 
of interest. Spain and Italy are countries with very low leverage in the agricul-
tural sector, but also with banks suffering from the crisis. Thus, farms may have 
been forced to reduce their use of working capital, particularly after the onset 
of the crisis. East German agriculture is dominated by corporate farms which 
are often based on rented land. Capital access is less easy to obtain for them 
than for West German family farms, and may have become more difficult dur-
ing the crisis. This argument is further underlined by the very large difference 
in shadow rates between East and West Germany. In addition, with regard to 
West Germany, shadow rates remain more or less stable during crises, which 
possibly reflects the strong position of its agricultural banking sector. France is 
somewhere in the middle of the field.

Finally, with typical market interest rates for capital in mind, such as those 
reported in Petrick and Kloss (2013c), shadow prices of materials are notably 
higher than the market rate in many countries, especially in the two crisis years 
2007 and 2008.32 This finding supports the view that quantity rationing on the 
market for short-term capital was prevalent in these years. However, this view 
does not hold with regard to fixed capital because these numbers are negative 
throughout.

32 Ideally one would compare the shadow prices with the marginal interest rate. How-
ever, these are not observed. Therefore, they have to be compared to the average 
interest rates, which the figures observed essentially are. 



5  Outlier Robust productivity analysis: an applica-
tion to German FADN data

In this chapter, I produce and discuss results for East and West Germany. Both 
regions are treated separately in the following because they are, as discussed 
earlier, so different in their agrarian structures. East German agriculture can be 
characterised by large-scale corporate farms, whereas West Germany is domi-
nated by small- to medium-scale family farms. In addition, after the removal of 
outliers such a treatment allows carving out similarities and differences more 
precisely since both German regions are under the same jurisdiction while  having 
historically different forms of agricultural organisation. In the following subchap-
ter I discuss the model specification and data; chapter 5.2 presents and discusses 
the results. I also provide a synthesis outlining the general implications of my 
results in the latter. 

5.1 Model specification and data

I proceed in two steps to perform an unbiased estimation. First, I decontaminate 
the sample from outliers by pruning the minimum spanning tree as outlined in 
chapter 2.2.3 (Kirschstein et al., 2013). After eliminating the outliers from the 
data, I proceed by estimating the production function using the Wooldridge 
(2009) production function estimator discussed in 2.1.6. These estimation results 
are then compared to a variety of alternative decontamination schemes. I recover 
the parameters of the following log-linearised production function specification:

	 𝑦𝑦"# = 𝛼𝛼&𝑎𝑎"# + 𝛼𝛼)𝑙𝑙"# + 𝛼𝛼+𝑘𝑘"# + 𝛼𝛼-𝑚𝑚"# + 𝜔𝜔"# + 𝜀𝜀"#,	 (5.1)	, (5.1)

where y is the natural logarithm of output Y, A is land use, L is labour, K fixed 
capital, M (working capital), and i and t are farm and time indices. The αx are 
parameters to be estimated, and X ∈ {A, L , K, M } refers to the production 
factors. The 	 𝑦𝑦"# = 𝛼𝛼&𝑎𝑎"# + 𝛼𝛼)𝑙𝑙"# + 𝛼𝛼+𝑘𝑘"# + 𝛼𝛼-𝑚𝑚"# + 𝜔𝜔"# + 𝜀𝜀"#,	 (5.1)	 are farm- and time-specific factors known by the farmer but 
unobserved by the analyst, while 	 𝑦𝑦"# = 𝛼𝛼&𝑎𝑎"# + 𝛼𝛼)𝑙𝑙"# + 𝛼𝛼+𝑘𝑘"# + 𝛼𝛼-𝑚𝑚"# + 𝜔𝜔"# + 𝜀𝜀"#,	 (5.1)	 are the remaining independent and identi-
cally distributed (IID) errors.

Again, I resort to this Cobb-Douglas specification because making it more flex-
ible by adding second order terms – quadratics and interactions of the different 
inputs – did not yield any additional insights. Furthermore, as demonstrated in 
chapters 4.2.3 and 6.3, such a translog specification produced unreasonable 
results. Furthermore, virtually any data structure can be modeled with increas-
ing degrees of powers in polynomials of inputs. This could possibly also miti-
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gate the outlier problem but it also implies adding more and more regressors 
to the estimating equation. As a result, problems such as multicollinearity are 
potentially amplified.

I measure output as the total farm output in euros, labour as the total of on-
farm hired and family labour working time, and land as the utilised agricultural 
area in ha, including owned and rented land as well as land in sharecropping. 
Following the discussion on the capital variable in chapter 4.1, the material or 
working capital input is proxied by total intermediate consumption in euros. It 
consists of the total specific costs and overheads arising from production in 
the accounting year. Among others, it includes costs for fuel, lubricants, water, 
electricity, and seed. Fixed capital inputs are approximated by depreciation of 
capital assets estimated at replacement value in euros. This input accounts for 
different depreciation rates of the various capital assets. It includes depreciation 
for plantations of permanent crops, buildings and equipment, land improve-
ments, machinery, and forest plantations (European Commission, 2011). Table 
5.1 summarises the variable definitions and gives the actual FADN codes.

Table 5.1: Selection of variables.

FADN code Variable description

Outputs

SE131 Total output (EUR)

Inputs

SE011 Labour input (hours)

SE025 Total utilised agricultural area (ha)

F72 + SE300 +  
SE305 + SE336

Costs for seed and seedlings + crop protection + other crop-specific 
costs + overheads (EUR) = materials

SE360 Depreciation (EUR) = fixed capital

Source: Author.
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5.2 Results

5.2.1 Outlier identification

The data sets which were finally used for the outlier identification contain a 
total of 3,610 observations (in the case of the East German field crop data) and 
8,490 observations (in the case of the West German field crop data). Data has 
been logarithmised to compensate for different scales and heavy tails. Figure 
5.1 depicts the corresponding scatterplot matrices. Neither the plot for East 
nor West Germany gives rise to serious concern. In most cases variables show 
a high pairwise correlation (especially for East Germany). The major portion of 
the data forms a large cluster with some observations scattered around. An 
interesting effect can be observed for the labour input where the observations 
seem to be compressed for values somewhere between 0 and 1.33 This effect 
results from a substantial amount of ”one-man-companies” in the data sets 
which all unanimously stated 2,210 hours (i.e., 52 weeks · 5 days · 8.5 hours) as 
their working input.

33 Note, this variable is expressed in thousand hours. Therefore, taking the natural 
logarithm results in values between 0 and 1.

Figure 5.1: Scatterplot matrix of field crop data.

Notes: Left panel: East Germany. Right panel: West Germany. Outliers coloured in grey
Source: Author.
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When applying the pMST procedure with critical edge length probability α =  0,95 
(as described in chapter 2.2.4) on the data (i.e. output and inputs that enter 
the production function), 322 (East), and 1,121 (West) potential outliers are 
identified. Figure 5.1 shows the scatterplot matrices with the identified out liers 
coloured in grey.

The following results are revealed: 

• All scattered observations (lying around the main bulk of the data) are 
identified as outliers (as expected). 

• It seems that observations lying within the main bulk are also identified as 
outliers, which – at a first glance – might be understood as an undesired 
result. However, this view leaves the multivariate nature of the data out 
of consideration (i.e., an observation which is outlying in one scatterplot 
might be very well an outlier in another bivariate plot or higher dimensional 
displays). By tendency, outliers seem to be made up of small farms (with 
low levels of inputs and output) because they mainly occur in the lower 
left corner of the scatterplots (this is especially visible for East Germany 
in Figure 5.1). 

The latter point also can be confirmed by having a closer look at the outlier 
characteristics by means of parallel boxplots; see Figure 5.2. 
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Figure 5.2: Characteristics of outliers and non-outliers.

Notes: Left panel: East Germany. Right panel: West Germany. 
Source: Author.
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Figure 5.2 (left panel) shows that the outliers are primarily made up of small 
farms (presumably the one-man-operations mentioned earlier) because the 
boxes and the medians are clearly situated below those of the non-outliers.34 
Additionally, the outliers also cover those observations with very large values in 
each variable as the (upper) whiskers reach out beyond those of the non-outliers. 
The situation is not as clear for the West German data (Figure 5.2, right panel). 
While the outliers are still made up of the largest and smallest observations in 
each variable (as expected), those identified seem to be more evenly distributed.

The approach described in Liebscher and Kirschstein (2012) can be applied 
to gain a better understanding of how the outliers divide into small and large 
farms: Based on the identified non-outliers and their values in the five variables, 
a frontier/boundary (in concept similar to the Free Disposal Hull (FDH), see, 
e.g., Cooper et al., 2007) can be constructed. This involves the formulation of 
a linear program which is subsequently solved. Those observations among the 
non-outliers which dominate the remaining non-outliers (i.e., in the sense that 
they possess a higher value in at least one variable while being at least equal in 
the remaining variables) constitute the upper boundary (see Figure 5.3 for an 
example when considering only the variables capital and output of the West Ger-
man data set). Likewise, a lower boundary is constructed by switching the sign 
of the variables. The identified outliers can now be assigned to one of the two 
groups (large/small) by examining their position in relation to these boundaries. 
Outliers lying beyond the upper boundary are considered as large companies, 
whereas observations lying below the lower boundary are considered as ”small” 
companies. There might also be outliers which lie within the region encapsu-
lated by both boundaries. Table 5.2 shows the result of this analysis by giving 
the number of outliers falling in each region.

34 Note, it is feasible to talk in terms of farms (companies) as, for instance, a farm 
reporting low values in one period likely reports such values in other periods. Con-
sequently, the whole farm is characterised as an outlier. Nevertheless, I leave open 
the possibility that only part of the observations per farm are considered as outliers, 
thus preserving valuable information.
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Figure 5.3: Illustration of constructed boundary for two dimensions.

Notes:  Based on West German data. Boundaries (filled dots with black circles) are given by the 
identified non-outliers (black dots). Outliers (grey dots) lying in the dark- grey region are 
considered as large farms and those lying in the light-grey region as small farms.

Source: Author.

Table 5.2:  Multivariate outliers divided into small and large farms.

Notes:  Number of observations belonging to respective farm category according to the FDH 
procedure. 

Source: Author.

small farms large farms neither nor ∑

East Germany 79 6 237 322

West Germany 229 236 656 1121
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Note that all five variables have been jointly considered for these results. There-
fore, the regions are actually hypercuboidal and not planar as Figure 5.3 might 
suggest. The results generally support the conclusions already drawn from the 
parallel boxplots. Interestingly, for both East and West Germany, there is a 
substantial number of outliers within the encapsulated region. These observa-
tions, while being identified as outliers, must be located close to the bulk of 
non-outlying observations. Hence, if one is interested in a more conservative 
approach in outlier identification, one may consider including these observations 
in the set of non-outliers again for any follow-up production function analysis.

5.2.2 Production function estimation

I estimate the parameters of the production function by the Wooldridge (2009) 
(WLP) estimator. It is applied to various samples: a) the full sample without any 
outlier identification (no-out), b) the cleaned subsample resulting after univariate 
outlier identification (uni-out), c) the cleaned subsample resulting after multi-
variate outlier identification (full-out), and d) the cleaned subsample resulting 
after removing only small and large multivariate outliers (small-large). For case b), 
observations were dropped if the fixed capital productivity per farm was beyond 
the upper/lower quartile ± 1.5 times the interquartile range (IQR). I resort to 
such a trimming rule because it is prominent (i.e., widely used) in the literature 
outlined in chapter 2.2.2. According to this rule, 298 outliers have been detected 
for East Germany and 1,429 for West Germany, which differs from the numbers 
observed in the multivariate case (see Table 5.2). Even though the differences in 
figures are not that large, especially in the case of East Germany, there is little 
overlap in the detected outliers between the uni- and multivariate detection in 
both German regions.35 This result is not too surprising because both ways to 
detect outliers are inherently different. The former only considers one separate 
dimension, whereas the latter evaluates the whole multidimensional “tree” of 
data. The final estimation samples include farms that have a minimum panel 
representation of four consecutive years to justify the assumption that factor 
adjustment drives unobserved heterogeneity. This treatment ensures that the 
panels do not become jagged after applying the outlier removal procedure 
because the detection is done on observations. In addition, it copes well with 
the assumption that costly factor adjustment drives unobserved heterogeneity 
(Petrick and Kloss, 2013a). Finally, it also has implications for the farms in the 

35 This overlap amounts to 8 per cent in the eastern part and 3 per cent in the western 
part of Germany, measured in percentage of the total number of multivariate out-
liers.
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sample. For instance, if a farm over-reports in one or several non-consecutive 
periods, it will not be included in the estimation sample.

