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ABSTRACT

The aim of this paper is to analyse the out-of-sample performance of SETAR models relative
to alinear AR and a GARCH model using daily data for the Euro effective exchange rate. The
evaluation is conducted on point, interval and density forecasts, unconditionally, over the
whole forecast period, and conditional on specific regimes. The results show that overall the
GARCH mode is better able to capture the distributional features of the series and to predict
higher-order moments than the SETAR models. However, from the results there is aso a
clear indication that the performance of the SETAR models improves significantly

conditional on being on specific regimes.

Keywords: SETAR models, forecasting accuracy, point forecasts, MSFEs, interval forecasts,
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1. INTRODUCTION

In this study we focus on the dynamic representation of the euro effective exchange
rate and on its short run predictability. The analysis is conducted in the context of univariate
models, exploiting recent developments of nonlinear time series econometrics. The models
that we adopt to describe the dynamic behaviour of the euro effective exchange rate series are
the self-exciting threshold autoregressive (SETAR) models, which represent a stochastic
process generated by the alternation of different regimes. Although there have been many
applications of threshold models to describe the nonlinearities and asymmetries of exchange
rate dynamics (Kréger and Kugler, 1993, Brooks, 1997, 2001), there are till few studies on
the forecasting performance of the models, using historical time series data. Notorioudly, the
in-sample advantages of nonlinear models have only rarely provided better out-of-sample
forecasts compared with a random walk or asimple AR model.

One reason for the poor forecast performance of nonlinear models lies in the different
characteristics of the in-sample and out-of-sample periods. For example, nonlinearities may
be highly significant in-sample but fail to carry over to the out-of-sample period (Diebold and
Nason, 1990). In arecent application to the yen/US dollar exchange rate, Boero and Marrocu
(2002b) show clear gains from the SETAR model over the linear competitor, on MSFES
evaluation of point forecasts, in sub-samples characterised by stronger non-linearities. On the
other hand, the performance of the SETAR and AR models was indistinguishable over the
sub-samples with weaker degrees of nonlinearity.

The oft-claimed superiority of the linear models has also been challenged by a number
of recent studies suggesting that the alleged poor forecasting performance of nonlinear models
can be due to the evaluation and measurement methods adopted. In a Monte Carlo study,
Clements and Smith (2001) show that the evaluation of the whole forecast density may reveal

gains to the nonlinear models which are systematically masked in MSFE comparisons. Boero



and Marrocu (2002a, 2002b) confirm this result in various applications with actual data, and
show that when the nonlinear models are evaluated on interval and density forecasts, they can
exhibit accuracy gains which remain concealed if the evaluation is based only on MSFE
metric. Some gains of the SETAR models have also been found, even in terms of MSFES,
when the forecast accuracy is evaluated conditional upon a specific regime (Tiao and Tsay,
1994, Clements and Smith, 2001, and Boero and Marrocu, 2002a). An interesting result,
common to these studies, suggests that SETAR models can produce point forecasts that are
superior to those obtained from a linear model, when the forecast observations belong to the
regime with fewer observations.

In the present study we investigate further the possibility that the SETAR models are
more valuable in terms of forecasting accuracy when the processisin a particular regime. We
do this by extending the ‘conditional’ evaluation approach to interval and density forecasts, as
well as point forecasts. By using daily data for the returns of the euro effective exchange rate
(euro-EER), the performance of two and three-regime SETAR models is evaluated against
that of a smple AR and a GARCH model. The evaluation of the models conditional on the
regimes is possible because of the large number of data points available in our application.
Point forecasts are evaluated by means of MSFEs and the Diebold and Mariano test. Interval
forecasts are assessed by means of the likelihood ratio tests proposed by Christoffersen
(1998), while the techniques used to evaluate density forecasts are those introduced by
Diebold et al. (1998). For the evaluation of density forecasts we also use the modified version
of the Pearson goodness-of-fit test and its components, as proposed by Anderson (1994) and
recently discussed in Wallis (2002). These methods provide information on the nature of
departures from the null hypothesis, with respect to specific characteristics of the distribution
of interest - such as location, scale, skewness and kurtosis — and may offer valuable support in

the evaluation of the models.



The rest of the paper is organised as follows. In section 2 we present the statistical
properties of the data and the results of the linearity tests. In section 3 we report the results
from the modelling and forecasting exercises. In section 4 we summarise the results and make

some concluding remarks.

2. LINEARITY TESTSAND MODELS SPECIFICATION

In this study we analyse the dynamic behaviour of the returns of the daily euro nominal
effective exchange rate over the period 30/1/1990-10/07/02 (3081 observations). The nominal
effective exchange rate for the euro is calculated by the European Central Bank™.

The log-levels and the returns of the series are depicted in figure 1. In table 1a we report
the summary of the descriptive statistics of the returns series for three different periods: the
entire sample period, the estimation period and the forecasting period. The estimation sample
refers to the period 03/01/1990-30/12/1999 (2439 observations), while the forecasting sample
extends to the period 03/01/2000-10/07/2002 (642 observations). The splitting of the entire
sample between estimation and forecasting period alows us to withhold around 20% of the
total number of observations in order to evaluate the forecasting performance of the nonlinear
models, as suggested by Granger (1993)2.

The data accord well with the stylised facts of exchange rate series which emerge from
the empirical literature. The returns of the series are mean-stationary, periods of high
volatility and tranquillity tend to cluster together, the sample moments suggest fat taildness of
the return distribution. Kurtosis is particularly high in the estimation period. The forecasting

period exhibits alarger variance and less kurtosis.



2.1 Linearity tests

In order to detect nonlinearities in the euro-EER returns we performed the RESET test
and the S; test proposed by Luukkonen-Saikkonen-Terésvirta (1988). Both tests are devised
for the null hypothesis of linearity. While the RESET test is devised for a generic form of
misspecification, the S, test is formulated for a specific alternative hypothesis, i.e. smooth
transition autoregressive (STAR)-type nonlinearity. Luukkonen-Saikkonen-Terasvirta,
however, show that the S, test has reasonable power even when the true model is a SETAR
one. The RESET test has been computed in the traditional version and in the modified version
found to be superior by Thursby and Schmidt (1977)%. The S, test is performed assuming that
the variable governing the transition from one regime to the other is yi.q with the delay
parameter d in the range [1,6]*.

