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1 Introduction

There is a wide range of economic contexts in which “aggregate costs' have to be
allocated amongst individual agents or components who derive the bene ts from
a common project. A ..m has to allocate overhead costs amongst its dixerent
divisons Regulatory authorities have to se taxes or fees on individual users for
a variety of services. Partnesin ajoint venture must share cogs (and bene ts) of
the joint venture In many of these examples, thereis no external force such as the
market, which determines the allocation of cogts. Thus, the ..nal allocation of costs
is dedded a@ther by mutual agreement or by an “arbitrator”" on the bads of some
notion of fairness.

A central problem of cooperative game theory is how to divide the bene. ts of
coopearation amongst individual players or agents. Since thereis an obvious analogy
between the division of costs and that of bene ts, the tools of cooperative game
theory have proved very ussful in the analysis of cost allocation problems.! Much of
thisliterature has foaused on “general" cost allocation problars, so that theensuing
cost game is identical to that of a typical game in characteristic function form. This
has fadlitated the search for “appropriate' cost allocation rules consderably given
the corresponding results in cooperative game theory.

T he purpose of this paper is the analysis of allocation rules in a special dass of
cost allocation problens. T he common feature of these problens is that a group of
users have to be connected to a single supplier of some service. For instance, several
towns may draw power from a common powe plant, and hence have to share the
cost of the distribution network. There is a non-negative cost of connecting each
pair of users (towns) as well as a cost of connecting each user (town) to the common
supplier (powe plant). A cost game arises becuse cooperation reduces aggregate
costs - it may becheape for town A to construct a link to town B which is “neare™
to the power plant, rather than build a separatelink to theplant. Clearly, an e¢ dent

nework must be a tree, which connedtts all users to the common supplier. That is

Moulin[10] and Young [15] are excellent surveys of this literature.



why these games have been labd led minimum cost spanning tree games.

Noticethat inthe example mentioned above, it makes sensefor town B to demand
ome compensation from A in order to let A use its own link to the power plant.
But, how much should A agreeto pay? T his is whereboth strategic issues as well as
condderations of fairness come into play. Of course these issues are present in any
aurplus-sharing or cost allocation problem. What is goecial in our context is that
the structure of the problem implies that the domain of the allocation rule will be
gmalle than that in a more general cost problem. This smaller domain raises the
possibility of constructing allocation rules satisfying “nice" properties which cannot
always be done in general problems. For instance, it is known that the core of a
minimum cost spanning tree game is always non-ampty.?

Much of the literature on minimum cost spanning tree games has focused on
algorithmic issues.3 In contrast, the derivation of attractive cost all ocation rules or
the analysis of axiomatic propeaties of dixerent rules has recaved correspondingly
littleattention.* This provides the main motivation for this paper. We show that the
allocation rule proposed by Bird [1], which always sdeds an allocation in the core
of the game, does not satisfy cost monotonicty. Cost monotonicity is an extremdy
attractive property, and requires that the cost allocated toagent i does not inarease
if the cost of a link involving i goes down, nothing else changing. Notice that if
a rule does not satisfy cost monatonicity, then it may not provide agents with the
appropriate incentives to reduce the costs of constructing links.

T hecost allocation rule which coinddes with the Shapley value of thecost game
satis. .es cost monotonidty. However, the Shapley value is unlikdy to be used in these
contexts because it is not in the core. T his implies that some group of agents may
wdl ..nd it bene cial to construct their own network if the Shapley value is used
to allocte costs. We show that cost monotonicity and the core are not nmutually

exdusive® by constructing a new rule, which satis..es cost monotonidty and also

25ep, for instance, Bird[1], Granot and Huberman [7].

3See for instance Granot and Granot [5], Granot and Huberman [6], Graham and Hell [4].
*Exceptions are Fdtkampf [3], Kar [9]. See Sharkey [13] for a survey of this literature.

>This is where the small domain comes in useful. Young [15] shows that in the context of
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sects an allocation in the core of the game

We then go on to provide axiomatic characterizations of the Bird rule as wdl
as the new rule construded by us. An important type of axiom used by us is
dosy linked to the reduced game properties which have been extensively used in
the axiomatic characterization of solutions in cooperative game theory.® T hese are
condstency conditions, which place restrictions on how solutions of dizerent but
related games de.ned on dinerent player ses behave We show that Bird rule and
the new allocation rule satisfy dixerent consistency conditions.

The plan of this paper is the following. In section 2, we de..ne the basic sruc
ture of minimum cost spanning tree games. The main purpose of Section 3 is the
congruction of the new rule as wdl as the proof that it satis.es cost monotonic-
ity and also sdects an alloction in the core of the game. Section 4 contains the

characterization results.

2 The Framework

Le N =f1;2:::9 bethesa of all possible agents. We are interested in graphs or
networks where the nodes areelements of aset N [ fOg, wheeN 2N, and Oisa
distinguished node which we will refer to as the source or root .

Henceforth, for any set N 2N, we will use N* to denctetheset N [ fOg.

A typical graph over N+ will be represented by gn = f(ij)ji;j 2 Ntg Two
nodesi andj 2 N* aresaid to be connected in gy if 9(i1i2); (i2i3); :::; (ini 1in) Such
that (ikiks1) 29 1+ k- ni 1, andii=i;in =]j: A graph gy is called connected
ova Nt ifi;j areconnedted in gy for all i;j 2 N*: The set of connected graphs
ova N* isdenoted by i y:

Consider any N 2N, where #N = n. A cost matrix C = (Gj) represents the
aost of direct connection beween any pair of nodes. That is, ¢jj isthe cost of directly

transferable utility games, there is no solution concept which picks an allocation in the core of
the game when the latter is nonempty and also satis..es a property which is analogous to cost

monotonicity.
6See Pdeg[11], Thomson [14].



connecting any pair i;j 2 N*. We assume that each g; > O whenever i & j. We
also adopt the convention that for eachi 2 N*, i = 0. So, each cost matrix is
nonnegative, symmetric and of order n + 1. The s& of all cost matrices for N is
denoted by Gy. However, we will typically drop the subsaipt N whenever thereis
no cause for confusion about the s& of nodes.

Consider any C 2 Gy. A minimum cost spanningtree (m.c.s.t.) over Nt satis. .es
v = argming; X Gj: Note that an m.cst. need not be unique. Clearly a
minimum cost spar%)ia% network must be a tree Otherwise, we can delete an extra
edge and still obtain a connected graph at a lower cost.

An mc.s.t. corresponding to C 2 Gy will typically be denoted by gy (C).

Example 1. Consider a st of three rural communities fA;B;Cg, which have to
decide whether to build a system of irrigation channds to an existing dam, which is
the sourceor root. Each community has to be connected to thedamin order to draw
water from the dam. However, some connection(s) could be indirect. For instance
community A could be connected directly to the dam, while B and C are connected
to A, and henceindirectly to the source.

Thereisa cost of building a channel connecting each pair of communities, as wdl
as a channd connecting eech comnunity directly to the dam. Suppose, these costs
are represented by a cost matrix C. o

02 4 1t

201 3
C=

4102

1320

Theminimum cost of building the system of irrigation channds will be 4 units.
Our object of interest in this paper is to see how the total cost of 4 units is to be
distributed amongst A; B and C.

T his provides the mativation for the next de. .nition.