5.2.2.1 Results for East Germany

Comparing the results in Table 5.3, it turns out that for the majority of samples 
the labour coefficient is insignificant and close to zero. Generally, materials is 
the most important input as it displays output elasticities fluctuating at around 
1.0. Furthermore, the hypothesis of constant returns to scale cannot be rejected 
for any sample. 

As expected, the estimates based on the small-large subsample and the uni-out 
subsample are quite similar to the no-out estimates because only relatively few 
outliers are discarded from the full sample, especially in the former subsample. 
By removing the full set of multivariate outliers, only farms relying, on average, 
on a more (fixed) capital intensive production are left in the sample as indicated 
by the highest capital coefficient among all subsamples. Furthermore, in this 
case results display a higher precision as the standard errors of this parameter 
are smallest among all subsamples. Likewise, the remaining farms after multi-
variate decontamination are less working capital intensive. In addition, the scale 
elasticity is closest to one.

Interestingly, the results for the full-out subsample are somewhat different. 
Remember that throughout a modified specification of the materials input is 
used to mitigate multicollinearity issues (chapter 4.2.2). However, the general 
tendency with a relatively high materials coefficient in conjunction with a low 
land coefficient prevails. Compared to the other subsamples, it was possible to 
identify the land output elasticity. Moreover, the materials coefficient slightly 
decreased. Hence, the multivariate outlier decontamination procedure mitigates 
the multicollinearity problem even further, a result also observed for West Ger-
many (see below). This observation further implies that much of the multicol-
linearity is originating from the multivariate outliers. Unfortunately, a negative 
and significant labour coefficient is observed. 

Summing up the findings, there seems to be a trade-off. On the one hand, es-
timates after the full multivariate outlier decontamination provide reasonable 
and sometimes more precise results for the three inputs of land, materials, and 
capital. On the other hand, I observe a significantly negative labour output elas-
ticity. Nevertheless, estimation results for the other subsamples, including the 
more conservatively multivariately cleaned subsample d), propose a consensus 
suggesting that labour is an abundant input factor.



73Outlier Robust productivity analysis: an application to German FADN data

5.2.2.2 Results for West Germany 

The production function estimates for West Germany are summarised in Table 
5.4. In general, the structure of farms in East and West Germany is quite different 
(as Figure 5.2 suggests). While there are many very large farms in East Germany 
(including some farms identified as outlying), in West Germany primarily small 
and medium scale family farms are prevalent. Hence, one can presume that 
production technologies in both regions are different to some extent. However, 
there are also some similarities. Material inputs are also the single most impor-
tant production factors in West German arable farming; this is true to a lesser 
extent than in East Germany. Another similarity to the results for East Germany 
is the insignificant and negative land elasticity for estimation samples not relying 
on multivariate decontamination. Again, one can observe that after removing 
all multivariate outliers the parameter estimate increases, which confirms the 
indication that the multivariate outlier detection alleviates effects of multicol-
linearity. Note this is the only instance for which a positive (but still insignificant) 
land coefficient is estimated. 

Furthermore, while the assumption of constant returns to scale cannot be re-
jected for all subsamples, this result is much clearer for estimation samples based 
on multivariate detection methods. The no-out subsample even rejects this as-
sumption at the 10 per cent significance level. Orders of magnitude of estimated 
labour and capital coefficients are smaller in the multivariate compared to the 
no-out and univariate cases, hinting at upward biased coefficients in the latter 
two. This drives the results more into the direction of returns to scale approach-
ing unity. Additionally, a consistent difference between East and West Germany 
is that the labour elasticity is significantly positive throughout, indicating that 
this input is to some extent a scarce factor in West Germany. 

Generally, for the case of West Germany, the latest methodological advance-
ments in production function estimation together with multivariate outlier de-
contamination are able to fully embrace their benefits. As outlined above, this is 
signaled by plausible estimates which exhibit positive output elasticities through-
out all inputs and, in the case of capital inputs, the highest parameter precision.

5.2.3 Evaluation of Results

In summary, the two-step approach presented allows for robust and consistent 
estimation of production functions. By applying a multivariate assessment of 
outliers, I am able to treat all considered dimensions of agricultural production, 
resulting in a global assessment of outliers. Perhaps unsurprisingly, the univariate 
decontamination procedure is not capable in detecting the meaningful outliers. 
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This procedure can only detect conventional outliers beyond some threshold 
in a single dimension, while the multivariate algorithm at hand may, in addi-
tion, also detect such outliers located within the production technology. This 
is a major advantage compared to the common univariate approach employed. 
Results indicate that the pMST procedure indeed detected all scattered obser-
vations located around the main bulk of observations as well as those within 
the production technology. In light of these findings, the univariate procedure 
tends to mis-estimate the number of outliers and consequently drops (keeps) 
valuable (valueless) information, which is also indicated by the low overlap in 
observations between the two procedures. 

The advantage of the multivariate detection also carries over to the estimation, 
at least to some extent. It results in improved estimates compared to the results 
for the other samples (e.g., it allows for a higher precision in the estimation of 
some parameters). In addition, multivariate detection seems to mitigate the ef-
fects of multicollinearity further, however, with better results for West Germany. 
Discarding only extreme multivariate outliers leads to more conservative results 
closer to the full samples estimates.

To further illustrate the multicollinearity mitigating effects of the multivariate 
detection procedure utilised, I additionally evaluate an analysis based on a ma-
terials specification including fertiliser inputs (Table B1-Table B3). The difference 
in identified outliers does not only occur because of the alternate specification 
itself as the distance between observations is changed but also because it was 
not possible to construct the materials specification without fertiliser inputs 
due to missing values for a few farms. Hence, in the full materials specification 
one can build on a slightly extended data set. Now, if the multivariate detection 
procedure indeed mitigates multicollinearity, the general tendencies outlined 
above should also prevail in such a specification. As outlined in chapter 4.2.2, the 
consideration of fertiliser in the materials input leads to a severe multicollinearity 
problem characterised by negative and statistically significant land coefficients 
(Table B2 and Table B3). By moving from uni- to multivariate decontamination, 
land output elasticities increase, reaching the value closest to zero for both Ger-
man regions. However, this time they remain significantly negative. Parameters 
after multivariate detection are estimated with a higher precision, as well, this 
time around not only for capital but also for materials. Generally, the tendencies 
of moving from univariate to multivariate outlier decontamination for a ma terials 
specification without fertiliser may also be observed on a more dampened level 
for a materials specification including this input. Thus, one may conclude that the 
multivariate decontamination further mitigates the multicollinearity problem 
after refining the precise definition of the materials input. 





6  The productivity of family and hired labour in 
EU arable farming

In this chapter, I utilise the primal production function framework to answer 
the question whether on-farm labour force composition (i.e., the ratio between 
family and hired labour) has a gaugeable impact on productivity of a particular 
field crop farm. Because the production function model employed so far needs 
to be modified to measure the effects of labour force composition, I start with a 
discussion of the model specification regarding issues of functional form as well 
as my strategy to identify the parameters of that function and the parameter of 
interest. In chapter 6.2, I discuss the data sample, in 6.3 the results.

6.1 Model specification

In the following, I explore the core hypothesis that the composition of the labour 
force (family versus hired) affects the productivity of agricultural labour input 
in European field crop farming. Testing this hypothesis empirically involves a 
number of specification decisions. First, I want my empirical model to be con-
sistent with microeconomic production theory, which requires the specification 
of a production technology. Moreover, my empirical strategy must make sure 
it identifies the parameters I am interested in for testing the core hypothesis 
while being empirically tractable given the farm-level panel data available to me. 
As I discuss in the following, my preferred choice is a semi-parametric produc-
tion function model that combines a parametrically specified technology with a 
robust, moment-based estimator controlling for unobserved heterogeneity. In 
addition, following the insights from chapter 4.2.2., several modifications to the 
original analyses must be made with respect to the specification of variables to 
accommodate the effects of multicollinearity.

6.1.1 Production technology

A key dilemma in modelling production concerns the choice between func-
tional flexibility and empirical tractability. On the one hand, researchers want 
to impose as little a-priori structure on the data as possible. On the other, less 
structure typically implies less precise estimates, less meaningful statistical tests, 
and potential inconsistencies with theoretical assumptions such as concavity or 
monotonicity. At one extreme, technology could be estimated in an entirely non-
parametric fashion. However, a disadvantage of such methods is that estimation 
with real-world data sets is rarely possible if the number of covariates is higher 
than two or three (the “curse of dimensionality”, Ichimura and Todd, 2007). 
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 Another shortcoming is that fully non-parametric methods that can handle com-
plex identifying assumptions are not well developed. I therefore resort to a para-
metric technology specification that allows a straightforward implementation of 
my core hypothesis. I start with the conventional Cobb-Douglas technology as 
a workhorse model, which is then extended in various directions to accommo-
date my assumptions concerning labour force heterogeneity and identification.

Suppose the production technology can be described by the following expression:

	 𝑦𝑦"# = 𝛼𝛼&𝑎𝑎"# + 𝛼𝛼)𝑒𝑒"# + 𝛼𝛼+𝑘𝑘"# + 𝛼𝛼-𝑚𝑚"# + 𝜔𝜔"# + 𝜀𝜀"#,	 (6-1)	
	

	 𝐸𝐸 = 𝐿𝐿 345
6

7
,	 (6-2)	

	
Notes:		 The	ratio	 (𝐹𝐹 + 1) 𝐿𝐿 ∈ 0,1 	has	been	set	to	0.3.	
	
	
As	 equation	 (6-2)	 shows,	 the	 exponential	 expression	 (𝐹𝐹 + 1) 𝐿𝐿 7	 acts	 as	 a	
scaling	factor	for	total	labour	time	input.	Following	this	model,	the	productivity	
of	 each	hour	of	 labour	 supplied	 to	 the	 farm	depends	on	 the	 share	of	 family	
labour	 in	total	 labour	 input	and	the	parameter	𝛾𝛾.	The	 latter	measures	how	a	
farm’s	labour	force	composition	affects	productivity.	If	𝛾𝛾 > 0,	a	higher	share	of	
family	labour	increases	farm	productivity.	If	𝛾𝛾 < 0,	productivity	is	decreased	by	
a	 higher	 share	 of	 family	 labour.	 A	 given	 ratio	 of	 family	 to	 hired	 labour	 can	
decrease	or	increase	farm	productivity,	depending	on	whether	𝛾𝛾	is	positive	or	
negative	(Figure	6.1).	If	𝛾𝛾 = 0,	there	are	no	effects	of	labour	force	composition.	
An	 advantage	 is	 that	 this	 specification	 of	𝐸𝐸	 allows	 for	 farms	 entirely	 run	 by	
family	or	hired	labour	because	a	1	is	added	in	the	numerator.	Furthermore,	the	
exponential	form	of	(6-2)	allows	for	direct	estimation	of	𝛾𝛾	in	the	framework	of	
a	Cobb-Douglas	function.	Applying	basic	logarithm	rules	to	(6-2)	and	inserting	it	
into	(6-1)	gives:	
	
	 𝑦𝑦"# = 𝛼𝛼&𝑎𝑎"# + 𝛼𝛼)𝑙𝑙"# + 𝜃𝜃𝜃𝜃"# + 𝛼𝛼+𝑘𝑘"# + 𝛼𝛼-𝑚𝑚"# + 𝜔𝜔"# + 𝜀𝜀"#,	 (6-3)	
	

, (6-1)

where yit is the natural logarithm of output Y, A is land use, E is the effective 
labour effort, K fixed capital, M materials (working capital), lower case letters 
denote the natural logarithms of these variables, the αs are parameters to be 
estimated, and i and t are farm and time indices. ω it are farm- and time-specific 
factors known by the farmer but unobserved by the analyst (unobserved pro-
ductivity). ε it are the remaining independent and identically distributed errors. 

