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ABSTRACT 

The aim of this paper is to analyse the out-of-sample performance of SETAR models relative 

to a linear AR and a GARCH model using daily data for the Euro effective exchange rate. The 

evaluation is conducted on point, interval and density forecasts, unconditionally, over the 

whole forecast period, and conditional on specific regimes. The results show that overall the 

GARCH model is better able to capture the distributional features of the series and to predict 

higher-order moments than the SETAR models. However, from the results there is also a 

clear indication that the performance of the SETAR models improves significantly 

conditional on being on specific regimes.  

 

Keywords: SETAR models, forecasting accuracy, point forecasts, MSFEs, interval forecasts, 
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1. INTRODUCTION 

In this study we focus on the dynamic representation of the euro effective exchange 

rate and on its short run predictability. The analysis is conducted in the context of univariate 

models, exploiting recent developments of nonlinear time series econometrics. The models 

that we adopt to describe the dynamic behaviour of the euro effective exchange rate series are 

the self-exciting threshold autoregressive (SETAR) models, which represent a stochastic 

process generated by the alternation of different regimes. Although there have been many 

applications of threshold models to describe the nonlinearities and asymmetries of exchange 

rate dynamics (Kräger and Kugler, 1993, Brooks, 1997, 2001), there are still few studies on 

the forecasting performance of the models, using historical time series data. Notoriously, the 

in-sample advantages of nonlinear models have only rarely provided better out-of-sample 

forecasts compared with a random walk or a simple AR model. 

One reason for the poor forecast performance of nonlinear models lies in the different 

characteristics of the in-sample and out-of-sample periods. For example, nonlinearities may 

be highly significant in-sample but fail to carry over to the out-of-sample period (Diebold and 

Nason, 1990). In a recent application to the yen/US dollar exchange rate, Boero and Marrocu 

(2002b) show clear gains from the SETAR model over the linear competitor, on MSFEs 

evaluation of point forecasts, in sub-samples characterised by stronger non-linearities. On the 

other hand, the performance of the SETAR and AR models was indistinguishable over the 

sub-samples with weaker degrees of nonlinearity.  

The oft-claimed superiority of the linear models has also been challenged by a number 

of recent studies suggesting that the alleged poor forecasting performance of nonlinear models 

can be due to the evaluation and measurement methods adopted. In a Monte Carlo study, 

Clements and Smith (2001) show that the evaluation of the whole forecast density may reveal 

gains to the nonlinear models which are systematically masked in MSFE comparisons. Boero 
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and Marrocu (2002a, 2002b) confirm this result in various applications with actual data, and 

show that when the nonlinear models are evaluated on interval and density forecasts, they can 

exhibit accuracy gains which remain concealed if the evaluation is based only on MSFE 

metric. Some gains of the SETAR models have also been found, even in terms of MSFEs, 

when the forecast accuracy is evaluated conditional upon a specific regime (Tiao and Tsay, 

1994, Clements and Smith, 2001, and Boero and Marrocu, 2002a). An interesting result, 

common to these studies, suggests that SETAR models can produce point forecasts that are 

superior to those obtained from a linear model, when the forecast observations belong to the 

regime with fewer observations. 

In the present study we investigate further the possibility that the SETAR models are 

more valuable in terms of forecasting accuracy when the process is in a particular regime. We 

do this by extending the ‘conditional’ evaluation approach to interval and density forecasts, as 

well as point forecasts. By using daily data for the returns of the euro effective exchange rate 

(euro-EER), the performance of two and three-regime SETAR models is evaluated against 

that of a simple AR and a GARCH model. The evaluation of the models conditional on the 

regimes is possible because of the large number of data points available in our application. 

Point forecasts are evaluated by means of MSFEs and the Diebold and Mariano test. Interval 

forecasts are assessed by means of the likelihood ratio tests proposed by Christoffersen 

(1998), while the techniques used to evaluate density forecasts are those introduced by 

Diebold et al. (1998). For the evaluation of density forecasts we also use the modified version 

of the Pearson goodness-of-fit test and its components, as proposed by Anderson (1994) and 

recently discussed in Wallis (2002). These methods provide information on the nature of 

departures from the null hypothesis, with respect to specific characteristics of the distribution 

of interest - such as location, scale, skewness and kurtosis – and may offer valuable support in 

the evaluation of the models. 
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The rest of the paper is organised as follows. In section 2 we present the statistical 

properties of the data and the results of the linearity tests. In section 3 we report the results 

from the modelling and forecasting exercises. In section 4 we summarise the results and make 

some concluding remarks. 

 

 

2. LINEARITY TESTS AND MODELS SPECIFICATION 

In this study we analyse the dynamic behaviour of the returns of the daily euro nominal 

effective exchange rate over the period 30/1/1990-10/07/02 (3081 observations). The nominal 

effective exchange rate for the euro is calculated by the European Central Bank1.  

The log-levels and the returns of the series are depicted in figure 1. In table 1a we report 

the summary of the descriptive statistics of the returns series for three different periods: the 

entire sample period, the estimation period and the forecasting period. The estimation sample 

refers to the period 03/01/1990-30/12/1999 (2439 observations), while the forecasting sample 

extends to the period 03/01/2000-10/07/2002 (642 observations). The splitting of the entire 

sample between estimation and forecasting period allows us to withhold around 20% of the 

total number of observations in order to evaluate the forecasting performance of the nonlinear 

models, as suggested by Granger (1993)2. 

The data accord well with the stylised facts of exchange rate series which emerge from 

the empirical literature. The returns of the series are mean-stationary, periods of high 

volatility and tranquillity tend to cluster together, the sample moments suggest fat taildness of 

the return distribution. Kurtosis is particularly high in the estimation period. The forecasting 

period exhibits a larger variance and less kurtosis. 
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2.1 Linearity tests 

In order to detect nonlinearities in the euro-EER returns we performed the RESET test 

and the S2 test proposed by Luukkonen-Saikkonen-Teräsvirta (1988). Both tests are devised 

for the null hypothesis of linearity. While the RESET test is devised for a generic form of 

misspecification, the S2 test is formulated for a specific alternative hypothesis, i.e. smooth 

transition autoregressive (STAR)-type nonlinearity. Luukkonen-Saikkonen-Teräsvirta, 

however, show that the S2 test has reasonable power even when the true model is a SETAR 

one. The RESET test has been computed in the traditional version and in the modified version 

found to be superior by Thursby and Schmidt (1977)3. The S2 test is performed assuming that 

the variable governing the transition from one regime to the other is yt-d with the delay 

parameter d in the range [1,6]4. 