De..nition 1: A cost allocation rule isa family of functions fAN gysn with N %N,

. X . X
AV .G ! < stisfying  AN(C) | gj for all C 2 Q.
i2N (ij)2gn (C)
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We will drop the supersaript N for therest of the paper.

So, given any set of nodes N and any cost matrix C of order (jNj + 1), a cost
allocation rule goeci. .es the costs attributed to agents in N. Notethat the source O
is not an active player, and hence does not bear any part of the cost.

A cost alloction rule can be generated by any singlevalued game-theoretic so-
lution of a transferable utility game T hus, consider the transferable utility game
generated by considering the aggregate cost of @ minimum cost spanning tree for
each coalition S u N. GivehC and S u N, let C5 bethe cost matrix restricted to
S. Then, consider a m.c.st. g5(Cs) over S*, and the corresponding minimum cost
of connecting S to the source. Let this cost bedenoted s. For each N 2N, this
de.nes a st game (N ;) whaeforeach Su N, dS) = cs. That is cis the cos
function, and is analogous to a TU game Then, if © is a singevalued solution,
@©(N; ¢) can be viewed as the cost alloction rule corresponding to the cost matrix
which generates the cost function c.’

One particularly important game-theoretic property, which will be used subse-
quently is that of the core If a cost allocation rule does not always pick an element
in the core of the game, then some subset of N will ..nd it pro..tableto break up N

and construct its own minimum cost tree. T his motivates the following de .nition.

De..nition 2: A cost allocation rule A is a core sdlection ifforall N u N and for
alC2 ¢, X A(C) - dS), wherec(S) isthecost of themcst. for' S, 8S u N.

However,izcsost alloction rules can also be de..ned without appealing to the un-
derlying cot game For instance this was the procedure followed by Bird [1]. In
order to desaribe his procedure we nead some more notations.

T he (unique) path fromi toj intreag, isasa U(i;j;qg) =fiyiz:::;ik g, where
each pair (ikj 1ik) 2 g, and iy;ip;:::;ik are all distinct agents with i1 = i;ixk =
j. The predecessor set of an agent i in gisde.ned as P(i;g) = fkik & i; k 2
U(G i;9)g: Theinmeadiate predecessor of agent i, dencted by @&li), is the agent who
comes immediatdy before i, that is, ®i) 2 P(i;g) and k 2 P (i; g) implies athe

7See Kar [9] for an axiomatic characterization of the Shapley valuein m.c.s.t. games.



k = @) or k 2 P(&i);g).8 The followers of agent i, are those agents who come
immediatdy after i; F (i) =fjj®]) =ig.

Bird’s method is de .ned with respect to a speci..c tree. Let gy be some m.c.st.
corresponding to the cost matrix C. Then,

B|(C) =Ci®(i) 8i 2 N:

So, in the Bird allocation, each node pays the cost of conneatting to its immediate
predecessor in the appropriate m.c.s.t.

Noticethat this does not de .ne an allocation ruleif C givesriseto morethan one
m.c.s.t. However, when C does not induce a unique m.c.s.t., one can still useBird’s
method on each m.cs.t. derived from C and then take some convex combination of
the allocations corresponding to each m.c.st. as the cost allocation rule. In genedl,
the properties of theresulting cost allocation rulewill not be identical to thoseof the
cost allocation rule given by Bird’s method on cost matrices, which induce unique
m.cs.t. s.

In section 4, we will use two domain restrictions on the set of peamissible cost
matrices. These are de..ned bdow.

De..nition 3: G =fC 2 GC induces a unicque m.cs.t.8N %N g:
De..nition 4: C2 =fC 2 Cj no two edges of the unigue m.cs.t. have the same cost g:

Noticeif C isnot in C2, then even a “small" perturbation of C produces a cost
meatrix whidch is in C2. So, even the stronger domain restriction is rdativdy mild,

and the pemissble sets of cost metrices are large

3 Cost M onotonicity

The Bird allocation is an attractive rule because it is a core sdection. In addition,
it is easy to compute. However, it fails to satisfy cost monotonicity.

De..nition 5: FixN %N. Leti;j 2 N*, and C;C°2 Gy be such that ¢q = ¢, for
al (kl) & (ij) and g; > ci‘j’. Then, the allocation rule A satis..es Cost Monotonicity

8Note that sinceg is a tree, theimmediate predecessor nust be unique.

7



ifforall m2 N\ fi;jg Apn(C) , An(CO.

Cost monotonicity is an extremdy appealing property. T he propety applies to
two cost matrices which dixe only in the cost of connecting the pair (ij ), cﬂ being
lower than j. Then, cost monatonicity requires that no agent in the pair fi;j g be
charged more when the cost matrix changes from C to C©

Despite its intuitive appeal, cost monotonicity has a lot of bite® T he following

example shows that the Bird alloction rule does not satisfy cost monotonidty.

Example 2: L& N =f1,2g9. Thetwo cost matrices are sped..ed below.
(i) co1=4cp =45,¢,=3
(i) G =4 =35, =3

Then, B1(C) =4 B»(C) = 3, while B1(CY = 3;B,(C9Y = 35. So, 2 is charged
more when the cost matrix is CPalthough ¢, < c and the costs of edges invalving
1 remain the same

T hecost allocation rule corresponding to the Shapley value of the cost game does
satisfy cost monotonidty. However, it does not always select an outcome which is
in the core of the cost game. Our main purpose in this section is to de..ne a new
allocation rule which will be a core sdection and satisfy cost monotoniaty. We are
able to do this despite the impossibility result due to Young because of the gecial
gructure of mininum cost spanning tree games - these are a strict subset of the
dass of kalanced games. Hence, monotonidty in the context of m.c.s.t. gamesis a
weaker restriction.

We describe an algorithm whose outcome will be the cost alloction presaibed
by the new rule Our ruleisde .ned for all cost matricesin C. However, in order to
economise on notation, we desaribe the algorithm for a cost matrix in C2. We then

indicate how to construct the rulefor all cost matrices.

%In fact, Young [15] shows that an analogous property in the context of TU games cannot be

satis..ed by any solution which sdects a core outcome in balanced games.



Fix someN 2N, and choose some matrix C 2 G . Also, for any A %N, de.ne
Ac as the complement of Ain N*. That isAc=N"* nA.

T he al gorithm proceeds as follows.

Let AO=f0g ¢®=;,t0=0.

Step 1: Choose the ordered pair (a'b}) such that (atb!) = argming;),a0¢ a2Gj :
De..net! = max(t; ), AL =A0[ fblg, gl = [ f(albh)g

Step k: De .nethe ordered pair (akB<) = argMin; 5 axi 1 a1 161 Ak = Ak 1T fixg,

o =g [ f(akiK)g, tX = max(t<i L; ¢ ). Also,

AR 1(C) =min(t< L gy ): (1)
Thealgorithmterminates at step #N =n. Then,
AL (C) =t" (2)

T he new allocation rule A* is described by equations (1), (2).

