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Abstract

It has been frequently observed, in both economics and psychology,
that individuals tend to conform to the choices of other individuals
with whom they identify. Can such conformity be consistent with self-
interested behavior? To address this question we use the framework
of games with incomplete information. For a given game we first put
a lower bound on € so that there exists a Nash e-equilibrium in pure
strategies consistent with conformity. We also introduce a new concept
of conformity that allows players to conform and yet perform different
actions. This is achieved by the endogenous assignment of roles to
players and by allowing actions to be conditional on roles. We conclude
by relating our research to some experimental literature.

*This paper is a revision of Cartwright and Wooders (2003a). The main results of this
paper were presented at the the 2002 General Equilibrium Conference held in Athens in
May 2002 and at Northwestern University in August 2002. We thank the participants for
their interest and comments.



1 Introduction

A fundamental question of game theory is whether Nash equilibrium play
can emerge in populations composed of boundedly rational individuals. The
importance of this question follows from the limits to individual rationality
and the importance of the Nash equilibrium concept in game theory and
economics. We suggest that, at least in some contexts, two common ele-
ments of bounded rationality are (1) the use of pure strategies (and not
mixed strategies)! and (2) conformity in the sense that similar individuals
play similar strategies.? In this paper, we ask whether this behavior can be
consistent with Nash equilibrium play. We do so by determining, for an arbi-
trary game, a lower bound on ¢ permitting existence of a Nash e-equilibrium
in pure strategies that is consistent with conformity. Our results are related
to some experimental literature.

Informally, we say that an equilibrium is consistent with conformity if
similar players play the same strategy. A principal motivation, however, of
the current paper is to introduce a concept of conformity where individuals
can be seen as conforming even if they are not performing the same action.
Consider, for example, the division of labour within a male-female household
and suppose social norms dictate that women do the housework and men
go out to work. Even though we observe that men and women behave
differently, we can think of all individuals as conforming to a common norm.
For this reason we assume that players can endogenously create a set of roles.
A player is randomly assigned a role and can make his action conditional
on his role. Within a household the women takes up her role by doing
the housework and the man takes up his role by going out to work. In
our context, roles serve no purpose in the game other than as signalling
devices and the probability distribution through which roles are assigned is
determined as part of the equilibrium.

Tt has long been recognised that motivating the use of mixed strategies is not always
straightforward (Harsanyi 1973). Experimental evidence supports the view that individ-
uals typically do not play mixed strategies (Friedman 1996) and if they do, there may be
seriel correlation (Walker and Wooders 2001).

?Experimental evidence on conformity amongst similar individuals is long standing (e.g.
Deutsch and Gerard 1955). In an economic setting there are many reasons we may expect
conformity. For example, if a person is boundedly rational or has imperfect information
then he may imitate a person he believes is better informed (Gale and Rosenthal 1999,
Schleifer 2000). Alternatively, in a coordination game with multiple equilibria, a player
may be able to make a more informed strategy choice by observing the actions of others
(Scharfstein and Stein 1990, Ellison and Fudenberg 1995, Young 2001). Finally, due to
normative influences, a person may be motivated by desires for prestige, popularity or
acceptance or more generally, to ‘fit in’ with a social norm (Bernheim 1994).



When allowing endogenous roles, some additional conditions are required
to retain a meaningful notion of conformity. To this end we make two as-
sumptions on the probability distribution through which roles are assigned.
We say that a class (or group) of players is conforming if: (a) any two players
in the class have identical probabilities of being assigned each role; (b) the
number of players in the class that will have each role is known ex-ante; and
(c) any two players in the class play the same strategy. We propose that
these conditions allow a class of players to be interpreted as conforming to
some common norm. Condition (a) can be viewed as an anonymity require-
ment while (b) requires that the structure of a class — the number of players
assigned each role — is determined. Together, these two conditions are quite
strong.

To address whether there exists an approximate Nash equilibrium in
pure strategies consistent with conformity we first introduce the notion of
approzimate substitute players of a non-cooperative game. We also define
the concept of a (6, Q)-class game. A (8, Q)-class game has the property that
the player set can be partitioned into @ classes of players. Players in the
same class are approximate substitutes and the dissimilarity of players in a
class is bounded by the parameter §. A (6,Q)-class game is also required
to have the property that, when a ‘small’ number of players from each class
change strategy, payoffs for the remaining players change by less than §. We
note that any finite game is a (6, @)-class game for any @) and some, perhaps
large, 6. A feature, therefore, of the (8,Q)-class game framework is that it
allows us to draw conclusions on arbitrary games (and an arbitrary level of
conformity as measured by (). Moreover, our conclusions can be stated in
terms of the parameters describing the games, § and Q.

Given a (6, Q)-class game we say that a Nash equilibrium is consistent
with conformity if players within every class are conforming (in the sense of
a-c above). Our main result can be summarized:

If Tis a (6,Q) class game then, for some probability distribution over roles,
for any € > 106 there exists a Nash e-equilibrium in pure strategies
consistent with conformity.

The value 106 could be interpreted as a bound on the distance from full
rationality of players using pure strategies and conforming. Two preliminary
results treat conformity and the use of pure strategies in isolation. Our first
result can be summarized:

If T is a (6,Q) class game then for any e > 46 there exists a Nash e-
equilibrium in pure strategies.



Our second result can be summarized:

If T is a (6,Q) class game then for any € > 46 there exists a Nash e-
equilibrium consistent with conformity.

Our results allow us to draw conclusions for arbitrary games on the indi-
vidual rationality of conformity and the use of pure strategies. It is crucial,
however, to have some general examples of (8,Q) class games for arbitrary
values of . In a companion paper (Cartwright and Wooders 2003b) we
connect the concept of games with approximate substitutes to games with
many players derived from a noncooperative ‘pregame’.® This allows us to
apply the results of this paper to games with many players and demonstrate
that, for a broad family of games, the bound on e required for existence of
a Nash e-equilibrium with conformity can be arbitrarily small.