Table 1b reports the results of the linearity tests computed for the whole sample period,
the estimation period and the forecast period. The selected lag order p ranges from 3to 5in
order to check for the effects of different dynamic structures. The tests applied to the entire
sample period and to the estimation period lead to the rejection of the null in a large number
of cases, indicating that there is strong evidence of nonlinear components for the data.
However, when the tests are applied to the forecast period the evidence based on the RESET
tests indicates that nonlinearities are present with less intensity. The S test (for d=3), on the

other hand, is highly significant at ailmost all lags.

2.2 M ODEL S SPECIFICATION
The forecasting models adopted in this study belong to the class of threshold
autoregressive (TAR) models. These are compared with a smple AR model and with a

GARCH model. The basic idea of the TAR models is that the behaviour of a process is



described by a finite set of linear autoregressions’. The appropriate AR model that generates
the value of the time series at each point in time is determined by the relation of a
conditioning variable to the threshold values. If the conditioning variable is the dependent
variable itself after some delay d (yiq), the model is known as self-exciting threshold
autoregressive (SETAR) model.

The SETAR mode is piecewise-linear in the space of the threshold variable, rather than
in time. An interesting feature of SETAR modelsis that the stationarity of y; does not require
the model to be stationary in each regime, on the contrary, the limit cycle behaviour that this
class of models is able to describe arises from the alternation of explosive and contractionary
regimes”.

In this study we choose a two-regime (SETAR-2) and a three-regime (SETAR-3)

SETAR models, which can be represented as follows:
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where &% is assumed 11D(0,5*") and r; represent the threshold values.
The models are estimated, over the period 03/01/1990-30/12/1999, by following the three-
stage procedure suggested by Tong (1983) for the case of a SETAR-2 (p1, pz; d) model. For

given values of d and r, separate AR models are fitted to the appropriate subsets of data, the

order of each model is chosen according to the usual AIC criteria. In the second stage r can



vary over a set of possible values while d has to remain fixed, the re-estimation of the separate
AR models allows the determination of the r parameter, as the one for which AIC(d) attains
its minimum value. In stage three the search over d is carried out by repeating both stage 1
and stage 2 for d=d;, dy, ..., dp. The selected value of d is, again, the value that minimises
AIC(d).

The selected specifications are reported in table 2. The models show clear evidence that
the euro-EER returns are strongly characterised by nonlinearities as the dynamic structure, the
estimated coefficients and the error variance differ across regimes. In the forecasting exercise
discussed in the next sections the performance of the estimated SETAR models is compared
with that of arestricted AR(3) model and an AR(1)-GARCH(1,1). The latter turned out to be
adequate in capturing the volatility displayed by the series and is expected to produce better
calibrated density and interval forecasts than the smple AR model. It is of interest to see how

the SETAR model compares with the GARCH model in predicting higher-order moments.

3. THE FORECASTING EXERCISE

In this section we conduct three different forecasting exercises intended to evaluate the
models on their ability to produce point forecasts, density and interval forecasts. For each
kind of forecasts the evaluation is conducted over the entire forecasting sample -
unconditional evaluation - and over each regime of the SETAR models - conditional on
regime. So far, regime-conditional evaluations of nonlinear models have focussed on point
forecasts only (Clements and Smith, 1999, and Boero and Marrocu, 2002a). In the following
analysis we explore whether a conditional evaluation extended to density and interval

forecasts can add useful information on the relative quality of the forecasts of the models.



3.1. POINT FORECASTSEVALUATION

The forecasting sample covers the period 03/01/00-10/07/02; the models are specified and
estimated over the first estimation period, 03/01/1990-30/12/1999, and the first set of 1 to 5
steps ahead forecast (h=1, 2,...5) computed. The models are then estimated recursively
keeping the same specification but extending the sample with one observation each time. In
this way 638 point forecasts are obtained for each forecast horizon. These forecasts can be
considered genuine forecasts as in the specification stage we completely ignore the
information embodied in the forecasting period. The computation of multi-step-ahead
forecasts from nonlinear models involves the solution of complex analytical calculations and
the use of numerical integration techniques, or aternatively, the use of simulation methods. In
this study the forecasts are obtained by applying the Monte Carlo method with regime-
specific error variances, so that each point forecast is obtained as the average over 500
replications (see Clements and Smith, 1997, 1999)’.

In table 3 we report the MSFEs normalised with respect to the AR model (panel A) and
the GARCH model (panel B). The values are calculated as the ratio M SFEserar/M SFEAR and
MSFEseTar/M SFEGarcH, SO that a value less than 1 denotes a better forecast performance of
the SETAR model. We have also applied the Diebold and Mariano (DM) test for equality of
forecasting accuracy, and indicated with stars the cases for which the MSFEs of the
competing models are statistically significantly different®. From table 3 we can see that when
the comparison is conducted with respect to the AR model (panel A), the assessment of the
models by regime produces more cases in favour of the SETAR models than those obtained
from the evaluation of the entire forecasting sample. This is particularly evident for the

SETAR-2 model in regime 2. However, when the rival model is the AR(1)-GARCH(1,1) the



differences between the MSFEs in terms of the Diebold and Mariano test are in most cases

not significant (panel B).

3.2. DENSITY FORECASTSEVALUATION

Previous authors have found that an evaluation based on density forecasts may reveal
greater discrimination over the linear models than evaluations based on the first moment
(Clements and Smith, 2000, 2001, Boero and Marrocu, 2002a). In this section, we evaluate
the one-step-ahead density forecasts of the models by applying the methods suggested by
Diebold et al. (1998) and surveyed by Tay and Wallis (2000). We also apply the modified
Pearson goodness-of-fit test and its components, proposed by Anderson (1994) and recently

discussed in Wallis (2002) with applications to inflation forecasts.

