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1 Introduction

There is a wide range of economic contexts in which “aggregate costs" have to be

allocated amongst individual agents or components who derive the bene…ts from

a common project. A …rm has to allocate overhead costs amongst its di¤erent

divisions. Regulatory authorities have to set taxes or fees on individual users for

a variety of services. Partners in a joint venturemust share costs (and bene…ts) of

the joint venture. In many of theseexamples, thereis no external forcesuch as the

market, which determines the allocation of costs. Thus, the…nal allocation of costs

is decided either by mutual agreement or by an “arbitrator" on the basis of some

notion of fairness.

A central problem of cooperative game theory is how to divide the bene…ts of

cooperation amongst individual playersor agents. Sincethereisan obviousanalogy

between the division of costs and that of bene…ts, the tools of cooperative game

theory haveproved very useful in theanalysisof cost allocationproblems.1 Muchof

thisliteraturehas focusedon“general" cost allocationproblems, sothat theensuing

cost game is identical to that of a typical gameincharacteristic function form. This

has facilitated thesearch for “appropriate" cost allocation rules considerably given

the corresponding results in cooperativegametheory.

Thepurposeof this paper is the analysis of allocation rules in a special classof

cost allocation problems. Thecommon feature of these problems is that a group of

usershavetobeconnected to asinglesupplier of someservice. For instance, several

townsmay draw power from a common power plant, and hencehave to share the

cost of the distribution network. There is a non-negative cost of connecting each

pair of users (towns) aswell asa cost of connectingeach user (town) tothecommon

supplier (power plant). A cost gamearises because cooperation reduces aggregate

costs - it may becheaper for town A to construct a link to townB which is“nearer"

tothepower plant, rather thanbuildaseparatelink totheplant. Clearly, ane¢cient

network must be a tree, which connects all users to the common supplier. That is

1Moulin[10] and Young [15] are excellent surveys of this literature.
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why these gameshavebeen labelledminimumcost spanning tree games.

Noticethat intheexamplementionedabove, it makessensefor townB todemand

somecompensation from A in order to let A use its own link to the power plant.

But, howmuchshould A agreeto pay? This iswhereboth strategic issuesaswell as

considerations of fairness comeinto play. Of course, these issues arepresent in any

surplus-sharing or cost allocation problem. What is special in our context is that

the structure of the problem implies that thedomain of theallocation rulewill be

smaller than that in a more general cost problem. This smaller domain raises the

possibility of constructingallocation rules satisfying “nice" properties which cannot

always be done in general problems. For instance, it is known that the core of a

minimumcost spanning treegameis alwaysnon-empty.2

Much of the literature on minimum cost spanning tree games has focused on

algorithmic issues.3 In contrast, thederivation of attractive cost allocation rules or

the analysis of axiomatic properties of di¤erent rules has received correspondingly

littleattention.4 Thisprovidesthemainmotivation for thispaper. Weshowthat the

allocation rule proposed by Bird [1], which always selects an allocation in the core

of the game, does not satisfy cost monotonicity. Cost monotonicity is an extremely

attractiveproperty, and requires that thecost allocated toagent i doesnot increase

if the cost of a link involving i goes down, nothing else changing. Notice that if

a rule does not satisfy cost monotonicity, then it may not provide agents with the

appropriateincentives to reduce thecosts of constructing links.

Thecost allocation rule, whichcoincideswith theShapley valueof thecost game,

satis…escostmonotonicity. However, theShapleyvalueisunlikely tobeused in these

contexts because it is not in the core. This implies that somegroup of agentsmay

well …nd it bene…cial to construct their own network if the Shapley value is used

to allocate costs. We show that cost monotonicity and the core are not mutually

exclusive5 by constructing a new rule, which satis…es cost monotonicity and also

2
See, for instance, Bird[1], Granot and Huberman [7].

3See for instanceGranot and Granot [5], Granot and Huberman [6], Grahamand Hell [4].
4Exceptions are Feltkampf [3], K ar [9]. SeeSharkey [13] for a survey of this literature.
5This is where the small domain comes in useful. Young [15] shows that in the context of
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selectsan allocation in thecore of thegame.