In the following subsection we provide some motivating examples. Sub-
sequently we proceed as follows: Section 2 introduces notation and Section
3 defines a (6,Q)-class game. Section 4 treats purification and Section 5
conformity. Section 6 looks at conformity in pure strategies. In Section 7
we discuss our findings in the light of some experimental literature before
looking at other related literature in Section 8. Section 9 concludes and
remaining proofs are contained in an Appendix.

1.1 Motivating Examples

We provide three simple examples to demonstrate that there need not exist
an approximate Nash equilibrium in pure strategies consistent with con-
formity. We being with an example showing that there need not exist an
approximate Nash equilibrium in pure strategies.

Example 1: Players are characterized as rich or poor. Each player has
chooses one of two locations A or B. Poor players prefer living with rich
players. Thus, the payoff of a poor player is equal to the proportion of rich
players who choose the same location as himself. Rich players prefer to avoid

3 A noncooperative pregame takes as given a metric space Q of player attributes and
a finite set S of pure strategies. An attribute w € Q is interpreted as specifying the
characteristics of a player and the metric on attribute space € allows measurement of
similarity of players. A universal payoff function h is also taken as given. These three
elements, Q, S, and h, constitute a pregame. Given a finite set of players and an attribute
function, ascribing a point in attribute space to each player, a pregame induces a game,
according to standard definitions, on the player set. A pregame thus allows us to model a
family of games all induced from a common strategic structure.



poor players. Thus, the payoff of a rich person is equal to the proportion of
poor players who choose a different location to himself.

It can easily be seen that games of the form outlined in Example 1 need
not have a pure strategy Nash equilibrium. Suppose, for example, that
there is only one rich player and many poor players; given any pure strategy
vector some player can gain by at least one from changing his strategy. Note,
however, that there does exist a Nash equilibrium consistent with conformity
- ‘everybody choose location A with probability one half and location B with
probability one half’ is a Nash equilibrium and has the property that every
player plays the same strategy.

In the second example we demonstrate that there need not exist an ap-
proximate Nash equilibrium consistent with a meaningful notion of confor-
mity, which at a minimum should require that at least some players choose
the same or similar actions.

Example 2: There are n players and n locations. Each player chooses a
location. Every player has a unique preferred location. If a player chooses
his preferred location he gets a payoff of one; otherwise he gets a payoff of
Z€ero.

Games of the form outlined in Example 2 trivially have a Nash equilibrium in
pure strategies. They need not, however, have an approximate equilibrium
consistent with conformity since preferences may be too diverse. Suppose,
for example, that the preferred location of each player ¢ is location 7. Thus,
each player has a different preferred location.

Example 3 combines Examples 1 and 2 to demonstrate why there need
not exist a Nash equilibrium in pure strategies consistent with conformity.

Example 3: Players are characterized as rich or poor. There are two
countries A and B. In each country there are n towns (thus there are 2n
towns in total). Each player chooses a town (and thus indirectly a country).
Rich players prefer to avoid poor players. Thus, the payoff of a rich person
is equal to the proportion of poor players whose choose a different country
to himself. The payoff of a poor player is composed of two elements. A poor
player prefers living in the same country as rich players. Thus, assume the
payoff of a poor player is equal to the proportion of rich players who choose
the same country as himself. In addition, in each country a poor player has
a unique preferred town; a poor player receives an increment to his payoff
of one if he lives in his preferred town (and no increment otherwise).



Suppose that there is one rich player and n poor players. Further, suppose
that in each country no two poor players have the same preferred town. In
this example there does not exist an approximate Nash equilibrium in pure
strategies for the same reasons as in Example 1. There also does not exist
a Nash equilibrium consistent with conformity for the same reasons as in
Example 2.

2 A Bayesian Game - definitions and notation

A Bayesian game T is given by a tuple (N, A,T,p,u) where N is a finite
player set, A is a set of action profiles, T is a set of type profiles, p is a set
of player beliefs and u is a set of wtility functions. Before formally defining
each of these components a brief overview may be helpful. The game I’
randomly assigns (or ‘Nature’ assigns) each player a type. Informed of his
own type but not the types of his opponents, each player chooses an action.
His payoff depends on the actions and types of all players, including himself.
Since a player does not know the types of other players he bases his action
choice on beliefs about the types of others.

Let N = {1,...,n} be a finite player set and let 7 be a finite set of
types. Let T = TN be the set of type profiles where, given type profile t =
(t1,...,tn), the type of player i is t;. We say that a game is a game of perfect
information if |7| = 1. Types are randomly assigned to players by Nature.
Each player ¢ € N forms beliefs about the type profile as given by function p;
where p;(t_;|t;) denotes the probability that player ¢ assigns to type profile
(t;,t_;) given that he is of type t;. We note that DoieT, pi(t_ilt;) =1
for each t; € 7. Let p = {p1,...,pn} be the set of beliefs about the type
profile. We say that there are consistent beliefs if there exists a probability
distribution g over the set of type profiles such that

g(ti 1)
it = s &
for alli € N and t; € 7.* Thus, informally stated, there is consistent beliefs
if every player has the same beliefs over the type profile.
There exists a finite set A of actions. Let A = AN be the set of action
profiles where for action profile a = (ay, ..., a,) the action of player is given
by a;. For each player ¢ € N there exists a utility function u; : A x T — R.

1We assume that the denominator of (1) is always positive - i.e. there is positive
probability that a player ¢ € N will be of each type t; € 7.



The interpretation is that u;(a,t) denotes the payoff of player i if the action
profile is a and the type profile t. Let u = {u1,....,u,} denote the set of
player utility functions.

Knowing his own type, a player chooses an action. Thus, a pure strategy
details the action a player will take for each type t* € 7 and is given by a
function s* : 7 — A where s*(t?) is the action played by the player if he is of
type t*. Denote the set of pure strategies by S where we let K = |A||T| = |S|
denote the number of pure strategies.

