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1. Introduction 

Many areas of economics require the comparison of distributions.  Analysis of the 

distribution of income has a history that extends over more than a century, while a 

new area of application is the evaluation of density forecasts, that is, forecasts 

expressed as estimates of the complete probability distribution of possible future 

outcomes.  The statistical problem in all such applications is to assess the degree of 

correspondence or goodness of fit between observed data and a hypothesised 

distribution.  The two classical nonparametric approaches to testing goodness of fit 

are based on grouping data into classes or calculating the sample distribution function 

and in each case comparing observation to hypothesis.  Pearson’s chi-squared test and 

the Kolmogorov-Smirnov test are the best-known procedures in the two respective 

cases, surveyed by Stuart, Ord and Arnold (1999, Ch. 25).  Both have recent 

application to the evaluation of density forecasts of inflation, by Diebold, Tay and 

Wallis (1999) and Wallis (2002). 

 Anderson (1994) presents a rearrangement of the chi-squared goodness-of-fit 

statistic to provide more information on the nature of departures from the 

hypothesised distribution, in respect of specific features of the empirical distribution 

such as its location, scale and skewness.  An application of this components-of-chi-

squared or “Pearson analog” test to the comparison of income distributions is given 

by Anderson (1996).  It is also used in density forecast evaluation by Wallis (2002), 

noted above, and by Boero and Marrocu (2002), who compare density forecasts of 

exchange rates from a range of competing models. 

 A formal derivation of the components test is presented in this paper, and it is 

shown that some of Anderson’s claims for the generality of the test are not correct.  In 

the more restricted case in which the test remains valid, we proceed to a Monte Carlo 
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study of its properties.  The experimental design is motivated by applications of 

density forecasting in macroeconomics and finance.  We simulate data from various 

distributions that are either used directly in real-time forecasting or that capture well-

known features of many financial time series, namely their skewness and excess 

kurtosis.  The Jarque and Bera (1980) test is also included for comparative purposes.  

The paper proceeds as follows.  Section 2 discusses the chi-squared goodness-

of-fit test and analyses the properties of the decomposition proposed by Anderson 

(1994).  Section 3 outlines the distributions used to generate artificial data that 

exhibits either skewness or kurtosis. The results of the Pearson analog test to detect 

departures from normality using both equiprobable and nonequiprobable splits for the 

partition points are reported in section 4. Finally, in section 5 we summarise the main 

results and make some concluding remarks.  

 

2. The chi-squared goodness-of-fit test and its components 

Pearson’s classical goodness-of-fit test proceeds by dividing the range of the variable 

into k mutually exclusive classes and comparing the probabilities of outcomes falling 

in these classes given by the hypothesised distribution with the observed relative 

frequencies. With class probabilities 0, 1, ,ip i k> = … , 1ipΣ =  and class frequencies 

0, 1, ,in i k> = … , in nΣ = , the test statistic is  

2
2

1

( )k
i i

i i

n np
X

np=

−
= ∑ . 

This has a limiting 2χ distribution with 1k −  degrees of freedom if the hypothesised 

distribution is correct.  

 The asymptotic distribution of the test statistic rests on the asymptotic k-

variate normality of the multinomial distribution of the observed frequencies. Placing 
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these in the 1k ×  vector x, under the null hypothesis this has mean vector 

1 2( , ,..., )knp np np ′=µ  and covariance matrix 

1 1 1 2 1

2 1 2 2 2

1 2
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 − − − 

…
…

M M M
…

V   

This matrix is singular, with rank 1k − : note that each column (row) has sum zero.  

Defining the generalized inverse −V , the quadratic form ( ) ( )−′− −x V xµ µ  then has 

the 2χ  distribution with k−1 degrees of freedom (Pringle and Rayner, 1971, p.78). 