We then go on to provide axiomatic characterizations of the Bird rule as well

as the new rule constructed by us. An important type of axiom used by us is

closely linked to the reduced gameproperties which have been extensively used in

the axiomatic characterization of solutions in cooperative gametheory.6 These are

consistency conditions, which place restrictions on how solutions of di¤erent but

related games de…ned on di¤erent player sets behave. We show that Bird rule and

the new allocation rulesatisfy di¤erent consistency conditions.

The plan of this paper is the following. In section 2, wede…ne thebasic struc-

ture of minimum cost spanning tree games. The main purpose of Section 3 is the

construction of the new rule as well as the proof that it satis…es cost monotonic-

ity and also selects an allocation in the core of the game. Section 4 contains the

characterization results.

2 The Framework

Let N = f1;2;: ::g be theset of all possible agents. Weare interested in graphs or

networks where thenodes areelements of a set N [ f0g, whereN ½N , and 0 is a

distinguished nodewhich wewill refer to as thesource or root .

Henceforth, for any set N ½N , wewill useN+ to denotetheset N [ f0g.

A typical graph over N+ will be represented by gN = f(ij )ji;j 2 N +g. Two

nodes i and j 2 N+ aresaid tobeconnected ingN if9(i1i2); (i2i3); : :: ;(in¡ 1in) such

that (ikik+1) 2 g; 1 · k · n ¡ 1; and i1= i;in = j : A graph gN is called connected

over N+ if i; j are connected in gN for all i; j 2 N+: The set of connected graphs

over N+ is denoted by ¡ N :

Consider any N ½N , where#N = n. A cost matrix C = (ci j ) represents the

cost of direct connectionbeweenany pair of nodes. That is, ci j isthecost of directly

transferable utility games, there is no solution concept which picks an allocation in the core of

the game when the latter is nonempty and also satis…es a property which is analogous to cost

monotonicity.
6See Peleg[11], Thomson [14].
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connecting any pair i; j 2 N+. Weassume that each ci j > 0whenever i 6= j . We

also adopt the convention that for each i 2 N +, ci i = 0. So, each cost matrix is

nonnegative, symmetric and of order n+ 1. The set of all cost matrices for N is

denoted by CN . However, wewill typically drop the subscript N whenever thereis

no cause for confusion about theset of nodes.

Consider anyC 2 CN . A minimumcost spanningtree (m.c.s.t.) over N+ satis…es

gN = argming2¡ N

X

(i j )2g

ci j : Note that an m.c.s.t. need not be unique. Clearly a

minimumcost spanningnetwork must be a tree. Otherwise, wecan deletean extra

edgeand still obtain a connected graph at a lower cost.

Anm.c.s.t. corresponding toC 2 CN will typically bedenoted by gN (C).

Example 1: Consider a set of three rural communities fA;B;Cg, which have to

decidewhether to build a systemof irrigation channels to an existingdam, which is

thesourceor root. Eachcommunity has to beconnected tothedaminorder todraw

water fromthedam. However, someconnection(s) could be indirect. For instance,

community A could beconnected directly to thedam, whileB andC areconnected

to A, and henceindirectly to thesource.

Thereisa cost of buildinga channel connectingeach pair of communities, aswell

as a channel connecting each community directly to thedam. Suppose, thesecosts

arerepresented by a cost matrix C.

C =

0

B
B
B
B
B
B
@

0 2 4 1

2 0 1 3

4 1 0 2

1 3 2 0

1

C
C
C
C
C
C
A

Theminimumcost of building the systemof irrigation channels will be4units.

Our object of interest in this paper is to see how the total cost of 4 units is to be

distributed amongst A;B and C.