At any step k, AKi 1is theset of nodes which havealready been connected to the
ource 0. Then, a new edge is constructed at this step by choosing the lowest-cost
edge between a node in AKi 1 and nodes in AKi 1. The cost alloction of b<i 1 is
decided at step k. Equation (1) shows that b 1 pays the minimum of t<i 1, which is
the maximum cost amongst all edges which have been construdted in previous steps,
and Gy, the edge being constructed in step k. Finally, equation (2) shows that b°,
the last node to be connected, pays the maximum cost.19

Remark 1: The algorithm has been desaribed for cost matrices in . Suppose
that C B C. Then, the algorithm is not well-de..ned because at some step k, two
distinct edges (akiX) and (&kb<) may minimise the cost of connecting nodes in Aki 1
and AKi 1, But, there is an easy way to extend the algorithm to deal with matrices
not in G. L& 3bea strict ordering over N . T hen, 3can be used as a tie-breaking
rule - for instance choose (akB) if b¥ is ranked over B¢ according to 3% Any such
tie-breaking rule makes the algorithm wdl-de. ned. Now, let § bethe st of all strict

OFrom Prim[12], it follows that g is also the m.c.st. corresponding to C.




orderings over N. T hen, theeventual cost allocation is obtained by taking the smple
average of the “component” cost allocations obtained for each ordering 322 §. That
is, for any %2 §, let A5(C) denote the cost allocation obtained from the algorithm
when %.is usad as thetie-breaking rule. T hen,

A%(C) __LX AYC): (3
#§ 2§

We illustrate this procedure in Example 5 below.

Remark 2: Notice that A* only depends on the m.c.s.t.s corresponding to any cost
matrix. This property of Tree Invariance adds to the computational simplicity of
the rule and distinguishes it from rules such as the Shapley Value and nudeolus.

We now construct a few examples to illustrate the algorithm.

Example 3: Suppose C! is such that the m.c.s.t. is uniqueand is a line. That is,
each node has at mogt one follower. Then the nodes can belabdled ag;a1; ap;:::; an,
where 3o = 0; #N =n, with the predecessor sa of a, P(ax;9) =fGag; i ak 16
Then,

8k < m A3 (C1) = min(maxo. t<kGacats1; Caars1) (4)
and
Agn (C l) = OI-TEXn Gararsa (5)

Example 4: L& N =f1,2;3;4g, and

C2

I
G, BT, RO, I N
uu B N O b
u U1 O N U
w o Ut~ U

Thereis only one m.cs.t. of C2.
Step 1: Wehave (albt) = (01), tt =cq =4 A1 =10, 1g:
Step 2: Next, (a2?) = (13), AJ(C?) = min(thcz) = 1, 2 = max(tl; a3) = 4,
A2=f01;3.
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Step 3: We now have (2°P%) = (12), A%(C?) = min(t% cp) = 2, t2 = max(t%;cp) =
4, A3=f01230:
Step 4: Next, (a%F) = (34), A5(C2) = min(t3;c) = 3, t# = max(t3;c4) = 4,
A4=101;2 3 4.

SinceA4 =N+, Aj(C2) =t4 =4, and the algorithm is terminated.

So, A%(C2) = (1;3;2;4). This example shows that it is not necessary for a node
to be assigned the cost of its preceding or following edge. Here 2 pays the cost of
the edge (34), while 3 pays the cost of the edge (12). 11

T he next example involves a cost matrix which has more than one m.c.st., with

one of the trees having edges which cost the same.
Example 5: L& N =f1,2;3g, and

%0 4 4 5!
s 4022
4205
5250

C3 has two m.cs.t.s- gy = f(01); (12); (13)gand gy = f(02); (12);(13)g. Also,
in gy, the edges (12) and (13) have the same cogt.12

Suppose the algorithm is ..rst applied to gy. Then, wehaveb! = 1 In step
2, a2 =1, but ¥ can bedthe 2 or 3. Taking each in turn, we get the vectors

=(2;2,4) and x> = (24;2).

Now, consider g, which is aline. So, as we have desaribed in Example 3, the
resulting cost alloction is k = (2;2; 4).

T he algorithm will “generate” g instead of gy for all ¥s2 § which ranks 2 over
1. Hence, the “weight" attached to gy is half. Similarly, the weight attached to x!
and x2 must be one-sixth and onethird.

Hence, A*(C3) = (2 §;90).

Given C, le& gy (C) be the (unique) mc.sit. of C. Suppose gy (C) = oy, [
N, [ ong » whereeach gy, isthem.c.s.t. on Ny for the cost matrix C restricted

1For m.cs.t. of C2 eFig. 1.
2For m.cs.t. of C3 seFig. 2.
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toNJ, with [ §21Nk =N and N; \ N; = ©8i &j. Wewill cll such a partition the
m.c.s.t. partition of gy (C).

We now show that A™ is a core sdection and also satis..es Cost Monatonidty.

Theorem 1: The cost allocation rule A® satis..es Cost Monotonidty and is a core
slection.

Proof: We..rst show that A satis..es Cost Monotonidity.

Fix any N “2N. We give our proof for cost matrices in C2, and then indicate
how the proof can be extended to cover all cost matrices. Let C; € 2 @ be such
that for somei;j 2 N*, Gj > &;j, and ¢ = & for all other pairs (kl). We need to
show that AZ(C) , AXC) for k2 N\ fi;jg

I n desaribing the algorithm which is used in constructing A%, we . xed a sped. C
cost matrix, and so did not haveto spedify the dependence of AX; t5; &; B¢ etc. onthe
cost matrix. But, now we need to distinguish between these ertities for the two cost
matrices C and €. We adopt the following notation in the rest of the proof of the
thorem. Le: AK;t<; a&k; B<;gn etc. refer to the cost matrix C, while AK; £k &k B¢ &
etc. will denctethe entities corresponding to of
Casel: (ij)B &y.

Then, & = gy . Sincetheaost of all edgesingy remainthesame, A%(C) = A%(C)
forall k2 N.

Case 2: (ij) 2 &y .

Without loss of generality, let i be a predecessor of j in &y . Since the source
never pays anything, we only condder the case wherei is not the source

Supposei =B 1. As the cost of all other edges remain the same Aki 1 = Aki 1
and t1 = ti 1 Now, AR(C) = minX L&) and AF(C) = mintY L capex).
Since &+ Gk, ANC) - AF(C).

We now show that AX(C) - A(C). Letj = andj = B". Notethat | , m,
and that Am u Al,and t | tm.

Now, A%(C) = min(t™; &ms13n+1), while A%(C) = min(t';¢y+1y+1). Sincet |
tm, we only need to show that &ymsigne1 © Cyrig+i-

iV



Case 2(a): Supposea*! 2 A™, SinceB*1 2 N* nA™, &nirpni - Egerger -
Gl+1g+1.

Case 2(b): Supposeatld AM. Then, a*1&j. Also, alt12 Al, and so

Gi+ig+1 , Cyig (6)
We nead to consider two sub-cases.

Case 2(bi): d 2 AlilpnAmi 1,

Then, sinceA! =Ali [ fjgand Am = Ami 1] fjg a' 2 Al nAM.

Now sincej 2 A™ and @ B A™, &meajme1 © &4 © Ga = Guy. Using eguation
6 Ci+ig+1 . Cap . Egmeapner:

Case 2(bii): al 2 Ami 1=Ami 1,

Then, gy , Campn Sncem- 1.

Also, Ay Al and a'*12 Al nAM imply that #A™ < #A!. That is, | >m. So,
B" &) =H. Thisimplies 6" 8 (A™i 1[ fjg) = A™.

Now, am 2 Ami 1 = Ami 1 G5 gm 2 Am But aM 2 AM and b™ 8 A™ together
imply that &m+1gm+1 - Empn © Gampm.

So, udng equation 6, Em+1pm+1 © Gmpn © Gy © Cy+ig+1i:

Hence, A® satis..es cost monotonicity.13

We now show that for all C 2 C, A%(C) is an element in the core of the cost game
corresponding to C.