A key idea in my strategy to test the influence of labour force heterogeneity is 
to substitute E by an effective labour function determined by the share of fam-
ily labour in total labour input of the farm. I suggest a specification introduced 
by Frisvold (1994): 	 𝑦𝑦"# = 𝛼𝛼&𝑎𝑎"# + 𝛼𝛼)𝑒𝑒"# + 𝛼𝛼+𝑘𝑘"# + 𝛼𝛼-𝑚𝑚"# + 𝜔𝜔"# + 𝜀𝜀"#,	 (6-1)	
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As	 equation	 (6-2)	 shows,	 the	 exponential	 expression	 (𝐹𝐹 + 1) 𝐿𝐿 7	 acts	 as	 a	
scaling	factor	for	total	labour	time	input.	Following	this	model,	the	productivity	
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 acts as a scal-
ing factor for total labour time input. Following this model, the productivity of 
each hour of labour supplied to the farm depends on the share of family labour in 
total labour input and the parameter γ. The latter measures how a farm’s labour 
force composition affects productivity. If γ >  0, a higher share of family labour 
increases farm productivity. If γ <  0, productivity is decreased by a higher share 
of family labour. A given ratio of family to hired labour can decrease or increase 
farm productivity, depending on whether γ is positive or negative (Figure 6.1). 
If γ =  0, there are no effects of labour force composition. An advantage is that 
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this specification of E allows for farms entirely run by family or hired labour be-
cause a 1 is added in the numerator. Furthermore, the exponential form of (6-2) 
allows for direct estimation of γ in the framework of a Cobb-Douglas function. 
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where r and l are the natural logarithm of R = ((F + 1)/L) and L, respectively, 
and θ = αEγ . Given this formulation, γ is equal to θ/αE. I thus arrive at an em-
pirically tractable technology specification that allows a direct test of the effect 
of labour force composition.

A further refined model could try to directly estimate even more specific aspects 
of labour composition, such as time spent on supervision or relative education 
or technological skills of the different groups of workers (see Frisvold (1994) 
for some steps in the former direction). In my application, these could not be 
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Source: Author.
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implemented due to data limitations. Even so, my estimates of γ might indeed 
reflect different qualifications of family and hired labour.

The Cobb-Douglas technology has maintained its status as the workhorse of 
applied production function analysis up until the present (see Olley and Pakes, 
1996; Levinsohn and Petrin, 2003; Petrin and Levinsohn, 2012 for some recent 
examples). However, it imposes a lot of structure on the production technol-
ogy, including strong separability, constant output elasticities, a constant scale 
elasticity, and substitution elasticities between all input pairs which are always 
constant (= 1) as well (Chambers, 1988). This rigidity can be overcome by adding 
quadratic and interaction terms of inputs, leading to the more flexible translog 
formulation. I test this extension below (section 6.3). To support the assump-
tion of a homogeneous production technology, I restrict the empirical analysis 
to full-time farmers specialising in crop production (see section 6.2).

6.1.2 Identification

Factor use across firms is usually under the control of the farmer and decided 
simultaneously with unobserved events or may depend on such events. There-
fore, the inputs in (6-3) are subject to an endogeneity problem. For instance, 
the farmer’s and workers’ reactions to environmental shocks are clearly en-
dogenous because they may depend on omitted variables such as technological 
skills or the experience with past comparable shocks. In return, adjustment to 
these shocks also affects the other input choices. The unobserved productiv-
ity (ω it) might further represent factors such as natural resource endowments 
of the farm (e.g., soil quality). As a result, the ω it will likely be correlated with 
the other inputs. The standard OLS estimator will produce biased estimates of 
output elasticities as it neglects the presence of ω it. This endogeneity problem 
typically leads to upward biased elasticities for variable inputs (e.g., labour and 
materials; Levinsohn and Petrin, 2003). As Ackerberg et al. (2007) pointed out, 
the standard OLS approach also lacks the necessary information that allows 
separate identification of the production elasticities, leading to a collinearity 
problem. Factor use across farms varies only with the unobserved ω it, so that 
the different production elasticities are not identified.36 

36 See Petrick and Kloss (2013a) as well as chapter 2.1 for a general discussion of these 
endogeneity and collinearity issues in the context of agricultural production function 
estimation.
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To tackle these problems, one must control for ω it and provide identifying in-
formation for the inputs. Returning to the identification strategy presented in 
chapter 2.1.6, I do this by inserting a non-parametric control function ω it into 
(6-3), ending up with a partially linear, semi-parametric model first proposed by 
Olley and Pakes (1996: 1275). Moreover, I use the identification approach sug-
gested by Wooldridge (2009), who uses orthogonality assumptions about past 
and present levels of input use in the framework of an instrumental variables 
estimator. This latter approach is consistent with the idea of adjustment costs 
in input provision that vary across inputs. With regard to my core hypothesis, it 
assumes that today’s labour composition of a farm is affected by past endow-
ments with factors. For example, contemporary labour composition may be 
driven by past decisions on land purchases.

The rationale behind this approach may be best understood by comparing it with 
the traditional way to control ωit, the within or fixed effects approach (Mundlak, 
1961). Suppose ω it can be decomposed further in:

	 𝜔𝜔"# = 𝜆𝜆# + 𝜂𝜂" + 𝑣𝑣"#,	
	
	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# ,	 	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 + 𝜉𝜉"#,	(6-4)	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#/0𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0, … , 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 	 	
	
	 = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 = 𝑔𝑔 𝜔𝜔"#/0 ≡ 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 ,	 (6-5)	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑟𝑟"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚",#/0, …	
	
	 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0	 (6-6)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (6-7)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# +	
	
	 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 + 𝜖𝜖"#,	 (6-8)	
	
	 𝐸𝐸 𝜖𝜖"#|𝑘𝑘"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0,… , 𝑎𝑎"0,𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0.	 (6-9)	
	

,

where λ t is a time-specific shock identical for all farms in t, η i is a farm-specific 
fixed effect that is constant over time, and vit is the remaining farm- and time-
specific productivity shock unanticipated by the farmer and unobserved by the 
analyst. The usual approach then is to purge the fixed effects (ηi) by the so called 
within transformation. To do so, farm-specific means are subtracted from all the 
variables. The λ t are usually controlled for by incorporating time dummies into 
the model. However, the question remains whether the assumption of time-
constant fixed effects is plausible. If η i represents factors such as management 
or soil quality, they can be considered as time-varying over a sufficiently long 
period. Therefore, this assumption is likely to hold only for panels that cover 
rather short periods of time. Furthermore, the within transformation is known for 
removing too much variance from variables that exhibit little variation over time, 
such as land, labour, and fixed capital, resulting in downward biased estimates 
for these factors (Griliches and Mairesse, 1998: 180-185). Especially with the 
effective labour function in mind, this can potentially lead to wrong conclusions.

In contrast, the approach utilised here controls for ω it by a function of observed 
firm characteristics (Olley and Pakes, 1996). Levinsohn and Petrin (2003) pro-
posed the level of materials input to be used as a proxy. Therefore, I assume 
ω it evolves according to:
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,

where h is a non-parametric function. Furthermore, it is assumed that unob-
served productivity follows a first-order Markov process:
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	 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0	 (6-6)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (6-7)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# +	
	
	 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 + 𝜖𝜖"#,	 (6-8)	
	
	 𝐸𝐸 𝜖𝜖"#|𝑘𝑘"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0,… , 𝑎𝑎"0,𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0.	 (6-9)	
	

, (6-4)

where ξit is an innovation uncorrelated with kit, but possibly correlated with 
the other factors in the production function. Following Wooldridge (2009), I 
additionally assume that:

	 𝜔𝜔"# = 𝜆𝜆# + 𝜂𝜂" + 𝑣𝑣"#,	
	
	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# ,	 	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 + 𝜉𝜉"#,	(6-4)	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#/0𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0, … , 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 	 	
	
	 = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 = 𝑔𝑔 𝜔𝜔"#/0 ≡ 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 ,	 (6-5)	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑟𝑟"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚",#/0, …	
	
	 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0	 (6-6)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (6-7)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# +	
	
	 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 + 𝜖𝜖"#,	 (6-8)	
	
	 𝐸𝐸 𝜖𝜖"#|𝑘𝑘"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0,… , 𝑎𝑎"0,𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0.	 (6-9)	
	

	 𝜔𝜔"# = 𝜆𝜆# + 𝜂𝜂" + 𝑣𝑣"#,	
	
	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# ,	 	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 + 𝜉𝜉"#,	(6-4)	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#/0𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0, … , 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 	 	
	
	 = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 = 𝑔𝑔 𝜔𝜔"#/0 ≡ 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 ,	 (6-5)	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑟𝑟"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚",#/0, …	
	
	 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0	 (6-6)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (6-7)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# +	
	
	 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 + 𝜖𝜖"#,	 (6-8)	
	
	 𝐸𝐸 𝜖𝜖"#|𝑘𝑘"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0,… , 𝑎𝑎"0,𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0.	 (6-9)	
	

, (6-5)

where g is an unknown productivity function. Equation (6-4) together with (6-5) 
provide some deeper insight in the innovation . It asserts that this innovation 
is uncorrelated with current and past realisations of  and past realisations of a, 
l, r, and m. These assumptions are necessary to obtain a consistent estimate 
of αK and αM.

For the ε it, Wooldridge proposes:

	 𝜔𝜔"# = 𝜆𝜆# + 𝜂𝜂" + 𝑣𝑣"#,	
	
	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# ,	 	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 + 𝜉𝜉"#,	(6-4)	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#/0𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0, … , 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 	 	
	
	 = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 = 𝑔𝑔 𝜔𝜔"#/0 ≡ 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 ,	 (6-5)	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑟𝑟"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚",#/0, …	
	
	 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0	 (6-6)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (6-7)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# +	
	
	 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 + 𝜖𝜖"#,	 (6-8)	
	
	 𝐸𝐸 𝜖𝜖"#|𝑘𝑘"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0,… , 𝑎𝑎"0,𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0.	 (6-9)	
	

	 𝜔𝜔"# = 𝜆𝜆# + 𝜂𝜂" + 𝑣𝑣"#,	
	
	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# ,	 	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 + 𝜉𝜉"#,	(6-4)	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#/0𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0, … , 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 	 	
	
	 = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 = 𝑔𝑔 𝜔𝜔"#/0 ≡ 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 ,	 (6-5)	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑟𝑟"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚",#/0, …	
	
	 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0	 (6-6)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (6-7)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# +	
	
	 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 + 𝜖𝜖"#,	 (6-8)	
	
	 𝐸𝐸 𝜖𝜖"#|𝑘𝑘"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0,… , 𝑎𝑎"0,𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0.	 (6-9)	
	

 (6-6)

Therefore, the residuals are assumed to be orthogonal not only to current but 
also all past values of a, l, r, k and m.

