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Abstract

In his seminal paper on arbitrage and competitive equilibrium
in unbounded exchange economies, Werner (Lconometrica, 1987)
proved the existence of a competitive equilibrium, under a price no-
arbitrage condition, without assuming either local or global nonsa-
tiation. Werner’s existence result contrasts sharply with classical
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existence results for bounded exchange economies which require, at
minimum, global nonsatiation at rational allocations. Why do un-
bounded exchange economies admit existence without local or global
nonsatiation? This question is the focus of our paper. We make two
main contributions to the theory of arbitrage and competitive equi-
librium. First, we show that, in general, in unbounded exchange
economies (for example, asset exchange economies allowing short
sales), even if some agents’ preferences are satiated, the absence of
arbitrage is sufficient for the existence of competitive equilibria, as
long as each agent who is satiated has a nonempty set of useful net
trades - that is, as long as agents’ preferences satisfy weak nonsa-
tiation. Second, we provide a new approach to proving existence in
unbounded exchange economies. The key step in our new approach
is to transform the original economy to an economy satisfying global
nonsatiation such that all equilibria of the transformed economy are
equilibria of the original economy. What our approach makes clear
is that it is precisely the condition of weak nonsatiation - a condition
considerably weaker than local or global nonsatiation - that makes
possible this transformation. Moreover, as we show via examples,
without weak nonsatiation, existence fails.

Keywords: Arbitrage, Asset Market Equilibrium, Nonsatiation,
Recession Cones.

JEL Classification Numbers: C 62, D 50.



1 Introduction

Since the pioneering contributions of Grandmont ((1970), (1972), (1977)),
Green (1973), and Hart (1974), the relationship between arbitrage and equi-
librium in asset exchange economies allowing short sales has been the sub-
ject of much investigation'. When unlimited short sales are allowed, agents’
choice sets are unbounded from below. As a consequence, asset prices at
which agents can exhaust all gains from trade via mutually compatible net
trades bounded in size may fail to exist. By assuming that markets admit
“no arbitrage”, the economy can be bounded endogenously - but this is not
enough for existence. In addition to no-arbitrage conditions, two other con-
ditions are frequently required: (i) uniformity of arbitrage opportunities,?
and (ii) nonsatiation. Werner, in his seminal 1987 paper on arbitrage and
competitive equilibrium, assumes uniformity of arbitrage opportunities and
establishes the existence of a competitive equilibrium using a no-arbitrage
condition on prices. An especially intriguing aspect of Werner’s existence
result is that it does not require local or global nonsatiation (see Werner
(1987), Theorems 1).> This contrasts sharply with classical existence re-
sults for bounded exchange economies which require, at minimum, that
agents’ preferences be globally nonsatiated at rational allocations (e.g., see
Debreu (1959), Gale and Mas-Colell (1975), and Bergstrom (1976)).* Why
do unbounded exchange economies admit existence without local or global
nonsatiation? This question is the focus of our paper.

Our starting point is Werner’s notion of useful net trades. Stated infor-
mally, a useful net trade is a net trade that, for some endowments, represents
a potential arbitrage. Our main contribution is to show that, in general, in
unbounded exchange economies (for example, asset exchange economies al-

1See also, for example, Milne (1976, 1980), Hammond (1983), Page (1987), Nielsen
(1989), Page and Wooders (1996), Kim (1998), Dana, Le Van, Magnien (1999), Page,
Wooders, and Monteiro (2000), and Allouch (2002).

ZA vector of net trades y is said to be an arbitrage opportunity for agent i at z if
starting at any x’ weakly preferred to x, '+ Ay is also weakly preferred to x for all A > 0.
If for each agent ¢ an arbitrage opportunity y at z is also an arbitrage opportunity at
any other &', then uniformity holds (i.e., there is uniformity of arbitrage opportunities).

3Werner proves two existence results. In Theorem 1, each agent’s choice set (or
consumption set) is a closed, convex (not necessarily bounded) subset of R!. In Theorem
2, each agent’s choice set is a closed, convex, bounded-from-below subset of R'.

*A rational allocation is an allocation such that each agent weakly prefers his piece
of the allocation to his endowment.

°In order to formally define the notion of useful net trades, we must first define the
notion of useless net trades. A vector of net trades y 1s said to be useless to agent ¢ at
z if agent ¢ starting at x is indifferent to trading in the y or —y directions on any scale.
Thus, a vector of net trades y is useless to agent i at = if the agent is indifferent along
the line x + Ay, A € (=00, +00). A vector of net trades y is said to be useful to agent ¢ at
z if y 1s an arbitrage opportunity for agent ¢ at « and if y is not useless to agent i at x.



lowing short sales), even if some agents’ preferences are satiated, the absence
of market arbitrage is sufficient for the existence of competitive equilibria,
as long as each agent who is satiated has a nonempty set of useful net trades
- that is, as long as agents’ preferences satisty weak nonsatiation.

Our second contribution is to provide a new approach to proving exis-
tence in unbounded exchange economies. In addition to being a technical
innovation, our new approach makes clear the critical role played by un-
boundedness and weak nonsatiation in establishing existence in unbounded
exchange economies where neither local nor global nonsatiation is satis-
fied. The key step in our new approach is a transformation of the original
economy to a new economy satisfying global nonsatiation and having the
property that all equilibria of the transformed economy are equilibria of the
original economy. Existence for the transformed economy is then deduced
using classical methods. It is precisely the condition of weak nonsatiation
- a condition considerably weaker than local or global nonsatiation - that
makes possible the transformation of the original economy to an equivalent
economy satisfying global nonsatiation - even if the original economy fails
to satisfy either local or global nonsatiation. Moreover, as we show via
examples, without weak nonsatiation, existence fails.

In their classic paper on abstract exchange economies, Gale and Mas-
Colell (1975) establish existence by transforming an exchange economy sat-
isfying global nonsatiation to an exchange economy satisfying local nonsatia-
tion. However, if global nonsatiation fails, then the Gale/Mas-Colell trans-
formation cannot be applied. Here, we establish existence by transforming
an exchange economy satisfying weak nonsatiation (in which global non-
satiation may fail) to an exchange economy satisfying global nonsatiation.
Thus, while our transformation is similar in motivation to the Gale/Mas-
Colell transformation, it goes beyond the Gale/Mas-Colell transformation
by addressing the problem of global satiation.