Table 1b reports the results of the linearity tests computed for the whole sample period, 

the estimation period and the forecast period. The selected lag order p ranges from 3 to 5 in 

order to check for the effects of different dynamic structures. The tests applied to the entire 

sample period and to the estimation period lead to the rejection of the null in a large number 

of cases, indicating that there is strong evidence of nonlinear components for the data. 

However, when the tests are applied to the forecast period the evidence based on the RESET 

tests indicates that nonlinearities are present with less intensity. The S2 test (for d=3), on the 

other hand, is highly significant at almost all lags. 

 

 

2.2 MODELS SPECIFICATION 

The forecasting models adopted in this study belong to the class of threshold 

autoregressive (TAR) models. These are compared with a simple AR model and with a 

GARCH model. The basic idea of the TAR models is that the behaviour of a process is 
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described by a finite set of linear autoregressions5. The appropriate AR model that generates 

the value of the time series at each point in time is determined by the relation of a 

conditioning variable to the threshold values. If the conditioning variable is the dependent 

variable itself after some delay d (yt-d), the model is known as self-exciting threshold 

autoregressive (SETAR) model.  

The SETAR model is piecewise-linear in the space of the threshold variable, rather than 

in time. An interesting feature of SETAR models is that the stationarity of yt does not require 

the model to be stationary in each regime, on the contrary, the limit cycle behaviour that this 

class of models is able to describe arises from the alternation of explosive and contractionary 

regimes6. 

In this study we choose a two-regime (SETAR-2) and a three-regime (SETAR-3) 

SETAR models, which can be represented as follows:  
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where εt
(j) is assumed IID(0,σ2(j)) and rj represent the threshold values. 

The models are estimated, over the period 03/01/1990-30/12/1999, by following the three-

stage procedure suggested by Tong (1983) for the case of a SETAR-2 (p1, p2; d) model. For 

given values of d and r, separate AR models are fitted to the appropriate subsets of data, the 

order of each model is chosen according to the usual AIC criteria. In the second stage r can 
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vary over a set of possible values while d has to remain fixed, the re-estimation of the separate 

AR models allows the determination of the r parameter, as the one for which AIC(d) attains 

its minimum value. In stage three the search over d is carried out by repeating both stage 1 

and stage 2 for d=d1, d2, ..., dp. The selected value of d is, again, the value that minimises 

AIC(d). 

The selected specifications are reported in table 2. The models show clear evidence that 

the euro-EER returns are strongly characterised by nonlinearities as the dynamic structure, the 

estimated coefficients and the error variance differ across regimes. In the forecasting exercise 

discussed in the next sections the performance of the estimated SETAR models is compared 

with that of a restricted AR(3) model and an AR(1)-GARCH(1,1). The latter turned out to be 

adequate in capturing the volatility displayed by the series and is expected to produce better 

calibrated density and interval forecasts than the simple AR model. It is of interest to see how 

the SETAR model compares with the GARCH model in predicting higher-order moments. 

 

 

3. THE FORECASTING EXERCISE 

In this section we conduct three different forecasting exercises intended to evaluate the 

models on their ability to produce point forecasts, density and interval forecasts. For each 

kind of forecasts the evaluation is conducted over the entire forecasting sample - 

unconditional evaluation - and over each regime of the SETAR models - conditional on 

regime. So far, regime-conditional evaluations of nonlinear models have focussed on point 

forecasts only (Clements and Smith, 1999, and Boero and Marrocu, 2002a). In the following 

analysis we explore whether a conditional evaluation extended to density and interval 

forecasts can add useful information on the relative quality of the forecasts of the models. 
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3.1. POINT FORECASTS EVALUATION  

The forecasting sample covers the period 03/01/00-10/07/02; the models are specified and 

estimated over the first estimation period, 03/01/1990-30/12/1999, and the first set of 1 to 5 

steps ahead forecast (h=1, 2,…5) computed. The models are then estimated recursively 

keeping the same specification but extending the sample with one observation each time. In 

this way 638 point forecasts are obtained for each forecast horizon. These forecasts can be 

considered genuine forecasts as in the specification stage we completely ignore the 

information embodied in the forecasting period. The computation of multi-step-ahead 

forecasts from nonlinear models involves the solution of complex analytical calculations and 

the use of numerical integration techniques, or alternatively, the use of simulation methods. In 

this study the forecasts are obtained by applying the Monte Carlo method with regime-

specific error variances, so that each point forecast is obtained as the average over 500 

replications (see Clements and Smith, 1997, 1999)7. 

In table 3 we report the MSFEs normalised with respect to the AR model (panel A) and 

the GARCH model (panel B). The values are calculated as the ratio MSFESETAR/MSFEAR and 

MSFESETAR/MSFEGARCH, so that a value less than 1 denotes a better forecast performance of 

the SETAR model. We have also applied the Diebold and Mariano (DM) test for equality of 

forecasting accuracy, and indicated with stars the cases for which the MSFEs of the 

competing models are statistically significantly different8. From table 3 we can see that when 

the comparison is conducted with respect to the AR model (panel A), the assessment of the 

models by regime produces more cases in favour of the SETAR models than those obtained 

from the evaluation of the entire forecasting sample. This is particularly evident for the 

SETAR-2 model in regime 2. However, when the rival model is the AR(1)-GARCH(1,1) the 
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differences between the MSFEs in terms of the Diebold and Mariano test are in most cases 

not significant (panel B).  

 

 

3.2. DENSITY FORECASTS EVALUATION 

Previous authors have found that an evaluation based on density forecasts may reveal 

greater discrimination over the linear models than evaluations based on the first moment 

(Clements and Smith, 2000, 2001, Boero and Marrocu, 2002a). In this section, we evaluate 

the one-step-ahead density forecasts of the models by applying the methods suggested by 

Diebold et al. (1998) and surveyed by Tay and Wallis (2000). We also apply the modified 

Pearson goodness-of-fit test and its components, proposed by Anderson (1994) and recently 

discussed in Wallis (2002) with applications to inflation forecasts. 