Now, starting from (6-3), the problem can be formulated in terms of two equa-
tions. The first is given by:

	 𝜔𝜔"# = 𝜆𝜆# + 𝜂𝜂" + 𝑣𝑣"#,	
	
	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# ,	 	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 + 𝜉𝜉"#,	(6-4)	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#/0𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0, … , 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 	 	
	
	 = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 = 𝑔𝑔 𝜔𝜔"#/0 ≡ 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 ,	 (6-5)	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑟𝑟"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚",#/0, …	
	
	 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0	 (6-6)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (6-7)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# +	
	
	 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 + 𝜖𝜖"#,	 (6-8)	
	
	 𝐸𝐸 𝜖𝜖"#|𝑘𝑘"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0,… , 𝑎𝑎"0,𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0.	 (6-9)	
	

, (6-7)

where (6-6) provides the moment conditions holding for this equation. The 
second can be obtained by plugging ω it = g[h(mit-1, kit-1)] + ξit into the pro-
duction function:

	 𝜔𝜔"# = 𝜆𝜆# + 𝜂𝜂" + 𝑣𝑣"#,	
	
	 𝜔𝜔"# = ℎ 𝑚𝑚"#, 𝑘𝑘"# ,	 	
	
	 𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 + 𝜉𝜉"#,	(6-4)	
	
	 𝐸𝐸 𝜔𝜔"#|𝑘𝑘"#, 𝑎𝑎"#/0𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0, … , 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 	 	
	
	 = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#/0 = 𝑔𝑔 𝜔𝜔"#/0 ≡ 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 ,	 (6-5)	
	
	 𝐸𝐸 𝜀𝜀"#|𝑎𝑎"#, 𝑙𝑙"#, 𝑟𝑟"#, 𝑘𝑘"#, 𝑚𝑚"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚",#/0, …	
	
	 𝑎𝑎"0, 𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0	 (6-6)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#,	 (6-7)	
	
	 𝑦𝑦"# = 𝛼𝛼<𝑎𝑎"# + 𝛼𝛼=𝑙𝑙"# + 𝜃𝜃𝑟𝑟"# + 𝛼𝛼?𝑘𝑘"# + 𝛼𝛼@𝑚𝑚"# +	
	
	 𝑔𝑔 ℎ 𝑚𝑚"#/0, 𝑘𝑘"#/0 + 𝜖𝜖"#,	 (6-8)	
	
	 𝐸𝐸 𝜖𝜖"#|𝑘𝑘"#, 𝑎𝑎"#/0, 𝑙𝑙"#/0, 𝑟𝑟"#/0, 𝑘𝑘"#/0, 𝑚𝑚"#/0,… , 𝑎𝑎"0,𝑙𝑙"0, 𝑟𝑟"0, 𝑘𝑘"0, 𝑚𝑚"0 = 0.	 (6-9)	
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. (6-9)

Hence, in (6-7) and (6-8), current and past values of k, past values of a, l, r and 
m as well as functions of these can be used as instruments. Additionally, in  (6-7), 
contemporaneous proxy variables and current realisations of a, l and r are valid 
instruments.

The two equations (6-7) and (6-8) together with the moment conditions in (6-6) 
and (6-9) can be estimated within a generalised methods of moments (GMM) 
framework by imposing the accompanying moment conditions. In empirical 
practice, these orthogonality conditions are usually weakened in that only lags 
up to order one are included. Alternatively, the production function parameters 
can be identified by estimating (6-8) using instrumental variable estimation 
with instruments for a, l, r and m (Wooldridge, 2009: 113). The function h is 
approximated by low-order polynomials of first-order lags of m and k which act 
as their own instruments. According to this theoretical set-up so far, m needs 
to be instrumented by its second order lag while a, l and r are instrumented 
by their first-order lags. Recently, Petrin and Levinsohn (2012) employed this 
second approach, which I also follow here. The function g is assumed to follow 
a random walk with drift (Wooldridge, 2009: 114).

In my agricultural application, the intuition of this approach may be as follows 
(cf. Levinsohn and Petrin, 2003: 322). Consider ω it to represent a farm-specific 
stock of management knowledge. Any positive shift of ω it assumedly increases 
the marginal productivity of mit and possibly all other production factors. As 
m can be readily adjusted, a profit-maximising farmer increases the level of mit 
in response to the shift, thus motivating the use of m as a proxy for ω it. The 
same process may also work in the other direction, so that farms with nega-
tive shocks reduce material inputs. If ω is persistent, the farm-specific over- or 
under-application of material inputs is likely to be correlated over time, so that 
past levels can be used as proxies for current productivity shifts. Consistent 
with primarily positive shifts is the empirical observation that, on average, both 
farm output and materials input increase over the years. This is precisely what 
the data confirms.

Given this theoretical framework, the Wooldridge (2009) estimation procedure 
does not only control for endogeneity problems but also solves the collinearity 



84 The productivity of family and hired labour in EU arable farming

issue raised by Ackerberg et al. (2007). This is in contrast to former versions 
of these so-called control function approaches (cf. Bond and Söderbom, 2005; 
Ackerberg et al., 2007). Petrick and Kloss (2013a) demonstrate that such ap-
proaches behave robustly in empirical practice, making them interesting alter-
natives to the traditional within approach. In the following, I present results 
for a set of estimators that involves OLS as a baseline as well as the preferred 
semi-parametric estimator due to Wooldridge (2009).

6.2 Data

I utilise data from the FADN described in chapter 3. Output is measured as the 
total farm output in euros. The total utilised agricultural area is my land input in 
hectares. It includes owned and rented land, and land in sharecropping. Material 
or working capital input is proxied by total intermediate consumption in euros. 
It consists of total specific costs and overheads arising from production in the 
accounting year. The former consists of costs for seeds and seedlings, crop pro-
tection and other crop-specific costs. Overheads are comprised of “supply costs 
linked to production activity” and are usually the single largest position in the 
materials input (European Commission, 2011). They include, among others, costs 
for energy such as fuel and electricity. I do not include the costs for fertiliser in 
the materials input. Land and fertiliser are highly correlated, suggesting that land 
and fertiliser inputs are utilised by farmers in an (almost) fixed ratio.37 I capture 
this package by including land input in hectares. Fixed capital is approximated by 
using the opening valuation of assets which is consistent with most of the recent 
literature on production function estimation with firm level data such as Olley 
and Pakes (1996), Blundell and Bond (2000), and Levinsohn and Petrin (2003). 
In this case, I took the asset value of machinery and buildings from the FADN 
data. This measure accounts for different depreciation rates of machinery and 
buildings which are estimated at replacement value of these inputs (European 
Commission, 2011). Separate information on hired and family labour working 
time is needed as well as the total labour hours to estimate the effective labour 
function (2) within a production function framework (i.e. estimating (3)). All this 
information is readily available in the FADN data. Having this data available, one 
can construct the additional covariate r. To this end, I calculate R = ((F + 1)/L) 
and take its natural logarithm. Table 6.1 gives definitions of the variables needed 
as well as their FADN codes. As discussed in chapter 3, the sample of countries 

37 This shows and confirms the view presented in chapter 4.2.2. In this section I present 
further analyses regarding the, statistically speaking, closely related multicollinearity 
problem.
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is selected to reflect the diverse farm sizes and structures in EU arable farming, 
ranging  from small-scale family farms in Italy, Poland, Spain, and West Ger-
many, to medium-sized commercial farms in Denmark, France, and the UK, to 
large-scale and mostly corporate farms in East Germany and Slovakia (European 
Commission, 2012). It is the variability of these structures across countries that 
makes comparisons of labour force heterogeneity particularly insightful.

The panels for Poland and Slovakia cover only five years because FADN data col-
lection for these countries began in 2004. Moreover, the effective panel length is 
reduced to four years because I use the opening valuation of fixed assets which 
is taken from the previous year of observations as my capital proxy. Therefore, 
my European database consists of 34,896 observations. To be included in the 
estimating sample, farms had to be present for at least four consecutive years 
(three years for Poland and Slovakia). Similar to Petrick and Kloss (2013a), outlier 
analysis was performed on the basis of the fixed capital productivity per farm. 
Observations were excluded from the estimation if their value exceeded the 
interval given by [Q1 – 1.5 · IQR; Q3 + 1.5 · IQR ], where Q1/Q3 is the lower/
upper quartile and IQR the interquartile range. 

Table 6.2 summarises the number of farms for every country in my sample, the 
labour force composition (average percentage of family labour), and the other 

[ ]

Table 6.1: Description of variables.

Source: Author, European Commission (2011).

FADN code Variable description

Left-hand side

SE131 Total output (EUR)

Right-hand side

Inputs

SE025 Total utilised agricultural area (ha) = land

F72 + SE300 +  
SE305 + SE336

Costs for seed and seedlings + crop protection + other crop 
specific costs + overheads (EUR) = materials

L.SE450 + L.SE455 Opening valuation of machinery and buildings (EUR) = capital

Effective labour effort

SE011 Total labour input (hours)

SE016 Unpaid labour input, generally family (hours)

SE021 Paid labour input (hours)
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variable means. My data sample covers a total of 6,546 farms. The numbers on 
output reflect the different forms of agricultural organisation outlined as dis-
cussed in chapter 3 (e.g., small scale, family farming in Spain or Poland up to large 
scale, corporate faming in East Germany and Slovakia). A full set of descriptive 
statistics is given in Table C1. Furthermore, according to the table, the dominant 
type of labour in EU arable farming is family labour. Only Slovakia displays num-
bers well below 50 per cent. In addition, there are farms entirely run on hired or 
family labour (e.g., in Germany, Italy, and Poland). To get a more dynamic view of 
these figures, I graph their evolution over the sample period (Figure C1). In the 
majority of countries, the percentage of family labour declined between 2001 
and 2008. The drop is most remarkable in East Germany and Slovakia. Rather 
than converging to a family farming model as expected by some observers in 
the early 1990s, these former socialist countries are now characterised by a 
firmly established corporate farm sector based on hired labour. Exceptions to 
the general tendency are Poland and Spain, where the numbers remained more 
or less constant.

Country Farms Family labour 
in % of total 

labour 

Total 
labour  

(ths hours)

Output 
(ths EUR)

Land 
(ha)

Materials 
(ths EUR)

Capital 
(ths EUR)

Denmark 208 84.52 2.8 180.4 122.7 98.0 840.0

France 1030 84.11 3.2 155.8 143.5 85.1 160.1

Germany 
(East)

271 55.86 15.6 545.6 538.9 345.8 519.4

Germany 
(West)

566 84.70 4.2 150.9 92.3 84.7 153.9

Italy 1322 88.55 3.6 60.6 44.7 23.8 125.2

Poland 1518 87.07 4.7 39.8 48.6 17.4 78.9

Slovakia 55 28.85 39.1 514.0 768.9 342.1 940.2

Spain 1388 90.06 2.7 40.4 72.7 15.0 31.1

United  
Kingdom

188 64.76 6.3 278.1 248.7 157.2 239.3

Table 6.2: Sample size and variable means.

Source: Author based on FADN data.
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6.3 Results

To infer the effective labour effort parameter γ, I estimate equation (6-3) em-
ploying two estimators per country. These are 1) OLS as a baseline and 2) Wool-
dridge (2009), hereafter Wooldridge/Levinsohn/Petrin (WLP). All estimations 
were performed with Stata 12. To implement the WLP estimator I employed the 
ivreg2 routine by Baum et al. (2007) as shown in Petrin and Levinsohn (2012). 
The code is reproduced in appendix D.

As I mentioned in the identification subsection, the WLP estimation procedure 
incorporates lags of inputs up to the second order, which reduces the panel 
length for every country by two years. For Poland and Slovakia the panel size 
is reduced to two years. In the case of Slovakia, an already small sample is re-
duced even further. Therefore, the results for this country should be treated 
with caution. But I kept it as the only representative of an East European coun-
try dominated by hired labour. I also use the resulting estimation sample for 
the OLS estimates to ensure comparability. To recover the standard error of γ, 
I use the ‘delta method’ (Greene, 2011: 1123-1124); this method needs to be 
applied because γ is a non-linear function of θ and α To this end, a linear func-
tion approximating the non-linear counterpart is obtained by a so called Taylor 
series expansion of the non-linear function. Afterward, one can easily calculate 
the variance of this linear approximation. Returns to scale was measured as the 
sum of the direct production elasticities of labour, land, materials, and capital. 
Given sufficiently developed factor markets for these four inputs in the countries 
studied, it seems reasonable to assume that all factors can be adjusted at some 
cost and with some delay (see chapter 6.1.2).

In Table C2 and Table C3, I report detailed results of the production function 
estimation per estimator and country. I prefer the WLP estimator because on 
theoretical grounds, it corrects the biases induced by the endogeneity and col-
linearity problems present in production function estimation. Empirically, the 
results look very plausible. In contrast to the OLS estimates, which reject the 
assumption of constant technical returns to scale for every country but West 
Germany and Slovakia at the 5 per cent significance level, the WLP estimates 
reject this assumption only for Poland and Spain. 