A (mixed) strategy is given by a probability distribution over the set of
pure strategies. The set of strategies is thus A(S). Given a strategy = we
denote by x(s*) the probability that a player plays pure strategy s* € S. We
say that pure strategy s* €support(z) if and only if x(s*) > 0. We denote by
x(a'[t?) the probability that player 4 plays action a! given that he is of type
t*. We note that >, 4 z(a'|t?) =1 for all t* € T. Let ¥ = A(S)V denote
the set of strategy vectors. We refer to a strategy vector m as a degenerate
if for all i € N and t* € T there exists some a' such that m;(a'[t?) = 1.

We assume that players are motivated by expected payoffs. Recall that
a player chooses an action knowing his own type but not those of the com-
plementary player set. Consider a player ¢ € N. Given a strategy vector
o, a type t¥ € 7 and beliefs about the type profile p; the probability that
player i puts on the action profile-type profile pair a = (ay,...,a,) and
t= (tl, ey ti—l; tz,ti+i, ceey tn) is given by:

Pr(a,t_;|t*) = pi(t_;|t*)o1(a1|tr)-..oi(a;|[t?)...on(an|ty).

Thus, given any strategy vector o, for any type t* € 7 and any player i of
type t*, the expected payoff of player ¢ can be calculated. Let U;(:|t?) : ¥ —
R denote the expected utility function of player ¢ conditional on the type of
player ¢ being t* where:

Uiolt?) =Y Y Prla, toift*)uia,t, t_s).

acAt_;€T_;

The standard definition of a Bayesian Nash equilibrium applies. A strat-
egy vector o is a Bayesian Nash e-equilibrium if and only if:

Ui((fi,()',”tz) Z Ui(sk,()',“tz) — &

for all s* € A(S), all * € T and for all i € N. We say that a Bayesian Nash
¢ equilibrium m is a Bayesian Nash e-equilibrium in pure strategies if m is
degenerate.



3 Approximate substitutes

Given a Bayesian game I' = (N, T, A,p,u) we consider partitioning the
player set N into groups with the property that any two players in the
same group can be viewed as approximate substitutes for each other. This
requires us to formulate a metric by which to compare players.> We consider
two different ways of measuring the distance between players. Informally, we
say that two players ¢ and j are interaction substitutes if ¢ and j are seen as
similar by those with whom they interact. In contrast, we say that players ¢
and j are individual substitutes if they have similar payoff functions.® Com-
bining both measures together, we refer to players ¢ and j as approzimate
substitutes if they are both interaction and individual substitutes.
Take as given a Bayesian game I" = (N, A, T, p,u). A partition { /Ny, ..., Ng}

of N is a -interaction substitute partition when, for any two strategy vectors
ol,o? ey, if:

iEN, iENg

for all IV, and all sk € S, then:

for any player i € N, and t* € 7 and any strategy x € A(S).

A partition {Ny,...,Ng} is a é-individual substitute partition if, for any
Ny, for any two players 4,5 € N, and for any strategy vector o € X such
that o; = o;:

]Ui(m,(r_i\tz)—Uj(x,(r_j]tz)] S(S (3)

for any strategy x € A(S).

We say that a partition {N,...,Ng} is a d-substitute partition if N is
both a é-interaction substitute partition and a §-individual substitute par-
tition. In this instance we say that two players belonging to a subset N,

®For comparison, we note that in cooperative game theory the distance between players
is typically measured by the maximum difference in value that players can add to coalitions.
Thus, in cooperative game theory, a §-substitute partition has the property that, given any
coalition structure, ‘swapping’ players who are é-substitutes, between coalitions, has an
effect of less than 6 on the worth of the coalitions (for example, Kovalenkov and Wooders
2003).

®The distinction between interaction substitutes and payoff substitutes is suggestive of
distinction between crowding types and taste types (cf., Conley and Wooders 2001 and
references there). This distinction also appears in Wooders, Cartwright, and Selten (2001
revised) for noncooperative games.



are ¢-substitutes for each other. We note that the partition into single-
tons {{1},...,{n}} is a O-substitute partition. That is, each player is a
0-substitute for themselves. We also note that for any Bayesian game I' and
any () < N there exists a §-substitute partition for some finite 6 > 0.

3.1 A (6,Q)-class Bayesian game

We define a third type of partition. Roughly, this type of partition puts
a bound on the change in payoffs when QK players, K from each class,
change strategy. Formally, a partition {Ny, ...., Ng} is a 6-strategy switching
partition when, for any two strategy vectors o!,0? € ¥, if:

> ottt — ot <1, (4)

ieN,
for each Ny and all sk € S then:
Ui(z, oL i|t7) — Uiz, 02 |t7)| < 6

for any player i € N, all t* € 7 and any strategy = € A(S).

We say that a Bayesian game I' is a (67,0p, 0¢, Q)-class Bayesian game
if there exists a () member partition {Ny,...., Ng} that is a dr-interaction
substitute partition, a § p-individual substitute partition and a d¢-strategy
switching partition. We call such a partition congruent. We say that a
Bayesian game I' is a (8, Q)-class Bayesian game if ' is a (67,6p,0¢,@Q)-
class Bayesian game where 07,0p,0c < 6. We refer to each N, as a class
of player and say that two players 7,7 € IV, are the same class of player. It
can easily be seen that for any game I' and for any @ the minimum value of
6 such that T is a (6, Q)-class game can, in principal, be calculated.

3.2 Discussion

We have already noted that the partition of N into singletons {{1},...,{n}}
is a O-substitute partition. Note, however, that finding a § for which there
exists a O-strategy switching partition would require comparing strategy
vectors o' and o2 in which any player i € N can change her strategy any
way she wishes (from 4). Thus, unless the game is trivial, it cannot be a
(6, N)-class Bayesian game for any meaningful value of ¢.

In contrast, consider the opposite extreme of a partition of the player
set N into one set {{1,...,n}}. It is unlikely that this is a d-substitute
partition for a small value of 6. For it to be so would require that all players



have similar payoff functions (from 2) and that payoffs depend only on the
‘population average’ or the number of players playing each strategy (from
3). The partition may, however, be a é-strategy switching partition for small
6 as (4) is more restrictive the smaller is Q.