As a prerequisite to proving existence in an exchange economy satisfying
weak nonsatiation only, we must extend Werner’s price no-arbitrage con-
dition to allow for weak nonsatiation - and in particular, to allow for the
possibility that some agents have empty sets of useful net trades at some
rational allocations.® A third contribution of our paper is to show that this
extended price no-arbitrage condition is equivalent to Hart’s (1974) weak
no-market-arbitrage condition.

In addition to extending Werner’s price no-arbitrage condition and show-
ing its equivalence to Hart’s condition, we also extend Werner’s model of
an unbounded exchange economy in two ways. First, we weaken Werner’s

SWerner’s price no-arbitrage condition requires that each agent have a nonempty set
of useful net trades. However, under weak nonsatiation, an agent is allowed to have
an empty set of useful net trades at some rational allocations - provided the agent’s
preferences are globally nonsatiated at such rational allocations.



uniformity of arbitrage condition by assuming only uniformity of useless
net trades (see Werner (1987), Assumption A3). We refer to our uniformity
condition as weak uniformity.” Second, in our model we require only that
agents’ utility functions be upper semicontinuous, rather than continuous
as in Werner (1987).

We shall proceed as follows: In Section 2, we present the basic ingre-
dients of our model, including the notions of arbitrage, useful and useless
net trades, weak uniformity, and weak nonsatiation. In Section 3, we dis-
cuss the weak no-market-arbitrage condition of Hart (1974) and the price
no-arbitrage condition of Werner (1987), and we extend Werner’s price no-
arbitrage condition to allow for weak nonsatiation. We then present our
first Theorem which states that the extended price no-arbitrage condition
is equivalent to Hart’s weak no-market-arbitrage condition. In Section 4,
we present our second Theorem which states that in an unbounded ex-
change economy (for example, in an asset exchange economy allowing short
sales), if weak uniformity and weak nonsatiation hold, then the extended
price no-arbitrage condition is sufficient to guarantee the existence of a
quasi-equilibrium - and therefore is sufficient to guarantee the existence of
a competitive equilibrium under the usual relative interiority conditions on
endowments. In Section 5, we present two examples which show that our
weak nonsatiation assumption is the weakest possible - without weak non-
satiation, existence fails. Finally, in Section 6, the Appendix, we present
the proofs of Theorems 1 and 2. We preface our proof of Theorem 1 with
a detailed discussion of the geometry of Hart’s weak no-market-arbitrage
condition. In the proof of Theorem 2, we present our new approach.

"Thus, weak uniformity holds if for each agent 7, an arbitrage opportunity y at 2’ that
is useless at x’, for »’ weakly preferred to the agent’s endowment, is also useless at any
other x” weakly preferred to the agent’s endowment.



2 The Model

We consider an economy & = (X, u;, €)™, with m agents and [ goods.
Agent i has consumption set X; CR', utility function u,(+), and endowment
e;. Agent i's preferred set at x; € X; is

Pi(z;) ={z € Xi | wi(z) > wi(z:)},
while the weakly preferred set at x; is

Pias) ={w € X | wil) = wilw)}-
The set of individually rational allocations is given by

A= {(1'2) € ﬁXZ | zm:l'Z = i e; and z; € E(Q),Vl}
=1 =1

=1

We shall denote by A; the projection of A onto X;.

Definition 1 (a) A rational allocation z* € A together with a nonzero
vector of prices p* €ER' is an equilibrium for the economy &

(i) if for each agent i and x € X;, wi(x) > u(x]) implies p* - > p* - e,
and

(ii) if for each agent i, p* - af = p* - ¢,

(b) A rational allocation ™ € A and a nonzero price vector p* €R' is a
quasi-equilibrium

(i) if for each agent i and x € X;, w;(x) > w;(x]) implies p* -« > p* - e,
and

(ii) if for each agent i, p* - af = p* - ¢,

Given (a*, p*) a quasi-equilibrium, it is well-known that if for each agent
i, (a) p*-a < p*-e; for some & € X; and (b) P;(a7) is relatively open in X,
then (x*,p*) is an equilibrium. Conditions (a) and (b) will be satisfied if,
for example, for each agent 1, e; € intX;, and wu; is continuous on X;. Using
irreducibility assumptions, one can also show that a quasi-equilibrium is an
equilibrium.

We now introduce our first two assumptions: for agents 1 = 1,2,...,m,
[A.1] X; is closed and convex with ¢; € X;,
[A.2] w; is upper semicontinuous and quasi-concave.

Under these two assumptions, the weak preferred set ]32(:1;2) is convex
and closed for z; € Xj.



2.1 Arbitrage, Uniformity, and Nonsatiation
2.1.1 Arbitrage

We define the i agent’s arbitrage cone at x; € X; as the closed convex
cone containing the origin given by

O+]3¢(:1;¢) = {y; e R'| Va! € ]32(:1;2) and A >0, at + \y; € ]32(:1;2)}

Thus, if y; € O"’]/D\i(:z;i), then for all A > 0 and all 2} € ]32(:1;2), o4 Ay € X,
and w; (2} + Ay;) > w;(@;). The agent’s arbitrage cone at wx;, then, is the
recession cone corresponding to the weakly preferred set ]/52(:1;2) (see Rock-
afellar (1970), Section 8).® If the agent’s utility function, w;(-), is concave,
then for any x; € X; and y; € O"’]/D\i(:z;i), ui(x; + Ay;) is nondecreasing in
A > 0. Thus, starting at x;, trading in the y; direction on any scale is utility
nondecreasing.

2.1.2 Uniformity

A set closely related to the i'* agent’s arbitrage cone is the lineality space,

Li(w:), of Pi(x;) given by
Li(z) = {y; € R'| Va! € Pi(x;) and VA € R, 2! + Ay; € Pi(ai)}.