Density forecasts

The evauation of the density forecasts is based on the analysis of the probability
integral transforms of the actual realisations of the variables with respect to the forecast
densities of the models. These are defined as z=F(y;), where F(.) is the forecast cumulative
distribution function and y: is the observed outcome. Thus, z is the forecast probability of

observing an outcome no greater than that actually realised. If the density forecasts
correspond to the true density, then the sequence of probability integral transforms {zt}t’i1 is

i.i.d. uniform (0,1). To check whether the sequence of probability integral transforms departs
from thei.i.d. uniform hypothesis, the distributional properties of the z series are examined by
visua inspection of plots of the empirical distribution function of the z series, which are
compared with those of a uniform (0,1). To supplement these graphical devices, the

K olmogorov-Smirnov test® can be used on the sample distribution function of the z series (see



Diebold et al., 1999, and Tay and Wallis, 2000). Alternatively, uniformity can be tested by
applying the Pearson chi-squared goodness-of-fit test. These methods address the
unconditional uniformity hypothesis. The independence part of the i.i.d. uniform (0,1)
hypothesis can be assessed by studying the correlograms of the z series and of powers of this
series (to establish the existence of dependence in higher moments) and applying formal tests
of autocorrelation.

In our analysis below, we use both the Kolmogorov-Smirnov test and the Pearson X2

test, in the modified version suggested by Anderson (1994), and the Ljung-Box test for
autocorrelation on (z - 2), (z - 2)?, (z - 2)°, (z- 2)*. A well known limitation of this
approach is that the effects of a failure of independence on the distribution of the tests for
unconditional uniformity is unknown’®. Moreover, failure of the uniformity assumption will
affect the tests for autocorrelation. The use of aternative techniques is therefore

recommended in practical applications as they can offer different insights into the relative

quality of the forecasts and help discriminating between rival models.

The modified Pearson goodness-of-fit test and its components
The following description draws from Anderson (1994) and Wallis (2002). The standard

expression for the chi-squared goodness-of-fit test is given by

2_ K (ni-n/k)?
21 (n/k)

where k is the number of equiprobable classes in which the range of the z seriesis divided, n
are the observed frequencies, n the number of observations (in our case the number of
forecasts). This test has a limiting c? distribution with k-1 degrees of freedom under the null

hypothesis.
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Anderson (1994) proposed a rearrangement of the test, which can be decomposed in
various components to test departures from specific aspects of the distribution of interest. For
example, shifts in location, shifts in scale, changes in symmetry and in kurtosis can all be
detected from these tests. The rearranged test, valid under equiprobable partitions (see Boero,
Smith and Wallis, 2002) is written as.

X2=(x-me[l - eet K] (x-m) /(n/K)

In this expression, x is a kx1 vector of observed frequencies (X1, X, ..., X), which, under the
null hypothesis has mean vector m=(n/ k, ..., n/ k)¢and covariance matrix V = (n/K) [l - eed
K], where e is a kx1 vector of ones. The asymptotic distribution of the test rests on the k-
variate normality of the multinomial distribution of the observed frequencies. The test can
also be written as

X2=yty/(n/K)
where y = A(x-m) is a (k-1) column vector, and A is defined as a (k-1) x k transformation
matrix such that

AA¢ | and A =1 - eet K].

With k=4, one can test departures from three distributional aspects, namely shifts in

location, shifts in scale and changes in skewness. The A matrix in this case is defined as

R
A= 9 -1 -1 ¢
e N
g -1 1 -1

Here, the first row relates to the location of the distribution, the second to the scale, and the

third to skewness. The elements of the (3x1) vector y=A(x-n) are therefore given respectively

by:

Yt Y0+ %) - (% + X))

Y21 YA (Xt Xa) - (% + X3)]
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Y Y0+ %) - (% + Xq)]

Thus, the total X test yd/(n/4) is equal to the sum of the squared elements of y. The three
components of the test, y?/(n/4), are independently distributed as c? with one degree of

freedom under the null hypothesis. The first component of this sum is given by:

(Wn)[(xa + %) = (Xs + Xa)]?
This component detects possible shifts in location, with reference to the median of the
distribution (shifts from the first half of the distribution to the second half). The second
component detects shifts from the tails to the centre (interquartile range). Finally, the third
component detects possible asymmetries, that is shifts from the first and third quarters to the
second and fourth.

With k=8, one can also focus on the fourth characteristic related to kurtosis. In this

case the A matrix is defined as

R

1 1 1-1-1-1-1
1 -1-1-1-1 1 13
1-1-1 1 1-1-10
1-1 1 1 -1-1

> @ D >

>

>
I

&1

(‘pt‘D) (‘_D) (‘D)_(‘D)
cocoiedie

Here, only the first four rows are related to features of the distribution that are familiar,
therefore the last three rows are omitted. So, in this case, the total chi-squared goodness-of-fit
test, computed with the standard formula, will not be obtained as the sum of seven individual
components, but will be equal to the sum of the first four components plus a remaining
aggregate component independently distributed as ¢ with three degrees of freedom under the

null hypothesis.
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Model evaluation

The one-step-ahead density forecasts of the effective exchange rate returns are obtained
under the assumption of Gaussian errors, with the appropriate regime-specific variances for
the SETAR models. The evaluation of the forecasts is carried out unconditionally, over the
forecast period as a whole, and separately for each regime. In figure 2 we report some
selected plots of the empirical distribution function of the z series against the theoretical
uniform distribution function. We omit the 45° line to avoid over-crowding the plots. The
95% confidence intervals along side the hypothetical 45° line are calculated using the critical
values of the Kolmogorov Smirnov test, reported in Lilliefors (1967, Table 1, p. 400), in the
presence of estimated parameters™. The results from the Pearson X? test and its components,
computed with k=8 partitions, are presented in table 4. In table 5 we report the results of the
Ljung-Box test for autocorrelation of the z series and its powers.

As we can see from table 4 and figure 2, the GARCH model seems to produce density
forecasts which are unconditionally correct, as suggested by the overall goodness-of-fit test,
by its individual components, and by the Kolmogorov Smirnov test. Moreover, the results in
table 5 show that the GARCH forecasts aso satisfy the independence part of the joint
hypothesis, with the Ljung-Box test showing no significant dependencies in the first and
higher moments of the z series. These results for the GARCH model are robust across the two
types of evaluations conducted in this paper, that is for the entire forecast period and
conditional on the regimes of the SETAR models. It is now interesting to see how the SETAR
density forecasts compare with the GARCH forecasts.