Between these two extremes we clearly find a trade off in trying to find
the minimum ¢ for which a game I' is a (6, Q))-class Bayesian game. The
larger the number of classes ) then the larger is likely to be the minimum
value of § for which there exists a é-strategy switching partition. Conversely
the larger is @) the smaller is likely to be the 6 for which there exists a -
substitute partition.”

In defining a (6, @)-class Bayesian game the role of incomplete informa-
tion is not explicit. We highlight the following issue: if two players ¢ and j
use the same or similar strategies then this does not necessarily imply that
their expected actions and types are similar. This is because the distribution
over types of players ¢ and j may differ. Thus, even though players ¢ and
J play similar strategies, expectations about their types and their actions
may be dissimilar.

For example, suppose that there are two players, 1 and 2, in a class Nj,.
Player 1 is always of type t! and player 2 is always of type t2. There are two
actions a' and a?. Let o' be such that player 1 plays the strategy ‘if type t!
play action a! and if type t? play action a?’ and player 2 plays the strategy
‘if type t! play action a? and if type t? play action a'’. Consider a strategy
o2 in which both players exchange strategies. It is clear that even though
the ‘aggregate strategy of the class’ is invariant between strategy vectors o'
and o2 the expectations of what will happen, in terms of actions, change
completely.

As the above suggests, the definition of a é-interaction substitute par-
tition, and also a d-strategy switching partition, implicitly measures the
variability in beliefs over types and the importance of such variations on
payoffs. In particular, if a game is to be a (6, Q)-class Bayesian game for
small 6, then we would expect that either players of the same class are
believed to have similar distributions over types or payoffs are relatively in-
variant to the type profile. This, however, seems reasonable; an assumption
of common priors, for example, makes such issues irrelevant.

"This is discussed in more detail by Cartwright and Wooders (2003).
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4 Purification of mixed strategies

Our first result places a bound on the distance from rationality of using pure
strategies. The result requires two lemmas. Since these are quite technical
and require additional definitions, we place them and the proof of Theorem
1 in the Appendix.®

Theorem 1: Let I' = (N, A,T,p,u) be a (61,6p,c,Q)-class Bayesian
game. Let € be a positive real number where ¢ > 2(6;7+8¢). Then the game
I" has a Bayesian Nash e-equilibrium in pure strategies.

We note that the value of §p has no effect on the bound for which
there exists a Bayesian Nash e-equilibrium. That is, the existence of an
approximate Bayesian Nash equilibrium in pure strategies does not require
that players in the same class should have similar payoff functions. This
will not be the case when we consider conformity. Note also that () does
not appear in the lower bound on ¢. However, as discussed above, the
parameters ¢; and ¢ depend on ) so dependence of € on () is implicit.

5 Conformity

Our second result treats the distance from rationality of conformity. We
highlight that in this section no assumption is made that players use pure
strategies. We first define the notion of a strategy vector consistent with
conformity. Take as given a partition {Ni,...,Ng} of player set N into
classes. We say that a Bayesian Nash e-equilibrium m is a Bayesian Nash e-
equilibrium consistent with conformity if and only if m; = m; for all i, j € N,
and for each IV;. Thus, a strategy vector consistent with conformity has the
property that any two players in the same class play the same strategy.

Theorem 2: Let I' be any (67,0p,0¢,Q)-class Bayesian game. Let ¢ be
a positive real number where ¢ > 2(6; + 6p). The game I' has a Bayesian
Nash ¢ equilibrium m consistent with conformity.

SThere is a growing literature on purification of mixed strategy equilibria in large
games; see, for example, Schmeidler (1973), Mas-Colell (1984), Pascoa (1993), Khan,
Rath and Sun (1997), Kalai (2000) and Wooders, Cartwright and Selten (2001). All of
these papers treat games with a continuum of players or provide asymptotic results. Our
result differs in that we treat an arbitrary game and obtain a bound on ¢ for the existence
of an e-equilibrium in terms of the parameters describing the games.
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Proof: By Nash’s Theorem there exists a Bayesian Nash equilibrium ¢* of
the game I'. Given that T'is a (61, 0p, 6¢, Q)-class game there is a congruent
partition of N, say {NVi, ..., Ng}. For each N, and for each s* € S let o*(q, k)
be defined as .
7 (0) = 7 3 i),
1€Ng

Consider a strategy vector m satisfying the property that, for all € N,
if i € N, then m;(s¥) = 0*(q, k). Clearly m is consistent with conformity.
Given that o* is a Bayesian Nash equilibrium and that A is a §;-interaction
substitute partition:

Ui(y,m_;|t*) > Uj(x,m_;|t*) — 261

for all z,y € A(S) where support(y) Csupport(c}) and for all t* € 7. Given
that NV is a § p-individual substitute partition:

]Ui(m,m_i]tz) - Uj(m,m_j]tz)\ S (Sp

for any players i,j € N, (for some ¢), all t* € 7 and x € A(S). We note,
that for any player ¢ € N, and for pure strategy s csupport(m;) there exists
some player j € N, such that s* €support(c}). Thus:

Ui(mi, m—i[t*) > Ui(x, m—i|t*) — 2(61 + 6p)
foralli e N, t* € T and x € A(S). This completes the proof.l

Theorem 2 shows that if T is a (6,Q) class game then for any ¢ > 46
there exists a Bayesian Nash e-equilibrium with the property that any two
players belonging to the same class play the same strategy. We note that
the value of §¢ is irrelevant for the bound on which there exists a Bayesian
Nash e-equilibrium consistent with conformity. We also note that Theorem
2 encompasses the special case in which () = n. In this case, there exists
a O-substitute partition and so there exists a Bayesian Nash equilibrium
inducing n classes. This is, of course, just an immediate application of
the Nash Existence Theorem. This observation makes clear that we need
to have some notion of how large classes need to be. In the next section
we address this issue by introducing ex-post stability. In Cartwright and
Wooders (2003b) we take an alternative approach by considering a family of
arbitrarily large games where the number of classes can be fixed independent
of the population size.