In his derivation and application of the components test Wallis (2002) assumes 

that the classes are equiprobable, which is often recommended to improve the power 

properties of the overall test.  In this case 1/ , 1, ,ip k i k= = …  and  

[ ]( / ) /n k k′= −V I ee ,  

where e is a k×1 vector of ones.  Since the matrix in square brackets is symmetric and 

idempotent it coincides with its generalized inverse, and the chi-squared statistic is 

equivalently written 
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(note that ( - )  0)′ =e x µ .  There exists a ( 1)  k k− × transformation matrix A, such 

that 

[ ], / k′ ′ ′= = −AA I A A I ee  

(Rao and Rao, 1998, p.252).  Hence defining ( )= −y A x µ  the statistic can be written 

as an alternative sum of squares 

2 /( / )X n k′= y y  
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where the 1k − components 2 /( / )iy n k  are independently distributed as 2χ  with one 

degree of freedom under the null hypothesis.  

 To construct the matrix A we consider Hadamard matrices, which are square 

matrices whose elements are 1 or −1 and whose columns are orthogonal: k′ =H H I . 

For k equal to a power of 2, we begin with the basic Hadamard matrix 

2

1 1
1 1

 
=  − 

H  

and form Kronecker products 

4 2 2= ⊗H H H , 8 4 2= ⊗H H H  and 16 8 2= ⊗H H H . 

Deleting the first row of 1s and dividing by k  then gives the required matrix A, that 

is, H is partitioned as 

e

k A

′ 
=  

 
H . 

With 4k = , and rearranging rows, we have 

1 1 1 1
1

1 1 1 1
2

1 1 1 1

− − 
 = − − 

− −  

A  

and the three components of the test focus in turn on departures from the null 

distribution with respect to location, scale and skewness.  Location shifts refer to the 

median, and scale shifts to the inter-quartile range, while the third component detects 

possible asymmetries, that is, shifts between the first and third quarters and the second 

and fourth quarters of the distribution. 

Taking 8 k = allows a fourth component related to kurtosis to appear, 

although the remaining three components are difficult to relate to characteristics of the 

distribution:  
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1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1
1 1 1 1 1 1 1 1

8
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

− − − − 
 − − − − 

− − − − 
 = − − − − 
 − − − −
 

− − − − 
 − − − − 

A . 

In this case the first four individual components of the test statistic are identified with 

particular features of the distribution, and the remainder is independently distributed 

as χ2 with three degrees of freedom under the null hypothesis.  Note that the first three 

components when 8 k = coincide with the (only) three components when 4k = . 

 Returning to the general case of unequal class probabilities we write the 

covariance matrix as 

[ ]n ′= −V P pp  

where 1 2( , , , )kdiag p p p= …P  and 1 2( , , , )kp p p ′= …p . Tanabe and Sagae (1992) 

give the result that 

[ ] 1( '/ ) ( / )k k− −′ ′− = − −P pp I ee P I ee  

hence the test statistic can again be written in terms of the transformed variables 

( )= −y A x µ , as 

2 1 /X n−′ ′= y AP A y . 

The covariance matrix of y is ( )E ′ ′=yy AVA , whose inverse 1 / n− ′AP A  appears in 

the above quadratic form: this can be checked by multiplying out, noting that 

[ ]′ ′− = 0e P pp  and 1− = = 0AP p Ae . The diagonal elements give the variance of 

, 1,..., 1iy i k= − , as ( )2 21 ( ' ) /i in k kσ = − a p  where i′a  is the ith row of A, 

corresponding to expressions given by Anderson (1994, p.267) for the first four 

elements when 8k = .  However, the matrix is not diagonal – the iy ’s are correlated – 
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hence this quadratic form does not reduce to a simple sum of squares in the case of 

unequal pi.  Equivalently, terms of the form 2 2/i iy σ  are not independently distributed 

as 2χ  in this general case, contrary to Anderson’s claim.  It remains the case, 

however, that the marginal distribution of an individual 2 2/i iy σ  is 2χ  with one degree 

of freedom. 