 

Density forecasts 

The evaluation of the density forecasts is based on the analysis of the probability 

integral transforms of the actual realisations of the variables with respect to the forecast 

densities of the models. These are defined as zt=Ft(yt), where F(.) is the forecast cumulative 

distribution function and yt is the observed outcome. Thus, zt is the forecast probability of 

observing an outcome no greater than that actually realised. If the density forecasts 

correspond to the true density, then the sequence of probability integral transforms N
ttz 1}{ =  is 

i.i.d. uniform (0,1). To check whether the sequence of probability integral transforms departs 

from the i.i.d. uniform hypothesis, the distributional properties of the zt series are examined by 

visual inspection of plots of the empirical distribution function of the zt series, which are 

compared with those of a uniform (0,1). To supplement these graphical devices, the 

Kolmogorov-Smirnov test9 can be used on the sample distribution function of the zt series (see 
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Diebold et al., 1999, and Tay and Wallis, 2000). Alternatively, uniformity can be tested by 

applying the Pearson chi-squared goodness-of-fit test. These methods address the 

unconditional uniformity hypothesis. The independence part of the i.i.d. uniform (0,1) 

hypothesis can be assessed by studying the correlograms of the zt series and of powers of this 

series (to establish the existence of dependence in higher moments) and applying formal tests 

of autocorrelation.  

In our analysis below, we use both the Kolmogorov-Smirnov test and the Pearson X2 

test, in the modified version suggested by Anderson (1994), and the Ljung-Box test for 

autocorrelation on ( )tz z− , 2( )tz z− , 3( )tz z− , 4( )tz z− . A well known limitation of this 

approach is that the effects of a failure of independence on the distribution of the tests for 

unconditional uniformity is unknown10. Moreover, failure of the uniformity assumption will 

affect the tests for autocorrelation. The use of alternative techniques is therefore 

recommended in practical applications as they can offer different insights into the relative 

quality of the forecasts and help discriminating between rival models. 

 

The modified Pearson goodness-of-fit test and its components  

The following description draws from Anderson (1994) and Wallis (2002). The standard 

expression for the chi-squared goodness-of-fit test is given by  

∑
−

=
=

k

i

i
kn

knn
X

1

2
2

)/(
)/(

 

where k is the number of equiprobable classes in which the range of the zt series is divided, ni 

are the observed frequencies, n the number of observations (in our case the number of 

forecasts). This test has a limiting χ2 distribution with k-1 degrees of freedom under the null 

hypothesis. 
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Anderson (1994) proposed a rearrangement of the test, which can be decomposed in 

various components to test departures from specific aspects of the distribution of interest. For 

example, shifts in location, shifts in scale, changes in symmetry and in kurtosis can all be 

detected from these tests. The rearranged test, valid under equiprobable partitions (see Boero, 

Smith and Wallis, 2002) is written as: 

X2 = (x - µ)′ [I - ee′/ k] (x - µ) / (n / k) 

In this expression, x is a kx1 vector of observed frequencies (x1, x2, …, xk), which, under the 

null hypothesis has mean vector µ=(n / k, …, n / k)′ and covariance matrix V = (n / k) [I - ee′/ 

k], where e is a kx1 vector of ones. The asymptotic distribution of the test rests on the k-

variate normality of the multinomial distribution of the observed frequencies. The test can 

also be written as 

X2 = y′y / (n / k) 

where y = A(x-µ) is a (k-1) column vector, and A is defined as a (k-1) x k transformation 

matrix such that  

AA′= I and A′A = [I - ee′/ k]. 

With k=4, one can test departures from three distributional aspects, namely shifts in 

location, shifts in scale and changes in skewness. The A matrix in this case is defined as 

A = 
















−−
−−

−−

1111
1111
1111

4
1

 

Here, the first row relates to the location of the distribution, the second to the scale, and the 

third to skewness. The elements of the (3x1) vector y=A(x-µ) are therefore given respectively 

by: 

y1 :     ½[(x1 + x2) - (x3 + x4)] 

y2 :    ½[(x1 + x4) - (x2 + x3)] 
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y3 :     ½[(x1 + x3) - (x2 + x4)] 

Thus, the total X2 test y′y/(n/4) is equal to the sum of the squared elements of y. The three 

components of the test, 2 /( / 4)iy n , are independently distributed as χ2 with one degree of 

freedom under the null hypothesis. The first component of this sum is given by: 

(1/n)[(x1 + x2) – (x3 + x4)]2 

This component detects possible shifts in location, with reference to the median of the 

distribution (shifts from the first half of the distribution to the second half). The second 

component detects shifts from the tails to the centre (interquartile range). Finally, the third 

component detects possible asymmetries, that is shifts from the first and third quarters to the 

second and fourth.  

With k=8, one can also focus on the fourth characteristic related to kurtosis. In this 

case the A matrix is defined as 

A = 





























−−−−
−−−−

−−−−
−−−−

........

........

........
11111111
11111111
11111111
11111111

8
1

 

Here, only the first four rows are related to features of the distribution that are familiar, 

therefore the last three rows are omitted. So, in this case, the total chi-squared goodness-of-fit 

test, computed with the standard formula, will not be obtained as the sum of seven individual 

components, but will be equal to the sum of the first four components plus a remaining 

aggregate component independently distributed as χ2 with three degrees of freedom under the 

null hypothesis. 
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Model evaluation  

The one-step-ahead density forecasts of the effective exchange rate returns are obtained 

under the assumption of Gaussian errors, with the appropriate regime-specific variances for 

the SETAR models. The evaluation of the forecasts is carried out unconditionally, over the 

forecast period as a whole, and separately for each regime. In figure 2 we report some 

selected plots of the empirical distribution function of the zt series against the theoretical 

uniform distribution function. We omit the 45° line to avoid over-crowding the plots. The 

95% confidence intervals along side the hypothetical 45° line are calculated using the critical 

values of the Kolmogorov Smirnov test, reported in Lilliefors (1967, Table 1, p. 400), in the 

presence of estimated parameters11. The results from the Pearson X2 test and its components, 

computed with k=8 partitions, are presented in table 4. In table 5 we report the results of the 

Ljung-Box test for autocorrelation of the zt series and its powers. 

As we can see from table 4 and figure 2, the GARCH model seems to produce density 

forecasts which are unconditionally correct, as suggested by the overall goodness-of-fit test, 

by its individual components, and by the Kolmogorov Smirnov test. Moreover, the results in 

table 5 show that the GARCH forecasts also satisfy the independence part of the joint 

hypothesis, with the Ljung-Box test showing no significant dependencies in the first and 

higher moments of the zt series. These results for the GARCH model are robust across the two 

types of evaluations conducted in this paper, that is for the entire forecast period and 

conditional on the regimes of the SETAR models. It is now interesting to see how the SETAR 

density forecasts compare with the GARCH forecasts.  

We start by discussing the results for the SETAR model with 2 regimes. As shown by 

the results in table 4 and figure 2, the SETAR-2 model fails the unconditional uniformity test 

in the evaluation over the entire forecasting sample. However, when the forecast densities are 

evaluated separately for each regime, we find that the forecast performance of the SETAR 
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model is clearly improved in regime 2, which is the regime with fewer observations (T=192). 