The set L;(x;) consists of the zero vector and all the nonzero vectors y; such
that for each a! weakly preferred to x; (i.e., x} € ]32(:1:2)), any vector z; on
the line through «/ in the direction y;, z; = 2} + Ay;, is also weakly preferred
to a; (i.e., zi =l + Ay; € ]32(:1;2)) The set L;(x;) is a closed subspace of R/,
and is the largest subspace contained in the arbitrage cone O"’]/D\i(:z;i) (see
Rockafellar (1970)).

If for all agents, the lineality space L;(x;) is the same for all ; € ]/52'(62'),
then we say that the economy satisfies weak uniformity. We formalize this
notion of uniformity in the following assumption:

[A.3][Weak Uniformity] for all agents ¢
Li(x;) = Li(e;) for all x; € Pi(e;).

Under weak uniformity, we have for all z; € 132'(62') and all y; € Li(e;),

wilws +yi) < wiles +ys — yi) < wiles 4 yi).

8Equivalently, y; € O"’]Si(xi) if and only if y; is a cluster point of some sequence
{\Fzk}, where the sequence of positive numbers {\*}; is such that A* | 0, and where
for all k, ¥ € P;(x;); (see Rockafellar (1970), Theorem 8.2).



Thus, for all x; € ]/52'(62') and all y; € L;(e),
wi(z; 4 yi) = ui(2;).

Following the terminology of Werner (1987), we refer to arbitrage opportu-
nities y; € OF P,(x;) such that

wi(x; + Ay;) = ui(x;) for all A € (—o0, 0)

as useless at ;. Thus, under weak uniformity, the i"* agent’s lineality space
at his endowment, L;(¢;), is equal to the set of all net trades that are useless.
Moreover, under weak uniformity the set of useful net trades at z; is given
by R R

Werner (1987) makes a uniformity assumption stronger than our as-
sumption of uniformity of useless net trades (i.e., stronger than our as-
sumption of weak uniformity, [A.3]). In particular, Werner assumes that all
arbitrage opportunities are uniform. Stated formally,

[Uniformity] for all agents ¢
Ot Pi(z;) = Ot Pi(¢;) for all z; € Py(e;).

If agents have concave utility functions, then Werner’s uniformity assump-
tion, and therefore weak uniformity, is satisfied automatically.

For notational simplicity, we will denote each agent’s arbitrage cone and
lineality space at endowments in a special way. In particular, we will let

R; = O""]/D\i(ei), and L; := L(e;).

2.1.3 Nonsatiation

We begin by recalling the classical notions of global and local nonsatiation:

[Global Nonsatiation] for all agents 1,
Pi(z;) # 0 for all z; € A;;

[Local Nonsatiation] for all agents ¢,

~

P(z;) # 0 and clP;(z;) = Pi(x;) for all z; € A;.

Here, cl denotes closure. Werner assumes uniformity and then, rather than
assume global or local nonsatiation, assumes that

[Werner Nonsatiation] for all agents ¢



This assumption is weaker than the classical assumptions. We will weaken
Werner’s nonsatiation assumption as follows:

[A.4][Weak Nonsatiation] for all agents ¢
\V/l'i € .AZ', if PZ(J}Z) = @, then O+PZ($2) \ LZ(J}Z) 7£ @

Note that weak nonsatiation holds if global nonsatiation, local nonsatiation,
or Werner nonsatiation holds. Also, note that under weak nonsatiation if
x; € A; is a satiation point for agent 7, then, as in Werner, there is a useful
net trade vector y; such that u;(x;4+ Ay;) = w;(x;) for all A > 0. Thus, if there
are satiation points, then the set of satiation points must be unbounded.

3 The No-Arbitrage Conditions of Hart and
Werner

Hart’s (1974) no-arbitrage condition is a condition on net trades. In par-
ticular, Hart’s condition requires that all mutually compatible arbitrage
opportunities be useless.? We shall refer to Hart’s condition as the weak
no-market-arbitrage condition (WNMA). We have the following definition:

Definition 2 The economy & satisfies the WNMA condition if

Yo yi =0 and y; € R; for all i, then
y; € L; for alls.

Werner’s (1987) no-arbitrage condition is a condition on prices. In par-
ticular, Werner’s condition requires that there be a nonempty set of prices
such that each price in this set assigns a strictly positive value to any vector
of useful net trades belonging to any agent.!® We shall refer to Werner’s
condition as the price no-arbitrage condition (PNA). We have the following
definition:

“Hart’s condition is stated within the context of an asset exchange economy model
where uncertainty concerning asset returns is specified via a joint probability distribution
function. Page (1987) shows that in an asset exchange economy, if there are no perfectly
correlated assets, then Hart’s condition and Page’s (1987) no-unbounded-arbitrage con-
dition are equivalent.

0T ranslating Werner’s condition to an asset exchange economy, it is easy to show
that if there are no perfectly correlated assets and if agents are sufficiently risk averse,
then Werner’s condition is equivalent to Hammond’s overlapping expectation condition.
Page (1987) shows that in an asset exchange economy if there are no perfectly correlated
assets and if agents are sufficiently risk averse, then Hammond’s overlapping expectations
condition and Page’s no-unbounded-arbitrage condition are equivalent. Thus, in an asset
exchange economy with no perfectly correlated assets populated by sufficiently risk averse
agents, the conditions of Hart (1974), Werner (1987), Hammond (1983), and Page (1987)

are all equivalent.



Definition 3 In an economy & satisfying [Werner Nonsatiation], Werner’s
PNA condition is satisfied if

N5 20,
=1

where

SV={peR'| p-y>0,vYyec R\ L;}

is Werner’s cone of no-arbitrage prices.

Here we extend Werner’s condition to allow for the possibility that for
some agent the set of useful net trades is empty - that is, to allow for the
possibility that for some agent, R; \ L; = (). More importantly, we shall
prove, under very mild conditions, that our extended version of Werner’s
condition is equivalent to Hart’s condition. This result extends an earlier
result by Page, Wooders, and Monteiro (2000) on the equivalence of the
Hart and Werner conditions.

We begin by extending the definition of Werner’s cone of no-arbitrage
prices:

Definition 4 For each agent ¢, define

o [ SF RN L#D,
T LE fFR\Li=0.