Anderson (1994) goes on to argue that the power of the component tests to 

detect departures of the alternative distribution from the null distribution depends on 

the closeness of the intersection points of the two distributions to the location of the 

class boundaries.  In the equiprobable case the class boundaries are the appropriate 

quantiles, and moving them to improve test performance clearly alters the class 

probabilities.  In practical examples this is often done in such a way that the resulting 

class probabilities are symmetric, that is, 1 2 1, ,...,k kp p p p −= =  which is an interesting 

special case.  Now the odd-numbered and even-numbered components of the chi-

squared statistic are orthogonal.  Hence focussing only on location and scale, for 

example, a joint test can be based on 2 2 2 2
1 1 2 2/ /y yσ σ+ , distributed as 2

2χ  under the 

null; similarly, focussing only on skewness and kurtosis, a joint test can be based on 

2 2 2 2
3 3 4 4/ /y yσ σ+ .  As in the more general case, however, these two test statistics are 

not independent, equivalently their sum is not distributed as 2χ with four degrees of 

freedom. 

This observation helps to explain some of the simulation results of Anderson 

(2001), who includes components-of-chi-squared tests in a comparison of a range of 

tests for location and scale problems.  With four non-equiprobable classes whose 

boundaries are placed symmetrically around the mean, the class probabilities are 

symmetric in the sense of the previous paragraph if the null distribution is symmetric, 
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but not otherwise.  The components considered are the individual location and scale 

components, which in general are 2
1χ ; a “joint” test based on their sum, as in the 

above example, which is 2
2χ  in the symmetric case but not in general; and a “general” 

test defined as the sum of the three components, which is no longer 2
3χ  even in the 

symmetric but non-equiprobable case.  Anderson (2001, p.25) reports that the power 

and consistency properties of the various components tests are good, “with the 

exception of the general and joint tests under the asymmetric distribution.”  Our 

analysis shows that in these circumstances the null distribution is not 2χ , contrary to 

what is assumed in the simulation study, hence the problems noted are the result of 

comparing test statistics to inappropriate critical values. 

 

 

3. The Monte Carlo experiments 

Our Monte Carlo experiments consider the power of the overall goodness-of-fit test 

and its component tests to detect departures from a standard normal distribution, in 

the presence of either skewness or kurtosis. We consider three skewed distributions 

and three kurtotic distributions, as follows. 

 

3.1 Skewness 

(i)  The Ramberg distribution (see Ramberg et al., 1979), is a flexible form 

expressed in terms of its cumulative probabilities. The Ramberg quantile and density 

functions have the form: 

3 4
1 2( ) (1 ) /R p p pλ λλ λ = + − −   

3 41 1
2 3 4( ) [ ( )] (1 )f x f R p p pλ λλ λ λ− − = = + −   
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with 0 1p< <  being the cumulative probability, ( )R p  the corresponding quantile, 

and [ ( )]f R p  the density corresponding to ( )R p . Of the four parameters, 1λ  is the 

location parameter, 2λ  the scale parameter, and 3λ  and 4λ  are shape parameters. For 

the present purpose we choose their values such that ( ) 0, ( ) 1E X V X= = , 

Skewness={0.00, 0.05, 0.10, …, 0.90} and Kurtosis =3. The median is then in general 

non-zero; it is an increasing function of the skewness. The non-zero median gives 

power to the goodness-of-fit test due to the contribution of the first component test. In 

order to concentrate on the effect of skewness alone we shift the distribution by the 

empirically calculated median. 

(ii)  The two-piece normal distribution (see Wallis, 1999), is used by the Bank of 

England and the Sveriges Riksbank in presenting their density forecasts of inflation.  

The probability density function is  

( )

( )

1 2 2
1 2 1

1 2 2
1 2 2

2 ( ) / 2) exp / 2

( )

2 ( ) / 2) exp / 2

x x

f x

x x

π σ σ µ σ µ

π σ σ µ σ µ

−

−

   + − − ≤   
= 


  + − − ≥   

. 

The distribution is positively skewed if 2 2
2 1σ σ> , and is leptokurtic if 1 2σ σ≠ .  As in 

the Ramberg distribution the median is an increasing function of skewness and we 

again shift the distribution, to ensure a theoretical median of zero. In our simulations 

we consider combinations of 1 2( , )σ σ  that yield ( ) 1V X =  and the same range of 

skewness coefficients, namely {0.00, 0.05, 0.10, …, 0.90}. 