For this regime, in fact, we cannot reject the hypothesis that the forecasts are well calibrated 

(unconditional uniformity). 

The plots of the cdf of the zt series versus the uniform (0,1) distribution, in figure 2, 

confirm these results. The empirical cdf of the SETAR-2 model (figure 2) crosses the bounds 

in various regions of the distribution in the entire sample and for the observations in regime 1, 

while the cdf is inside the bounds for the observations in regime 2. Further information on the 

nature of departures from the null hypothesis can be obtained from the individual test 

components of the goodness-of-fit test. The results in table 4 show that the largest 

contribution for the failure of the SETAR forecasts over the entire forecast period and for the 

observations in regime 1 comes from the second (scale) and fourth (kurtosis) components. It 

is interesting to note that there is some weak evidence of departure from kurtosis also for the 

forecasts in regime 2, suggesting that the SETAR-2 density forecasts are not as well 

calibrated as the GARCH forecasts in the tails of the distribution.  

In order to complete the evaluation of the density forecasts of the SETAR model, we 

now look at the results from the test for autocorrelation of the zt series and their powers. It is 

in fact of interest to see to what extent the SETAR models are able to capture the dynamics in 

heteroschedasticity. Table 5 clearly shows that the density forecasts from the SETAR models 

violate the independence assumption, when they are evaluated over the entire forecast period 

and conditional on regime 1. Violations occur with respect to the second and fourth power of 

the zt transforms. However, consistently with our findings so far, the quality of the density 

forecasts improves for the observations in regime 2, for which the independence part of the 

joint i.i.d. uniform hypothesis is also satisfied. 

A similar pattern of results can be noticed for the SETAR model with 3 regimes, 

confirming that the ability to produce ‘good’ forecasts varies across regimes. The density 
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forecasts of the SETAR-3 model are unconditionally incorrect, according to the chi-squared 

goodness-of-fit test (table 4) computed over the entire forecasting period, and violate the 

independence assumption (table 5). However, when the tests are computed conditionally on 

each regime, we find that the SETAR-3 model produces density forecasts which satisfy the 

joint i.i.d U(0,1) hypothesis for the observations in regime 1, and are unconditionally well 

calibrated (though not independent) in regime 3. The results from the chi-squared goodness-

of-fit test are, in general, confirmed by the plots of the empirical distribution function of the zt 

series, not reported here for space reasons.  

By combining the information in table 4, table 5 and figure 2, overall the GARCH 

model has shown better able to capture the distributional aspects of the euro-EER returns. In 

particular we have found evidence that the SETAR models fail to capture the scale and 

leptokurtosis in the distribution of the series when the density forecasts are evaluated over the 

entire forecast period. However, a regime conditional evaluation of the models has 

consistently shown an improved performance of the SETAR forecasts when the forecast 

origin is conditioned on specific regimes. These regimes turned out to be those with fewer 

observations. 

In the next section we will adopt methods that can be used to evaluate interval 

forecasts. 

 

 

3.3. INTERVAL FORECASTS EVALUATION 

In this section we extend the forecast comparison by evaluating the models on their ability 

to produce interval forecasts. An interval forecast, or prediction interval, for a variable 

specifies the probability that the future outcome will fall within a stated interval. The lower 

and upper limits of the interval forecast are given as the corresponding percentiles. We use 
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central intervals, so that, for example, the 90 per cent prediction interval is formed by the 5th 

and 95th percentiles.  

Although the evaluation of the entire forecast density is more general than one based on 

forecast intervals, the results may be affected by some regions of the density, which may be of 

less concern to the forecast user. For example, financial operators are mostly concerned with 

the ability to model and forecast the behaviour in the tails of the distribution. Evaluation of 

interval forecasts enables the forecast user to assess more directly the ability of the models to 

produce correct forecasts, focussing on levels of coverage of specific interest. 

The evaluation of interval forecasts is conducted by means of the likelihood ratio test of 

correct conditional coverage as recently proposed by Christoffersen (1998). The forecasts are 

assessed, like in the previous evaluations, over the entire forecast period and by conditioning 

upon regimes. 

Christoffersen (1998) shows that a correctly conditionally calibrated interval forecast will 

provide a hit sequence It (for t=1, 2, …, T), with value 1 if the realisation is contained in the 

forecast interval, and 0 otherwise, that is distributed i.i.d. Bernoulli, with the desired success 

probability p. However, as stressed by Christoffersen, a simple test for correct unconditional 

coverage (LRUC) is insufficient in the presence of dynamics in higher-order moments 

(conditional heteroscedasticity, for example) because it does not have power against the 

alternative that the zeros and ones are clustered in time-dependent fashion. In order to 

overcome this limitation, Christoffersen proposes a test for independence (LRIND) which 

assumes a binary first-order Markov chain for the indicator function It. Under the null, the test 

follows a χ2 distribution with one degree of freedom. The joint test of correct conditional 

coverage, LRCC, is obtained as the sum of LRUC and LRIND, and is asymptotically χ2 

distributed with two degrees of freedom. For a detailed description of the tests we refer the 

reader to Christoffersen (1998). 
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In this paper we have considered intervals with nominal coverage, p, in the range 

[0.95-0.20]. The results are presented in table 6, where, for each nominal coverage, we report 

the actual unconditional coverage (π) and the P-values of the three LR tests12. Table 6a 

reports the results for the entire forecast period, while tables 6b and 6c report the results for 

the individual regimes. 

 As expected from our previous findings, the interval forecasts obtained from the 

GARCH model are conditionally well calibrated, at every level of coverage, and in both 

unconditional and regime-conditional evaluations. The SETAR models fail the conditional 

coverage test, when they are evaluated over the entire forecast period, for all levels of 

coverage, mostly due to strong rejection of the unconditional coverage test. The empirical 

coverage (the sample frequency π) is in general less than the nominal coverage, p, that is a 

smaller number of outcomes are observed to fall within the stated intervals. This means that 

the models overestimate the probability that the variable will fall within the predicted interval. 

Thus, over the whole forecast period, the models produce interval forecasts that are too 

narrow, indicating that the variance of the predicted distribution is too small. These results 

find confirmation in those reported in table 4, suggesting a major departure with respect to the 

scale of the distribution. 

With respect to the test for independence, an interesting result is that the SETAR-3 

model seems more able to produce forecasts that are independent over the whole forecast 

period, while there is more evidence against the independence of the SETAR-2 forecasts.  