Again, we presant the proof for any C 2 C in order to avoid notational compli-
Gtions1* We want to show that for all S u N, X A¥C) - dS).

i2S
Without loss of generality, assumethat for all i 2 N; B = i and denote i = <.

X
Claim 1: If S =f1,2;:::KgwheeK - #N, then AF(C)- dS).
i2S

13Syppose C B C2. What we have shown above is that the outcome of the algorithm for each

tie-breaking rule satis..es cost monotonicity. Hence, the average must also satisfy cost monotonidity.
14Suppose instead that C B C2. Then, our subsequent proof shows that the outcome of the

algorithm is in the core for each 342 §. Since the coreis a convex set, the average (that is, A¥)

must be in the coreif each A%, is in the core



P roof of Claim: Clearly, g = [ f.;fakg is a connected graph over S [ fOq.

Als, gisinfact them.cst. over S.
X X Kc+1 X
So,S)= & Also, AXC)= &i max & &=dS).a
k=1 i25 k=l FRKAL

Hence, a blodking coalition cannot consist of an initial set of integers, given our
assumption that B¢ = k for all k 2 N.

Now, e S bea largest blocking coalition. T hat is,

X .
(i)  AXC)>d59).
i2S
X .
(ii) If S¥T, then AXC) - c(T).
i2T

T here are two possible cases
Case 1: 18 S.

Let K =minj2sj. Conside T =f1;:::;K i 1g. Wewill showthat S[ T isalso
a blodking coalition, contradicting the decription of S.

Now,

- X . X . X X
A¥(C) = A“(C)+ AR(C)>dS)+ i max & . dS) + (_ki Coe)

i2T[S i2T k=1 LK
where (Os) 2 O, the m.c.st. of S. Note that the last inequality foIIows from the
fact that & - cos forallk2f1;:::Kag.

Sinceg = ([ K_;a¥B) [ (gs nf(0s)g) is a connected graph over (T [ S[ f0g),
){( -
ck i s, c(S[ T). Hence X A*(C) > S [ T), establishing the

i2S[ T
contradlctlon that S[ T is a bloding coalition.

Case2: 12S.

From the daim, S is not an initial segment of theinteges. So, we can partition
SintofSy;:::; Sk g wheeeach Sy cond&ts of consecutiveintegers, and i 2 Sk;j 2
Sk+1 implies that i < j. Assume m = maxjzs,j and n = minj2s,j. Notethat
n>m+1 DeneT =fm+1L:::;;ni 1g Wewill showthatS[ T is a blodking
coalition, contradicting the assumption that S is a largest blodking coalition.

14



X . X . X
A¥(C) = AF(C)+ A¥(C)
i2S[ T i2S x 2T X
> dS)+ AMC)i  AY(C)
i2S[T 125,
X . m+1 .
= dS)+( cdi maxd)i ( cdi max )
=1 Li-n i1 I i- m+1
= S) +( di (maxci max c))
i=m42 1 i-n 1 i- m+1

Of course, Maxt i nC , MBX1 i m+1C. If MBX1 i nC = Maxy i me1C, then

- xo .

AF(C) > dS) + c , dS[ T), where the latter inequality follows from
i2S[ T i=m+2
the fact that [[ D_,.,f(a6°)gl gs]is a connected graph over S| T [ fOg.

Ifmaxy. i- n€ >maxe i me1¢,then maxy. i n¢ = MaXm+2 i- nC¢. Then,

- . x .
A¥(C) > c(S)+1max c + ci max ¢

i2S[ T s i- m+1l i—m+2 m+2 i- n
as) + ci mex ¢
. m+2- i n
i=m+1
X-] i ]
C(S) + d | C5152
i=m+1

where (s152) 2 g5 withs3 2 S [ f0gs; 2 N nS1.1° Since the edge (s152) could
have been connected ( but was not) in steps m+2;:::; n of thealgorithm for N, we
mugt have Gs;s, > & for k2 fm+ 2 :::; ng. Hence thelast inequality follows.

But, notethat [gsnf(s152)all B 41 (@¥E°)gisa connected graph over S[ T fOg.
So,
AXC) > dS)+ o Cs;s,

i2S[ T i=m+1
as[ T):

So, S[ T is ablodking coalition, establishing the desired contradiction.

T his concludes the proof of the theorem.

15Such (s152) must exist in g since gs is them.c.sit. over S.
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4 Characterization T heorems

In this section, we present characterizations of the allocation rules A* and B.16
We . rst describe the axioms used in the characterization. These characterization

theorems will be proved for the restricted domains C! for B and G2 for A®.

. X X
Ec¢ciency (EF): A(C) = Gj -
i2N (ij)2gn (C)
This axiom ensures that the agents together pay exactly the cost of the e¢ dent

network.

Before moving on to our next axiom, we introduce the concept of an extreme point.
Lea C 2 Gy besuch that the m.cs.t. gy (C) isunique Then, i 2 N is cllled an
extreme point of gy (C) (or equivalently of C), if i has no follower in gy (C).

Extreame Point Monotonicity (EPM): L& C 2 Gy, and i be an extreme point of
C. L& C bethe restriction of C over the s N* nfig. An allocation rule satis. €s
Extreme Point Monaotonicity if Ac(C) | A(C) 8k 2 N * nfig.

Suppose i is an extreme point of gy (C). Note that i is of no use to the rex
of the n&work since no nodeis connected to the source through i. Extreme Point
Monotonidty esentially states that no “existing" node k will agree to pay a higher
cost in order to indude i in the network.

The next two axions are consistency properties, analogous to reduced game prop-
erties introduced by Davis and Maschler [2] and Hart and Mas-Colld [8].Y

We nead some further notation before we can formally desaribe the consistency
axioms. Consder any C with a uniqgue m.cs.t. gy (C), and suppose that (i0) 2
v (C). Let xj be the cost alloction ‘assgned’ toi. Suppose i ‘leaves’ the scene
(or sops bargaining for a dineaent cos allocation), but other nodes are allowed to
connect through it. T hen, the exective reduced cost matrix changes for theremaining

nodes. We can think of two altemative ways in which the others can usenode i.

(i) Theothes @an use nodei only to connect to the source

16Sen Fdtkamp [3] for an alternative characterization of B.
7T homson[14] contains an excdlent discussion of consistency properties in various contexts
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(ii) Nodei can beused morewiddy. T hat is, nodej can connect to nodek through

In ase (i), the connection costs on Nt nfig are described by the following
equations:
Foralj &i;&0=min(Go;Gi +Goi Xi) (7)
Iffj;kg\ fi;0g=;; then& =Gy (8)
Equation 7 captures the notion that node | 's cost of connecting to the sourceis the
cheaper of two options - the..rst option beingthe original one of connecting directly
to the source while the second is the indirect one of connecting through nodei. In
the latter case the cost borme by j is adjusted for the fact that i pays ;. Equation
8 @ptures the notion that nodei can only be used to connect to the source
Let C5 represent the reduced cost meatrix derived through equations 7, 8.

Consider now case (ii).
Forall j;k2 N* nfig gk =min(Gk;Gi + i i Xi): (9

Equation 9 captures the notion that j can usei to connet to any other nodek,
where k is not necessarily the source
Let CY represent the reduced cost metrix derived through equation 9.