(iii)  Our third distribution is the data generating process used by Anderson (1994), 

namely 

( /(1 )) 0
(1 ) otherwise
z d z

x
z d

+ <
=  +
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where ~ (0,1)z N . Since skewness≈2×d we set d={0.00, 0.025, …, 0.45}. The mean, 

variance and kurtosis of this distribution are all increasing functions of d, although the 

median is zero. The transformation is discontinuous at zero, hence the probability 

density function has a central singularity, unlike the two-piece normal distribution. 

3.2 Kurtosis 

(i) In the Ramberg distribution we choose values of the four parameters such that 

( ) 0, ( ) 1E X V X= = , Skewness=0 and Kurtosis={2.0, 2.4, 2.8, 3.0, 3.2. 3.6, 4.0, 4.4, 

4.8, 5.2, 5.6, 6.0, 6.4, 6.8, 7.2}.  

(ii) The t-distribution is widely used to represent the excess kurtosis of many 

financial time series.  We scale it to have unit variance, and choose degrees of 

freedom ν={5, 6, 7, 8, 9, 10, 16, 24, 34, ∞}, where kurtosis is given as 

3( 2) /( 4)υ υ− − for 4υ >  

(iii) The second data generating process used by Anderson (1994) is 

( )| | (1 )qx z z t= +  

where (0,1)z N∼  and t is a variance-shifting nuisance parameter. We take all 

combinations of q and t that give ( ) 1V X = and kurtosis is approximately equal to 

those values used in the Ramberg distribution. 

 

4. The Monte Carlo results 

The results of the Monte Carlo experiments reported in this paper are based on 

1000 replications for sample sizes, n=25, 50, 75, 100, 150, 250, 350. 

Nonequiprobable classes are considered from time to time in the following discussion, 

and our convention is to present class boundaries implicitly, as the appropriate 

percentage points of the relevant cumulative distribution function, F, the boundaries 
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being the corresponding x-coordinates.  We denote the value of the cdf at the upper 

boundary of the jth class as Fj.  The first and last classes are open-ended, thus with F0 

=0 and Fk =1 the class probabilities satisfy, pj  = Fj − Fj−1, j=1,…,k, and a class 

configuration is reported as the set {F1,…,Fk−1}.  For equiprobable classes, Fj=j/k.   

While for the overall goodness-of-fit test the choice of k is important, the 

individual component tests do not depend on k, once k is large enough to define them. 

Thus when k=4 three components are defined, and these are unchanged when k=8, 

assuming that the eight classes are obtained by dividing each of the original four 

classes into two, without moving the class boundaries. That is, F2, F4 and F6 when 

k=8 are identical to F1, F2, F3 when k=4. This is obviously the case when classes are 

equally probable, and it is a reasonable presumption otherwise. Likewise the fourth 

component, that is defined when k=8, is unchanged when k=16, so here we use k=8 so 

that all components up to and including that related to kurtosis can be calculated.  

In all cases we compare the results of the Pearson chi-squared component tests 

with the corresponding component, either skewness or kurtosis, of the test for 

normality of Jarque and Bera (1980). These are based on the ratios of the sample third 

and fourth moments to their standard errors, the latter being calculated via the higher 

moment relationships of the normal distribution. 

 

4.1 Skewness 

Figure 1 plots the power of the Pearson component skewness (PCSk) test, 

based on equal partitions, when data are generated from the two-piece normal 

distribution. The power of the PCSk test increases with both the sample size and the 

degree of skewness in the underlying distribution. However, for all values of 

skewness and sample sizes the power of the PCSk test is dominated by the power of 
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the skewness element of the Jarque-Bera test, denoted JBS. In particular, for n=100, 

the power of the PCSk test is 12.1 (16.8) for skewness=0.5 (0.7) compared with 48.5 

(78.6) for the JBS test.  

Our results regarding the Jarque-Bera test confirm with those reported in 

Anderson (1994), in that the JBS test is sensitive to non-normal kurtosis, and the 

kurtosis element of the Jarque-Bera test, JBK, is sensitive to non-normal skewness. 

By contrast, all of the four component tests from the modified Pearson test are 

correctly sized (the exception being the PCK test which detects kurtosis for a skewed 

Ramberg distribution with kurtosis=3.0).  