Finally, from tables 6b and 6c we notice that the SETAR-2 model shows a substantial 

improvement in regime 2, delivering interval forecasts with correct conditional coverage for 

all intervals considered. Similarly the forecast performance of the SETAR-3 is improved in 

regime 1. The forecast intervals in this regime are all well calibrated, with the exception of the 

wider intervals in the range 0.95 - 0.85. This result may be interpreted as failure to correctly 



 18

capture the behaviour in the tails of the distribution also for the observations in regime 1. For 

this range of intervals, in fact, p is significantly greater than π, that is fewer observations fall 

in the stated intervals, which also implies that more observations actually fall in the tails than 

those predicted.  

 

 

4. CONCLUSIONS  

In this paper we have studied the out-of-sample forecast performance of SETAR 

models in an application to daily returns from the euro effective exchange rate. The SETAR 

models have been specified with two and three regimes, and their performance has been 

assessed against that of a simple linear AR model and a GARCH model. The forecast exercise 

is genuine in the sense that for the specification and estimation of the models we have ignored 

any information contained in the forecasting period. 

The models have been assessed, first of all, on their ability to produce point forecasts, 

measured by means of MSFEs accompanied by the Diebold-Mariano test. Then the evaluation 

of the models has been extended to interval and density forecasts, to see whether the SETAR 

models can accurately predict higher-order moments.  

The evaluation of the models has been conducted not only on different measurement 

methods, but also at different levels. That is, we have looked at the relative performance of 

the models on average, over the forecast period as a whole, and also we have investigated 

whether the models are better at predicting future values when the process is in a particular 

regime. Evaluations of SETAR models conditional on regimes have been carried out in 

previous research, but on point forecasts only. In this paper we have moved a step forward by 

extending the conditional evaluation to density and interval forecasts.  
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By evaluating the SETAR models over the entire forecasting sample we have found 

that none of the models was able to produce ‘good’ density and interval forecasts in general, 

while the density and interval forecasts produced by the GARCH model were correctly 

conditionally calibrated at each level of the evaluation study. The correct calibration or not of 

the various regions of the density has been illustrated by cumulative probability plots of the 

probability integral transforms against the uniform (0,1), and also assessed by the X2 

goodness-of-fit test and its individual components. The decomposition of the goodness-of-fit 

test into individual components has enabled us to explore possible directions of departures 

more closely, indicating major departures for the SETAR models with respect to scale and 

kurtosis.  

The assessment of the models conditional on regimes has indicated a significant 

improvement in the quality of the SETAR forecasts in correspondence of specific regimes. In 

particular, the SETAR specification with two regimes has shown a good performance in terms 

of point, intervals and density forecasts when the process was in regime 2. On the other hand, 

the three-regime SETAR has not shown any improvement in terms of point forecasts, while it 

has delivered better interval and density forecasts in regime 1. In all evaluations, the improved 

performance of the SETAR models has occurred conditional on the regimes with a relatively 

small number of observations. This is in line with suggestions from previous studies. 

To conclude, the GARCH model has shown more able to capture the distributional 

features of the euro effective exchange rate returns and to predict higher-order moments than 

the SETAR models. However, both SETAR models have shown a substantially improved 

forecast performance when the forecast origin was conditioned on some specific regimes.  
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TABLES AND FIGURES 
 
 
 
TABLE 1A  DESCRIPTIVE STATISTICS 

 Entire sample 

03/01/90-10/07/02 

T=3081 

Estimation sample 

03/01/90-30/12/99 

T=2439 

Forecasting sample 

03/01/00-10/07/02 

T=642 

 Mean -0.0001 -0.0001 0.0000 

 Median -0.0001 -0.0001 0.0000 

 Maximum 0.0289 0.0214 0.0289 

 Minimum -0.0382 -0.0382 -0.0179 

 Std. Dev. 0.0041 0.0037 0.0053 

 Skewness -0.0703 -0.4387 0.3933 

 Kurtosis 7.6953 9.3357 4.5813 

    

 Jarque-Bera 2832.6670 4157.5370 83.4425 

 Probability 0.0000 0.0000 0.0000 

    

 Observations 3081 2439 642 
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TABLE 1B  LINEARITY TESTS - P-VALUES 

 Entire sample 
03/01/90-10/07/02 

n=3081 

Estimation sample 
03/01/90-30/12/99 

n=2439 

Forecasting sample 
03/01/00-10/07/02 

n=642 

p 3 4 5 3 4 5 3 4 5 

RESET,    h=2 0.0024 0.0230 0.0401 0.3952 0.4142 0.0804 0.2523 0.0327 0.1796 

RESET,    h=3 0.0085 0.0528 0.0089 0.0002 0.0002 0.0006 0.4965 0.1007 0.4062 

RESET,    h=4 0.0227 0.1174 0.0229 0.0001 0.0001 0.0011 0.6333 0.2043 0.2057 

Mod.  RESET,   h=2 0.0006 0.0016 0.0036 0.0250 0.0232 0.0306 0.0836 0.1128 0.1209 

Mod.  RESET,   h=3 0.0003 0.0011 0.0007 0.0012 0.0016 0.0003 0.0933 0.1467 0.1534 

Mod.  RESET,   h=4 0.0002 0.0011 0.0009 0.0001 0.0004 0.0001 0.2521 0.3996 0.4067 

S2,     d=1 0.1440 0.2586 0.2428 0.4585 0.4496 0.6018 0.4443 0.5831 0.6338 

S2,     d=2 0.0015 0.0000 0.0002 0.0004 0.0000 0.0000 0.4949 0.1197 0.1944 

S2,     d=3 0.0001 0.0000 0.0002 0.0004 0.0013 0.0003 0.0123 0.0243 0.0223 

S2,     d=4 0.5433 0.6992 0.4608 0.0134 0.0143 0.0247 0.3077 0.2499 0.1145 

S2,     d=5 0.0454 0.1218 0.0883 0.0059 0.0014 0.0021 0.0872 0.1268 0.1872 

S2,     d=6 0.0433 0.1039 0.0083 0.0601 0.1136 0.0402 0.0129 0.0485 0.0562 

p denotes the lag order under the null hypothesis of linearity 

 



 25

 
TABLE  2  SETAR MODELS SPECIFICATION 

  SETAR-2 SETAR-3 

  Coeff. t-value Coeff. t-value 

φ0
(1)  -0.0001 -1.000 -0.0012 -3.0000 

φ1
(1)  0.0517 2.3716 -0.1446 -2.0569 

φ2
(1)  0.0402 1.8962   

φ3
(1)  -0.0685 -3.1136   

σ(1)  0.0035  0.0044  

REGIME 1 

T(1) 1930  455  

φ0
(2)  0.0000 0.0000 0.0000 0.0000 

φ1
(2)  -0.0869 -1.7345   

σ(2)  0.0045  0.0034  
REGIME 2 

T(2) 497  1539  

φ0
(3)    -0.0001 -0.2000 

φ1
(3)    0.0134 0.1553 

φ2
(3)    0.1009 2.3037 

φ3
(3)    -0.1099 -2.1381 

σ(3)    0.0042  

REGIME 3 

T(3)   440  

σ(model)  0.0037  0.0037  

d 4  1  

r1 0.00248  -0.00279  

r2 --  0.00277  

MODEL 

AIC -11.206  -11.208  

For the SETAR-2 model the transition variable is represented by yt-4 while the threshold 
is selected to be 0.00248; in regime 1 the series is described by an AR(3) process, 
while in regime 2 it follows an AR(1) process. 