This provides themotivation for thenext de…nition.

De…nition 1: A cost allocation rule isa familyof functions fÃNgN½N withN ½N ,

ÃN :CN ! <N+ satisfying
X

i2N

ÃNi (C) ¸
X

(i j )2gN (C )

ci j for all C 2 CN .
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Wewill drop thesuperscript N for therest of thepaper.

So, given any set of nodes N and any cost matrix C of order (jN j+1), a cost

allocation rule speci…es thecosts attributed to agents in N . Notethat thesource0

isnot an activeplayer, and hencedoes not bear any part of thecost.

A cost allocation rulecan begenerated by any single-valued game-theoretic so-

lution of a transferable utility game. Thus, consider the transferable utility game

generated by considering the aggregate cost of a minimum cost spanning tree for

each coalition S µ N . Given C and S µ N , let CS bethecost matrix restricted to

S. Then, consider am.c.s.t. gS(CS) over S+, and the correspondingminimumcost

of connecting S to the source. Let this cost bedenoted cS. For each N ½N , this

de…nes a cost game (N;c) where for each S µ N , c(S) = cS. That is, c is the cost

function, and is analogous to a TU game. Then, if © is a single-valued solution,

©(N;c) can be viewed as the cost allocation rule corresponding to the cost matrix

which generates thecost function c.7

Oneparticularly important game-theoretic property, which will be used subse-

quently is that of thecore. If a cost allocation ruledoesnot always pick an element

in thecoreof thegame, then some subset of N will …nd it pro…tableto break up N

and construct itsownminimumcost tree. Thismotivates thefollowingde…nition.

De…nition 2: A cost allocation ruleÁ is a core selection if for all N µ N and for

all C 2 CN ,
X

i2S

Ái (C) · c(S), wherec(S) is thecost of them.c.s.t. for S, 8S µ N .

However, cost allocation rules can also bede…ned without appealing to the un-

derlying cost game. For instance, this was the procedure followed by Bird [1]. In

order to describehis procedure, weneedsomemorenotations.

The(unique) path from i to j in treeg, isaset U(i; j ;g) = f i1; i2;: :: ;iK g, where

each pair (ik¡ 1ik) 2 g, and i1; i2;: :: ;iK are all distinct agents with i1 = i;iK =

j . The predecessor set of an agent i in g is de…ned as P (i;g) = fkjk 6= i; k 2

U(0; i;g)g: The immediate predecessor of agent i, denoted by®(i), is theagent who

comes immediately before i, that is, ®(i) 2 P (i;g) and k 2 P (i;g) implies either

7See Kar [9] for an axiomatic characterization of theShapley value in m.c.s.t. games.
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k =®(i) or k 2 P (®(i);g).8 The followers of agent i, are those agents who come

immediately after i; F (i) = f j j®(j ) = ig.

Bird’smethod isde…ned with respect to a speci…c tree. Let gN be somem.c.s.t.

corresponding to thecost matrixC . Then,

Bi(C) =ci®(i) 8i 2 N:

So, in the Bird allocation, each node pays the cost of connecting to its immediate

predecessor in the appropriatem.c.s.t.

Noticethat thisdoesnot de…neanallocation ruleifC givesrisetomorethanone

m.c.s.t. However, when C doesnot inducea uniquem.c.s.t., onecan still useBird’s

method on eachm.c.s.t. derived fromC and then take someconvex combination of

theallocationscorrespondingto eachm.c.s.t. as thecost allocation rule. In general,

thepropertiesof theresultingcost allocation rulewill not beidentical tothoseof the

cost allocation rule given by Bird’smethod on cost matrices, which induce unique

m.c.s.t. s.

In section 4, wewill use two domain restrictions on the set of permissible cost

matrices. These arede…ned below.