For the two-piece normal distribution, increasing skewness does induce 

increased kurtosis and the Pearson component kurtosis (PCK) test finds evidence of 

kurtosis as the skewness parameter increases. The power of the X2 (denoted as X2 in 

the figures) test is markedly in excess of that of the PCSk test, due to the power 

coming from the residual component test. The large power contribution from the 

residual component test is clearly difficult to interpret. Figure 2 plots the power of the 

X2, PCSk, PCK, the residual )3(2χ  (PCR) test as well as the JBS test, as a function of 

the skewness parameter for n=150.  

Part of the possible explanation for the low power (see Anderson, 1994) of the 

PCSk test could be due to an inappropriate choice for the location of the partition 

points. Figure 3 plots the two-piece normal (skewness=0.5) and the N(0,1) 

distributions. We also plot the three important partition points for the PCSk test, 

assuming an equiprobable split at F2=0.25, F4=0.5 and F6=0.75. The actual 

intersection points of the two distributions, which are much more in the tails of the 

N(0,1) distribution, do not coincide particularly well with these equiprobable splits. 
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Figure 4 plots the size of the skewness component test when we allow for 

nonequiprobable (but symmetrical) splits as: (F2/2, F2, (0.5+F2)/2, 0.5, (1-(0.5+F2)/2), 

(1- F2), (1- F2/2)), for F2 taking values (0.15, 0.175, 0.2, …, 0.3). The figure (which 

also plots the 99% confidence intervals for a 5% nominal size test) shows that size is 

unaffected by the use of unequal partitions (with the exception of n=50, which is 

slightly over-sized). Figure 5 plots the power of the PCSk test as we vary F2 for 

various values of skewness and n=150, although qualitatively similar pictures exist 

for all sample sizes. Power increases as F2 becomes smaller. At F2=0.15 (n=150 and 

skewness=0.5) power is 31.1% compared to 16.1% when using an equiprobable split, 

F2=0.25. In general, the use of F2=0.15 significantly improves the power of the 

skewness component of the test, with power nearly doubling for sample sizes from 

n=75 onwards. Despite this marked increase in power for the PCSk test, the JBS test 

still dominates (compare Figures 2 and 5). 

While it is generally perceived that an equiprobable split maximises the power 

of the overall goodness-of-fit test, we find that the power of the X2 test increases as F2 

falls and attains its maximum at F2=0.15, irrespective of the sample size. For 

example, for the two-piece normal, with F2=0.15 (n=150 and skewness=0.5) the 

power for the X2 test is 29.2% compared to 22.1% for F2=0.25. However, this power 

still compares unfavourably with that for the JB )2(2χ test, which is 53.1%.  

Results for the Ramberg distribution with skewness ranging from 0.0 to 0.85 

are qualitatively very similar to those obtained with the two-piece normal distribution 

and are therefore not reported in detail here. Figure 6 plots the power of the X2 and 

PCSk using equiprobable and nonequiprobable splits with F2=0.15 (optimal value) as 

well as the JBS test. It is clear that the use of nonequiprobable splits again markedly 

increases the power of the PCSk and X2 tests to detect skewness. Moreover we note 
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that in the nonequiprobable case, while the JBS test unambiguously dominates the 

PCSk test for large sample sizes, with smaller sample sizes (n=25, 50, 75 and 100) the 

PCSk test actually outperforms the JBS test.  

Figure 7 plots the power of the PCSk test when the data are generated from 

Anderson’s skewed distribution, based on equiprobable splits. The power of the PCSk 

test to detect departures from normality for this distribution is greater for all values of 

skewness and at all sample sizes, relative to that observed for either the two-piece 

normal or Ramberg distributions (compare Figures 1, 6 and 7). For instance for the 

smallest sample size, n=25, power is in excess of 30% for skewness=0.85 using 

Anderson’s distribution, but is only 8.4% for the two-piece normal and 9.8% for the 

Ramberg distribution. Moreover we find that the power of the PCSk test dominates 

that of the JBS test even with the use of equiprobable partition points.  