We start by discussing the results for the SETAR model with 2 regimes. As shown by
the results in table 4 and figure 2, the SETAR-2 model fails the unconditional uniformity test
in the evaluation over the entire forecasting sample. However, when the forecast densities are

evaluated separately for each regime, we find that the forecast performance of the SETAR
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model is clearly improved in regime 2, which is the regime with fewer observations (T=192).
For this regime, in fact, we cannot reject the hypothesis that the forecasts are well calibrated
(unconditional uniformity).

The plots of the cdf of the z series versus the uniform (0,1) distribution, in figure 2,
confirm these results. The empirical cdf of the SETAR-2 model (figure 2) crosses the bounds
in various regions of the distribution in the entire sample and for the observationsin regime 1,
while the cdf is inside the bounds for the observations in regime 2. Further information on the
nature of departures from the null hypothesis can be obtained from the individua test
components of the goodness-of-fit test. The results in table 4 show that the largest
contribution for the failure of the SETAR forecasts over the entire forecast period and for the
observations in regime 1 comes from the second (scale) and fourth (kurtosis) components. It
is interesting to note that there is some weak evidence of departure from kurtosis also for the
forecasts in regime 2, suggesting that the SETAR-2 density forecasts are not as well
calibrated as the GARCH forecasts in the tails of the distribution.

In order to complete the evaluation of the density forecasts of the SETAR model, we
now look at the results from the test for autocorrelation of the z series and their powers. It is
in fact of interest to see to what extent the SETAR models are able to capture the dynamicsin
heteroschedasticity. Table 5 clearly shows that the density forecasts from the SETAR models
violate the independence assumption, when they are evaluated over the entire forecast period
and conditional on regime 1. Violations occur with respect to the second and fourth power of
the z transforms. However, consistently with our findings so far, the quality of the density
forecasts improves for the observations in regime 2, for which the independence part of the
joint i.i.d. uniform hypothesisis also satisfied.

A similar pattern of results can be noticed for the SETAR model with 3 regimes,

confirming that the ability to produce ‘good’ forecasts varies across regimes. The density
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forecasts of the SETAR-3 model are unconditionally incorrect, according to the chi-squared
goodness-of-fit test (table 4) computed over the entire forecasting period, and violate the
independence assumption (table 5). However, when the tests are computed conditionally on
each regime, we find that the SETAR-3 model produces density forecasts which satisfy the
joint i.i.d U(0,1) hypothesis for the observations in regime 1, and are unconditionaly well
calibrated (though not independent) in regime 3. The results from the chi-squared goodness-
of-fit test are, in general, confirmed by the plots of the empirical distribution function of the z
series, not reported here for space reasons.

By combining the information in table 4, table 5 and figure 2, overall the GARCH
model has shown better able to capture the distributional aspects of the euro-EER returns. In
particular we have found evidence that the SETAR models fail to capture the scale and
leptokurtosis in the distribution of the series when the density forecasts are evaluated over the
entire forecast period. However, a regime conditional evaluation of the models has
consistently shown an improved performance of the SETAR forecasts when the forecast
origin is conditioned on specific regimes. These regimes turned out to be those with fewer
observations.

In the next section we will adopt methods that can be used to evaluate interval

forecasts.

3.3. INTERVAL FORECASTSEVALUATION

In this section we extend the forecast comparison by evaluating the models on their ability
to produce interval forecasts. An interval forecast, or prediction interval, for a variable
specifies the probability that the future outcome will fall within a stated interval. The lower

and upper limits of the interval forecast are given as the corresponding percentiles. We use

15



central intervals, so that, for example, the 90 per cent prediction interval is formed by the 5"
and 95™ percentiles.

Although the evaluation of the entire forecast density is more general than one based on
forecast intervals, the results may be affected by some regions of the density, which may be of
less concern to the forecast user. For example, financial operators are mostly concerned with
the ability to model and forecast the behaviour in the tails of the distribution. Evaluation of
interval forecasts enables the forecast user to assess more directly the ability of the models to
produce correct forecasts, focussing on levels of coverage of specific interest.

The evaluation of interval forecasts is conducted by means of the likelihood ratio test of
correct conditional coverage as recently proposed by Christoffersen (1998). The forecasts are
assessed, like in the previous evaluations, over the entire forecast period and by conditioning
upon regimes.

Christoffersen (1998) shows that a correctly conditionally calibrated interval forecast will
provide a hit sequence I; (for t=1, 2, ..., T), with value 1 if the realisation is contained in the
forecast interval, and O otherwise, that is distributed i.i.d. Bernoulli, with the desired success
probability p. However, as stressed by Christoffersen, a simple test for correct unconditional
coverage (LRuc) is insufficient in the presence of dynamics in higher-order moments
(conditional heteroscedasticity, for example) because it does not have power against the
aternative that the zeros and ones are clustered in time-dependent fashion. In order to
overcome this limitation, Christoffersen proposes a test for independence (LRinp) which
assumes a binary first-order Markov chain for the indicator function I;. Under the null, the test
follows a c? distribution with one degree of freedom. The joint test of correct conditional
coverage, LRcc, is obtained as the sum of LRyc and LRinp, and is asymptotically c?
distributed with two degrees of freedom. For a detailed description of the tests we refer the

reader to Christoffersen (1998).
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In this paper we have considered intervals with nominal coverage, p, in the range
[0.95-0.20]. The results are presented in table 6, where, for each nominal coverage, we report
the actual unconditional coverage (p) and the P-values of the three LR tests’. Table 6a
reports the results for the entire forecast period, while tables 6b and 6c¢ report the results for
the individual regimes.

As expected from our previous findings, the interval forecasts obtained from the
GARCH model are conditionally well calibrated, at every level of coverage, and in both
unconditional and regime-conditional evaluations. The SETAR models fail the conditional
coverage test, when they are evaluated over the entire forecast period, for all levels of
coverage, mostly due to strong rejection of the unconditional coverage test. The empirical
coverage (the sample frequency p) isin general less than the nominal coverage, p, that is a
smaller number of outcomes are observed to fall within the stated intervals. This means that
the models overestimate the probability that the variable will fall within the predicted interval.
Thus, over the whole forecast period, the models produce interval forecasts that are too
narrow, indicating that the variance of the predicted distribution is too small. These results
find confirmation in those reported in table 4, suggesting a major departure with respect to the
scale of the distribution.