De…nition 3: C1 = fC 2 CjC induces auniquem.c.s.t.8N ½N g:

De…nition 4: C2= fC 2 C1j no two edges of the uniquem.c.s.t. havethesamecost g:

Noticeif C isnot in C2, then even a “small" perturbation of C produces a cost

matrix which is in C2. So, even the stronger domain restriction is relatively mild,

and thepermissible setsof cost matrices arelarge.

3 Cost M onotonicity

TheBird allocation is an attractive rulebecauseit is a core selection. In addition,

it is easy to compute. However, it fails to satisfy cost monotonicity.

De…nition 5: FixN ½N . Let i;j 2 N+, andC;C02 CN besuch that ckl =c0kl for

all (kl) 6=(ij ) and ci j >c0ij . Then, theallocation ruleÃ satis…esCost Monotonicity

8Note that sinceg is a tree, the immediatepredecessor must be unique.
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if for all m2 N \ f i;jg, Ãm(C) ¸ Ãm(C
0).

Cost monotonicity is an extremely appealingproperty. Theproperty applies to

two cost matrices which di¤er only in thecost of connecting the pair (ij ), c0i j being

lower than ci j . Then, cost monotonicity requires that no agent in thepair f i;jgbe

chargedmorewhen thecost matrix changes fromC toC0.

Despite its intuitive appeal, cost monotonicity has a lot of bite.9 The following

example showsthat theBird allocation rule does not satisfy cost monotonicity.

Example 2: Let N = f1;2g. Thetwo cost matrices arespeci…ed below.

(i) c01= 4;c02 =4:5;c12= 3:

(ii) c001= 4;c002 =3:5;c012= 3:

Then, B1(C) = 4;B2(C) = 3, whileB1(C0) = 3;B2(C0) = 3:5. So, 2 is charged

morewhen thecost matrix is C0although c002< c02 and thecosts of edges involving

1 remain thesame.

Thecost allocation rulecorresponding totheShapley valueof thecost gamedoes

satisfy cost monotonicity. However, it does not always select an outcomewhich is

in the core of the cost game. Our main purpose in this section is to de…nea new

allocation rulewhich will be a coreselection and satisfy cost monotonicity. Weare

able to do this despite the impossibility result due to Young because of the special

structure of minimum cost spanning tree games - these are a strict subset of the

class of balanced games. Hence, monotonicity in the context of m.c.s.t. games is a

weaker restriction.

Wedescribe an algorithmwhose outcomewill be the cost allocation prescribed

by thenew rule. Our ruleisde…ned for all cost matrices in C. However, in order to

economise on notation, wedescribe thealgorithm for a cost matrix in C2. We then

indicate how to construct the rulefor all cost matrices.
9In fact, Young [15] shows that an analogous property in the context of TU games cannot be

satis…ed by any solution which selects a coreoutcome in balanced games.
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Fix someN ½N , and choosesomematrixC 2 C2N . Also, for any A ½N , de…ne

Ac as thecomplement of A in N +. That is Ac=N +nA.

Thealgorithmproceeds as follows.

Let A0 = f0g, g0= ; , t0 =0.

Step 1: Choose the ordered pair (a1b1) such that (a1b1) =argmin(i;j )2A0£A0
c
ci j :

De…ne t1=max(t0;ca1b1), A1 =A0 [ fb1g, g1= g0 [ f(a1b1)g:

Stepk: De…netheordered pair (akbk) = argmin
(i;j )2Ak ¡ 1£Ak ¡ 1

c
ci j , Ak = Ak¡ 1[ fbkg,

gk =gk¡ 1 [ f (akbk)g, tk =max(tk¡ 1;cakbk ). Also,

Ã¤bk¡ 1(C) =min(tk¡ 1;cak bk ): (1)

Thealgorithmterminates at step#N =n. Then,

Ã¤bn (C) = tn (2)

Thenewallocation ruleÃ¤ is described by equations (1), (2).