12



6 Conformity in pure strategies

As motivated in the introduction we wish to consider the possibility that
players conform in strategy yet chose different actions. The existence of
imperfect information makes this possible since every player may play the
same pure strategy and yet the actions of players (which are conditional on
type) differ. This ‘purification’ of a mixed strategy is only possible, however,
if there is ‘enough’ uncertainty over types; it is not, for example, possible
in games of complete information. We thus consider a possible exogenous
creation of incomplete information.

Take as given a game of perfect information I with player set NV, set of
action profiles A and a set of utility functions {u;};eny where u; : A — R.
Assume that there exists a set of roles R = {rl,...rK}.9 Let R = RV
be the set of role profiles. Take as given a probability distribution f over
the set of role profiles R where f(r) denotes the probability of role profile
r. We consider a Bayesian game with endogenous roles T/. In game T'/
roles are types. Thus, roles are randomly allocated to players, a player can
make his action choice conditional on his role and makes his choice of action
knowing his role but not those of players in the complementary player set.
A player’s payoff, however, does not depend directly on the role profile. We
assume that players have consistent beliefs with respect to the distribution
over roles f. Formally, we can define game I'/ = (N, A, 17, pf,ul) is defined
to satisfy:

1. T =R,

2. for all r € R,
f(riar*i)

r ER_; f(?“’_z-,ﬁ')

L(rifr) =
Py (r=ilri) = 5=

3. u{(a,r) =u;(a) foralla € A, r € Rand alli € N.

Condition 1 states that roles are equivalent to types. Condition 2 states
that players have consistent beliefs with respect to the distribution of roles.
Condition 3 states that payoffs are not directly effected by the role profile.

As before, given a partition into classes {Ni,...,Ng}, we say that an
equilibrium m of game I'Y is consistent with conformity if and only if m; =
m; for any i,j € Ny. Given, however, that actions can be made conditional
on roles, is the fact that players play the same strategy sufficient to suggest

9The number of roles is as large as the number of actions.
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conformity? Generally, we would suggest not; the examples of Section 1.1
allow us to demonstrate why this is so and to motivate two criteria we impose
on the probability distribution over roles.

Our first condition requires that any two players within a class, in addi-
tion to playing the same strategy, must have the same probability of being
assigned each role. One might think of this as an ‘equal opportunity’ con-
dition within classes.

Within class anonymity: A probability distribution over roles f satisfies
within class anonymity if the probability that a player from a class Ny will
have role 7* is (a priori) identical for all players belonging to that class.
Formally, if 4, j € N, for some g then:

Y. f= Y )

reRir;=rk reRirj=rk
for all % € R.

To motivate this condition, we reconsider Example 2. With endogenous
roles, the set of strategies can be as large as the set of possible actions so,
even though all players may choose the same strategy, this does not suggest
any meaningful conformity. Consider a pure strategy of the form ‘if role 4
choose location ¢’ and a probability distribution over roles that says player ¢
is always role ¢. Clearly, there is really no conformity. This type of problem
is overcome by the condition of within class anonymity since all the players
in each class must be assigned the same probability distribution over roles.

To motivate the next requirement, consider again the example in the
introduction of a male-female household following the roles of ‘he goes out
to work, she stays home’. For this norm to be successful, it is necessary that
no player, knowing the structure of society — the number of players with
each role in his or her class — after roles are assigned, wishes to change role
assignment. Thus we impose the following condition:

Within class determination: Given a role profile  let h(r,k,q) be the
number of players in class N; who have role r*. A probability distribution
over roles f is within class determined if for any class N, and for any two
role profiles r and 7, if f(r), f(F) > 0 then h(r, k,q) = h(F, k, q) for all classes
q and for all ¥ € R.

Now reconsider Example 1 and suppose there is only one rich player. Let
us assume that the rich player constitutes a class. Further, we assume that
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there are two roles A and B, the rich player chooses location A if and only
if allocated role A and the probability distribution over roles is such that
the rich player is allocated role A with probability one half. This permits
a Nash equilibrium in pure strategies. Clearly, however, it is difficult to
justify this as an equilibrium in pure strategies. Within class determination
overcomes this problem since it requires that ex-ante the number of players
in each class who will have each role should be fixed.

In sum, within class anonymity requires that each player in a class has an
equal probability of being allocated each role. Within class determination
implies that the number of players who have each role can be known with
certainty ex ante - the only uncertainty is who will have each role. These are
strong requirements on f. We propose they capture the notion that players
in the same class who play the same strategy are conforming to some norm
of behavior.

Before stating our final result we introduce one further definition. To
overcome the problem of class (or society) size we use the concept of ex-post
information proofness as introduced by Kalai (2000). Information proofness
implies that, knowing the action profile and the type profile, no player has a
strong incentive to change her own action. Formally, an action profile, type
profile pair a,t is said to be ¢ information proof if for all i € N

ui(aat) > ui(akaa—iat) —¢€

for all a* € A. A strategy profile o is said to be a Bayesian Nash ¢ in-
formation proof equilibrium if it yields an e information proof action pro-
file, type profile pair with probability one. Note that if a strategy profile
0 is a Bayesian Nash e information proof equilibrium then there exists a
Bayesian Nash information proof e-equilibrium that is degenerate. More-
over, there exists such an equilibrium with the property that each player 7 is
choosing some pure strategy in the support of ;. If a strategy vector is a
Bayesian Nash information proof equilibrium then, as discussed further by
Kalai (2000), no player would wish to change his action after knowing the
types (or roles) and the actions of the other players.
We now state our final result.

Theorem 3: Let I be any (61, 6p, 6c, Q)-class Bayesian game with perfect
information. Let ¢ be a positive real number where € > 2(26; + dp + 20¢).
Then there exists a partition of N into ) classes and a Bayesian game
with endogenous roles I'(f) (where f is within class anonymous and within
class determined) such that I'(f) has a Bayesian Nash ¢ information proof
equilibrium m in pure strategies that is consistent with conformity.
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Proof: From Theorem 1 the game I' has a Bayesian Nash 2(6; + 6¢) equi-
librium in pure strategies m*. Given that game T" is a (67,0p, ¢, @)-class
game let N = {Ni,...,Ng} be a partition of N into @ classes. For any
degenerate strategy profile o € ¥ define

h(o,k,q) = |{i € N, : 0i(s") = 1}].