Given this expanded definition of the no-arbitrage-price cone, the ex-
tended price no-arbitrage condition (EPNA) is defined as follows:

Definition 5 The economy & satisfies the EPNA condition if
ﬂ S # 0.
=1

Remark Note that if the economy & satisfies Werner’s nonsatiation condi-
tion, i.e., R; \ L; # 0, Vi, then the EPNA condition given in Definition 5
above reduces to Werner’s original condition PNA given in Definition 3.

Page, Wooders and Monteiro (2000) show that under assumptions [A.1]-
[A.2], [Uniformity]| and [Werner Nonsatiation], WNMA holds if and only if
N, SY¥ # 0 (i.e., Hart’s condition holds if and only if Werner’s condition
holds). Here, we extend this result by proving, under [A.1]-[A.2] only, that
WNMA holds if and only if (2, S; # 0.

Theorem 1 Let £ = (X;,u;, €)™, be an economy satisfying [A.1]-]A.2].
The following statements are equivalent:

10



1. & satisfies WNMA.
2. & satisfies EPNA.

Proof. See Appendix.

4 The Existence of Equilibrium

Our next result extends Werner’s (1987) main result on arbitrage and the
existence of equilibrium in two ways:

(1) Werner assumes uniformity of arbitrage opportunities. Here, we assume
only weak uniformity of agents’ lineality spaces [A.3].

(3) Werner assumes that for each agent 1, O"’]/D\i(:z;i) \ Li(z;) # 0, Va; €
Xi. Here, we weaken Werner’s nonsatiation assumption to allow
Ot P,(z;) = Li(x;) for some agents ¢ and some z; € A;. But in this
case we require that P;(z;) # (). In particular, we require only weak
nonsatiation [A.4].

Theorem 2 Let £ = (X;,u;, €)™, be an economy satisfying [A.1]-[A.2],
weak uniformity [A.3], and weak nonsatiation [AA]. If € satisfies Hart’s
condition, WNMA, or equivalently, if € satisfies the extended Werner con-
dition, EPNA | then £ has a quasi-equilibrium.

Moreover, if (xf,...,25,,p%) is a quasi-equilibrium of € such that for
each agent 1,

1. infxEXi <$,p> < <wi7p>7 and

2. Pi(aF) is relatively open in X;,
then (x5,..., 25, p") is an equilibrium.

Proof. See Appendix.

In addition to extending Werner (1987), we also introduce a new method
for proving existence in exchange economies with short selling. In particu-
lar, we prove existence by first transforming the economy £ to an economy
&' satisfying global nonsatiation and having the property that any equi-
librium of £ is an equilibrium of €. We accomplish via a modification of
agents’ utility functions. Our assumption of weak nonsatiation is crucial - it
allows us to modify agents’ utility functions in precisely the right way. We
then prove existence for the modified economy &’ using the excess demand
approach via the Gale-Nikaido-Debreu Lemma.

11



5 Examples

Weak nonsatiation [A.4] plays a critical role in our proof of existence. In
this section, we present two examples which show that our weak nonsatia-
tion assumption is the weakest possible. In example 1, the economy fails
to satisfy global nonsatiation and also fails to satisfty Werner nonsatiation.
However, the economy does satisfy weak nonsatiation, as well as all the
assumptions of our Theorem2 - and there exists a quasi-equilibrium. In
example 2, all the assumptions of Theorem2 are satisfied except weak non-
satiation [A.4] and existence fails. In both examples, as in Werner (1987),
there is uniformity of arbitrage opportunities.
Example 1

Consider an economy with 2 agents and 2 goods. Agent 1 has con-
sumption set X; = [0,1] x R and endowment e; = (§,0). Agent 1’s utility
function is given by

11, if ;€ [Ovi]v
U1(51?11751?21) iv if z1,€ [iv%]v
51?11—i7 if ;€ [%71]-

For agent 1, Werner nonsatiation fails because Ry = L; = {0} xR. More-
over, for agent 1

1 7
./41 = {(1'1171'21) | Z S 11 S E,le & R}

Thus, global nonsatiation is satisfied - and thus for agent 1 weak nonsatia-
tion is satisfied.

Agent 2 has consumption set X; =R; xR and endowment e; = (1,0).
Agent 2’s utility function is given by

ol 1
uz(:lilz,:lizz) { RS [0716]7

1 : 1
1 if 1’122 16"

For agent 2, global nonsatiation fails because

A, = {(51?12,51?22) | i <72 < l79522 S R}-
16 4
Moreover, for agent 2 the arbitrage cone is Ry =R xR, while the space of
useless net trades (i.e., the lineality space) is given by Ly = {0} xR. Thus,
for agent 2 Werner nonsatiation is satisfied - and thus for agent 2 weak
nonsatiation is satisfied.

It is easy to see that Hart’s condition (WNMA) is satisfied, and it is
easy to check that

1 1

(J}T,x;,p*) = ((xilvx;‘l)v (xiwx;z)v (pivpg)) = ((_70)7 (Zv

£+00 (7.0 (1,0)

12



is a quasi-equilibrium.
Example 2

In this example, again there are two agents and two goods, but agent
I’s preferences do not satisfy assumption [A.4], weak nonsatiation.

Agent 1 has consumption set X; = [0,1] xR and endowment e¢; = (1,0).
But now agent 1’s utility function is given by uy(211, 221) = —x11. As in our
first example, Werner nonsatiation fails for agent 1. In particular, agent 1’s
arbitrage cone is Ry = L; = {0} xR. Thus, for agent 1, the arbitrage cone
is equal to the space of useless net trades (i.e., the lineality space).

Agent 2 has consumption set X; =R} xR and endowment e; = (1,0).
Agent 2’s utility function is given by us(x12,222) = x19. For agent 2, the
arbitrage cone is Ry =R xR, while the space of useless net trades (i.e., the
lineality space) is given by Ly = {0} xR.

It is easy to see that Hart’s condition (WNMA) is satisfied. It is also
easy to check that for agent 1

1
A ={(z1,221) [0 <@y < 1751?21 € R}.

But note that for agent 1, global nonsatiation fails at (0, x41) € A, for all
z91 € R. Thus, since for agent 1, By = L; = {0} xR, weak nonsatiation
[A.4] fails for agent 1, and thus in this example weak nonsatiation does not
hold. Does there exist an equilibrium?