With respect to the test for independence, an interesting result is that the SETAR-3
model seems more able to produce forecasts that are independent over the whole forecast
period, while there is more evidence against the independence of the SETAR-2 forecasts.

Finaly, from tables 6b and 6¢ we notice that the SETAR-2 model shows a substantial
improvement in regime 2, delivering interval forecasts with correct conditional coverage for
al intervals considered. Similarly the forecast performance of the SETAR-3 is improved in
regime 1. The forecast intervalsin thisregime are all well calibrated, with the exception of the

wider intervals in the range 0.95 - 0.85. This result may be interpreted as failure to correctly
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capture the behaviour in the tails of the distribution also for the observations in regime 1. For
this range of intervals, in fact, p is significantly greater than p, that is fewer observations fall
in the stated intervals, which also implies that more observations actually fall in the tails than

those predicted.

4. CONCLUSIONS

In this paper we have studied the out-of-sample forecast performance of SETAR
models in an application to daily returns from the euro effective exchange rate. The SETAR
models have been specified with two and three regimes, and their performance has been
assessed against that of asimple linear AR model and a GARCH model. The forecast exercise
is genuine in the sense that for the specification and estimation of the models we have ignored
any information contained in the forecasting period.

The models have been assessed, first of all, on their ability to produce point forecasts,
measured by means of M SFES accompanied by the Diebold-Mariano test. Then the evaluation
of the models has been extended to interval and density forecasts, to see whether the SETAR
models can accurately predict higher-order moments.

The evaluation of the models has been conducted not only on different measurement
methods, but also at different levels. That is, we have looked at the relative performance of
the models on average, over the forecast period as a whole, and aso we have investigated
whether the models are better at predicting future values when the process is in a particular
regime. Evaluations of SETAR models conditional on regimes have been carried out in
previous research, but on point forecasts only. In this paper we have moved a step forward by

extending the conditional evaluation to density and interval forecasts.
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By evaluating the SETAR models over the entire forecasting sample we have found
that none of the models was able to produce ‘good’ density and interval forecasts in general,
while the density and interval forecasts produced by the GARCH model were correctly
conditionally calibrated at each level of the evaluation study. The correct calibration or not of
the various regions of the density has been illustrated by cumulative probability plots of the
probability integral transforms against the uniform (0,1), and also assessed by the X2
goodness-of-fit test and its individual components. The decomposition of the goodness-of-fit
test into individual components has enabled us to explore possible directions of departures
more closely, indicating major departures for the SETAR models with respect to scale and
kurtosis.

The assessment of the models conditional on regimes has indicated a significant
improvement in the quality of the SETAR forecasts in correspondence of specific regimes. In
particular, the SETAR specification with two regimes has shown a good performance in terms
of point, intervals and density forecasts when the process was in regime 2. On the other hand,
the three-regime SETAR has not shown any improvement in terms of point forecasts, while it
has delivered better interval and density forecasts in regime 1. In al evauations, the improved
performance of the SETAR models has occurred conditional on the regimes with a relatively
small number of observations. Thisisin line with suggestions from previous studies.

To conclude, the GARCH model has shown more able to capture the distributional
features of the euro effective exchange rate returns and to predict higher-order moments than
the SETAR models. However, both SETAR models have shown a substantialy improved

forecast performance when the forecast origin was conditioned on some specific regimes.
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TABLESAND FIGURES

TABLE 1A DESCRIPTIVE STATISTICS

Entire sample Estimation sample Forecasting sample
03/01/90-10/07/02 03/01/90-30/12/99 03/01/00-10/07/02
T=3081 T=2439 T=642
Mean -0.0001 -0.0001 0.0000
Median -0.0001 -0.0001 0.0000
Maximum 0.0289 0.0214 0.0289
Minimum -0.0382 -0.0382 -0.0179
Std. Dev. 0.0041 0.0037 0.0053
Skewness -0.0703 -0.4387 0.3933
Kurtosis 7.6953 9.3357 4.5813
Jarque-Bera 2832.6670 4157.5370 83.4425
Probability 0.0000 0.0000 0.0000
Observations 3081 2439 642
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TABLE 1B LINEARITY TESTS - P-VALUES

Entire sample Estimation sample Forecasting sample
03/01/90-10/07/02 03/01/90-30/12/99 03/01/00-10/07/02
n=3081 n=2439 n=642

3 4 5 3 4 5 3 4 5
RESET, h=2 0.0024 0.0230 0.0401 0.3952 0.4142 0.0804 0.2523 0.0327 0.1796
RESET, h=3 0.0085 0.0528 0.0089 0.0002 0.0002 0.0006 0.4965 0.1007 0.4062
RESET, h=4 0.0227 0.1174 0.0229 0.0001 0.0001 0.0011 0.6333 0.2043 0.2057
Mod. RESET, h=2 0.0006 0.0016 0.0036 0.0250 0.0232 0.0306 0.0836 0.1128 0.1209
Mod. RESET, h=3 0.0003 0.0011 0.0007 0.0012 0.0016 0.0003 0.0933 0.1467 0.1534
Mod. RESET, h= 0.0002 0.0011 0.0009 0.0001 0.0004 0.0001 0.2521 0.3996 0.4067
S, d=1 0.1440 0.2586 0.2428 0.4585 0.4496 0.6018 0.4443 0.5831 0.6338
S, d=2 0.0015 0.0000 0.0002 0.0004 0.0000 0.0000 0.4949 0.1197 0.1944
S, d=3 0.0001 0.0000 0.0002 0.0004 0.0013 0.0003 0.0123 0.0243 0.0223
S, d=4 0.5433 0.6992 0.4608 0.0134 0.0143 0.0247 0.3077 0.2499 0.1145
S, d=5 0.0454 0.1218 0.0883 0.0059 0.0014 0.0021 0.0872 0.1268 0.1872
S, d=6 0.0433 0.1039 0.0083 0.0601 0.1136 0.0402 0.0129 0.0485 0.0562

p denotes the lag order under the null hypothesis of linearity
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TABLE 2 SETAR MODELS SPECIFICATION

SETAR-2 SETAR-3
Coeff. t-value Coeff. t-value
fo® -0.0001 -1.000 -0.0012 -3.0000
f @ 0.0517 2.3716 -0.1446 -2.0569
REGIME 1 f @ 0.0402 1.8962
f @ -0.0685 -3.1136
s® 0.0035 0.0044
T® 1930 455
fo@ 0.0000 0.0000 0.0000 0.0000
REGIME 2 f,@ -0.0869 -1.7345
s®@ 0.0045 0.0034
T@ 497 1539
fod -0.0001 -0.2000
f,9 0.0134 0.1553
REGIME 3 f @ 0.1009 2.3037
fo@ -0.1099 -2.1381
s® 0.0042
T® 440
g (mode) 0.0037 0.0037
d 4 1
MODEL r 0.00248 -0.00279
ry - 0.00277
AlC -11.206 -11.208

For the SETAR-2 model the transition variable is represented by y.4 while the threshold
is selected to be 0.00248; in regime 1 the series is described by an AR(3) process,
whilein regime 2 it follows an AR(1) process.