For the SETAR-3 model the transition variable is represented by yt-1 while the 
thresholds values are approximately symmetric and equal to -0.00279 and 0.00277; in 
regime 1 the series is described by an AR(1) process, in regime 2 it is approximated 
just by a constant, while in regime 3 it follows an AR(3) process. 
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TABLE 3A  FORECASTING PERFORMANCE - NORMALIZED MSFE   

  Number of steps-ahead 

  1 2 3 4 5 

(MSFESETAR/MSFEAR)   A   

SETAR-2 Entire sample, T=638 1.0025 1.0011 0.9948 0.9982 0.9991 

       

 Regime 1 1.0097** 1.0065* 1.0015 1.0021 0.9991 
 T1 446 446 446 446 638 
 Regime 2 0.9842 0.9875 0.9779* 0.9884** na 

 T2 192 192 192 192 0 
       
SETAR-3 Entire sample, T=638 1.0079 0.9984 0.9962 0.9989 0.9986 

       
 Regime 1 1.0077 na 1.0021 0.9949 1.0022 

 T1 186 0 128 165 158 
 Regime 2 0.9921 0.9984 0.9939 0.9987 0.9951 
 T2 271 638 366 320 321 

 Regime 3 1.0244** na 0.9985 1.0055 0.9995 
 T3 181 0 144 153 159 
       

(MSFESETAR/MSFEGARCH)   B   

SETAR-2 Entire sample, T=638 1.0014 1.0059 0.9998 0.9984 0.9993 

       
 Regime 1 1.0016 1.0049 1.0001 1.0016 0.9993 

 T1 446 446 446 446 638 
 Regime 2 1.0008 1.0085 0.9990 0.9903 na 

 T2 192 192 192 192 0 
       
SETAR-3 Entire sample, T=638 1.0068 1.0031 1.0012 0.9991 0.9987 

       
 Regime 1 0.9966 na 1.0118 0.9960 1.0016 
 T1 186 0 128 165 158 

 Regime 2 1.0020 1.0031 0.9980 0.9974 0.9952 
 T2 271 638 366 320 321 

 Regime 3 1.0212 na 1.0020 1.0085 1.0009 
 T3 181 0 144 153 159 
       

*, ** denotes significance of the Diebold-Mariano test at 10% and 5% 

“na” refers to the cases for which the MSFE can not be computed as the relevant model does not 
produce any forecast for that particular regime/horizon. 
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TABLE 4  FORECASTING PERFORMANCE - χ2 GOODNESS-OF-FIT TESTS - P-VALUES IN ITALICS 
    (ANDERSON-WALLIS DECOMPOSITION, K=8) 

  Models location scale skewness kurtosis total 

 Entire sample GARCH 0.401 0.759 1.605 0.056 5.461 
 (T=638)  0.526 0.384 0.205 0.812 0.604 

  SETAR-2 0.100 14.445 0.157 6.828 26.301 
   0.751 0.000 0.692 0.009 0.000 
  SETAR-3 0.006 11.060 0.000 5.643 20.708 

   0.937 0.001 1.000 0.018 0.004 

 Regime1 GARCH 0.000 0.897 0.439 0.143 3.040 
 (T1=446)  1.000 0.344 0.507 0.705 0.881 
  SETAR-2 0.036 19.812 0.000 3.955 32.601 

SETAR-2   0.850 0.000 1.000 0.047 0.000 

 Regime2 GARCH 1.333 0.021 1.688 0.021 10.417 
 (T2=192)  0.248 0.885 0.194 0.885 0.166 

  SETAR-2 0.083 0.021 0.521 3.000 10.667 
   0.773 0.885 0.470 0.083 0.154 

 Regime1 GARCH 2.602 0.538 0.194 0.086 3.677 
 (T1=186)  0.107 0.463 0.660 0.769 0.816 
  SETAR-3 0.052 0.052 0.468 1.671 5.081 

   0.820 0.820 0.494 0.196 0.650 

SETAR-3 Regime2 GARCH 0.624 0.446 0.446 0.033 5.044 
 (T2=271)  0.430 0.504 0.504 0.855 0.655 
  SETAR-3 0.299 11.162 0.446 3.546 17.148 

   0.585 0.001 0.504 0.060 0.016 

 Regime3 GARCH 1.994 2.436 1.243 0.934 8.392 
 (T3=181)  0.158 0.119 0.265 0.334 0.299 
  SETAR-3 1.243 2.923 0.138 0.934 9.807 
   0.265 0.087 0.710 0.334 0.200 
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TABLE 5  P-VALUES OF THE LJUNG-BOX Q STATISTICS FOR SERIAL CORRELATION 
                   (FIRST SIX AUTOCORRELATIONS) 

  Moments 

  )( zz −  2)( zz −  3)( zz −  4)( zz −  

 Entire sample GARCH 0.258 0.588 0.187 0.402 
  SETAR-2 0.472 0.000 0.191 0.000 

  SETAR-3 0.394 0.000 0.125 0.000 

Regime 1 GARCH 0.424 0.998 0.411 0.989 
  SETAR-2 0.382 0.000 0.177 0.000 
       

Regime 2 GARCH 0.253 0.354 0.089 0.594 
  SETAR-2 0.493 0.323 0.327 0.434 

Regime 1 GARCH 0.438 0.325 0.707 0.391 
  SETAR-3 0.337 0.276 0.342 0.690 

       
Regime 2 GARCH 0.244 0.386 0.775 0.495 
  SETAR-3 0.190 0.000 0.705 0.000 

       
Regime 3 GARCH 0.387 0.772 0.496 0.425 
  SETAR-3 0.290 0.002 0.429 0.003 
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TABLE 6A  FORECAST INTERVAL EVALUATION FOR 1-STEP-AHEAD HORIZON – ENTIRE FORECAST PERIOD 