In this economy, for each agent 7, e; € intX; and utility functions are
continuous. Hence any quasi-equilibrium is an equilibrium. Moreover, if an
equilibrium exists, it must be the case that p* = (1,0). Given p*, agent 1’s
choice problem is given by

1
max{uy(x11, x21) | 11 € [0, Z],l’zl eR}.

All solutions to agent 1’s choice problem are of the form: a] = (a7,,23,) =
(0, 23,) for a3, € R. Given p*, agent 2’s choice problem is given by

1
maX{UQ(l'lQ,J}QQ) | T19 € [0, Z],:EQQ € R}

All solutions to agent 2’s choice problem are of the form: a} = (a7, 23,) =

(1,23,) for 23, € R. But 2} + 23 # €1 + €2 = (3,0). Thus, in this example

weak nonsatiation fails and there does not exist a quasi-equilibrium.

6 Appendix

6.1 The Geometry of Hart’s Condition

In order to better understand the weak-no-market-arbitrage condition, let
us consider the basic geometry underlying the condition. To begin, let

13



L+ := Lt (e;) denote the space orthogonal to agent i's lineality space L; :=
Li(e;). Recall that under weak uniformity, L; is the i agent’s set of useless
net trades. The vector space R' can be decomposed into the direct sum of
the lineality space L; and its orthogonal complement, L. Thus, we have

Rl: LZJ_@LM

and thus, each vector # €R! has a unique representation as the sum of two
vectors, one from L; and one from L. In particular, for each x €R!, there
exists uniquely two vectors, y € Lt and z € L;, such that = y + 2. Now
let

A*be the projection of A onto H L.
i=1
For each rational allocation © = (x1,...,2,,) there exists uniquely two m-
tuples, ¥y = (y1,...,yn) € A- and z = (z1,....,2,) € [[I2, Li, such that
x =y + z. Thus, we can think of each rational allocation as being uniquely
decomposable into a potentially useful component and a potentially useless
component. Our first result, a lemma, tells us that Hart’s condition holds
if and only if the set A+ of all useful components of the set of rational
allocation is compact. We will use this lemma in our proof of existence.

Lemma 3 Let £ = (X, u;, €)™, be an economy satisfying [A.1]-[A.2]. The
following statements are equivalent:

1. The set AL is compact.

2. & satisfies Hart’s condition, weak-no-market-arbitrage.

Proof. First, we will show that A"t is closed. For any x; € 132'(62'), write
v, = aF +7; for 2 € Pi(e;)N L} and Z; € L;. Let {(27")},, be a sequence in
At such that limy,— oo (27") = (). For each n, there exists (27) € [[~, Li,
such that

"+

m
K3

m m

N

1 =1

K3

1 %

Hence,
m

D 2 T CE QL

=1

since 7" L; is a finite dimensional subspace and hence closed. Now write
¢ =>_", G, where for each i, (; € L;. One can check that for each 1,

xi € ]/52'(62') N L and (2 + ) € A
Hence (z}) € A*.
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(1) = (2) : Let y = (y1,.--,ym) be such that y; € R; for all i and
Yoo yi = 0. For each 7, write

y; = y; +y+ for y; € L; and y+ € L}
and
¢; = ¢ + et fore; € Ly and e € L.

We have
(e + Ay, ... em + dyt) € A for all A > 0.
If A+ is bounded, we must have y+ = 0 for all 7. Thus y; € L; for all 4.
(2) = (1) : In order to show that Hart’s condition implies that A+
is compact, it suffices to show that Hart’s condition implies that At is

bounded. Suppose not. Let {(zi")}, be a sequence in A* such that such
that

m

2 Il

=1

Now let {(Z})}, be a sequence in [].-, L; such that

DRI I
1=1

=1

ol

Without loss of generality, we can assume that for all ¢,
1n mo ~n
i —— — ¥, and Lzt 7
|+ 125 27
Note that since Y " L; is a finite-dimensional subspace, it is closed. Thus,
S —— e Y L foralln
ST I w7 © 2 ’
implies that
¢ed Ly
Write ¢ = 3, ¢; where (; € L; for each 7. We have

— C.

z7l

=1 ‘ =1 ‘

Z x; + Z G = 0.
=1 =1

Since for all 7, 7 + (; € R;, by Hart’s condition, we have a7 + (; € L; for
all 7. Since (; € L;, 27 + (; € L; implies that a7 € L;. But 27 € L. Thus,
for all ¢, 7 =0, so that ) " (; = 0. Observe that for all n,

Sl L mmE
[ B

m
> el +
=1

Thus, we have a contradiction. B

21‘

>

=1

=1 ‘
and hence
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6.2 The Equivalence of the Hart’s Condition and the
Generalized Werner Condition

In order to prove the equivalence of Hart (WNMA) and the extended Werner
condition (EPNA), we need two additional results.

Lemma 4 Let £ = (X;,u;,¢;)™, be an economy satisfying [A.1]-[A.2]. The
following statements are true:

1. For any i, such that R; \ L; # 0, we have:

Si={peLi| py>0Vyec (R NL)\{0}}.

2. Vi=1,...,m,S; = —ri(RY) where (R?) is the polar cone of R;, and ri
denotes relative interior (i.e., the interior relative to the affine hull,

aff(RY)).

Proof. (1) See Dana, Le Van and Magnien (1999, p.182).

(2) Tt is clear that if B; = L; then R? = L+ = S;. Thus, S; = ri(—R,;°).
Now let us suppose that R; \ L; # (0. First, we show that aff(R?) = L. In-
deed, since L; C R; we have R? C L and then aff(R?) C L. Furthermore,
if aff(RY) is a proper vector subspace of L, then L; is a proper vector sub-
space of (aff(RY))*. But (aff(R?))* C R,, which contradicts the fact that
the lineality space L; is the maximal vector subspace contained in R;.