For the SETAR-3 model the transition variable is represented by y., while the
thresholds values are approximately symmetric and equal to -0.00279 and 0.00277; in
regime 1 the series is described by an AR(1) process, in regime 2 it is approximated
just by a constant, while in regime 3 it follows an AR(3) process.




TABLE 3A FORECASTING PERFORMANCE - NORMALIZED MSFE

Number of steps-ahead
1 2 3 4 5
(MSFEsetarRMSFEAR) A
SETAR-2 | Entire sample, T=638 1.0025 1.0011 0.9948 0.9982 0.9991
Regime 1 1.0097** 1.0065* 1.0015 1.0021 0.9991
Ti 446 446 446 446 638
Regime 2 0.9842 0.9875 0.9779* 0.9884** na
To 192 192 192 192 0
SETAR-3 | Entire sample, T=638 1.0079 0.9984 0.9962 0.9989 0.9986
Regime 1 1.0077 na 1.0021 0.9949 1.0022
Ti 186 0 128 165 158
Regime 2 0.9921 0.9984 0.9939 0.9987 0.9951
To 271 638 366 320 321
Regime 3 1.0244** na 0.9985 1.0055 0.9995
Ts 181 0 144 153 159
(M SF ESETAR/M SF EGARCH) B
SETAR-2 |Entire sample, T=638 1.0014 1.0059 0.9998 0.9984 0.9993
Regime 1 1.0016 1.0049 1.0001 1.0016 0.9993
Ti 446 446 446 446 638
Regime 2 1.0008 1.0085 0.9990 0.9903 na
To 192 192 192 192 0
SETAR-3 | Entire sample, T=638 1.0068 1.0031 1.0012 0.9991 0.9987
Regime 1 0.9966 na 1.0118 0.9960 1.0016
Ti 186 0 128 165 158
Regime 2 1.0020 1.0031 0.9980 0.9974 0.9952
To 271 638 366 320 321
Regime 3 1.0212 na 1.0020 1.0085 1.0009
Ts 181 0 144 153 159

* ** denotes significance of the Diebold-Mariano test at 10% and 5%

“na’ refersto the cases for which the MSFE can not be computed as the relevant model does not
produce any forecast for that particular regime/horizon.




TABLE 4 FORECASTING PERFORMANCE - ¢2 GOODNESS-OF-FIT TESTS - P-VALUES IN ITALICS

(ANDERSON-WALLIS DECOMPOSITION, K=8)

Models | location scale skewness | kurtosis total

Entire sample| GARCH 0.401 0.759 1.605 0.056 5.461
(T=638) 0.526 0.384 0.205 0.812 0.604
SETAR-2| 0.100 14.445 0.157 6.828 26.301

0.751 0.000 0.692 0.009 0.000

SETAR-3| 0.006 11.060 0.000 5.643 20.708

0.937 0.001 1.000 0.018 0.004

Regimel GARCH 0.000 0.897 0.439 0.143 3.040
(T,=446) 1.000 0.344 0.507 0.705 0.881
SETAR-2| 0.036 19.812 0.000 3.955 32.601

SETAR-2 0.850 0.000 1.000 0.047 0.000
Regime2 GARCH 1.333 0.021 1.688 0.021 10.417
(T,=192) 0.248 0.885 0.194 0.885 0.166
SETAR-2| 0.083 0.021 0.521 3.000 10.667

0.773 0.885 0.470 0.083 0.154

Regimel GARCH 2.602 0.538 0.194 0.086 3.677
(T,=186) 0.107 0.463 0.660 0.769 0.816
SETAR-3| 0.052 0.052 0.468 1.671 5.081

0.820 0.820 0.494 0.196 0.650

SETAR-3| Regime2 GARCH 0.624 0.446 0.446 0.033 5.044
(T,=271) 0.430 0.504 0.504 0.855 0.655
SETAR-3| 0.299 11.162 0.446 3.546 17.148

0.585 0.001 0.504 0.060 0.016

Regime3 GARCH 1.994 2.436 1.243 0.934 8.392
(Ts=181) 0.158 0.119 0.265 0.334 0.299
SETAR-3| 1.243 2.923 0.138 0.934 9.807

0.265 0.087 0.710 0.334 0.200
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TABLE5 P-VALUESOF THE LIJUNG-BOX Q STATISTICS FOR SERIAL CORRELATION
(FIRST SIX AUTOCORRELATIONS)

Moments

(z-2) (z- 2? (z-2y° (z- 2

Entiresample |[GARCH 0.258 0.588 0.187 0.402
SETAR-2 0.472 0.000 0.191 0.000

SETAR-3 0.394 0.000 0.125 0.000

Regime 1 GARCH 0.424 0.998 0.411 0.989
SETAR-2 0.382 0.000 0.177 0.000

Regime 2 GARCH 0.253 0.354 0.089 0.594
SETAR-2 0.493 0.323 0.327 0.434

Regime 1 GARCH 0.438 0.325 0.707 0.391
SETAR-3 0.337 0.276 0.342 0.690

Regime 2 GARCH 0.244 0.386 0.775 0.495
SETAR-3 0.190 0.000 0.705 0.000

Regime 3 GARCH 0.387 0.772 0.496 0.425
SETAR-3 0.290 0.002 0.429 0.003
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TABLE 6A FORECAST INTERVAL EVALUATION FOR 1-STEP-AHEAD HORIZON — ENTIRE FORECAST PERIOD