We can now de. ne the two condstency conditions.
Soure Condstency (SR): L& C 2 qﬁ and (0i) 2 gy (C). Then, thealloction rule
A satis. .es Source Consistency if A(CR(c)) = A(C) for all k 2 N nfig whenever
CRc) 2 Gini-
Tree Consistency (TR): Let C 2 G, and (0i) 2 gn (C). Then, the allocation rule
A satis..es Tree Consistency if A (C ) = A (C) for all k 2 N nfig whenever
R 2 K

T he two consisency conditions require that the cost allocated to any agent be

the same on the original and reduced cost matrix. This ensures that once an agent
connected to the source agrees to a particular cost alloction and then subsequently

17



allows othea agents to useits loction for possible connections, the remaining agents
do not have any incentive to reopen the debate about what is an appropriate allo-
cation of codts.

T he falowing lemmas will be used in the proofs of Theorems 2 and 3.

Lemmal:LetC2Gy,andi2N. Ifck = Izmrr}igqh then (ik) 2 av (C).
Proof : Suppose (ik) Zgy(C). As gy (C) is a connected graph over N*, 9 2
N+ nfi;kgsuch that (ij) 2 gy(C) and j is on the path between i and k. But,
fogy [ (ik)gnf(ij)gisstill a connecdted graph which costs no more than gy (C), as
Gk * Gj. Thisisnot possbleas gy(C) is the only m.cs.t. of C.

Lemma 2: Let C 2 G3; and (01) 2 gy(C). Let Ay(C) = mingyy+ 14 Cuic Then,
CE\rl(C) 2 Clglnflg'
Proof : Wewill denote C,'irl(c) by C for therest of this proof.

Let A1(C) = mingy+nf1g Cik = Cikx (Say).

Suppose there exists (ij) 2 gy (C) such that i;j & 1. Since(ij) 2 gy (C), d@ther
i precedes j or vice versa. Without loss of generality assumei precedesj in gy(C).
Since (01); (ij) 2 on (C), (1)) Zan (C). Then, @j > gjj. AsA;(C): qG1,G1 +aqj i
A,(C) , cj >cj. Henced; =¢j8(ij) 2 gv (C); such thati;j & 1.

Now, suppose thereisj 2 N suchthat j & k* and (1) 2 gy(C). Since
(1j); (1k®) 2 gy (C), (jK*) Z=gy (C). Hence G; < Csj. Thus,

& = minf(cy +cyex i Ay(C));Gerj g = Min(Cy s Gesj) = @ -

Next, let &ynr1q, bea connected graph over N * nf1g, de..ned as follows.

Br1g = F(i] )] either (ij) 2 gy (C) st. i;j & Lor (ij) = (K1) where (1) 2 gy (C)g:

Note that no two edges have equal cost in &y rf1g.

Also,
X X _
& = Gj i Cye: (10)
(2801 ()24 (C)

We prove that C belongs to G ¢4, by showing that & 14 is the only mcst. of C.



Suppose this is not true, so that gy 14 is an mc.st. corresponding to C. Then,

using 10,
X X .
&j Gj i Cis (11)
(ij)qu\:l(nflg (|J )29\1((:)
Let o nr1g =9 [ &, Where
gt = f0j)j(ij) 2 Rprigr G =& 9

= Fngnd

& = min(gj;ci +cy i Ay (C))
= ai+ai A(C)
mex(cyj; ¢yj)
where the last inequality follows from the assumption that A;(C) = mineon + 1gCik-
So,
& = g if(ij)2g'
max(cyi; cy) if (ij) 2 ¢ (2)

Now, extend g 14 to @ connected graph R over N* as folows Leting g =
f(1)jij) 2 &%j 2 U(i;K" i pr1g)0 de.ne

R =01 1N g

Claim: &) is a connected graph over N .

Proof of Claim: It is su¢ dent to show that every i 2 N* nflg is connected
to 1in ¢). Clearly, this is true for i = k*. Takeany i 2 N* nf1,k"g. Le
UG K% oNnrig) = F(moma);:::; (Mpmp+1)g where mo =i and mp+ = k% If all
these edges arein @', then they arealso in ¢, and thereis nothing to prove

So, suppose there is (Meme+1) 2 g2 while all edges in f(mema);:::; (M 1my)g
belong to gt. In this aase, (m1) as well as all edges in f(momi);:::; (M 1m)g

belong to ¢ . Hence, i is connected to 1.
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To complete the proof of the lenma, note that
X X X

G = Gj +Cy= + Gi:
(ii)2g (ij)2g! (i))29
Using (12),
X X X X
Gj - &§j + C= + & = &j + Cik
(i2d, (ij)2gt (i 2@ ()26 nr1
Finally, using (11),
X X
Gj - Gj:
(ij)2g (ij)2gv (C)

But, this contradicts the assumption that gy (C) isthe unique m.cs.t. for C.
Lemma 3 : Let C 2 G, (10) 2 gu(C). Suppose Ay(C) = cur. Then CR(c) 2
oo

Proof : Throughout the proof of thislemma, we denote C§' ¢, by C.

Weknow A;(C) = co1. Suppose (ij) 2 gn (C) such that fi;jg\ f0;1g=;. Then
Gj =Gj.

On the other hand if (i0) 2 gnv(C), and i & 1, then & = minf(c1+ Co i
A;(C)); wig = min(G1; Go) = Go. Note that the last equality follows from the fact
that (i0) 2 gy(C) but (i1) Zgy (C) implies that 61 > Go.

I (i1) 2 gy (C), then o = minf(Gy + Go i Ay(C));Ciog = Min(G1;Go) = G1, &
(i1) 2 g (C) but (i0) Zan (C).

Now we construdt 8y v 14, @ connected graph over N * nflg as follows.

Burr1g = (ij)j ather (ij) 2 gy (C) sit. i;j & Lor (ij) = (10) where (11) 2 gy (C)g

Then, §y 19 Must be the only mcst. of ¢. For if there is another xRN g which
is also an m.c.st. of €, then one can show that gy (C) cannot be the only mc.st.
coresponding to C .18

Lemma 4: Suppose A satis..es TR, EPM and EF. Let C 2 G3. If (i0) 2 gu(C),

then A{(C) , miny +rig Gk-

18T he proof of this assertion is analogous to that of the corresponding assertion in Lemma 2, and

is hence omitted.



Proof: Consder any C 2 C,%, (i0) 2 gn (C), and A satisfying TR, EPM, EF. Let
A(C) =x, and Gm = mMinwy +rfig Gk- Wewant to show that X , Gm.
Choosej BN, and de.neN =N [ fjg Le C 2 G} besuch that

(i) ¢ coincides with C on N *+.

X
(ii) Foral k2 N*nfig §x>&; > Gog-°

Hence, gy (€) = gy (C) [ f(ij)g.
Noticethat j is an extreme point of ¢. Denoting A(C) = X, EPM implies that

Xi, X (13

We prove the lemma by showing that Xi , &m = Cim.

Let Cir =CO9 and NO=N nfig;A(CY = x% AssumeX; < &m.
Case 1: C%2 Go.