Table 6.3 gives the sample size and the point estimate as well as the standard 
error of γ per country and estimator. Regarding its significance in the different 
member states and regions, the following picture unfolds. In Denmark, East Ger-
many, Italy, Slovakia, and Spain, the coefficient of γ is not significantly different 
from zero, meaning the null hypothesis of perfect substitution between hired 
and family labour cannot be rejected. Generally, labour does not seem to be a 
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scarce factor in Slovakia and East Germany because their labour coefficients are 
not statistically different from zero (Table C3). Both exhibit large scale farming 
structures. The small and medium scale agricultural structures of West Germany, 
Poland, and France exhibit negative γs that are significantly different from zero. 
This result implies that effective labour effort is a monotonically decreasing func-
tion of the share of family labour (Figure 6.2). Hence, farms relying on hired labour 
are more productive than family farms, and farms relying almost completely on 
hired labour are particularly productive. In other words, the productivity loss 
created by a higher share of family labour declines as the ratio of family to total 
labour expressed in (6-2) increases (cf. Bardhan, 1973: 1381). This is likely to 
be instances of hired labour specialising in high productivity tasks and/or family 
labour focusing on low productivity tasks. 

0
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0
Share of family labour in total labour

Figure 6.2:  Effective labour as a function of family labour share  
in total labour if γ < 0.

Notes:  Graphical representation of hired labour being more productive than family labour (γ < 0) 
and constant total labour input.

Source: Authors’ elaboration.
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Regarding the size of γ, West Germany exhibits the largest productivity differen-
tial between family and hired labour. An example calculation illustrates the ef-
fects. In West Germany, an increase in the share of hired labour time from 20 per 
cent to 30 per cent in total labour time amounts to an average increase in labour 
productivity by 0.56 EUR/hour or about 2.4 per cent – up to 23.50 EUR/hour.38 

The classical case of family members being more productive than hired labour 
is only observed for the United Kingdom, and the extent is moderate. Here, 
there is an argument for labour supervision. Finally, the distribution of labour 
force heterogeneity across the sample countries suggests that mainly small to 
medium scale agrarian structures display differing effects on productivity for 
the two types labour.

The direct output effects of the land input is small in most countries, with the 
exception of Denmark and the United Kingdom, and often it is not significantly 
different from zero. East Germany, Italy, and Slovakia even display negative pa-
rameter estimates, though also not statistically significantly different from zero 
(Table C3). Therefore, they are assumed to be zero. This finding is consistent 
with the plausible view that, while holding all other factors constant, expanding 
land does not raise output. The rationale behind this observation is as follows. 
Most farms utilise inputs, particularly materials, in such abundance that an ad-
ditional hectare of land does not have a positive output effect. This result holds 
even more in the WLP model (i.e., when unobserved productivity differences 
are controlled for).

Levinsohn and Petrin (2003) argue that the bias direction in OLS estimates of 
the capital input depends on the degree of correlation between this input and 
the unobserved productivity (ω it). In general, it tends to be upward biased in 
my application, thus contributing to an upward bias in returns to scale. The OLS 
estimates of materials and the ratio variable are also often larger than their 
WLP counterparts, which is consistent with prior theoretical predictions and 
empirical observations.

Compared to the WLP estimates, the OLS estimator detects labour force hetero-
geneity in one more case, Denmark, whereas it does not detect such heterogene-
ity in Poland. The reason for the former result is probably an upward biased OLS 

38 Calculation based on the sample means of the different inputs and the WLP produc-
tion function estimates. Similarly, the average labour productivity increase for France 
amounts to 0.9 per cent; for Poland it amounts to 1.2 per cent.
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estimate of the ratio r in absolute terms leading to an upward biased estimate 
of γ while the argument for the latter is an upward biased OLS estimate of the 
labour coefficient. Such a result is commonly observed for the OLS estimator in 
the presence of endogeneity. Therefore, these estimates are most likely biased.

There is one noteworthy finding for the case of Denmark,. In this instance, the 
WLP estimator was not able to identify a parameter estimate for the materials 
input. The reason for this result is twofold. First, there is probably not enough 
identifying information (variance) left in this input after the exclusion of fer-
tiliser inputs.39 Second, the non-parametric control function that also houses 
the materials inputs most likely captures huge parts of the explaining variation 
that is left. This second argument explains why the WLP estimation procedure 
is affected, at least in this particular case.

39 Remember, the cost for fertiliser inputs was not included to mitigate multicollinearity 
problems between fertiliser (i.e., materials) and land inputs. 

Table 6.3:  Effective labour effort parameter (γ) in comparison.

Notes:  Year dummies included in all models. *** (**, *) significant at the 1% (5%, 10%) level, 
based on standard errors robust to clustering in groups.

Source: Author.

Country OLS ‘Wooldridge/Levinsohn/Petrin’

N γ SE N γ SE

Denmark 605 0.290*** 0.108 605 0.117 0.090

France 4289 -0.554** 0.217 4289 -0.481** 0.214

Germany (East) 1047 0.380 0.269 1047 0.212 0.166

Germany (West) 2408 -1.641** 0.698 2408 -1.517** 0.615

Italy 3545 -0.274 0.221 3545 -0.165 0.198

Poland 2534 -0.123 0.130 2534 -0.848** 0.374

Slovakia 89 -0.874 2.937 89 -0.247 0.288

Spain 6393 -0.014 0.025 6393 0.001 0.033

United Kingdom 612 0.190** 0.090 612 0.215** 0.095
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To understand how far the assumption of a Cobb-Douglas technology restricts 
my findings, I also experimented with a translog production function.40 This 
specification simultaneously produced unreasonable results that exhibited (at 
sample means) negative production elasticities for some factors and elasticities 
greater than one for others. In addition, the null hypothesis of joint insignificance 
of the interaction terms was never rejected for any country. Hence, interaction 
terms do not add any meaningful insights to the Cobb-Douglas specification. I 
do not consider the translog functional form to be a suitable approximation to 
the data. My findings are in line with other recent studies based on FADN data 
(cf. Zhengfei et al., 2006; Latruffe and Nauges, 2013).

40 I estimated the translog using total labour input (Table C4). A translog specification 
incorporating the effective labour input could only be implemented insofar that 
interaction terms incorporating E were excluded.





7 Conclusions

Throughout this work, I employed the primal approach to assess agricultural 
factor productivities. Methodological as well as data issues inhibit the unbiased 
estimation of production functions. Therefore, I attacked this classical field of 
application from different sides. At first, dealing with identification issues, I dis-
cussed and evaluated traditional as well as recent estimation approaches within 
the context of agriculture. This assessment was conducted from a theoretical as 
well as empirical point of view. Second, estimates might also be biased due to 
the presence of outliers in the data. By departing from the general practice in 
empirical economics of only using simple univariate measures to identify outli-
ers, I outlined the consequences to estimation of applying uni- and multivariate 
decontamination schemes. In the empirical section, I applied one particularly 
suitable multivariate outlier detection procedure to my FADN data base. Sub-
sequently, estimation results for the different decontamination schemes were 
compared. Finally, after evaluating the available toolbox, I modified and scruti-
nised my production function model specification to measure the impact of a 
farms’ labour force composition on productivity in European field crop farming.

7.1 Main findings and policy recommendations

The first major goal of this dissertation was to give a conceptual as well as applied 
comparison of a set of received and innovative production function estimators. 
The empirical comparison is facilitated by a firm-level dataset representing the 
agricultural sectors of six EU countries. In this study, I depart from the recently 
reignited scientific discourse on identification problems – endogeneity and col-
linearity – and their solution in estimating production functions. Throughout, I 
argue that the choice of an appropriate estimator depends on (1) the adjustment 
flexibility over time and (2) the potential observability of production factors by 
the econometrician. To this end, I have developed and referred to a typology of 
the relevant tangible and intangible inputs. 

In my theoretical considerations, I state that the underlying assumptions ac-
companying the within and duality approaches are too strong and implausible 
for the case of agriculture. Within approaches assume that unobserved effects 
are either constant over time or individuals. Hence, it is not possible to control 
for potentially important time-varying unobserveables. Duality is based on 
short-term profit maximisation of economic entities as well as output and fac-
tor markets that may be described by perfect competition. Such conditions are 
unlikely to be found in agriculture. Perhaps unsurprisingly, approaches based 
on duality have not performed well in empirical applications. 



94 Conclusions

These observations brought my attention to identification strategies employing 
heterogeneous frictions in factor adjustment. With the comprehensive literature 
on adjustment frictions of land, labour, and capital markets in mind, adjustment 
costs may be particularly relevant for key production factors in agricultural 
production. Olley and Pakes (1996), Blundell and Bond (2000), Levinsohn 
and Petrin (2003), as well as Wooldridge (2009) base identification precisely 
on this idea that such adjustment frictions drive factor allocation – an a-priori 
plausible approach. The main distinction between the control function and BB 
approach is that the latter allows time-invariant fixed effects, whereas the for-
mer does not. Moreover, in the former it is assumed that factor adjustment is 
completed within a single period, while the process might potentially cover many 
periods in the dynamic panel data models. In agricultural applications, this is a 
conceptual advantage as adjustment processes of land, labour, and capital are 
generally of an intertemporal nature, which cannot be adequately covered by 
a one-period lag. Another issue is that the collinearity problem is not satisfac-
torily addressed by OP and LP. Both approaches treat labour and land as fully 
flexible inputs, thus leaving no source of exogenous variation for identification 
purposes across observations (Ackerberg et al., 2006). However, Wooldridge 
(2009) proposes a solution to this issue by modifying and extending the central 
identifying assumptions of OP and LP.

Following the general insight, that estimates might also be biased due to outlying 
observations in the data, the second aim of the study was to provide a compre-
hensive assessment of the effects of outliers on production function estimates. 
To this end, I first conducted an exhaustive survey of studies from empirical 
economics. To get a general picture, I employed empirical work utilising three 
important data sources – the Farm Accountancy Data Network, the World Bank 
Living Standard Measurement Surveys, and the German Socio-Economic Panel. 
According to my survey, the general mode of operation is to apply a univariate 
outlier decontamination, which focuses on a single model variable. However, 
such approaches neglect the multivariate nature of the model at hand. In addi-
tion, they are often ad hoc and handmade. Moreover, in the majority of studies 
no outlier control is carried out. This leads us to conclude that outlier problems 
are somewhat second rank issues and are also often neglected. Second, I demon-
strated the consequences on production function estimation that the presence 
of outliers can have by introducing a simulated example. This example illustrates 
the bias on estimated output elasticities if outliers are not taken care of. More 
importantly, it shows that a univariate decontamination mechanism might not 
mitigate the outlier induced bias. Therefore, I argue for a multivariate decon-
tamination procedure.
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In my application, I utilise a non-parametric multivariate decontamination pro-
cedure based on pruning the minimum spanning tree of a data set to determine 
an outlier-free subsample (Kirschstein et al., 2013). In contrast to univariate 
extreme value detection, this method assesses outliers considering all observed 
dimensions of agricultural production. This decontamination procedure is ap-
plied prior to production function estimation – effectively resulting in a two-
step procedure.

In the empirical chapter focusing on the evaluation of production function iden-
tification strategies, results are given for revenue shares, OLS Cobb-Douglas and 
translog, within Cobb-Douglas and translog, WLP Cobb-Douglas and translog, 
as well as OP, LP, and BB Cobb-Douglas models. A separate model for panels of 
field crop farms in Denmark, France, East and West Germany, Italy, Spain, and 
the United Kingdom was estimated. OLS and within display the biases expected 
from the literature compared to the revenue shares. Generally, the former over-
estimated the variable factor materials, whereas the latter underestimated the 
relatively fixed factor capital.

Concerning the control function approaches, LP may be taken as an alternative 
to the received OLS and within estimators because it allowed easy implementa-
tion and produced plausible results. However, it is only the second-best choice 
because of problems in identifying the supposedly flexible factors labour and 
land. With the exception of BB and WLP, the other estimators share this issue. 
Overall, results produced by LP and WLP were very similar, which strengthens 
my confidence in the proxy approach. However, not only does the latter pro-
vide a theoretical advantage in identifying land and labour coefficients, it is 
also sometimes more successful in identifying the capital output elasticity and 
provides analytic standard errors. Consequently, these arguments give the WLP 
an edge over the LP estimator.