Part of the explanation for the improved performance of the PCSk test with 

equiprobable splits is the insensitivity of the PCSk test to the location of the partition 

points for this distribution. The use of nonequiprobable splits increases the power of 

the PCSk test, but the increase is not as dramatic as with either the two-piece normal 

or Ramberg distributions – see Figure 8. The optimal value for F2 is approximately 

0.2 (much closer to the equiprobable F2=0.25). For n=150 and skewness=0.5 the 

power increases from 66.7% (for F2=0.25) to 74.9% (for F2=0.2). The power of the X2 

test increases slightly as F2 decreases, for example for skewness=0.5 and n=150 

power equals 62.7% at F2=0.2, compared with 59.4% at F2=0.25. 

 

4.2 Kurtosis 

In this section we report the results of both the Ramberg distribution and 

Anderson’s kurtotic distribution. The results for the scaled t-distribution are 
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qualitatively very similar to those obtained with the Ramberg distribution and are not 

reported in detail. 

In Figure 9 we plot the power of the PCK test when the data are generated 

from a Ramberg distribution with kurtosis. The use of equiprobable partitions renders 

the power of the PCK test very poor, even for very high degrees of kurtosis (=7.2). 

Looking at all the individual component tests the X2 test does pick up non-normality, 

although this is almost entirely due to the scale component (PCS) test. These results 

are reported in Figure 10, for n=150, and are compared with those for the JBK test. 

The JBK dominates the PCK test, for all sample sizes and all values of kurtosis. 

Despite the symmetry of the alternative hypothesis, the JBS statistic suggests 

substantial rejection of the null hypothesis. To reconcile these results, we recall that 

the relevant null hypothesis of the JB test is normality, not symmetry. Correct 

rejections of the null hypothesis are due to the inappropriateness of the normal 

distribution based standard error of the third moment. This is most easily seen for a t-

distribution with degrees of freedom equal to six, where the sixth and higher moments 

do not exist. 

The power of the PCK test is dependent on the closeness of the four important 

partition points (F1, F3, F5, F7) to the intersection points of the Ramberg distribution 

(with excess kurtosis) and a N(0,1). Figure 11 plots the Ramberg distribution 

(kurtosis=6) and a N(0,1), as well as the partition lines based on an equiprobable split. 

The four points of intersection of the two distributions are not close to the 

equiprobable partition points. However, the power of the PCS test is dependent on the 

closeness of the equiprobable partition points at F2=0.25 and F6=0.75, which actually 

correspond well with two of the intersection points observed. This suggests that a 
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different choice of nonequiprobable (although symmetric) partition points could 

deliver more power for the PCK test. 

Figure 12 plots the power of the PCK test for the Ramberg distribution 

(kurtosis=6 and n=150) as a function of the partition points, F1 and F3, where the 

partition points are (F1, (F1+F3)/2, F3, 0.5, (1-F3), 1-(F1+F3)/2, (1-F1)).  The power 

function is very steep, with maximum power achieved at F1=0.025 and F3=0.275. For 

n=150, the power for the PCK test falls from 56.2% (at F1=0.025 and F3=0.275) to 

7.1% (at F1=0.125 and F3=0.375). The shape of the power function is qualitatively 

similar for all values of T and kurtosis used in this analysis. 

In Figure 13 we report the power of the X2 test for F1=0.025 and F3=0.275. As 

we can see by comparing Figure 13 with Figure 10, the use of nonequiprobable splits 

affects the power of the X2 test only slightly. For n=150 the power increases from 

25.8% (equiprobable splits) to 30.0% (nonequiprobable splits). This result is due to 

the substantial fall observed in the power of the PCS test, which offsets the 

improvement in the PCK test. Despite the increase in power of the PCK test from the 

use of nonequiprobable splits, the JBK test continues to dominate the PCK test for all 

sample sizes, but only for kurtosis greater than 3.4. 