It is easy to check that R; = (R; N L+) + L; (also see Allouch, Le Van,
and Page (2001)). By Corollary 16.4.2 in Rockafellar (1970), we have

R = (RinLH)°n L (1)
= {pel}| py<0Vye (RinLH} (2)

We notice that the positive dual of R; N L} in L} is also RY, and that
R; N L+ is pointed cone, that is:

(RN LH)()—(Rin L) = 0.
Then, it follows from (2)
HRY =int B ={pe Li| p-y<0,Yye(RnLi)\{0}}.
From (1) of the present lemma, we get S; = —1i(R?). W

In addition to Lemma 4 above, we need the following lemma, a restate-

ment of Corollary 16.2.2 in Rockafellar (1970).
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Lemma 5 Let f1,... f,, be a proper convex functions on R™. In order that

there do not exist vectors x5, ...,x" such that
i+ ...+, =0, (3)
FLOH () + o+ [L0%(5) <0, (4)
O™ (=al) 4.+ fLOT (=a7) > 0, (5)

it is necessary and sufficient that
ﬂ (domf;) # 0.

We recall that for a convex function domf; = {&# € R™ | fi(z) < 400}
and f*O7 is the support function of domf;, that is,

J70*(a7) = sup{a? @ | @ € domf}.

Proof of Theorem 1 (The FEquivalence of Hart and Werner)

For every 1 =1,...,m, let
0 if # € RY,
filz) = { +o00 otherwise.
Hence
JiOT (7)) = sup{xj -2 | = € R} (6)

Since 0 € R?, it follows that f*O%(z¥) > 0 for all 7. Then (4) is satisfied
if and only if fXO*(z¥) = 0 for all ¢ and therefore from (6) if and only if
x7 € R;. Quite similarly, (5) is not satisfied if and only if —aF € R;. Since
L; = R; " —R;, it follows that the first assertion of Lemma 5 is satisfied if
and only if the WNMA condition is satisfied. Furthermore, from Lemma 4

one gets
ﬂSZ':ﬂri(— ﬂ (domf;).

Hence, the equivalence follows from Lemma 5. B
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6.3 Existence
6.3.1 Modifying the economy

Our method of proving existence is new. Our starting point is an exchange
economy & satisfying assumptions [A.1]-[A.2] and weak nonsatiation [A.4].
To deal with the problem of satiation, we construct a new economy &’ in
which agents’ utility functions have been modified. In the new economy
E" agents’ preferences are such that no agent is satiated at a rational al-
location. Below, we establish that if the economy & satisfies assumptions
[A.1]-[A.2] and weak nonsatiation [A.4], then the modified economy &’ sat-
isfies assumptions [A.1]-[A.2], and global nonsatiation. Moreover, we show
that if £ satisfies Hart’s condition, then the modified economy &’ also sat-
isfies Hart’s condition. Finally, we show that a quasi-equilibrium for the
modified economy &’ is also a quasi-equilibrium for the original economy &.

Let € = (X;,ui, ;)7 be an economy satisfying [A.1]-[A.2], and weak
nonsatiation [A.4]. We begin by modifying agents’ utility functions. Suppose
that for some agent ¢ there exists a satiation point = € A;, that is,

Ty 7

It follows from weak nonsatiation [A.4] that there exists
ri € OFBi(a) \ Lila;).
Using r; we define the function
pil-) : P(af) — Ry

as follows: R

pi(zi) =sup{f € Ry | (x; = fri) € Fi(a])}.
Now using the function p;(-), we can define a new utility function, v,(-), for
agent 1:

wi(x;) + pi(x;), if x; is a satiation point,

viai) = { wi(x;), otherwise.

Claim 6.1 The function p; is well-defined. Moreover, for all x; € 132(:1;2*)
we have (x; — pi(x;)ri:) € Pi(a?).

Proof of Claim 6.1. Let
W={3eRy| (v;:—fBr;) € P(a})}.

We first notice that 0 € W. Thus, § # W C R;. We claim that W
is bounded. Suppose the contrary. Then —r; € O P,(27) and therefore
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r; € L;(aF), which contradicts r; O"’]/D\i( )\ Li(2F). Finally, we have
(x; — pilxi)r:) € P( ¥) since P( ) is closed.O

Claim 6.2 Let A > 0. Then
{w € P(a}) | px) = A} = {Ari} + Bi(a)).
Proof of Claim 6.2. First it is obvious that
(i} +(Pi(a})) € {w € B(a]) | pila) > AL
Furthermore, let z; € {z € Pi(x pi(z) = A}, Then, (z; — p(i)r:) €

7) |
P;(x7) and therefore x; € {Ar;} + Pi(aF), since P( ¥) is convex.O

Claim 6.3 We have sup, cp,(,» pi(2i) = +0o0.

Proof of Claim 6.3. 1t is obvious that (z; + Ar;) € P( ), for all A > 0,
since r; € OT Pi(x¥). Moreover, p;(z; + Ar;) > A. Then, SUD,,, e B () pilz;) =
+o00.0 l

Consider the level set Fy ={x € X, | vi(x) > A}, for every A € R.

Claim 6.4 The function v; is upper semicontinuous and quasi-concave.

Moreover, for all x; € Pi(e;)

O+E B O"’]/D\i(:z;f), if ¥; is a satiation point,
viled) — Ot P,(z;), otherwise.

Proof of Claim 6.4. The function v; is upper semicontinuous and quasi-
concave if and only if F) is closed and convex for all A € R.

first case. Suppose A < w;(xF). Then, Fy = {z € X, | w(x) > A}
Thus, E) is closed and convex, since u; is upper semicontinuous and quasi-
concave.

second case. Suppose A > w;(xr). Then

E/\ = {l’ € XZ | UZ(J}) Z )\}
= {z € Pi(e}) | pile) = (N —wi(2)))}
= {(\—wi(e]))ri} + Pa)).
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Thus, E) i1s convex and closed.O

Now, we consider the modified economy & = (X, v;, €;)i=1.....m. Let
A ={(z;) € HXZ' | sz = Z e; and v;(x;) > vi(e;), Vi,
=1 =1 =1

be the set of rational allocations of &’.

Claim 6.5 If in addition to satisfying assumptions [A.1]-[A.2], and weak
nonsatiation [A.4], € also satisfies weak uniformity [A.3], then the following
statement is true:

If the original economy & satisfies Hart’s condition (WNMA), then the
modified economy E' also satisfies Hart’s condition.