At anystep k, Ak¡ 1 is theset of nodeswhichhavealready been connected to the

source0. Then, a new edge is constructed at this step by choosing the lowest-cost

edgebetween a node in Ak¡ 1 and nodes in Ak¡ 1c . The cost allocation of bk¡ 1 is

decided at stepk. Equation (1) showsthat bk¡ 1 pays theminimumof tk¡ 1, which is

themaximum cost amongst all edgeswhichhavebeenconstructed inprevioussteps,

and cakbk , theedgebeingconstructed in step k. Finally, equation (2) showsthat b
n,

the last nodeto beconnected, pays themaximumcost.10

Remark 1: The algorithm has been described for cost matrices in C2. Suppose

that C 62 C2. Then, the algorithm is not well-de…ned because at some step k, two

distinct edges (akbk) and (¹ak¹bk) mayminimisethecost of connectingnodes in Ak¡ 1

and Ak¡ 1
c . But, there is an easy way to extend thealgorithm to deal with matrices

not in C2. Let ¾bea strict orderingover N . Then,¾canbeused asa tie-breaking

rule - for instance, choose (akbk) if bk is ranked over ¹bk according to¾. Any such

tie-breakingrulemakes thealgorithmwell-de…ned. Now, let § betheset of all strict

10FromPrim[12], it follows that gn is also them.c.s.t. corresponding to C.

9



orderingsover N . Then, theeventual cost allocation isobtainedby takingthesimple

averageof the“component" cost allocationsobtained for eachordering¾2 § . That

is, for any¾2 § , let Ã¤¾(C) denotethecost allocation obtained fromthe algorithm

when¾is used as thetie-breaking rule. Then,

Ã¤(C) =
1

#§

X

¾2§

Ã¤¾(C): (3)

We illustratethis procedurein Example 5below.

Remark 2: Noticethat Ã¤ only dependson them.c.s.t.scorresponding to any cost

matrix. This property of Tree Invariance adds to the computational simplicity of

the rule, and distinguishes it fromrules such as the Shapley Valueand nucleolus.

Wenow construct a fewexamples to illustratethealgorithm.

Example 3: SupposeC1 is such that them.c.s.t. is uniqueand is a line. That is,

eachnodehasatmost onefollower. Then thenodescanbelabelleda0;a1;a2;:: :;an,

where a0 =0; #N =n, with thepredecessor set of ak, P (ak;g) = f0;a1; :: :;ak¡ 1g.

Then,

8k < n;Ã¤ak(C
1) =min(max0· t<kcatat+1;cakak+1) (4)

and

Ã¤an (C
1) = max

0· t<n
catat+1

(5)

Example 4: Let N = f1;2;3;4g, and

C2=

0

B
B
B
B
B
B
B
B
B
@

0 4 5 5 5

4 0 2 1 5

5 2 0 5 5

5 1 5 0 3

5 5 5 3 0

1

C
C
C
C
C
C
C
C
C
A

Thereis only onem.c.s.t. of C2.

Step 1: Wehave (a1b1) = (01), t1=c01 =4;A1= f0;1g:

Step 2: Next, (a2b2) = (13), Ã¤1(C
2) = min(t1;c13) = 1, t2 = max(t1;c13) = 4,

A2= f0;1;3g.
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Step 3: Wenowhave (a3b3) = (12), Ã¤3(C
2) =min(t2;c12) = 2, t3 =max(t2;c12) =

4, A3= f0;1;2;3g:

Step 4: Next, (a4b4) = (34), Ã¤2(C2) = min(t3;c34) = 3, t4 = max(t3;c34) = 4,

A4= f0;1;2;3;4g.

SinceA4 =N+, Ã¤4(C
2) = t4=4, and the algorithm is terminated.

So, Ã¤(C2) = (1;3;2;4). This example shows that it is not necessary for a node

to be assigned the cost of its preceding or following edge. Here 2 pays the cost of

the edge (34), while 3pays thecost of the edge (12). 11

Thenext exampleinvolves a cost matrix which hasmorethanonem.c.s.t., with

oneof thetrees havingedges which cost thesame.