 GARCH SETAR-2 SETAR-3 
p π LRUC LRIND LRCC π LRUC LRIND LRCC π LRUC LRIND LRCC 

0.95 0.944 0.465 -- -- 0.857 0.000 1.000 0.000 0.868 0.000 0.706 0.000 
0.90 0.897 0.773 0.071 0.189 0.803 0.000 0.447 0.000 0.813 0.000 0.747 0.000 
0.85 0.845 0.716 0.294 0.539 0.749 0.000 0.156 0.000 0.763 0.000 0.485 0.000 
0.80 0.807 0.647 0.217 0.421 0.710 0.000 0.007 0.000 0.715 0.000 0.247 0.000 
0.75 0.751 0.963 0.782 0.961 0.666 0.000 0.003 0.000 0.676 0.000 0.226 0.000 
0.70 0.697 0.890 0.637 0.886 0.610 0.000 0.023 0.000 0.627 0.000 0.990 0.000 
0.65 0.647 0.888 0.541 0.822 0.560 0.000 0.107 0.000 0.575 0.000 0.178 0.000 
0.60 0.585 0.429 0.489 0.576 0.530 0.000 0.364 0.001 0.527 0.000 0.076 0.000 
0.55 0.538 0.530 0.564 0.695 0.476 0.000 0.538 0.001 0.489 0.002 0.012 0.000 
0.50 0.483 0.384 0.685 0.630 0.425 0.000 0.071 0.000 0.434 0.001 0.052 0.001 
0.45 0.442 0.685 0.289 0.525 0.379 0.000 0.211 0.001 0.395 0.005 0.296 0.011 
0.40 0.389 0.560 0.192 0.360 0.339 0.001 0.469 0.005 0.350 0.009 0.358 0.021 
0.35 0.351 0.954 0.426 0.727 0.299 0.007 0.024 0.002 0.287 0.001 0.196 0.001 
0.30 0.299 0.972 0.187 0.418 0.268 0.075 0.004 0.003 0.257 0.016 0.099 0.014 
0.25 0.246 0.819 0.240 0.488 0.218 0.057 0.025 0.013 0.223 0.105 0.720 0.252 

0.20 0.199 0.953 0.341 0.634 0.166 0.029 0.124 0.028 0.172 0.076 0.549 0.173 

p indicates the nominal coverage, π indicates the actual unconditional coverage; numbers in bold represent rejections at 5% level of 
significance 
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TABLE 6B  FORECAST INTERVAL EVALUATION FOR 1-STEP-AHEAD HORIZON  – CONDITIONING ON REGIMES OF THE SETAR-2 MODEL 
 REGIME 1 

T1=446 
REGIME 2 

T2=192 

 GARCH SETAR-2 GARCH SETAR-2 
p π LRUC LRIND LRCC π LRUC LRIND LRCC π LRUC LRIND LRCC π LRUC LRIND LRCC 

0.95 0.944 0.565 0.704 0.788 0.832 0.000 0.268 0.000 0.943 0.650 0.649 0.814 0.916 0.052 0.166 0.058 

0.90 0.890 0.494 0.773 0.759 0.774 0.000 0.277 0.000 0.911 0.590 0.676 0.793 0.869 0.180 0.297 0.237 
0.85 0.836 0.424 0.734 0.686 0.722 0.000 0.083 0.000 0.865 0.566 0.735 0.801 0.812 0.159 0.572 0.316 
0.80 0.794 0.741 0.767 0.906 0.679 0.000 0.001 0.000 0.839 0.170 0.254 0.204 0.780 0.521 0.254 0.425 

0.75 0.738 0.550 0.665 0.761 0.646 0.000 0.002 0.000 0.781 0.310 0.749 0.568 0.712 0.251 0.954 0.516 
0.70 0.684 0.459 0.612 0.668 0.590 0.000 0.001 0.000 0.729 0.373 0.954 0.672 0.660 0.193 0.427 0.313 

0.65 0.630 0.379 0.328 0.421 0.538 0.000 0.016 0.000 0.688 0.272 0.959 0.546 0.613 0.243 0.351 0.328 
0.60 0.581 0.407 0.910 0.705 0.504 0.000 0.142 0.000 0.594 0.860 0.965 0.984 0.592 0.755 0.706 0.887 
0.55 0.536 0.549 0.973 0.835 0.453 0.000 0.062 0.000 0.542 0.817 0.874 0.961 0.534 0.606 0.985 0.875 

0.50 0.478 0.344 0.697 0.592 0.395 0.000 0.008 0.000 0.495 0.885 0.827 0.966 0.497 0.900 0.943 0.990 
0.45 0.433 0.463 0.407 0.542 0.357 0.000 0.059 0.000 0.464 0.706 0.999 0.931 0.435 0.624 0.437 0.656 
0.40 0.381 0.416 0.540 0.595 0.321 0.001 0.275 0.001 0.406 0.860 0.868 0.971 0.382 0.576 0.882 0.846 

0.35 0.341 0.683 0.820 0.897 0.276 0.001 0.020 0.000 0.375 0.470 0.703 0.716 0.356 0.914 0.321 0.607 
0.30 0.278 0.308 0.298 0.346 0.249 0.016 0.011 0.002 0.349 0.144 0.366 0.229 0.314 0.709 0.408 0.663 
0.25 0.229 0.294 0.222 0.273 0.193 0.004 0.060 0.003 0.286 0.251 0.609 0.453 0.277 0.411 0.356 0.465 

0.20 0.182 0.326 0.105 0.165 0.150 0.007 0.738 0.023 0.240 0.180 0.395 0.284 0.204 0.919 0.067 0.186 

p indicates the nominal coverage, π indicates the actual unconditional coverage; numbers in bold represent rejections at 5% level of significance 
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TABLE 6C  FORECAST INTERVAL EVALUATION FOR 1-STEP-AHEAD HORIZON  – CONDITIONING ON REGIMES OF THE SETAR-3 MODEL 
 REGIME 1 

T1=186 

REGIME 2 
T2=271 

REGIME 3 
T3=181 

 GARCH SETAR-3 GARCH SETAR-3 GARCH SETAR-3 

p π LRUC LRIND LRCC π LRUC LRIND LRCC π LRUC LRIND LRCC π LRUC LRIND LRCC π LRUC LRIND LRCC π LRUC LRIND LRCC 

0.95 0.925 0.140 -- -- 0.887 0.001 0.662 0.003 0.948 0.901 -- -- 0.838 0.000 0.426 0.000 0.956 0.715 -- -- 0.895 0.003 0.996 0.012 

0.90 0.876 0.298 0.160 0.217 0.823 0.001 0.955 0.006 0.889 0.563 0.835 0.828 0.790 0.000 0.478 0.000 0.928 0.186 -- -- 0.840 0.012 0.220 0.020 