Proof of Claim 6.5. Tt follows from Claim 6.4 that for all z; € E,,(, we
have

Li CO By (zy COTEyyey C Ry
Since, L; is the maximal subspace in R;, one gets v; has uniform lineality
space equal to L;. Furthermore, >°7 y; = 0 with Vi, y; € OT E,(,) implies
that > "y, = 0 with Vi, y; € R;. Since & satisfies the WNMA condition,
y; € L;, Vi. Therefore, & also satisfies the WNMA condition .0

Claim 6.6 We have:

(1) The modified economy &' satisfies Global Nonsatiation.

(v2) If (a*,p*) is a quasi-equilibrium of &', then (x*,p*) is a quasi-
equilibrium of &.

Proof of Claim 6.6. (i) It follows from Claim 6.3.

(17) It is clear that 2 € A" C A. Moreover, let ; € X; be such that
wi(x;) > w;(xr). Then, x7 is not a satiation point and therefore v;(af) =
wi(x7). Since v;(x;) > w;(x;), it follows that v;(x;) > v;(«F). Since (a*, p*) is
a quasi-equilibrium of &', we can conclude that p*-x; > p*-e;. Thus, («*, p*)
is a quasi-equilibrium of £.0

6.3.2 Proof of Theorem 2 (Existence Result)

First, it follows from Claim 6.5 that & also satisfies the WNMA. From
Claim 6.6 it is sufficient to show that £ has a quasi-equilibrium.

We consider a sequence of truncated economies with consumption sets

-~

X! = Pe;) 0 L N clB(0,n),

K3
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where B(0,n) is the open ball of radius n centered at 0. We choose n large
enough so that e; € B(0,n) for each .
Let D = NL# and 1T is the unit sphere of R

For (p,q) € (DxR) N1I, we consider

ei(p,q) ={z: € X' | pra; <p-ei+qb,

and

Cp,q) ={a €@ p,q) | yE€ P (z)=p-y>p-eitq},
where

]3”(:1;2) ={(I=XNa;+ Az | 0< X <1 o) <wvi(z)and 2z € X}

K3

We have the following result:

Lemma 6.1 For n large enough, (" is upper semicontinuous nonempty,
compact and convex valued, for every 1.

Proof. First we show that (*(p,¢q) is nonempty for n large enough.

For n large enough, e; € ©?(p, q). Let ¥; be a maximizer of v; on ©?(p, q).
If ]32”(3;\2) = (), we end the proof, since T; € (*(p, ¢). If not, let z; € X[, such
that v;(z;) > v;(%;). By the very definition of Z;, we have p-z; > p-e; + q.
Let ¢;, contained in the segment [Z;, z;] , be such that

p-ti=p-e+gq.

By quasi-concavity of the utility function, v;(¢;) > v;(¥;). By the definition
of ¥;,vi(t;) < v;(¥;). Hence t; is another maximizer of v; on ¢?(p,q). We
claim that t; € (?(p,q). Indeed, let z' € X such that v;(z]) > vi(¢;). We
have p-z' > p-¢; + ¢q. Thus,

VA€]0,1],p- (1 =Xt + X)) >p-e +q.

Second we show that ((p, q) is convex valued.

Let « and 2’ be contained in (/(p, q) and let y € ]32”()\:1; + (1 = X)a') for
A€ ]0,1].

(a) First assume p-x <p-e;+qand p-a’ <p-e; + ¢q. If v;(x) > v;(a)
then p-a > p-e; + ¢, which is a contradiction. Hence v;(x) < v;(a’). If
vi(z') > wvi(x), then p- a2’ = p-e; + q. Because v;(2') > v;(x), we have
Ax 4+ (1= XN)a' € ]32”(:1;) which implies that

prAr+(1=N2')>p-e+q,
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Thus, we have a contradiction because
p-Qz+(1l—=N2)<p-e+q
Therefore v;(2') = v;(x). But now by quasi-concavity, we have
vi(Az 4+ (1 = A)a') > vi(x) = vi(2’).
If v;(Ax 4+ (1 — A)a') > v;(x), then
p-(Ar 4 (L=XA)a') > p-e+q,
a contradiction as before. Hence,
vi( Az + (1 — N)2') = vi(z) = vi(a).

Let y € ]32”()\:1; + (1= X)), ie, y = a(Az + (1 = N)a') + (1 — o)z for
some « € [0, 1], and some z € X such that v;(z) > v;(Ax + (1 — X)a’). We
have the identity

a(Adz+(1=XNz")+ (1 —a)z = AMaz+ (1 —a)z)+ (1 — AN)(az" + (1 — a)2).

But we have, p-(ax+(1—a)z) > p-e;+¢q, and p-(ax+ (1 —a)z') > p-e;+4.
Therefore, p-y > p-¢; + q.
(b) Assume now p-x = p-¢; +qand p-a2’ = p-e; + ¢ In this case
p-(Ar+(1—=XNa')>p-e +q. Let
y=aAz+(1—-XNz")+ (1 —a)z

for some o € [0, 1] and some z € X[ such that v;(z) > v;(Az 4+ (1 — XN)a’).
We have
vi(z) > vi( Az + (1 — N)2') > min {v;(z), v;(z")}.

Hencep-z>p-e;+qg,and p-y > p-e; +q.
Finally, we show that (/'(-,-) has a closed graph. Let

xl e 7 (pY,q"), =l =z, (pV,q") = (p.q),

and let
z=(1—=XNa; + Ay,

for A € ]0,1] and y € X[ such that v;(y) > v;(x). By the u.s.c. of v;, for v
large enough, v;(y) > UZ( ). Let

= (1 =Xz + Ay.
Clearly, z¥ € ]32”(:1/';’), so that
pl/ . Zl/ Z pl/ . el_l_ql/‘
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Since lim, 1., 2" = z,
p-z>p-e+q.
Thus, = € ¢*(p,q).0

Now, define

m

ZMp,q) = > _(¢Mpq) — €)] x {=m}.

=1

It is clear that,

V(p,q) € (D xRy)NIL Ve € Z"%(p,q), (p,q).x < 0.