Example 5: Let N = f1;2;3g, and

C3=

0

B
B
B
B
B
B
@

0 4 4 5

4 0 2 2

4 2 0 5

5 2 5 0

1

C
C
C
C
C
C
A

C3 has twom.c.s.t.s - gN = f(01); (12); (13)gand g1N = f (02); (12);(13)g. Also,

in gN , theedges (12) and (13) havethesamecost.12

Suppose the algorithm is …rst applied to gN . Then, wehaveb1 = 1. In step

2, a2 = 1, but b2 can be either 2 or 3. Taking each in turn, we get the vectors

x1= (2;2;4) and x2 =(2;4;2).

Now, consider g1N , which is a line. So, as wehavedescribed in Example 3, the

resultingcost allocation is bx= (2;2;4).

Thealgorithmwill “generate" g1N instead of gN for all ¾2 § which ranks2over

1. Hence, the“weight" attached to g1N is half. Similarly, theweight attached to x1

and x2 must beone-sixth and one-third.

Hence, Ã¤(C3) = (2; 83;
10
3 ).

Given C , let gN (C) be the (unique) m.c.s.t. of C . Suppose gN (C) = gN1
[

gN2 : :: [ gNK
, whereeach gNk

is them.c.s.t. on Nk for the cost matrix C restricted

11For m.c.s.t. of C 2 seeFig. 1.
12For m.c.s.t. of C 3 seeFig. 2.
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toN +
k , with [

K
k=1Nk =N andNi \ Nj =©8i 6= j . Wewill call such apartition the

m.c.s.t. partition of gN (C).

Wenow show that Ã¤ is a coreselection and also satis…es Cost Monotonicity.

Theorem 1: The cost allocation ruleÃ¤ satis…es Cost Monotonicity and is a core

selection.

Proof : We…rst show that Ã¤ satis…es Cost Monotonicity.

Fix any N ½N . Wegive our proof for cost matrices in C2, and then indicate

how theproof can be extended to cover all cost matrices. Let C; ¹C 2 C2 be such

that for some i ;j 2 N+, ci j > ¹ci j , and ckl = ¹ckl for all other pairs (kl). Weneed to

show that Ã¤k(C) ¸ Ã¤k( ¹C) for k 2 N \ f i; jg.

In describing the algorithmwhich isused in constructingÃ¤, we…xed a speci…c

costmatrix, andsodidnot havetospecify thedependenceofAk;tk;ak;bk etc. on the

cost matrix. But, nowweneed todistinguish between theseentities for thetwo cost

matrices C and ¹C . Weadopt the followingnotation in the rest of theproof of the

thorem. Let Ak;tk;ak;bk;gN etc. refer to thecost matrix C, while ¹Ak; ¹tk; ¹ak;¹bk; ¹gN

etc. will denotetheentities corresponding to ¹C.

Case 1: (ij ) 62 ¹gN .

Then, ¹gN =gN . Sincethecost of all edgesingN remainthesame, Ã¤k( ¹C) =Ã¤k(C)

for all k 2 N .

Case 2: (ij ) 2 ¹gN .

Without loss of generality, let i bea predecessor of j in ¹gN . Since the source

never pays anything, weonly consider thecasewhere i is not the source.

Suppose i =¹bk¡ 1. As thecost of all other edges remain the same, Ak¡ 1= ¹Ak¡ 1

and tk¡ 1 = ¹tk¡ 1. Now, Ã¤i ( ¹C) = min(¹tk¡ 1; ¹c¹ak¹bk) and Ã¤i (C) = min(tk¡ 1;cakbk).

Since ¹c¹ak ¹bk · cakbk , Ã
¤
i ( ¹C) · Ã¤i (C).

Wenow show that Ã¤j ( ¹C) · Ã¤j (C). Let j = bl and j = ¹bm. Note that l ¸ m,

and that ¹Am µ Al , and tl ¸ ¹tm.