0.85 0.833 0.530 0.518 0.666 0.774 0.006 0.822 0.023 0.834 0.466 0.825 0.748 0.738 0.000 0.301 0.000 0.873 0.377 0.511 0.546 0.790 0.031 0.086 0.022 

0.80 0.796 0.884 0.930 0.986 0.747 0.081 0.683 0.201 0.812 0.624 0.509 0.713 0.686 0.000 0.317 0.000 0.812 0.680 0.478 0.715 0.724 0.014 0.211 0.022 

0.75 0.763 0.670 0.850 0.897 0.704 0.158 0.355 0.240 0.745 0.861 0.599 0.857 0.661 0.001 0.280 0.003 0.746 0.898 0.766 0.949 0.669 0.014 0.434 0.036 

0.70 0.731 0.348 0.582 0.554 0.667 0.326 0.465 0.473 0.686 0.625 0.434 0.653 0.601 0.001 0.417 0.002 0.680 0.551 0.414 0.600 0.624 0.030 0.071 0.018 

0.65 0.688 0.271 0.537 0.451 0.634 0.657 0.751 0.861 0.624 0.365 0.062 0.116 0.531 0.000 0.161 0.000 0.641 0.797 0.492 0.764 0.580 0.052 0.185 0.063 

0.60 0.608 0.834 0.952 0.976 0.597 0.928 0.760 0.951 0.572 0.348 0.065 0.117 0.483 0.000 0.230 0.000 0.580 0.586 0.919 0.858 0.519 0.028 0.054 0.014 

0.55 0.570 0.585 0.859 0.848 0.538 0.735 0.660 0.857 0.535 0.621 0.289 0.504 0.443 0.000 0.603 0.002 0.508 0.260 0.884 0.525 0.508 0.260 0.101 0.139 

0.50 0.527 0.463 0.856 0.752 0.484 0.660 0.930 0.904 0.480 0.504 0.885 0.792 0.399 0.001 0.478 0.003 0.442 0.118 0.788 0.284 0.436 0.087 0.040 0.028 

0.45 0.484 0.354 0.836 0.637 0.446 0.918 0.814 0.968 0.443 0.812 0.511 0.783 0.369 0.007 0.197 0.011 0.398 0.156 0.263 0.196 0.381 0.061 0.215 0.080 

0.40 0.430 0.404 0.802 0.684 0.382 0.610 0.724 0.825 0.395 0.862 0.243 0.498 0.339 0.040 0.128 0.038 0.337 0.081 0.440 0.161 0.331 0.057 0.654 0.148 

0.35 0.382 0.368 0.506 0.534 0.306 0.208 0.796 0.438 0.347 0.914 0.733 0.938 0.280 0.015 0.050 0.007 0.326 0.495 0.823 0.773 0.276 0.034 0.819 0.103 

0.30 0.333 0.326 0.883 0.611 0.280 0.540 0.808 0.805 0.295 0.863 0.505 0.789 0.251 0.073 0.030 0.019 0.271 0.385 0.612 0.603 0.243 0.088 0.835 0.229 

0.25 0.274 0.451 0.771 0.721 0.253 0.933 0.611 0.875 0.251 0.972 0.548 0.834 0.214 0.164 0.367 0.253 0.210 0.205 0.353 0.291 0.204 0.148 0.858 0.345 

0.20 0.220 0.491 0.708 0.736 0.215 0.611 0.130 0.279 0.207 0.785 0.385 0.661 0.159 0.080 0.170 0.084 0.166 0.238 0.583 0.429 0.149 0.076 0.276 0.115 

p indicates the nominal coverage, π indicates the actual unconditional coverage; numbers in bold represent rejections at 5% level of significance 
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FIGURE 1 

EURO EFFECTIVE EXCHANGE RATE  
03/01/90-10/07/02 
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FIGURE2 
DENSITY FORECASTS-SETAR-2 VS GARCH 
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NOTES 

                                                
1 See the European Central Bank website (http://www.ecb.int/stats/eer/eer.shtml) for a technical comment on the 
method adopted to construct the series of the Euro nominal effective exchange rate. 
2 We have carried out the forecasting evaluation exercise allowing for different divisions of the estimation and 
forecasting periods, and found qualitatively similar results in terms of  the relative performance of the rival models (the 
results are available from the authors upon request). 
3 In the traditional form, the RESET test is computed by running a linear autoregression of order p, followed by an 
auxiliary regression in which powers of the fitted values obtained in the first stage are included along with the initial 
regressors. The modified RESET test requires that all the initial regressors enter linearly and up to a certain power h in 
the auxiliary regression; Thursby and Schimdt suggest using h=4. The Lagrange Multiplier form (Granger and 
Teräsvirta, 1993) of the test is adopted in this study, thus the test is distributed as a χ2 with up to 3p degrees of freedom 
for the modified version. 
4 The auxiliary regression for the LM S2 test is computed as follows:  

3
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−−
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−−

=
−

=
∑∑∑∑ ++++= κψξββε  where εt are the estimated residuals from a linear regression 

of order p. Under the null hypothesis the test has a χ2 distribution with 3p degrees of freedom. 
5 For a complete discussion of this class of models see Tong (1983). 
6 A variant of the TAR model can be obtained if the parameters are allowed to change smoothly over time, the resulting 
model is called a Smooth Transition Autoregressive (STAR) model (see Granger and Teräsvirta, 1993, and Teräsvirta, 
1994). 
7 As suggested by one referee, we have also calculated the forecasts by bootstrapping the estimated regime-specific 
residuals. However, the multi-step-ahead forecasts did not show any significant difference across the two alternative 
methods. 
8 We also performed the modified version of the DM test proposed by Harvey et al. (1997), which corrects for the 
oversize shortcomings of the original DM tests in small samples and for h>1. The results, not reported here, do not 
differ appreciably from those presented in table 3. 
9 The maximum absolute difference between the empirical distribution function and the distribution function under the 
null hypothesis of uniformity. 
10 For a preliminary study of the size and power of alternative tests see Noceti, Smith and Hodges, “An evaluation of 
tests of distributional forecasts”, Discussion paper FORC, University of Warwick, 2000,  no. 102. 
11 The formula reported in Lilliefors (1967) for T>30, level of significance 0.05, is given by 0.886 / T . The standard 
critical values of the Kolmogorov-Smirnov test are probably a conservative estimate of the ‘correct’ critical values 
when certain parameters of the distribution must be estimated from the sample. 
12 All the tests have been performed with Eviews codes, available from the authors upon request. 