The performance of the BB estimator was not always satisfactory. By combining 
a fixed effects – by means of first-differencing – and instrumental variable ap-
proach, this estimator must travel far to try to control for all the factors impeding 
an unbiased productivity estimation. The BB estimator poses assumptions on 
adjustment costs that are theoretically very plausible. In the empirical domain 
this could be supported for labour, land, and capital. Because adjustment costs 
are very high and factor evolution is so persistent in agriculture, this approach 
somewhat overshoots the target. Even though the system GMM approach of 
Blundell and Bond (1998) is utilised, often there is not enough explaining varia-
tion available for identification. Nevertheless, this estimator produced plausible 
results with regard to materials inputs.
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no further insights were gained by moving from the workhorse Cobb-Douglas 
to a translog specification. The results were either implausible, for the OLS and 
WLP estimators, or they differed little from Cobb-Douglas as in case of the fixed-
effects regression. Supposedly, the implausible results are a consequence of a 
deepened multicollinearity issue. Hence, the more parsimonious Cobb-Douglas 
specification is not only a pragmatic but also empirically well-supported alter-
native.

Additionally, I analyse the special role of materials and land – two highly corre-
lated inputs – in EU field crop farming. By using previous research and perform-
ing additional diagnostic analyses, I reveal that the definition of the materials 
variable is the crucial point in mitigating multicollinearity problems between 
materials and land. Nevertheless, my final specification is able to capture all 
relevant inputs. 

My estimates unfold the following picture. Throughout, I find very low pro-
duction elasticities for labour, land, and fixed capital, whereas the elasticity of 
materials is above 0.7. This result indicates that an improved access to working 
capital is most promising in increasing agricultural productivity. 

Mundlak et al. (2012) report output elasticities of land and fixed capital in a 
cross-country sample of developing and developed countries which display 
much larger orders of magnitude than my results. In contrast to other parts of 
the world, EU field crop technologies might be characterised by a strong sensi-
tivity to the level of applied variable inputs such as fuel, fertiliser, and chemicals. 
Thus, policy makers attempting to increase EU agricultural productivity with a 
given level of the other inputs and technology must apply the lever to this fac-
tor. I calculated shadow prices of production factors to assess whether farmers 
exploit the returns to the utilised inputs. The analysis revealed considerable 
heterogeneity across EU countries. Because the shadow prices are based on the 
estimated output elasticities obtained in this study, the remuneration to labour, 
land, and fixed capital is also, as expected, quite low. An exception to some ex-
tent is Denmark. With regard to short-term lending, I find marginal returns to 
materials much above typical market interest rates in France, Spain, Italy, and 
Germany, especially toward the end of the observed period. Such a finding is 
consistent with the perception of constrained access to short-term credit, pos-
sibly induced by the emerging financial crisis (Petrick and Kloss, 2013c). This 
makes a strong case for recommending improved access to short-term funding 
to release the perceived credit constraint.
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Overall, the methodological insights suggest that the recently proposed ap-
proaches basing their identification on the presence of adjustment costs provide 
important conceptual improvements compared to within and duality models. 
Building on adjustment frictions in land, labour, and capital inputs within the 
agricultural sector is particularly plausible because such adjustment costs have 
long been recognised. In any event, the conceptual improvements do not always 
carry over empirical implementation. This especially holds for the Blundell and 
Bond (2000) dynamic panel data estimator, which often did not identify plau-
sible results for the (quasi-) fixed inputs. However, less demanding, in terms of 
assumptions and computability, proxy approaches present a viable alternative 
for agricultural productivity analysis.

In the empirical chapter on outlier robust production function estimates, I pro-
ceeded in two-steps. First, I applied the multivariate decontamination procedure. 
In the second step, production functions were estimated using my preferred 
panel data estimator by Wooldridge (2009). This procedure is applied to East 
and West German agricultural field crop data from the FADN data base.

The analysis reveals that many outlying observations are made up of relatively 
small farms. In addition, outliers also were detected within the main bulk of 
observations, which cannot be detected with a univariate approach. Hence, fu-
ture empirical analyses utilising FADN data should apply a multivariate outlier 
decontamination procedure. The estimated production functions show that 
the WLP estimator delivers convincing results with respect to input elasticities 
and returns to scale when it is applied to outlier-free subsamples derived by the 
multivariate pMST approach. The estimates for East and West Germany show 
similarly positive elasticities for capital (working and fixed) as well as scale elas-
ticities close to one. By moving from the univariate to the multivariate decon-
taminated sample a picture unfolds in which, on average, more fixed capital and 
less working capital farms remain in the East German sample; it is the reverse for 
the West German sample. A key advantage of the multivariate decontamination 
is that it helps to further mitigate multicollinearity problems. Generally, estima-
tions based on the multivariately decontaminated sample provide parameter 
estimates of previously unidentified coefficients (land in East Germany) or a 
higher precision in estimation. In the case of East Germany, this does come at 
some cost as I observed a negative and significant labour coefficient. However, 
results for the other subsamples, including the more conservative multivariate 
solution, suggest that labour is not  a scarce factor in East Germany. In essence, 
the proposed two-step approach reveals that production technology in East and 
West Germany is not as different as it seems at the first glance. In both regions, 
farms rely heavily on material and capital inputs.
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The most remarkable remaining difference between East and West Germany is 
the labour elasticity, which is significantly positive for West Germany. This can 
be interpreted as an indication of a shortage of labour force in West Germany, 
whereas East Germany does not suffer from such a restriction. Similarly, for both 
regions fixed capital constitutes an equally restrictive input factor whereby the 
materials input is the far most important input. In general, the results reflect the 
tendencies from chapter 4 with regard to orders of magnitude of estimated coef-
ficients. Therefore, policy reforms should aim to ease the access of agricultural 
companies to capital and labour force, particularly in West Germany.

In the empirical chapter on the productivity of family and hired labour, I assessed 
the heterogeneity of these two types of labour in European field crop farming. 
To this end, I took a sample of eight EU countries and estimated augmented 
production functions that allow testing for labour force heterogeneity using 
farm-level FADN data. The results unveil a diverse picture.

Contrary to the received wisdom, I find that farms with a higher share of hired 
labour are more productive than family farms in the small- and medium-scale 
agrarian structures of France, West Germany, and Poland. According to my es-
timates, hired labour performs the high productivity tasks in these countries. 
Therefore, an increased reliance on hired labour or the shift of family labour to 
more productive tasks raises productivity. Hence, labour market reforms should 
aim to provide incentives to hire specialised labour. For instance, programs to 
train and hire skilled labour could improve their inflow into agricultural labour 
markets. In the majority of countries I found no evidence for labour force hetero-
geneity. For the United Kingdom, I observe that total labour productivity is higher 
when there are more family members in the labour force. In this case, super-
vision by family members apparently does increase productivity.

The results have implications for future theoretical and empirical work. Most im-
portantly, my results call into question the general validity of one of the received 
family farm theory’s main pillars (i.e., the dominant effect of supervision costs on 
hired labour productivity). Countries regarded as traditional strongholds of the 
family farm have apparently crossed a technological threshold where speciali-
sation of hired labour overcompensates the negative effects of workers’ moral 
hazard. Factors such as the increasing importance of non-traditional and non-
agricultural sources of farm household income likely reinforce this trend. On the 
other hand, the assumption of constant technical returns to scale is confirmed.

In classical production function estimation, labour input is measured as the sum 
of both hired and family workers. Given the evidence on labour force hetero-
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geneity in some countries, their heterogeneity should not be ignored. Such a 
treatment will improve model fit and avoid misspecification.

Finally, this work is also a plea for refined methods that control for the problems 
in production function estimation. Endogeneity and collinearity problems po-
tentially lead to misleading results. The OLS estimator neglecting the presence 
of endogeneity does not always seem to detect labour force heterogeneity cor-
rectly. A possible alternative which has been extensively used in prior empirical 
work is the fixed effects regression. However, it is notorious for removing too 
much variance from variables that exhibit little variation over time. Hence, not 
enough variation is left in the data for estimation purposes (Petrick and Kloss, 
2013a). This shifted my attention to the control function framework introduced 
by Olley/Pakes and then further refined by Levinsohn/Petrin and Wooldridge. 
The latter is an especially promising alternative to traditional OLS and within 
approaches. The results obtained from the Wooldridge/Levinsohn/Petrin 
approach seem to strengthen their validity on empirical grounds, in addition to 
being plausible in the theoretical domain.

7.2 Recommendations for future research

The analyses conducted in this study have provided new insights regarding 
factor productivity in EU agriculture. Through the support of state-of-the-art 
methods, previously not applied within an agricultural context, I managed to 
draw a picture as precise as possible. However, new issues emerged throughout 
the research process. I outline those issues below and give recommendations 
for future research.

First, I regard the analysis of alternative functional forms in conjunction with 
FADN data as an interesting starting point for future research. For instance, 
Zhengfei et al. (2006) proposed augmented translog specifications that incor-
porate agronomic principles. Unfortunately, up until now, there has been a 
trade-off in applied empirical work between more flexible functional forms for 
production functions and methodological sophistication in terms of estimation 
methods. Therefore, combining this methodological sophistication with more 
flexible functional forms seems to be desirable.

Second, control function approaches to estimate factor productivity remain a 
vital field of research. Kim et al. (2016) further extend this approach to the case 
when inputs are measured with error, thus accounting for a further potential 
identification issue. This might be a useful extension for empirical applications, 
depending on data quality. 
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Third, the calculated shadow prices give rise to the question about their main 
determinants. For instance, with regard to (working) capital it would be inter-
esting to ask what are the differences in driving forces of their shadow interest 
rate between rationed and non-rationed farms. Such factors could be structural 
variables such as the availability of collateral, the experience of the farm man-
ager or the workforce composition of an operation, or environmental variables 
(e.g., regional conditions such as the average farm size or rising/declining prices 
in crop products). While the exogenous market interest rate should be the only 
determining factor for non-rationed farms in absence of market frictions, the 
given examples might be driving shadow rates on rationed farms. This treat-
ment would require a suitable criterion to split farms between rationed and 
non-rationed farms. In addition, the specification of a sample selection model 
is methodologically necessary (Petrick, 2004: 141-142). These methods are well 
established within a cross-sectional data context. However, this is still a chal-
lenge in a panel data world (see, e.g., Wooldridge (1995) and Semykina and 
Wooldridge (2010) for an illustration of and solution to the problem).

Fourth, the data used for analysis revealed a considerable amount of multicol-
linearity between land and materials inputs, thus impeding the separate iden-
tification of the two input coefficients. Prior research using the same data, as 
a direct result of this multicollinearity problem, reported negative land input 
coefficients for former input. To deal with this issue, I re-defined the materials 
input by excluding the most collinear factor – fertiliser – from it. However, a 
more general analysis of multicollinearity issues and their driving forces in the 
FADN data is desirable, and thus left to future research.

Fifth, statistical outlier analysis in general has its limitations. As it is only a sta-
tistical tool, it will not absolve the researcher from thinking about the scope of 
research. With regard to production function estimation, statistical outlier analy-
sis is a mean to homogenise production technologies. Therefore, the statements 
made in this work are with respect to the prevalent production technology in 
both German regions. However, many of the outliers detected are comprised 
of small farms. If such farms are of interest to the research question at hand, 
the outlier analysis, uni- or multivariate, needs to be reconsidered. Hence, the 
contextualisation of (alleged) outliers seems to be a fruitful starting point for 
further work.

Sixth, farming in France, West Germany, and Poland demonstrates that a higher 
share of hired labour leads to increased on-farm productivity. Hence, future 
research should try to find out why hired labour in arable farming is so produc-
tive in these countries, because they are traditionally dominated by small family 
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farms. One possible explanation is that farm technology (e.g., modern tractors 
and other field machinery using precision farming methods) have become so 
complex that benefits from labour specialisation can be reaped. 