Suppose thereis some k 2 N 9such that (ik) g,q,(é). Le | be the predecessor
of k ingg (€). Since (kl) 2 gy (€) and (ik) B gy (C), & < &. AlD, & , &m > Xi.
Hence

Q= minE; &g +& i %) =&y (14)

Now, consider k 2 (N9[ f0g) nfm;j g such that (ik) 2 g,\ll(é). Notethat (km) 8
gy (€) since (im) 2 gy (€) from lemma 1. Hence, &, > & since (ik) 2 gy (€) and
(km) B gy (C). So,

R = MIN(Emi & +&m i X)) > & (15)

Take any (kI) B gy(C). Suppoze (s152) 2 U(k;l; gy (C)). Then, &, <
mMin(&q; & &). So, 8(s1s2) 2 U(k; |; gy (C))

C(k)l = rn.n(éki + til i *i;ékl) > t5152 (16)

19Note that the exact lower bound on &; will play no role in the subsequent proof. All that we
requireisthat & is “high" so that the reduced cost matrix C° to be de..ned bdow, has appropriate
propeties.
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Next, note that since & can be chosen arbitrarily high,
P =mMin(g miGj +&mi X) =& +&mi X, (17)

Since for all t2 (N°[ fOg) nfm;jg, c]-ot =& +&:i X >c]0m, (jm) 2 gyo(CO.
From TR, we have x{ = X, for all k 2 N% Using EF, and equations 14, 15, 16,

17,
X X _
Xe = xP=do(Ch >dgye))i Xi (18)
k2N rfig k2N O
X
But, this violates EF since ™ %k > gy (C)).
k2N

Case 2: CO02Qo.
This implies that there exist (pn); (kl) such that €, = ¥, and both (pn); (kl)
belong to some m.cs.t. (not necessarily the same one) corresponding to C°
Notethat i 8 fpn;k;lg. So, if (pn) 2 g,\}((f), then &n = cgn. Similarly, if
(k) 2 g4 (€), then & = . So, both pairs cannot be in gy (C) since € 2 G.
Without loss of generality, assumethat (pn) B gg (€). There exists a path from
pton denoted by U(p;n; gy (€)) =fs1;sp;::1;5¢ g We. kst want to show that

Q> &y forall k=1:0:K i 1. (19)

Notethat ¢§, = min(&s +&ni Xi; &n). If (19) isnct true then dther (@)&m * &5, ;
o (b)&i +&i X - &s,,, for somek.

Suppose (a) holds. Then, (gy(€) [ f(pn)g) nf(siScs1)g is @ mest. for N
corresponding to €, contradicting the fact that € 2 C3.

Suppose (b) holds. Then, &« & q,,, and &, © &g, Since min(; &) > X;.

If (pi)( or (ni)) B gy(C), then we can delee (sSc41), join (pi)( or (ni)), and
contradict the fact that g (C) is the unique m.c.s.t.

So, the only remaining possibility is that the path U(p; n; gy (&) =f(ni);(pi)a
But, in this case, we already know that &n + & i X > max(&;; &i) since X; <
Min(&i; &i).

So, (19) is true.



Now, choose qB N, and de.ne N = N [ fog. Consider a cost matrix © 2 Go
such that

(i) ® coincides with ¢ onN .
(||) qu = mnk2N+ qu.
(iii) an = bqn = MaX(st) 2U (p;n;ag (E)) &st-zo

(iv) byt is “su¢ ciently" largefor all t & p; n.

Then, we have gy, (®) = gy (€) [ f(ap)g, so that g is an extreme poirt of ©. Let
A(®) =%. FromEPM,

Xi . X (20)

Now, consder the reduced cost matrix @ ° @g. We assert that € 2 Czrbrfig'21 This

is because (pn) is now “irrdevant” sncein them.cs.t. correspondingto €, pand n

will be connected through the path (pg) and (gn). To seethis, note the following.
Fird,

Gn = Min(&i +&ni Xi; &n)
min(by +6in i %i; Gn)
= &n
Sne&m = &m;&i =boi;&n =ln and X , & from (20).
Second, ¢, > by by construction. Lastly, tyn = e since &p = min(ggn; & +
bn i %) and by has been chosen su¢ dertly large
S0, €n > &n. Since (op) 2 G (€) from Lemma 1, this shows that (pn) B

Yorfig(C)-
Since € 2 %nfig, we apply the concluson of Case 1 of the lemma to condude

that ki , 6m = &m. Equation (20) now establishes that X; , &m.

20Note that this sped..cation of costs is valid because (19) is true.
21T his assertion is contingent on (pn);(kl) being the only pairs of nodes in some m.c.s.t. of C°

having the same cost. However, the proof described here can be adapted to establish a similar

conclusion if there are more such pairs.



We state without proof the corresponding lemma when TR is replaced with SR.
The proof is almost identical to that of Lemma 4.

Lemma 5: Suppose A satis..es SR, EPM and EF. Let C 2 Gy. If (i0) 2 gu(C),
then Ai(C) , minen +rfig Gk.

We now present a characterization of A® in terms of Tree Consistency, E¢ dency
and Extreme Point Monotonidaty.
Theorem 2 : Over the domain C2, a cost allocation rule A satis..es TR, EF and
EPM if and only if A = A,

Proof : First, weprovethat A® satis..es all the three axions.

LetC 2 C.

E ¢ ciency follows trivially from the algorithm which de. .nes the all ocation.

Next, we show that A” satis..es TR.

Let (10) = argmingy &o. Hence the algorithm yields b = 1, and A5(C) =
min(co; Cs212). T here are two possible choice of &2.
Casel: a? = 1. Then, weget Cjp = MiNonnf1g Cik- ThereforeAN(C) = min(cio; Q) =
MiN N +nf1g Clk-
Case2: a2 = 0. Then, gzo - Gk 8k 2 N nflg Sincecpo * Ggg, We condude
A%(C) = min(cio; Geo) = C10 = MiNko + rf 19 C1k-

So, in dther case, 1 pays its minimum cost.

Let AX(C) = X1 = MiNgy+r19Ck = Ciee. Dencting CY by €, we know from
Lemma 2, that ¢ 2 C2. Hence thealgorithm is well de ned on C.

Let a]k; B<; ¥, etc denote the rdlevant variables of the algorithm corresponding to
C.

Claim: 8i 2 N nflg, A%(C) = A%C). That is A* satis..es Tree Consistency.
Proof of Claim: From the proof of lenma 2,
(i) & =¢j 8(ij) 2o (C) st. i;j &1L

(ii) & = ¢y forj 2 N* nfkigst. () 2 oy (C).
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Also,
aNnrr1g(C) =F(ij)j(ij) 2 au (C)ifi;j & 1and (ij) = (k™) if (1) 2 v (C)a:

Let P =i. Either k*=0ork® =i. Ineither case &; =1 < & forj B f0; 1 ig
Hence b =i.

Now, t2 = max(Ga1i; Cazz) = Max(Cio; Gzi) = &g = tL:

Also, & 2 f0;Lig, whilel? 2 f0; 1ig. Ifa32 f0ig thend2 =a3. Ifa3 =1,
then &2 = k. In all cases, B =17, and ¢ = &1 SO,

A(C) = min(t%; Ga) = min(t; &,1) = AXC): (21)

Theclaim is established for flb;: :: ;g by using the strucure of gy nclg((f), the
de nition of € given above and the following induction hypothesis. The details are
|eft to the reader.

Foralli=2:::;ki 1,

(i) B 1=0.
(i til=t.
(iii) 'l =4 ifad &1L, andd 1= K*ifa = 1

We now have to show that A® satis..es EPM.

Let i 2 N bean extreme paint of gy(C), and ® be the restriction of C over
N nfig. Of course €2 C2.