GARCH SETAR-2 SETAR-3

p p LRuc LRinp LRcc p LRuc LRinp LRcc p LRuc LRinp LRcc
0.95 0.944  0.465 -- -- 0.857 0.000 1000 0.000 | 0868 0000 0.706  0.000
0.90 0897 0773 0071 0189 | 0803 0000 0447 0000 | 0813 0000 0.747 0.000
0.85 0845 0716 0294 0539 | 0749 0000 015 0.000 | 0.763 0.000 0485 0.000
0.80 0.807 0647 0217 0421 | 0720 0000 0007 0.000 | 0.715 0.000 0247  0.000
0.75 0751 0963 0782 0961 | 0666 0000 0003 0.000 | 0676 0.000 0226  0.000
0.70 0697 0890 0637 088 | 0610 0000 0023 0.000 | 0.627 0.000 099  0.000
0.65 0647 088 0541 0822 | 0560 0000 0107 0.000 | 0575 0.000 0178  0.000
0.60 058 0429 0489 0576 | 0530 0000 0364 0.001 | 0527 0.000 0076  0.000
0.55 0538 0530 0564 0695 | 0476 0000 0538 0.001 | 048 0.002 0012 0.000
0.50 0483 0384 0685 0630 | 0425 0000 0071 0.000 | 0434 0001 0052 0.001
0.45 0442 0685 0289 0525 | 0379 0000 0211 0001 | 0395 0005 029 0.011
0.40 0389 0560 0192 0360 | 0339 0001 0469 0005 | 0350 0.009 0358 0.021
0.35 0351 0954 0426 0727 | 0299 0007 0024 0.002 | 0.287 0001 019  0.001
0.30 0299 0972 0187 0418 | 0268 0075 0004 0.003 | 0257 0.016 0099 0.014
0.25 0246 0819 0240 0488 | 0218 0057 0025 0.013 | 0223 0105 0720 0.252
0.20 0199 093 0341 0634 | 0166 0029 0124 0.028 | 0172 0076 0549 0.173

p indicates the nominal coverage, p indicates the actual unconditional coverage; numbersin bold represent rejections at 5% level of

significance
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TABLE 6B FORECAST INTERVAL EVALUATION FOR 1-STEP-AHEAD HORIZON — CONDITIONING ON REGIMES OF THE SETAR-2 MODEL

REGIME 1 REGIME 2
T,=446 T,=192
GARCH SETAR-2 GARCH SETAR-2

p P LRuc LRinp LRcc P LRuc LRinp LRcc P LRuc LRinp LRcc P LRuc LRinp LRcc
095 | 0944 0565 0704 0788 | 0.832 0.000 0.268 0.000 | 0943 0650 0.649 0814 | 0916 0052 0.166 0.058
09 | 0890 0494 0773 0759 | 0.774 0.000 0.277 0.000 | 0911 0590 0676 0793 | 0869 0180 0.297 0.237
085 | 0836 0424 0734 0686 | 0.722 0.000 0.083 0.000 | 0865 0566 0.735 0801 | 0812 0159 0572 0.316
080 | 0.794 0741 0767 0906 | 0.679 0.000 0.001 0.000 | 0839 0170 0254 0204 | 0.780 0521 0254 0425
075 | 0738 0550 0665 0761 | 0.646 0.000 0.002 0.000 | 0.781 0310 0.749 0568 | 0.712 0251 0954 0.516
070 | 0684 0459 0612 0668 | 0590 0.000 0.001 0.000 | 0.729 0373 0954 0672 | 0660 0193 0427 0.313
065 | 0630 0379 0328 0421 | 0538 0.000 0.016 0.000 | 0688 0.272 0.959 0546 | 0613 0243 0351 0.328
060 | 0581 0407 0910 0705 | 0504 0.000 0.142 0.000 | 0594 0860 0965 0984 | 0592 0755 0.706 0.887
055 | 0536 0549 0973 0835 | 0453 0.000 0.062 0.000 | 0542 0817 0874 0961 | 0534 0606 098 0.875
050 | 0478 0344 0697 0592 | 0.395 0.000 0.008 0.000 | 0495 088 0.827 0966 | 0497 0900 0943 0.990
045 | 0433 0463 0407 0542 | 0.357 0.000 0.059 0.000 | 0464 0.706 0999 0931 | 0435 0624 0437 0.656
040 | 0381 0416 0540 059 | 0321 0.001 0275 0.001 | 0406 0860 0868 0971 | 0382 0576 0882 0.846
035 | 0341 0683 0820 0897 | 0.276 0.001 0.020 0.000 | 0375 0470 0.703 0.716 | 0356 0914 0321 0.607
030 | 0278 0308 0298 0346 | 0.249 0.016 0.011 0.002 | 0349 0144 0366 0229 | 0314 0709 0408 0.663
025 | 0229 0294 0222 0273 | 0193 0.004 0060 0.003 | 0286 0251 0.609 0453 | 0277 0411 035 0.465
020 | 0182 0326 0105 0.165 | 0150 0.007 0.738 0.023 | 0240 0180 0395 0284 | 0204 0919 0.067 0.186

p indicates the nominal coverage, p indicates the actual unconditional coverage; numbersin bold represent rejections at 5% level of significance
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TABLE 6C FORECAST INTERVAL EVALUATION FOR 1-STEP-AHEAD HORIZON — CONDITIONING ON REGIMES OF THE SETAR-3 MODEL

REGIME 1
T,=186

REGIME 2
T,=271

REGIME 3
T5=181

p

p

GARCH

LRuc

I—RIND

LRcc

p

SETAR-3

LRuc

I—RIND

LRcc

p

GARCH

LRuc

I—RIND

LRcc

p

SETAR-3

LRuc

I—RIND

LRcc

p

GARCH
LRuc LRinp

LRcc

SETAR-3

LRuc

I—RIND

LRcc

0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20

0.925
0.876
0.833
0.796
0.763
0.731
0.688
0.608
0.570
0.527
0.484
0.430
0.382
0.333
0.274
0.220

0.140
0.298
0.530
0.884
0.670
0.348
0.271
0.834
0.585
0.463
0.354
0.404
0.368
0.326
0.451
0.491

0.160
0.518
0.930
0.850
0.582
0.537
0.952
0.859
0.856
0.836
0.802
0.506
0.883
0.771
0.708