Finally, my data did not allow me to explicitly address the effects of skills and 
technical expertise of family versus hired workers. However, I am confident 
that my identification strategy is able to account for such effects. Neverthe-
less, I regard a more thorough treatment in which these human capital effects 
are quantified as an important area for future research, too. Given the current 
structure of the FADN data this can only be accomplished by design and conduc-
tion of a separate survey.
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Figure A1:  Evolution of materials input over observed sample period (Denmark).

Notes:  Breakdown of average materials input use into its different factors. Smallest possible 
split available in the FADN data.

Source: Author based on FADN data.
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Figure A2:  Evolution of materials input over observed sample period (France).

Notes:  Breakdown of average materials input use into its different factors. Smallest possible 
split available in the FADN data.

Source: Author based on FADN data.
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Figure A3:  Evolution of materials input over observed sample period  
(East Germany).

Notes:  Breakdown of average materials input use into its different factors. Smallest possible 
split available in the FADN data.

Source: Author based on FADN data.
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Figure A4:  Evolution of materials input over observed sample period  
(West Germany).

Notes:  Breakdown of average materials input use into its different factors. Smallest possible 
split available in the FADN data.

Source: Author based on FADN data.
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Figure A5:  Evolution of materials input over observed sample period (Italy).

Notes:  Breakdown of average materials input use into its different factors. Smallest possible 
split available in the FADN data.

Source: Author based on FADN data.
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Figure A6:  Evolution of materials input over observed sample period (Spain).

Notes:  Breakdown of average materials input use into its different factors. Smallest possible 
split available in the FADN data.

Source: Author based on FADN data.
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Figure A7:  Evolution of materials input over observed sample period  
(United Kingdom).

Notes:  Breakdown of average materials input use into its different factors. Smallest possible 
split available in the FADN data.

Source: Author based on FADN data.



Appendix B:  Outlier Robust productivity analysis:  
An application to German FADN data
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The following illustrations depict a repeated analysis for a materials specifica-
tion that incorporates inputs.

Number of 
Observa-

tions

Univariate 
Outliers

Multivariate Outliers

small 
farms

large farms neither 
nor

∑

East Ger-
many

3791 375 85 6 236 327

West Ger-
many

8691 1554 292 250 701 1243

Table B1:  Multivariate Outliers divided into small and large farms.

Notes:  Outliers following an analysis incorporating a materials specification that includes fer-
tiliser inputs. Number of observations belonging to respective farm category according 
to the ‘FDH’ procedure. 

Source: Author.
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Appendix C:  The productivity of family and hired  
labour in EU arable farming
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Figure C1:  Evolution of the share of family labour over the sample  
period per country.

Source: Authors compilation based on FADN data.
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Figure C1: continued.

Source: Authors compilation based on FADN data.
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Below follows a description of the core Stata estimation commands used to 
produce the results for this dissertation.

Cobb-Douglas Production function
///description of variables

//logged variables

*output – log of output

*labour – log of labour

*land – log of land

*materials – log of materials

*capital – log of fixed capital

// additional variables

*td* - time dummy for period *

*a3 – unique farm identifier

//nominal output shares of inputs

* sh _ labour –output share of labour

* sh _ land –output share of land 

* sh _ materials – output share of materials

* sh _ capital –output share of fixed capital

///estimation

//output shares

ttest sh _ labour 

ttest sh _ land 

ttest sh _ materials 

ttest sh _ capital 

//OLS with cluster robust standard errors

reg output labour land materials capital td*, vce(cluster a3)

*test for constant returns to scale

test labour+land+materials+capital=1

*estimate returns to scale

lincom labour+land+materials+capital

//fixed effects regression with cluster robust standard errors

xtreg output labour land materials capital td*, fe vce(cluster a3)

*test for constant returns to scale

test labour+land+materials+capital=1

*estimate returns to scale

lincom labour+land+materials+capital
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//Levinsohn Petrin (2003) using materials as proxy 

levpet output, free(labour land td*) proxy(materials) capital(capital) 
reps(20) revenue

*test for constant returns to scale

test labour+land+materials+capital=1

*estimate returns to scale

lincom labour+land+materials+capital

//Wooldridge (2009) – LP using materials as proxy 

sort a3 year

*generate lags of variables

gen labour _ l1=L.labour

gen land _ l1=L.land

gen capital _ l1=L.capital

gen materials _ l1=L.materials

gen materials _ l2=L.materials _ l1

*low order polynomials of capital and materials

gen capitalmaterials _ l1=capital _ l1*materials _ l1

gen capital2 _ l1=capital _ l1̂ 2

gen materials2 _ l1=materials _ l1̂ 2

gen capital2materials _ l1=capital _ l1̂ 2*materials _ l1

gen capitalmaterials2 _ l1=capital _ l1*materials _ l1̂ 2

gen capital3 _ l1=capital _ l1̂ 3

gen materials3 _ l1=materials _ l1̂ 3

*vectors of variables

*exog are the variables treated as exogenous, these represent the included 
*instruments; endog are the endogenous variables; instr are the included 

*instruments

global exog capital capital _ l1 materials _ l1 capitalmaterials _ l1 /// 
capital2 _ l1 materials2 _ l1 capital2materials _ l1 capitalmaterials2 _ l1 /// 
capital3 _ l1 materials3 _ l1 td*

global endog labour land materials 

global instr labour _ l1 land _ l1 materials _ l2

*estimation

ivreg2 output $exog ($endog=$instr), gmm2s cluster(a3)

*test for constant returns to scale

test labour+land+materials+capital=1

*estimate returns to scale

lincom labour+land+materials+capital
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//system gmm estimation

sort a3 year

*options

*twostep – request two-step gmm

*robust – Windmeijer correction for standard errors

*gmm() – “gmm-style” instruments

*ivstyle() – standard instruments

*equation – suboption that defines equation using ivstyle instruments

*h(2) – option that defines structure of covariance matrix of iid errors

*estimation

xtabond2 output labour L.labour land L.land materials L.materials capital 
L.capital L.output td*, ///

twostep robust gmm(L.output L2.(labour land materials capital)) ivstyle(td*, 
equation(diff)) h(2)

*estimate common factors by minimum distance

md _ ar1, nx(4) beta(e(b)) cov(e(V))

*test for constant returns to scale

test labour+land+materials+capital=1

*estimate returns to scale

lincom labour+land+materials+capital

*Assess degree of persistence in factor series

xtabond2 labour L.labour td2-td7,twostep robust gmm(L3.labour, /// collapse) 
ivstyle(td*, equation(diff)) h(2) nodiffsargan

xtabond2 land L.land td2-td7,twostep robust gmm(L3.land, collapse) /// 
ivstyle(td*, equation(diff)) h(2) nodiffsargan

xtabond2 materials L.materials td2-td7,twostep robust gmm(L3.materials, /// 
collapse) ivstyle(td2-td7, equation(diff)) h(2) nodiffsargan

xtabond2 capital L.capital td2-td7,twostep robust gmm(L3.capital, /// 
collapse) ivstyle(td*, equation(diff)) h(2) nodiffsargan

xtabond2 output L.output td2-td7,twostep robust gmm(L3.output, /// collapse) 
ivstyle(td*, equation(diff)) h(2) nodiffsargan

*Assess explanatory power of instrument sets

*First differences

reg D.labour L3.labour L4.labour L5.labour L6.labour L7.labour if /// 
year==2008

reg D.land L3.land L4.land L5.land L6.land L7.land if year==2008

reg D.mat L3.materials L4.materials L5.materials L6.materials /// 
L7.materials if year==2008

reg D.capital L3.capital L4.capital L5.capital L6.capital L7.capital if /// 
year==2008

reg D.output L3.output L4.output L5.output L6.output L7.output if /// 
year==2008
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*Levels

reg L.labour L2D.labour L3D.labour L4D.labour L5D.labour L6D.labour if /// 
year==2008

reg L.land L2D.land L3D.land L4D.land L5D.land L6D.land if year==2008

reg L.mat L2D.materials L3D.materials L4D.materials L5D.materials /// L6D.
materials if year==2008

reg L.capital L2D.capital L3D.capital L4D.capital L5D.capital /// L6D.capital 
if year==2008

reg L.output L2D.output L3D.output L4D.output L5D.output L6D.output if /// 
year==2008

Translog Production function
///OLS translog

//additional variables 

gen labour2=labour^2

gen land2=land^2

gen materials2=matterials^2

gen capital2=capital^2

gen labourxland=labour*land

gen labourxmat=labour*mat

gen labourxcapital=labour*capital

gen landxmaterials=land*materials

gen landxcapital=land*capital

gen landxcows=land*cows

gen materialsxcapital=materials*capital

gen capitalxcows=capital*cows

*Demean (or center) all logged variables by using total sample means – 

*this allows interpretation of non-interacted parameters as production 

*elasticities at sample means

center output labour land materials capital labor2 land2 materials2 
capital2 labourxland labourxmat labourxcapital landxmaterials landxcapital 
materialsxcapital, prefix(d)

//estimation

reg d _ output d _ labour d _ land d _ materials d _ capital d _ labor2 d _
land2 /// d _ materials2 d _ capital2 d _ laborxland d _ laborxmaterials d _
laborxcapital /// d _ landxmaterials d _ landxcapital d _ materialsxcapital 
td*, vce(cluster a3)

*test for joint significance of interaction terms

test d _ labour2+d _ land2+d _ materials2+d _ capital2+d _ laborxland+ /// d _
laborxmaterials+d _ laborxcapital+d _ landxmaterials+d _ landxcapital+ /// 
d _ materialsxcapital=0

//fixed effects translog 

*variable preparation

*express all variables in differences from farm mean over time 
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*(= „groupwise demeaning“) - this eliminates fixed effects „by hand“

bysort a3 (year): center output labour land materials capital

*create interactions of variables in logs that are farmwise demeaned

gen c _ labour2=c _ labour^2

gen c _ land2=c _ land^2

gen c _ materials2=c _ materials^2

gen c _ capital2=c _ capital^2

gen c _ labourxland=c _ labour*c _ land

gen c _ labourxmat=c _ labour*c _ mat

gen c _ labourxcapital=c _ labour*c _ capital

gen c _ landxmaterials=c _ land*c _ materials

gen c _ landxcapital=c _ land*c _ capital

gen c _ materialsxcapital=c _ materials*c _ capital

*demean (or center) all logged and farmwise demeaned variables by using 
*total sample means - this allows interpretation of non-interacted 
*parameters as prod elasticities at sample means

foreach var of varlist c _ output c _ labour c _ land c _ materials c _ capital 
/// c _ labour2 c _ land2 c _ materials2 c _ capital2 c _ cows2 c _ labourxland 
/// c _ labourxmaterials c _ labourxcapital c _ landxmaterials c _ landxcapital 
/// c _ materialsxcapital {

gen m̀ var‘=̀ var‘

}

center mc _ output mc _ labour mc _ land mc _ materials mc _ capital mc _
labour2 /// mc _ land2 mc _ materials2 mc _ capital2 mc _ cows2 mc _ labourxland 
/// mc _ laborxmaterials mc _ labourxcapital mc _ landxmaterials mc _
landxcapital /// mc _ materialsxcapital, meansave

*estimate translog demeaned

*compute number of groups N _ g (=farms) in regression sample for degrees of 
*freedom correction

qui xtreg c _ mc _ output c _ mc _ labour c _ mc _ land c _ mc _ materials c _
mc _ capital /// c _ mc _ labour2 c _ mc _ land2 c _ mc _ mat2 c _ mc _ capital2 
c _ mc _ labourxland /// c _ mc _ labourxmaterials c _ mc _ labourxcapital c _
mc _ landxmaterials /// c _ mc _ landxcapital c _ mc _ materialsxcapital td*, fe 
vce(cluster a3)

scalar define groups=e(N _ g)

*correct standard errors

local df=groups

mat b=e(b)

scalar vadj = e(df _ r)/(e(N)-1-(e(df _ m) + `df’))

matrix V = vadj*e(V)