In order to dixerentiate between the algorithms on C and ®, we dencte the
outcomes corresponding to the latter by B<; B &, etc.

Suppose b = i. Clearly, the algorithm will produce the same outcomes till step
(ki 1), and o AX(C) = AF(®) for all j 2 fb;:::; 10 2g, and t¢i 1 = K1 1,

Now, let us calaul ateAJ-“(C) wherej = 1. Asi is an extreme point of gy, and
(@ki) 2 gy, a1 &i. Alo, Ak = AKI 1] fig Hence ak+1 2 AKi 1 This implies
Cki * Gysrpee1. Buti 2K 1 Hence (8KB) = (ad+1+1). Thus,

A(C) =min(t Lcyq) - min(B L Gurngen) = A%(@) (22)
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Als, B = max(B L crrrger1) . max(t L e Gk ) = tFL The algorithm
on C determines the cost allocation for i in step (k+ 1). Sincei is an extreme point
of gv, i & & for any s. Hence the choiceof @ and B nrust bethe samein C and @
forj . k+1. So foralj 2 fk+1:::;#Ngd =815 =BiL;t- i1l Hece

AZ(C) =min(t; Gy +15+1) - min(BT 5 gy ) =A% 1(©) (23)
Hence, we can conclude that A® satis. .es Extreme Paoint M onatonicity.

Next, wewill prove that only one allocation rule over C2 satis. .€s all three axions.
Let A bean allocation rulesatisfying all the three axioms. Wewill show by induction
on the cardinality of the set of nodes that A is unique.

Let us start by showing that the result is true for jNj = 2. There are several
cases,

Case 1. c» > cio; 0. From Lemma 4, A;(C) | c10;A5(C) ., oo. By EF,
AL(C) + Ay(C) = cio+ @o. Thus A;(C) =cig; and Ax(C) = cx. So, theallocation
is unique.

Case 2. o > C2 > Qp. Introduce a third agent 3 and cods ¢ < &3 <
min(&sp; &x). Let the restriction of € on f1;29* coindde with C. Hence G 1,239 =
f(01);(12); (13)g. Let A(¢) =%. FromLemma 4, X1 ., Qo

Denote the reduced matrix C. as €. Now, b = min(to1 + &2 i X1;€p) =
Eo1+&2i X1. Similarly, b3 = min(&3+&2i X1;&3). Notingthat X1, €10;&3 > &>
and &3 > &, we cond ude that

bt <3

Analogously, oz = &1 + &3 X1 < ps.
Hence, gr2:35(®@) =f(02); (03)g. So, €2 C. Using TR,

From Case 1 above,

Ay®) =&n +Eni X A3(@) =&y +E3i X1 (25)
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From (24) and (25),

AC) + A3(C) Ep+Eoi X +e&yn +E3i X1

or k1 +A5(C) +A5(C) = & +Ep+Es+ (b k)

But, from EF, X; + Ay(C) + A3(C) = & + &5 + &3. SO, X; = &;. So, Ay (®) =
ANC) =12 = 2.

ByEPM, X1 - A;(C), and A5(C) - A,(C). UsingEF, it followsthat A;(C) = co1
and A,(C) = cp. Hence A is unique

Thecase o > ¢ > Cp is similar.
Case 3: ¢o > Cio > Q2.

We again introduce a third agent (say 3). Consider the cost matrix €, coinciding
wih C on f1, 2g*, and such that

(i) &2 > &3> é&x.
(II) t30 > th + t13.

Then, ¢ 2 C since it has the unique mc.st. gv(C) = f(01);(12); (13)g, where
no two edges have the same cost.
Notethat 3 is an extreme paint of them.c.s.t. corresponding toC. Using EPM,

we get
AL(C), A(C);A(C), Ay (C): (26)

Now, &9 < min(&;&x). Consider the reduced cost meatrix (f};l(é) on f2:3q.
Denote Cf = @ for ease of notation. Since Ay(C) , & from Lemma 4, it follows
that € + &0 i Al(é) - Ep <&y, and &+ &3 Al(é) - &3 < &3. Hence

o=t +&0i A(C)s=tn+&E3i A(C);o0 =E3+E0i AC) (27)
Note that
& +eni AYC) <En+E3i AYC) <&p+eéi AyC)
Hence g 34(®) =f(02); (23)g.
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Applying a2, Ay (®) = o = & + &0 A1(C) and A3(®) = b3 = &x + &3
A1(C). Using TR, A, (@) = Ax(C): As(®) = As(¢). EF on € gives,
A1(C) 4+ ANC) + A5(C) =& +&p + 13

or AJC)+ (B + i AYC)) +(Ea+E3i Al(C)) =& +E12 +E13

o AC)=&2 ) )
Hence A,(€) = &10; A5(€) = &3. From eguation 26, A;(C) , &2;A,(C) , &o.

Usng EF on C we an conclude that, A;(C) = ¢ and A,(C) = ¢, i.e. the
alloction is unique

Thecase g > Go > Cp2 is similar.

T his completes the proof of the casejNj = 2.2

Suppose the theorem is truefor all C 2 G§, where jNj < m. We will show that
the result is true for all C 2 G4 such that jNj =m.

Let C 2 G§. Without loss of generality, assume ciop = minen Go.23 Thus
(10) 2 gy (C). T here are two possble cases.

Case 1. cio = mMingyN +nf 1g Cik-

Then choosej 2 N such that (j0) 2 gy(C) or (j1) 2 gy (C).
Case 2: ¢; = mMine N +nf1g Cik-

Then from Lemma 1, (1) 2 gy (C).

In either Case1 or 2, let C denote the restriction of C on f1;jg. Then, fromthe
case when #N = 2, it follows that A;(C) = mingy +f1gCik-

Now, by iterative eimination of extreme points and repeated application of EPM,
it follows that Ay(C) - Ay(C) = miny+r19Ci- But, C 2 @, and A satis. &s EF,
TR and EPM. So, from lemma 4, it follows that A;(C) | MiNeoN +nf1g Cik- HeENce,
A(C) = mingon +nf1g Ck = X1 (SaY).

We remove 1 to get reduced cost matrix C{'. Fromlemma 2, CI' 2 . By TR,
A(CY) = A(C) 8k & 1. From the induction hypothesis, the allocation is unique
on C¥' and henceon C.

2ZNote that these three cases cover all possibilities since equality between dixterent costs will result

in the cost matrix not beingin G .
2Thisis uniqueas C 2 G3 .
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T his completes the proof of the theorem.

We now show that the three axioms used in the theorem are independent. The
examples constructed below are all variants of A®. So, ak; B¢ are derived from the
algorithm used to construct A®.

Example 6: We construct a rule A which satis..es EPM and TR but violates EF .
Let A (C) =AZ(C) 8k & B'; Ay, (C) = AZ (C) +2; where? > 0.
Using the result that A® satis..es EPM and TR it can be essily chedked that A
also satis. &5 these axioms Al note that © n_ L A(C) = P P ANC)+2>dN),
and hence A violates EF.

Example 7: We nowv construct a rule® which satis..es EF and TR, but does not
satisfy EPM.

Forn=11%1(C) =¢qo. Forn, 2

(i) 1 (C)=AfC) 8k &R L.

i A% 1(C ~nn C
(ii) 1b’1i 1(C) = 1b1(C) — (Alni 1( )2+Ab ( )).

T his allocation satis..es EF and TR but violates EPM. In orde to see the latter,

condder thefollowing cost matrix C.