0.217
0.666
0.986
0.897
0.554
0.451
0.976
0.848
0.752
0.637
0.684
0.534
0.611
0.721
0.736

0.887
0.823
0.774
0.747
0.704
0.667
0.634
0.597
0.538
0.484
0.446
0.382
0.306
0.280
0.253
0.215

0.001
0.001
0.006
0.081
0.158
0.326
0.657
0.928
0.735
0.660
0.918
0.610
0.208
0.540
0.933
0.611

0.662
0.955
0.822
0.683
0.355
0.465
0.751
0.760
0.660
0.930
0.814
0.724
0.796
0.808
0.611
0.130

0.003
0.006
0.023
0.201
0.240
0.473
0.861
0.951
0.857
0.904
0.968
0.825
0.438
0.805
0.875
0.279

0.948
0.889
0.834
0.812
0.745
0.686
0.624
0.572
0.535
0.480
0.443
0.395
0.347
0.295
0.251
0.207

0.901
0.563
0.466
0.624
0.861
0.625
0.365
0.348
0.621
0.504
0.812
0.862
0.914
0.863
0.972
0.785

0.835
0.825
0.509
0.599
0.434
0.062
0.065
0.289
0.885
0511
0.243
0.733
0.505
0.548
0.385

0.828
0.748
0.713
0.857
0.653
0.116
0.117
0.504
0.792
0.783
0.498
0.938
0.789
0.834
0.661

0.838
0.790
0.738
0.686
0.661
0.601
0.531
0.483
0.443
0.399
0.369
0.339
0.280
0.251
0.214
0.159

0.000
0.000
0.000
0.000
0.001
0.001
0.000
0.000
0.000
0.001
0.007
0.040
0.015
0.073
0.164
0.080

0.426
0.478
0.301
0.317
0.280
0417
0.161
0.230
0.603
0.478
0.197
0.128
0.050
0.030
0.367
0.170

0.000
0.000
0.000
0.000
0.003
0.002
0.000
0.000
0.002
0.003
0.011
0.038
0.007
0.019
0.253
0.084

0.956
0.928
0.873
0.812
0.746
0.680
0.641
0.580
0.508
0.442
0.398
0.337
0.326
0.271
0.210
0.166

0715 -

0186  --

0.377 0511
0.680 0.478
0.898 0.766
0.551 0.414
0.797 0.492
0.586 0.919
0.260 0.884
0.118 0.788
0.156 0.263
0.081 0.440
0.495 0.823
0.385 0.612
0.205 0.353
0.238 0.583

0.546
0.715
0.949
0.600
0.764
0.858
0.525
0.284
0.196
0.161
0.773
0.603
0.291
0.429

0.895
0.840
0.790
0.724
0.669
0.624
0.580
0.519
0.508
0.436
0.381
0.331
0.276
0.243
0.204
0.149

0.003
0.012
0.031
0.014
0.014
0.030
0.052
0.028
0.260
0.087
0.061
0.057
0.034
0.088
0.148
0.076

0.996
0.220
0.086
0.211
0.434
0.071
0.185
0.054
0.101
0.040
0.215
0.654
0.819
0.835
0.858
0.276

0.012
0.020
0.022
0.022
0.036
0.018
0.063
0.014
0.139
0.028
0.080
0.148
0.103
0.229
0.345
0.115

p indicates the nominal coverage, p indicates the actual unconditional coverage; numbersin bold represent rejections at 5% level of significance
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FIGURE 1
EURO EFFECTIVE EXCHANGE RATE
03/01/90-10/07/02
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FIGURE2

DENSITY FORECASTS-SETAR-2 VSGARCH
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NOTES

! See the European Central Bank website (http://www.ech.int/stats/eer/eer.shtml) for a technica comment on the
method adopted to construct the series of the Euro nominal effective exchange rate.

2 We have carried out the forecasting evaluation exercise alowing for different divisions of the estimation and
forecasting periods, and found qualitatively similar resultsin terms of the relative performance of the rival models (the
results are available from the authors upon request).

% In the traditional form, the RESET test is computed by running a linear autoregression of order p, followed by an
auxiliary regression in which powers of the fitted values obtained in the first stage are included along with the initial
regressors. The modified RESET test requires that all the initial regressors enter linearly and up to a certain power hin
the auxiliary regression; Thursby and Schimdt suggest using h=4. The Lagrange Multiplier form (Granger and
Terasvirta, 1993) of the test is adopted in this study, thus the test is distributed as a ¢ with up to 3p degrees of freedom
for the modified version.

* The auxiliary regression for the LM S; test is computed as follows:

8 =b, + 5 by, + 5 XY Vg + éy v 5 ky,,y?, Where e are the estimated residual's from a linear regression
i=1 i=1 =1 i=1

of order p. Under the null hypothesis the test has a ¢ distribution with 3p degrees of freedom.

> For a complete discussion of this class of models see Tong (1983).

® A variant of the TAR model can be obtained if the parameters are allowed to change smoothly over time, the resulting

model is called a Smooth Transition Autoregressive (STAR) model (see Granger and Terésvirta, 1993, and Terédsvirta,

1994).

" As suggested by one referee, we have aso calculated the forecasts by bootstrapping the estimated regime-specific

residuals. However, the multi-step-ahead forecasts did not show any significant difference across the two aternative

methods.

8 We also performed the modified version of the DM test proposed by Harvey et a. (1997), which corrects for the

oversize shortcomings of the original DM tests in small samples and for h>1. The results, not reported here, do not

differ appreciably from those presented in table 3.

® The maximum absol ute difference between the empirical distribution function and the distribution function under the

null hypothesis of uniformity.

19 For a preliminary study of the size and power of aternative tests see Noceti, Smith and Hodges, “An evaluation of

tests of distributional forecasts’, Discussion paper FORC, University of Warwick, 2000, no. 102.

1 The formula reported in Lilliefors (1967) for T>30, level of significance 0.05, is given by 0.886/+/T . The standard

critical values of the Kolmogorov-Smirnov test are probably a conservative estimate of the ‘correct’ critical values

when certain parameters of the distribution must be estimated from the sample.

12 All the tests have been performed with Eviews codes, available from the authors upon request.