*get estimation table with FE by hand results

ereturn post b V

display _ newline

display „Adjusted standard errors“

ereturn display
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* test for joint significance of interaction terms

test c _ mc _ labour2+c _ mc _ land2+c _ mc _ materials2+c _ mc _ capital2+ /// 
c _ mc _ laborxland+c _ mc _ laborxmaterials+c _ mc _ laborxcapital+ ///  
c _ mc _ landxmaterials+c _ mc _ landxcapital+c _ mc _ materialsxcapital=0

//Wooldridge (2009) translog

*low order polynomials of capital and materials

*additional variables needed for translog

gen capital2=capital^2

gen capital2 _ l2=L2.capital2

gen labour2=labour^2

gen land2=land^2

gen materials2=materials^2

gen laborland=labour*land

gen labourmaterials=labour*materials

gen landmaerialst=land*materials

gen capitallabour=capital*labor

gen capitalland=capital*land

gen capitalmat=capital*mat

gen labour2 _ l1=L.labour2

gen land2 _ l1=L.land2

gen mat2 _ l2=L.mat2 _ l1

gen laborland _ l1=labor _ l1*land _ l1

gen labourmaterials _ l1=labour _ l1*materials _ l1

gen landmaterials _ l1=land _ l1*mat _ l1

gen capitallabour _ l1=capital _ l1*labour _ l1

gen capitalland _ l1=capital _ l1*land _ l1

gen capital _ l2=L.capital _ l1

gen capitalmat _ l2=capital _ l2*materials _ l2

center output capital capital _ l1 materials _ l1 capitalmaterials _ l1 /// 
capital2 _ l1 materials2 _ l1 capital2materials _ l1 capitalmaterials2 _ l1 /// 
capital3 _ l1 materials3 _ l1 capital2 capital2 _ l2 labour land materials  /// 
labour2 land2 materials2 labourland labourmaterials landmaterials  /// 
capitallabor capitalland capitalmaterials labour _ l1 land _ l1 /// 
materials _ l2 labour2 _ l1 land2 _ l1 materials2 _ l2 labourland _ l1 /// 
labourmaterials _ l1 landmaterials _ l1 capitallabour _ l1 capitalland _ l1 /// 
capitalmaterials _ l2, prefix(ce)

*vectors of variables

global exog ce _ capital ce _ capital _ l1 ce _ materials _ l1 ///  
ce _ capitalmaterials _ l1 ce _ capital2 _ l1 ce _ materials2 _ l1 ///  
ce _ capital2materials _ l1 ce _ capitalmaterials2 _ l1 ce _ capital3 _ l1 /// 
ce _ materials3 _ l1 td* ce _ capital2 ce _ capital2 _ l2
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global endog ce _ labour ce _ land ce _ materials ce _ labour2 ce _ land2 /// 
ce _ materials2 ce _ labourland ce _ labourmat ce _ landmaterials ///  
ce _ capitallabor ce _ capitalland ce _ capitalmaterials 

global instr ce _ labour _ l1 ce _ land _ l1 ce _ materials _ l2 ce _ labour2 _ l1 ///  
ce _ land2 _ l1 ce _ materials2 _ l2 ce _ labourland _ l1 c _ labourmaterials _ l1 /// 
c _ landmaterials _ l1 ce _ capitallabour _ l1 ce _ capitalland _ l1 ///  
ce _ capitalmaterials _ l2 

ivreg2 ce _ output $exog ($endog=$instr), gmm2s cluster(a3)

*test interaction terms jointly zero

test c _ labour2+c _ land2+c _ materials2+c _ capital2+c _ laborland+ //  
c _ labourmaterials+c _ landmaterials+c _ capitallabour+ ///  
c _ capitaland+c _ capitalmaterials=0

Outlier identification

The univariate outlier detection was performed following the trimming rule up-
per/lower quartile +/- 1.5 times the interquartile range on the average capital 
productivity per farm.
* Drop outliers; acpf – average capital productivity per farm

qui sum acpf, det

scalar define iqr _ f=r(p75)-r(p25)

scalar define ub _ f=r(p75)+1.5*iqr _ f

scalar define lb _ f=r(p25)-1.5*iqr _ f

drop if acpf>ub _ f | acpf<lb _ f

The multivariate outlier analysis was performed using R package “restlos” (Lieb-
scher and Kirschstein, 2015). This is as simple as calling the appropriate func-
tion and specifying the respective data set. Below, I reproduce the code of the 
function pmst.tsch that was utilised to produce the results in this dissertation.
pMST.tsch <- function (data, N=NULL, lmax = nrow(data) * 100, alpha=0.95) 

{

 require(igraph, quietly=T)

 

    if (is.data.frame(data)) 

        data = as.matrix(data)

    if (!is.matrix(data)) 

        stop(“at least two-dimensional data matrix required”)

    if (mode(data) != “numeric”) 

        stop(“numeric data required”)

    if (dim(data)[1] <= dim(data)[2]) 

        stop(“n > d required”)
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    ddmst <- function(dat) {

        ddat <- as.matrix(dist(dat, upper = T, diag = T))

        x.tmp <- graph.adjacency(ddat, weighted = TRUE, mode = „undirected“)

        mstdat <- minimum.spanning.tree(x.tmp)

        mstdat <- matrix(as.numeric(get.edgelist(mstdat, names = F)), 

            ncol = 2)

        o <- dim(dat)[1] - 1

        em <- numeric(o)

        k <- 0

        ddat <- as.matrix(ddat)

        for (i in 1:o) {

            k <- k + ddat[mstdat[i, 1], mstdat[i, 2]]

            em[i] <- ddat[mstdat[i, 1], mstdat[i, 2]]

        }

        emax <- max(em)

        return(k)

    }

 

 

 m <- nrow(data)

 d <- ncol(data)

 

    x1 <- as.matrix(dist(data, upper = T, diag = T))

    x.tmp <- graph.adjacency(x1, weighted = TRUE, mode = „undirected“)

    x2 <- minimum.spanning.tree(x.tmp)

    x2 <- matrix(as.numeric(get.edgelist(x2, names = F)), ncol = 2)

    x1 <- as.matrix(x1)

    U1 <- diag(x1[x2[, 1], x2[, 2]])

    T1 <- order(U1)

    l <- 0

    LiB <- list(c())

    GeB <- c()

    LeB <- c()

    x6 <- matrix(c(0, 0, 0), ncol = 3)

 

 stoppi <- FALSE

 cuti <- max(U1)

 

    repeat {

        l <- l + 1

        T2 <- sapply(LiB, function(x) {

            any(x == x2[T1[l], 1] | x == x2[T1[l], 2])

        })

        x70 <- 0

        if (any(T2 == TRUE)) {

            if (sum(T2 == TRUE) > 1) {

                T4 <- which(T2 == TRUE)

                maxi <- which.max(sapply(LiB[T4], length))
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                x3 <- colMeans(data[unlist(LiB[T4[maxi]]), ])

                LiB[[T4[1]]] <- unique(c(unlist(LiB[T4]), x2[T1[l], 

                  1], x2[T1[l], 2]))

                x4 <- mean(sapply(LiB[T4[-maxi]], function(x) {

                  sqrt(sum((x3 - colMeans(data[x, ]))̂ 2))

                }))

                LiB[T4[-1]] <- 0

                GeB[T4[1]] <- length(LiB[[T4[1]]])

                GeB[T4[-1]] <- NA

                LeB[T4[1]] <- sum(LeB[T4]) + U1[T1[l]]

                LeB[T4[-1]] <- 0

                x5 <- x4

                x7 <- LeB[which.max(sapply(LiB, length))]

            }

            else {

                T3 <- which(T2 == TRUE)

                x3 <- colMeans(data[LiB[[T3]], ])

                LiB[[T3]] <- unique(c(LiB[[T3]], x2[T1[l], 1], 

                  x2[T1[l], 2]))

                x4 <- colMeans(data[x2[T1[l], ], ])

                GeB[T3] <- length(LiB[[T3]])

                x5 <- sqrt(sum((x3 - x4)̂ 2))

                LeB[T3] <- sum(LeB[T3]) + U1[T1[l]]

                x7 <- LeB[which.max(sapply(LiB, length))]

            }

            x6 <- rbind(x6, c(x7, U1[T1[l]], max(sapply(LiB, 

                length))))

        }

        else {

            LiB[[l]] <- c(x2[T1[l], 1], x2[T1[l], 2])

            GeB[l] <- length(LiB[[l]])

            LeB[l] <- U1[T1[l]]

        }

  

  # calculate cut off value by Chebyshev bound

  if(any(na.omit(GeB)>=floor((sum(dim(data))+1)/2))==TRUE & stoppi==F) {

   ini.set <- LiB[[which.max(sapply(LiB,length))]]

   

   tmp.x1 <- as.matrix(dist(data[ini.set,], upper = T, diag = T))

   tmp.x.tmp <- graph.adjacency(tmp.x1, weighted = TRUE, mode =  
   „undirected“)

   tmp.x2 <- minimum.spanning.tree(tmp.x.tmp)

   tmp.x2 <- matrix(as.numeric(get.edgelist(tmp.x2, names = F)), ncol =  
   2)

   tmp.x1 <- as.matrix(tmp.x1)

   em <- diag(tmp.x1[tmp.x2[, 1], tmp.x2[, 2]])

   

   mm <- length(em)

   cuti <- mean(em) + sd(em)*sqrt((mm^2-1)/(mm^2*(1-alpha)-mm))
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   stoppi <- TRUE  

  }

  

  # stop procedure

        if(is.null(N)){

   if(U1[T1[l+1]] > cuti | any(na.omit(GeB)==m)) break

  }

  else{

   if(any(na.omit(GeB)>=N)==TRUE) break

  }

    }

    drin <- LiB[[which.max(sapply(LiB, length))]]

    pMST <- list(loc = colMeans(data[drin, ]), cov = cov(data[drin, 

        ]), sam.fin=sort(drin), sam.ini=sort(ini.set), data = data, x6 = x6,  
  cut.off = cuti)

    class(pMST) <- „pMST“

    return(pMST)

}

After conducting the outlier analysis one can proceed with the production func-
tion analysis in Stata (see above). 

Assessing heterogeneous labour impacts 

To incorporate heterogeneous labour impacts the Cobb-Douglas production 
function is augmented by the logarithmised share of family labour in total labour 
(ratio, see chapter 6). Below, I show the modified analysis. 

///OLS 

*estimation

reg output labor ratio land mat capital td*, vce(cluster a3)

*RTS

test labour+land+materials+capital=1

lincom labor+land+mat+capital

*recover gamma

di _ b[ratio]/ _ b[labor]

nlcom _ b[ratio]/ _ b[labor]

///Wooldridge (2009)

sort a3 year

*generate lags of variables

gen labour _ l1=L.labour
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gen land _ l1=L.land

gen capital _ l1=L.capital

gen materials _ l1=L.materials

gen materials _ l2=L.materials _ l1

gen ratio _ l1=L.ratio

*low order polynomials of capital and materials

gen capitalmaterials _ l1=capital _ l1*materials _ l1

gen capital2 _ l1=capital _ l1̂ 2

gen materials2 _ l1=materials _ l1̂ 2

gen capital2materials _ l1=capital _ l1̂ 2*materials _ l1

gen capitalmaterials2 _ l1=capital _ l1*materials _ l1̂ 2

gen capital3 _ l1=capital _ l1̂ 3

gen materials3 _ l1=materials _ l1̂ 3

*vectors of variables

global exog capital capital _ l1 materials _ l1 capitalmaterials _ l1 /// 
capital2 _ l1 materials2 _ l1 capital2materials _ l1 capitalmaterials2 _ l1 /// 
capital3 _ l1 materials3 _ l1 td*

global endog labour ratio land mat 

global instr labour _ l1 ratio _ l1 land _ l1 materials _ l2

*estimation

ivreg2 output $exog ($endog=$instr), gmm2s cluster(a3)

*test for constant returns to scale

test labour+land+materials+capital=1

*estimate returns to scale

lincom labour+land+materials+capital

*recover gamma

di _ b[ratio]/ _ b[labor]

nlcom _ b[ratio]/ _ b[labor]
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