Given strategy vector m* let f be such that for any role profile r € R,
if f(r) > 0 then h(r,k,q) = h(m*,k,q). Let every player i € N play
the strategy (for Bayesian game with endogenous roles I'(f)) ‘play pure
strategy s* (from game T') if of role 7*’. We claim that this gives the desired
equilibrium. This can be demonstrated by showing that any action profile,
type profile pair that can arise with positive probability (in game T'(f)) is
e-information proof.

Consider any degenerate strategy profile  such that h(m, k, q) = h(m*, k, q).
Pick an arbitrary player ¢ € N;. Define y = ;. There must exist some player
J € Ng where mj =y and where

U (s, m|17) > U (ar,m |#7) = 2(61 + 80)

for all x € A(S). Consider the strategy vector m where m; = y = m; and

m; = mj for all other | € N. Given that N is a §c-strategy switching
partition

Uj(mj,m_jﬂz) > Uj(w,m_j|tz) —2(67 + 26¢)
for all x € A(S) and t* € 7. Given that N is a ¢ p-individual substitute
partition and that m; = m;,

|Uj(,m)[t*) — Uiz, m4t%)| < 6p

for all x € A(S) and t* € 7. Thus,
i ﬁi,ﬁ,j‘tz) Z Ui(x,ﬁ,i]tz) — 2(6] + (SP + 260)

.~

for all z € A(S) and t* € 7. Note, however, that this implies
Ui(mz-,m’ii)ﬂz > Ui(.’E,m*_Atz) - 2(51 +6p+ 250)

for all z € A(S) and ¢* € 7. Given that N is a §;-interaction substitute
partition,
Ui, |#) — Ui, mi|#9)] < 61

for all x € A(S) and t* € 7. Thus,
Ui(mi,m_i)’tz) > Ui(m,m_i\tz) - 2(26] +op+ 2(50)
for all x € A(S) and t* € 7. This completes the proof.l
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7 Some Experimental Evidence

The purpose of this section is to relate our analysis to some experimental
evidence on learning in coordination games (with ‘many’ players). The rel-
evant literature includes, amongst other works, Van Huyck, Battalio and
Beil (1990, 1991), Van Huyck, Battalio, Mathur, Ortmann and Van Huyck
(1995), Friedman (1996), Van Huyck, Battalio and Rankin (1997) and Hargreaves-
Heap and Varoufakis (2002).

A typical experiment proceeds over a number of distinct periods and
revolves around a stage game such as the following two player symmetric
Hawk-Dove game:

H D
H -2 8
D 0 4

At the beginning of a period subjects simultaneously choose either strategy
H or D. Each player is then matched to play the Hawk-Dove game against
each of his opponents and receives the mean average payoff.'’ In a ‘one
population’ case each player is a possible opponent for any other player.
Thus, in every period all combinations of players are matched to play the
Hawk-Dove stage game. In a ‘two population’ case the player set is split into
a population of ‘row players’ and a distinct population of ‘column players’.
The possible opponents for a ‘row player’ are the set of ‘column players’ and
vice versa (Friedman 1996).!

It is simple to calculate that the one population case is a (0,0, %, 1)-class
Bayesian game while the two population case is a (0,0, %, 2)-class Bayesian
game, where n is the number of subjects. In applying Theorems 1, 2 and 3 we
see that in large populations there exists an approximate Nash equilibrium
in pure strategies consistent with conformity. The Nash equilibria can, of
course, be explicitly calculated. A Nash equilibrium takes one of three basic
forms that, assuming n = 12, can be summarized: (1) A ‘mized strategy’
equilibrium where every subject plays strategy - ‘play H with probability %

10A variety of other treatments are possible: including random matching whereby a
subject is matched to play just one randomly chosen opponent in each period (Friedman
1996).

1 Again, there are a variety of alternative two population models we might consider.
Hargreaves and Heap (2002), for example, endow each player with either the color blue
or red. Each subject plays every other subject but knows the colour of his opponent and
can make strategy conditional on that colour. Van Huyck, Battalio and Rankin (1997)
consider other possibilities.
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and play D with probability %’. (2) A ‘pure strategy’ equilibrium of which
one example is - ‘8 players play H and 4 players play D’. (3) In the two
population case, a ‘discriminatory equilibrium’ of which one example is -
‘all row players choose H and all column players choose D’.

The analysis of this paper would suggest some basic hypothesis: (i)
Approximate Nash equilibrium play is observed in the long run; we would
expect this given that both the use of pure strategies and conformity are
consistent with Nash equilibrium play. (ii) A pure strategy equilibrium
is ‘more likely’ to emerge than a mixed strategy equilibrium.'? Indeed,
in a pure strategy equilibrium we would view players as taking a role -
either Hawk or Dove. Note, however, that in the one population case there
is no signal or mechanism to guide role distribution. In contrast, in the
two population case, there is a clear distinction between two population
groups that may guide the distribution of roles. Reflecting on this we would
hypothesize that: (iii) The discriminatory equilibrium will emerge in the
two population case as a player responds to his assignment to a population
as an assignment of role. (iv) A player is more likely to be seen to use a pure
strategy in the two population case than the one population case because
he can more easily identify his role.

The existing experimental literature allows us to draw some conclusions
on the above hypotheses. Basically, our hypothesis do not seem inconsistent
with the data. Before discussing the literature in a little more detail it may
prove useful and interesting to provide data on two representative experi-
mental runs taken from Friedman (1996). Figure 1 (below) provides details
on the evolution of play in a run of the one population case and Figure 2
provides details for a two population case.

We see in Figure 1 the number playing D is never more than 2 away from
the Nash equilibrium level of 4 and is typically within 1. Thus, Nash-like
play has emerged. It is clear that the mixed strategy equilibrium is not a
good characterization of play; six players, for example, are observed to play
the same strategy, either H or D, in ten or more consecutive periods of the
experimental run. In comparison, the pure strategy equilibrium does not
seem an unreasonable characterization of play.'