Figure 14 plots the power of the PCK test when data are generated from 

Anderson’s kurtotic distribution. In this case, the PCK test picks up kurtosis 

extremely well. These results suggest that the partition points and the intersection 

points (of the theoretical and empirical distributions) are much closer for Anderson’s 

kurtotic distribution. Moreover, differently from the case of the Ramberg distribution 

all of the component tests, with the exception of the PCK test, have power 

approximately equal to the nominal 5% size. In this case the power of the PCK test 

dominates that of the JBS test. 
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Figure 15 plots the power function of the kurtosis component test as a function 

of F1 and F3 (for kurtosis=6 and n=100). The power of the kurtosis component test 

does vary over F1 and F3, with power at the optimal point F1=0.025 and F3=0.45. 

Although the slope of this function is flatter than that observed for the Ramberg 

distribution, between the optimal point and the equiprobable point (F1=0.125 and 

F3=0.375) the power falls from 99.5% to 67.4%. The power of the X2 test at F1=0.025 

and F3=0.45 is greater than that attained using an equiprobable split, for example, for 

n=100 and kurtosis=6.0 the power of the X2 test increases from 67.4% to 99.5%. 

 

5. Conclusions 

In this paper we have derived the component tests from Pearson’s goodness-of-

fit test and have shown that in the general case of nonequiprobable splits the overall 

goodness-of-fit test cannot be derived as the sum of the component tests due to a non-

diagonal covariance matrix for the component tests.  

The Monte Carlo experiments have been designed to examine the power of the 

skewness and kurtosis component tests to detect departures from a standard normal 

distribution, in the presence of either skewness or kurtosis. Our results have revealed 

that the power of the component tests crucially depends on the location of the 

partition points. In particular, for a range of skewed and kurtotic distributions, a 

choice for the location of the partition points, away from the usual equiprobable split, 

could significantly improve the power of the component tests.  The results have also 

shown that a strategy of maximising the component tests does not always maximise 

the power of the overall goodness-of-fit test. The use of nonequiprobable splits makes 

the power of the modified Pearson component test, at time, comparable to that 

attained from the appropriate Jarque-Bera component test. 
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The overall chi-squared goodness-of-fit statistic with k-1 degrees of freedom 

can be transformed into k-1 components which have the potential to offer more 

information about the nature of departures from the null hypothesis, provided that the 

k classes are equiprobable, which is recommended practice having the power of the 

overall test in mind. However, the power of the individual component tests may be 

low, but it can be improved by designing nonequiprobable classes more appropriate to 

the specific feature of interest. Now the decomposition into k-1 independent 

components is lost, and attention can only focus on a single characteristic of the 

distribution. Users of these tests should therefore take note of this trade-off. The 

choice is general or specific, as this approach cannot simultaneously provide a good 

test for both. 
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Figure 1: Power of PCSk test as a function of skewness for equiprobable splits: Two-piece normal
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Figure 2: Power of the X2, PCSk, PCR and JBS test for equiprobable splits: Two-piece normal (n=150) 
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Figure 3: Intersection and partition points for PCSk test: Two-piece normal (skewness=0.5) and N(0,1)
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Figure 4: Size of PCSk test for non-equiprobable splits
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Figure 5: Power of the PCSk test for non-equiprobable splits: Two-piece normal (n=150)
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Figure 6: Power of the X2, PCSk, and JBS tests: Ramberg distribution (n=150)
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Figure 7: Power of PCSk test as a function of skewness for equiprobable splits: Anderson's skewed 
distribution
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Figure 8: Power of PCSk test for non-equiprobable splits: Anderson's skewed distribution (n=150)
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Figure 9: Power of PCK test as a function of kurtosis for equiprobable splits: Ramberg distribution
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Figure 10: Power of X2, PCS, PCK, PCR and JBK tests for equiprobable splits: Ramberg distribution (n=150)
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Figure 11: Intersection and equiprobable partition points for PCK test: Ramberg (kurtosis=6) and N(0,1)
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Figure 12: Power of the PCK test for non-equiprobable splits: Ramberg (kurtosis=6, n=150)
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Figure 13: Power for the X2, PCS and PCK tests for nonequiprobable splits: Ramberg distribution (n=150)
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Figure 14: Power of the PCK test for equiprobable splits: Anderson's kurtotic distribution
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Figure 15: Power of the PCK test for non-equiproable splits: Anderson (kurtosis=6, n=100)

 24