0 1
57

1 26
0 4C

4 0

N 0w O
N P O W

Then, gy (C) =f(01); (12); (13)g. Clearly, 3isan extrare point of C. Let € dencte
the restriction of C over {0,1,2}. Then, },(C) =25>2="1 2(@) and hence EPM
is violated.

Weremark in the next theoremthat the Bird rule B satis..esEF and EPM. Since
B & A", it follows that B does not satisfy TR. Here is an explidt example to show



that B violates TR. 0 1
0O 2 35 3

2 0 15 1
B35 15 0 25
3 1 25 O

Then, B1(C) = 2,B>(C) = 1.5 and B3(C) = 1. The reduced cost matrix is c§; is

shown below. 0 1

0 15 1
clr = %1:5 0 0:5§ ;
1 05 O
Then, B2(CY ) = 65 and B3(CY) = 1. Therfore TR is violated.

However, B does satisfy Source Consistency on the domain CL. In fact, we now
show that B is the only rule satisfying EF, EPM and SR.

Theorem 3 : Over the domain &, an allocation rule A satis..es SR, EF and EPM
inA=B.

Proof : We ..rst show that B satis..es all the three axioms. EF and EPM follows
trivially from the de..nition. It is only necessary to show that B satis..es SR.

Let (10) 2 gy. Then, B1(C) = q1. Let us denote the reduced cost matrix Cg',
by ¢. From Lemma 3, ¢ 2 CL Also, themc.s.t. over N nflgcorrespondingto € is

Ounf1g = F(ij)j ather (ij) 2 gy with i;j & Lor (ij) = (10) where (1) 2 v g

Also, for all i;j 2 N nflg, & =cj if (ij) 2 gy, and for k 2 N nflg;&o = cx if
(1k) 2 ov. Hence for all k 2 N nf1g &g = Gek)- SO Bik(€) = Bi(C) for all
k2 N nflgandB satis..es Source Consistency.

Next, we show that B is the only allocation rule over C, which satis. s all the
three axioms. This proof is by induction on the cardinality of the s of agents.

We remark that the proof for the case jNj = 2 is virtually identicl to that of
Theorem 2, with SR repladng TR and Lemma 5 replacing Lemma 4.



Suppose B is the only cost alloction rule satisfying the three axioms, for all
C 2 &, wherejNj < m. We will show that the result is true for all C 2 C such
that jINj =m.

Let C 2 CL. Without loss of generality, assume (10) 2 gy (C). There are two
possible cases.

Case 1 : Theeare at least two extreme points of C, say m; and my.

Fird, remove my and consder thecost matrix C™, which is therestriction of C
over (N* nfrmg). By EPM, A(C) - A(C™) forall i & my. AsC™ has (mi 1)
agerts, the induction hypothesis gives A;(C™) = Ggi): S0, A(C) - Ggj 8 &
my. Similarly by eliminating m, and using EPM, we get A, (C) - Gai) 8 & my.
Conbining the two, we gt A;(C) - Gg;) 8i 2 N.

But from EF, we know that P ion A(C) = dN) = P 2N Ga)- Therefore
Ai(C) = qj) 8i 2 N, and hence the allocation is unique.

Case 2: Ifthereis only oneextreame point of C, then gy(C) must bea ling i.e each
agent has atmost one follower. Without loss of generality, assume 1 is connected to
2and 0. Let € betherestriction of C over theset f0; 1, 2g; By iterative dimination
of the extreme points and use of EPM we get A, (C) - A,(C). Using theinduction
hypathesis, we get A;(C) - ¢ and A,(C) - cx.

Suppose A;(C) = x1 =i 2, where? | 0. Now consider the reduced cost
matrix C3f', which will be denoted by ®. It can be essily chedked that Onrf1g IS also
alinewhere2 is connetted to 0. Thus Ay(€) = @g = 61 +Cpi A(C) = Gy +2. By
SR, A,(C) = Ay(®) = +2 But fromEPM A,(C) - A5(C) = &. Thisispossble
only if 2 = 0. Theeore A;(C) = cio. Using SR and the induction hypothesis, we
@n concludethat A =B.

We now show that the three axioms used in Theorem 3 are independert.

Example 8: T hefollowing allocation rule A satis..es EPM and SR but violates EF.
Let A,(C) =Bk(C) 8k & i, wherei is an extreme point of C with (i0) 8 gy (C),

and A(C) =Bi(C) +2; 2> 0.

Using the result that B satis..es EPM and SR it can be easly checked that A also
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P ) P
satis. .es these axioms. Also notethat  R-1A(C) = R=1Bk(C)+2 >(N), and

hence A violates EF.

E xample 9: T hefollowing example shows that EPM isindependent of other axions.
Forn , 2, l& ! coinddewith B on all mcs.t. swhich are not lines. Ove a
line g if k is the extreme point, and (kl);(Im) 2 g, then *;(C) = Bi(C) 8i & k;l,

1(C)=1(C) = MR

T his rule satis..es EF and SR but violates EPM. Let the cost matrix C be

%9 3 5 71
301 2
C=

510 4
72 4 0

Then, gv(C) = f(01);(12); (13)g. Here, 3is an extreme point of C. Let C bethe
restriction of C over {0,1,2}, and g\,,ﬂg((’:) = f(01);(12)g Then1{(C) =3>2=
1,(C) and hence EPM is violated.

Our new allocation rule A® satis..es all the axioms but SR. The fact that A®
satis..es EF and EPM s proved in the previous theorem. Here is an example to
show that our allocation rule may violates SR.

% 2 3 4
2 0 15 1
315 0 35
4 1 35 O

1

Then, A¥(C) = 1, A%(C) =2 and A%(C) = L5. Thereduced cost matrix is ®,
09 25 21
€= %2:5 0 3:5§
2 35 0
A5(®) = 2:5 and A5(®) = 2. Thaefore SR s violated.

In T heorem 2, we have restricted attention to cost matrices in C2. T his isbecause

A" does not satisfy TR outside C2. T he next exampleiillustrates.
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Example 10: Consider 0 1

¥

Then, gy (C) =f(10);(12);(23)g and & (C) = f(30); (32); (21)g are the two m.c.st.
s corregponding to C. Taking the average of the two cost allocations derived from
the algorithm, we get A%(C) = (2:5; 1:5; 2). If we remove 1, which is connected to 0
in g, the reduced cost matrix @ is:

w H W O
o N O W

o N B
o = U1 W

O o 25 3t
@=%2z5 0 1§
3 10

Then, A%(®€) =1 and A5(C) = 2:5. So, TR is violated.

R emark 3: Notethat in the previous exampleC lies outsdeCL. |If wetakea cost
matrix in Ct N, then Lamma 2 will no longer be valid - the reduced cost matrix
may lie outside C! even when a node connected to the source pays the minimum
aost amongst all its links. Thus, A* will satisfy TR vacuously. But there may exist
allocation rules other than A* which satis..es EF, TR and EPM over CL.

Similarly, B does not satisfy SR outside CL.

Example 11: Condder the same cost matrix as in Example 10. Recall that B (C) =
(2:5;1:5; 2).
If we remove 1, which is connected to 0in g, the reduced cost matrix @ is:

00 25 3!
@=%2:5 0 1§
3 1 0

Then, B2(®) =25 and B3(®) = 1. Thedfore SR is violated.

Remark 4: An interesting open question is the characterization of A* using cost

monotonidty and other axioms.
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