2In reality, we would expect at least some subjects to change strategy (and thus not

‘strictly’ play a pure strategy) due to motivations such as curiosity or boredom.

'3We highlight that some change of stage game strategy is always to be expected due
to experimentation and the like. Also some changes in strategy are to be expected, under
our hypothesis, while the assignment of roles is emerging.
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Figure la: The choices of players in each period. The symbol e indicates a player chose

H and [J indicates that a player chose D.
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Figure 1b: The aggregate number of subjects playing D in each period.
Figure 1: An experimental run of the one population, no labels Hawk-Dove game. The

data corresponds to run 9 in session 6 of the Friedman (1996) experiments. The

experiment lasted 16 periods and involved 12 subjects.
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Figure 2a: The choices of players in each period. The symbol e indicates a player chose

H and [ indicates that a player chose D.
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Figure 2b: The aggregate number of subjects in each group playing D in each period.

The solid line indicates the number in Group 2.
Figure 2: An experimental run of the two population, no labels Hawk-Dove game. The

data corresponds to run 5 in session 23 of the Friedman (1996) experiments. The

experiment lasted 16 periods and involved 12 subjects.
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We see in Figure 2 that there are consistently more players in Group 1
that are playing D than in Group 2. This provides some evidence that the
discriminatory equilibrium characterizes actual play. It also appears that
Group 2 quickly becomes a group that is predominantly Hawkish. Group
1, in contrast, appears to have become primarily Dovish but does so less
quickly and with a greater number of ‘deviations’ to Hawkish behavior. This
is, however, easily explained by the fact that the Doves ‘lose out’ relative to
the Hawks.

The experimental runs discussed above are fairly representative of the
general results obtained by Friedman (1996). Friedman (1996) draws the
conclusion that aggregate play typically does appear to converge towards
approximate Nash equilibrium play. This emergence of approximate Nash
equilibrium play in experimental evolutionary games is confirmed by a num-
ber of authors. Friedman (1996) is also able to reject (with a high degree of
confidence for most runs) the null hypothesis ‘that all players are indepen-
dently choosing H with probability %’ against the alternative ‘that players
change their action less frequently’. In a two population setting Friedman
(1996) concludes that play typically converges to the discriminatory equi-
librium. The emergence of a discriminatory equilibrium is also observed
by Hargreaves-Heap and Varoufakis (2002).!* In experiments where players
are labelled as blue or red, Hargreaves-Heap and Varoufakis (2002) strongly
reject the null hypothesis that ‘the frequency with which a red player plays
H is equal to the frequency with which a blue player plays H’. The emer-
gence of discriminatory equilibria is also observed by Van Huyck, Battalio
and Mathur (1995) and Van Huyck, Battalio and Rankin (1997) in treating
stage games other than Hawk-Dove.

8 Relationships to the literature

A large related literature addresses the possible motivations for players to
use mixed strategies (a recent paper on this topic is Reny and Robson 2002).
The central issue is whether a mixed strategy equilibrium can be seen as ap-
proximately equivalent to a pure strategy equilibrium. This is plausible be-
cause imperfect information and the resultant exogenous uncertainty make
explicit randomization unnecessary. Aumann at el. (1983) provide sufficient
conditions, on the exogenous uncertainty, such that any mixed strategy vec-

"nterestingly, it takes around 20 periods for discrimination to strongly emerge
(Hargreaves—Heap and Varoufakis 2002) which is longer than the length of the experi-
mental runs (of 16 periods) used by Friedman (1996).
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tor can be approximately purified. Harsanyi (1973) argues that a game with
perfect information should be considered as an idealization of nearby games
in which there is a small amount of payoff uncertainty. Harsanyi (1973)
shows that such uncertainty implies any mixed strategy equilibrium can be
approximately purified.

This literature would suggest that for a wide class of games and for
any mixed strategy equilibrium of such games there exists an approximately
equivalent pure strategy equilibrium. This may appear to generalize the
results in this paper as our results suggest there are games for which an
approximate equilibrium in pure strategies does not exist. Further, this re-
mains the case even when we allow players to introduce some exogenous
uncertainty. The literature, however, primarily questions the motivations
of rational players while the focus of this paper is one of questioning the
bounded rationality of using pure strategies. The implications of this dif-
ferent approach are felt in both the assumptions of conformity and that the
number of roles is no larger than the number of actions. For example, it is
typical of the literature, as in Aumann et. al. (1983) to assume a continuum
of types. It is difficult to envisage a boundedly rational player being able to
condition actions on a continuum of types.

Another approach to the question of whether a mixed strategy equi-
librium can be seen as approximately equivalent to a pure strategy equilib-
rium is taken in Kalai (2000) where he shows that in incomplete information
games with many players, every Bayesian Nash equilibrium is approximately
information proof. As a consequence, in complete information games with
many players, every Nash equilibrium generates an approximate Nash equi-
librium in pure strategies where the goodness of the approximation is given
by the law of large numbers. Our Theorem 3 shows that for an arbitrary
game with perfect information there exists a Bayesian Nash e information
proof equilibria, and provides a lower bound on ¢, stated in terms of the
parameters describing the game. Thus, Kalai’s results and ours are quite
distinct.

The model of this paper is also related to the literature on correlated
equilibria (for an introduction see Myerson 1997). Correlated equilibrium is
motivated as reflecting the incentives on players to coordinate their actions.
For example, in a Battle of the sexes game the two players can coordinate
their actions by utilizing exogenous signals. Such signals may reflect pre-
play communication or readily observable ‘sunspots’. Theorem 3 could be
interpreted as showing the existence of an approximate correlated equilib-
rium consistent with conformity. As above, however, we can point to a slight
difference in emphasis between this paper and the literature. In particular,
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the literature on correlated equilibria is motivated by considerations of how
rational players can coordinate their actions. Roles, as introduced in this
chapter, are motivated by considerations of how boundedly rational players
may be able to approximate rational behavior through conformity.