We can now apply the Debreu fixed point lemma (see Florenzano and

Le Van (1986)).

Lemma 6.2 Let P C R™! be a convex cone which is not a linear subspace.
Let P° and 11 denote respectively the polar of P and the unit sphere of R,
Let 7 be an upper semicontinuous (u.s.c.), nonempty, compact and convex
valued correspondence from P N 11 into R such that

Vpe PNII, 3z € Z(p) such that p-z < 0.
Then there exists p € P NI such that Z(p) N P° # .

Thus, it follows from the above lemma that

A(p",q") € (D x Ry) NI,
da? € G(p™,q"), Vi,
and

3" € > 7, Li such that Y 7 (aF —e;) = 2"

One can write 2" =Y " [ where [? € L;,Vi. Then one has

=1 "1

m

Zl‘ — 1) zm:e“

=1 =1

and therefore (27) € A*. Passing to a subsequence if necessary, it follows
from the compactness of A+ and (DxRy)NII that

. ny __ % 1 * *
Jim (@) = 2" € A and lim (p",¢") = (p"¢7) € (D x Ry) N L

Since z* € At there exists (I;) € [T~ Li such that

m

Zl‘ — 1) zm:e“

=1 =1
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and x = 27 — [;. By Global Nonsatiation for v; there exists z; € X;, such
that

vi(zi) > vi(af7) = vila7).
Then, by weak uniformity, [A.3], there exists z= € X; N L, such that
vi(z7) > vi(a7). For n large enough, 2+ € X7, and therefore v;(z) > v;(z)
(since v; is w.s.c.). It follows from z? € (*(p", ¢"), that

Pyl > pt e+ 4", for y = (1 = Nal + Az, A €]0,1].
Let n — oo. Then
pro((L=XNal+Az) > p e+ ¢ .
Let A = 0. Then
prrai zp et g
But, p* - x; < p*-e; + ¢*. Hence

*

P xr:p*el—l_q*vv%

and also
preal =pt e+ ¢V
since [; € L;. Summing over ¢, one gets ¢* = 0, and p* - 2" = p* - ¢;, V1.

We claim that (z*, p*) is a quasi-equilibrium of £’. Thus, it remains to
check that vi(z;) > vi(2%) implies p*-x; > p*-e;. For such an x;, let 2 be the
projection of z; on L. For n large enough, z+ € X7, and v;(z}) > vi(a?).
Since x € ((p", ¢"), we have

proal > pt e+ g,

which implies p* - x > p* - ¢;, and therefore p* - z; > p* - ¢;.0

24



References

1]

2]

[10]

[11]

[12]

ALLOUCH N.; An equilibrium existence result with short selling, Jour-
nal of Mathematical Economics, forthcoming, (2002).

ArroucH N., LE VAN, C., PAGE, F.H.JR., The geometry of arbi-
trage and the existence of competitive equilibrium, Warwick Economic

Research Papers, No 598, Department of F.conomics, University of War-
wick, (2001).

BERrGsTROM, T. C., How to discard ‘free disposability’ - at no cost,
Journal of Mathematical Economics 3, 131-134 (1976).

Dana, R.-A., LE VAN, C., MAGNIEN F.; On the different notions
of arbitrage and existence of equilibrium, Journal of Economic Theory

86, 169-193 (1999).

DEBREU, G., Theory of Value, John Wiley and Sons, New-York,
(1959).

FLoreEnzaNO, M., LE VAN, C., A note on Gale-Nikaido-Debreu
lemma and the existence of general equilibrium, Fconomics Letters

32, 107-110, (1986).

GALE, D., MAS-COLELL, A., An equilibrium existence theorem for
a general model without ordered preferences, Journal of Mathematical

Economics 2, 9-15 (1975).

GEISTDOERFER-FLORENZANO, M., The Gale-Nikaido-Debreu lemma
and the existence of transitive equilibrium with or without the free-
disposal assumption, Journal of Mathematical Economics 9, 113-134

(1982).

GRANDMONT, J.M., On the Temporary Competitive Equilibrium,
Working Paper, No. 305, Center for Research in Management Science,
University of California, Berkeley, August (1970).

GRANDMONT, J.M., Continuity Properties of a von Neumann-
Morgenstern Utility, Journal of Economic Theory 5, 45-57, (1972).

GRANDMONT, J.M., Temporary general equilibrium theory, Econo-
metrica 45, 535-572, (1977).

GREEN, J.R., Temporary general equilibrium in a sequential trading
model with spot and futures transactions, Econometrica 41, 1103-1124,

(1973).

25



[13] HAMMOND, P.J., Overlapping expectations and Hart’s condition for
equilibrium in a securities model, Journal of Economics Theory 31,

170-175 (1983).

[14] HART, O., On the existence of an equilibrium in a securities model,

Journal of Economic Theory 9, 293-311 (1974).

[15] Kim, C., Stochastic dominance, Pareto optimality and equilibrium
asset pricing, Review of Economic Studies 65, 341-356 (1998).

[16] MILNE, F., Default risk in a general equilibrium asset economy with
incomplete market, International Economic Review 17, 613-625 (1976).

[17] MILNE, F., Short selling, default risk and the existence of equilib-
rium in a securities model, International Economic Review 21, 255-267

(1980).

[18] NIELSEN, L.T., Asset market equilibrium with short selling, Review
of Economic Studies 56, 467-474 (1989)

[19] PaGE, F.H.JR., On equilibrium in Hart’s securities exchange model,
Journal of Economic Theory 41, 392-404 (1987).

[20] PAGE, F.H.JrR., WOODERS, M.H., A necessary and sufficient condi-
tion for compactness of individually rational and feasible outcomes and
the existence of an equilibrium, Economics Letters 52, 153-162 (1996).

[21] PaGE, F.H.Jr., WooDERs, M.H., MONTEIRO, P.K., Inconsequen-
tial arbitrage, Journal of Mathematical Economics 34, 439-469 (2000).

[22] ROCKAFELLAR, R.T., Convex Analysis, Princeton University Press,
(1970).

[23] WERNER J., Arbitrage and the existence of competitive equilibrium,
Econometrica 55, 1403-1418 (1987).

26