A further related literature concerns the evolution of institutions (see,
for example, Durlauf and Young 2001, Young 2001 and references therein).
This literature addresses the question of how conventions or institutions can
evolve, through individual interactions, to create coordination on a large
scale. Such a literature helps in understanding how roles could become
endogenised in the way we assume in this chapter.

9 Conclusion

This paper has introduced the concepts of approximate substitutes in non-
cooperative games. Doing so allows us to put a bound on the distance from
rationality of using pure strategies and of conformity. We use and motivate
a model of conformity that permits players to conform and yet play different
actions. This is possible through imperfect information and the existence
of roles. In particular, players can make action choice conditional on their
role and roles are assigned to players randomly. To retain a meaningful
notion of conformity we impose two restrictions on how roles are allocated:
that each player has the same probability of being assigned each role (so
players cannot be differentiated on the basis of these probabilities) and that
the number of players who will have each role is ex-ante known (so that
after roles are assigned, no player would significantly benefit by changing
his behavior). Our results are related to the experimental research, in par-
ticular to Friedman (1996) and Hargreaves-Heap and Varoufakis (2002). In
a companion paper (Wooders and Cartwright 2003b) we apply the results of
this paper to demonstrate that in large games the use of pure strategies and
conformity can be consistent with individual rationality. In particular, we
connect the concepts of approximate substitutes in non-cooperative games
and non-cooperative pregame frameworks to provide a family of (8, Q)-class
games for arbitrarily small .

10 Appendix

Theorem 1 makes use of two lemmas. The first is due to Wooders, Cartwright
and Selten (2001). First we introduce some notation. Given real number h
let | 2] denote the nearest integer less than or equal to h and [h] the nearest
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integer greater than h (i.e. [9.5] =9 and [9.5] = 10. Also note that [9] =9
and [9] = 10).

Lemma 1: For any strategy vector 0 = (01, ..., 0,,) there exists a degenerate
strategy vector m = (my, ..., my,) such that support(m;) Csupport(o;) for all
¢t € N and:

for all s* € S.

Lemma 2: Given any two strategy vectors m and o where m is degenerate

and where
{Zaz(skﬂ > Zmz(sk) > \‘Zaz(sk)J

for all s* € S there exists a strategy vector & such that,
n n
PRLACORDILACH
i=1 i=1

and

7i(s*) — mi(sk)’ <1
i=1
for all s* € S.
Proof: Given such a ¢ and m we proceed by constructing an appropriate

o. Let K~ denote the set of pure strategies for which

Z mz(sk) = {Z Ui(sk)J
i=1 i=1

and let KT denote the set of strategies for which

Zmz(sk) = |VZ(IZ(5’€)—‘ .
i=1 =1

We note that for every s* € S either s* € K~ or s¥ € K*. For each s* let,
n n
=3~ | 3o
i=1 i=1
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and let,
= > Ak
k:ske K+
Provisionally, set @; = m; for all 7. Then, for each sk e K+ identify a

player iz such that m;. = 1. For each sk € K re-allocate player iz the
strategy defined, for each k, as follows:!?

AGR) it k=T
7 (sF) = 0if s* € K and k # k
k
A(k)ﬁ% otherwise.

We conjecture that this strategy vector & satisfies the required conditions.
First, we should check that @ as defined above is indeed a strategy vector.
For those players ¢ for whom &; = m; there is nothing to check. Consider a
player i for some s* € K. We begin by noting that 1 > ﬁiz(sk) > 0 for
all k& which is clear after noting that |[K+| > 1+ A" — A(k). We also note
that

%:A(k) = zk:(izn;m(s’“)—{i;”i(sk)p
= n— Y zn:mm— ) L;m“‘“_ll

skeK— i=1 skeK+
= |K7
Thus,
> Alk)=|KT| - A"
skeK—
Therefore,

k:ske K—
= 1.

Thus, 7 is a strategy vector.

5Note that if K+ is non-empty then {Kﬂ > AT
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We note that for all s* € K,
_ - Ak _
: i=1 SFeK+
= Z(ri(sk).
i=1

Clearly, for all s* € KT we have that Y  7;(s*) = Y | 0:(s%). Finally,
for all s* € K~

n

m@ﬂ_mwﬂkﬁf#?ﬁ_zzQ—A@»:MMSL

i=1 speK+t
and for all s* € KT

>

=1

m@%—nmﬁwzu—Aw»gL
This completes the proof.ll

Theorem 1: Let I' = (N, A,T,p,u) be a (65,6p,6c,Q)-class Bayesian
game. Let e be a positive real number where ¢ > 2(67 +6¢). Then the game
I" has a Bayesian Nash e-equilibrium in pure strategies.

Proof: Using Nash’s Theorem there must exist a Bayesian Nash Equilib-
rium strategy vector ¢*. This implies, for all ¢ € N, that:

Uiy, oZ;|t*) = Ui, 0Z;|t7) ()

for all z,y € A(S) where support(y) Csupport(c}) and for all t* € T .

Given that T"is a (67,0p, 8¢, @)-class game there is a partition of N into
Q classes. Let {N1, ..., Ng} be such a partition. We apply Lemma 1 in turn
to each N,. Doing so implies that there exists a strategy vector m € X
where support(m;) Csupport(c}) and m; is degenerate for all @ € N, and
where:
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for all N, and all s* € S. By Lemma 2 this implies that there exists a
strategy vector o € X such that

Y oTs) = atsh)

i€Ng i€N,

and

for all s* and all Ny.
From the definition of a é-interaction substitute partition:

}Ui(x,ﬁ_i\tz) - Ui(x,(r*_i]tz)} S (5]

for any © € A(S), t* € T and i € N. Using the definition of a é-strategy
switching partition:

Ui, [t*) — Ui(z, m—[t*)| < éc
for any x € A(S), t* € 7 and i € N. Thus:
Ui (, 0" i|t7) = Uiz, m_;|t7)| < 61 + 8¢
for any z € A(S), t* € T and ¢ € N. Therefore, given (5),
Ui(mi, m_|t*) — Ui(z,m_;|t*) > =2(6; + 6¢) > —¢

for any z € A(S),t* € T and i € N.I
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