Now, Ã¤j ( ¹C) = min(¹tm; ¹c¹am+1¹bm+1), whileÃ¤j (C) = min(tl ;cal+1bl+1). Since t
l ¸

¹tm, weonly need to show that ¹c¹am+1¹bm+1 · cal+1bl+1.

12



Case 2(a): Suppose al+1 2 ¹Am. Sincebl+1 2 N+ n ¹Am, ¹c¹am+1¹bm+1 · ¹cal+1bl+1 ·

cal+1bl+1.

Case 2(b): Supposeal+1 62 ¹Am. Then, al+1 6= j . Also, al+1 2 Al, and so

cal+1bl+1 ¸ calbl (6)

Weneed to consider two sub-cases.

Case 2(bi): al 2 Al¡ 1 n ¹Am¡ 1.

Then, sinceAl =Al¡ 1 [ f jgand ¹Am = ¹Am¡ 1 [ f jg, al 2 Al n ¹Am.

Now since j 2 ¹Am and al 62 ¹Am, ¹c¹am+1¹bm+1 · ¹cj al · cj al = calbl . Using equation

6, cal+1bl+1 ¸ calbl ¸ ¹c¹am+1¹bm+1 :

Case 2(bii): al 2 ¹Am¡ 1=Am¡ 1.

Then, calbl ¸ cambm sincem · l.

Also, ¹Am µ Al and al+1 2 Al n ¹Am imply that # ¹Am <#Al. That is, l >m. So,

bm 6= j =bl . This implies bm 62 ( ¹Am¡ 1 [ f jg) = ¹Am.

Now, am 2 Am¡ 1= ¹Am¡ 1. So, am 2 ¹Am. But am 2 ¹Am and bm 62 ¹Am together

imply that ¹c¹am+1¹bm+1 · ¹cambm · cambm .

So, using equation 6, ¹c¹am+1¹bm+1 · cambm · calbl · cal+1bl+1:

Hence, Ã¤ satis…escost monotonicity.13

Wenowshowthat for all C 2 C, Ã¤(C) isanelement in thecoreof thecost game

corresponding toC.

Again, wepresent theproof for any C 2 C2 in order to avoid notational compli-

cations.14 Wewant to show that for all S µ N ,
X

i2S

Ã¤i (C) · c(S).

Without lossof generality, assumethat for all i 2 N;bi = i anddenotecakbk =ck.

Claim 1: If S = f1;2;: ::K gwhereK · #N , then
X

i2S

Ã¤i (C) · c(S).

13Suppose C 62 C2. What we have shown above is that the outcome of the algorithm for each

tie-breaking rulesatis…es cost monotonicity. Hence, theaveragemust also satisfy cost monotonicity.
14Suppose instead that C 62 C2. Then, our subsequent proof shows that the outcome of the

algorithm is in the core for each ¾2 § . Since the core is a convex set, the average (that is, Ã¤)

must be in thecore if each Ã¤
¾ is in thecore.
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P roof of Claim: Clearly, g= [ Kk=1fa
kkg is a connected graph over S [ f0g.

Also, g is in fact them.c.s.t. over S.

So, c(S) =
KX

k=1

ck. Also,
X

i2S

Ã¤i (C) =
K +1X

k=1

ck ¡ max
1· k· K +1

ck ·
KX

k=1

ck = c(S).

Hence, a blockingcoalition cannot consist of an initial set of integers, given our

assumption that bk = k for all k 2 N .

Now, let S bea largest blockingcoalition. That is,

(i)
X

i2S

Ã¤i (C)> c(S).

(ii) If S½T, then
X

i2T

Ã¤i (C) · c(T ).

Thereare twopossible cases.

Case 1: 162 S.

Let K =minj2S j . Consider T = f1;: :: ;K ¡ 1g. Wewill show that S [ T isalso

a blocking coalition, contradicting thedescription of S.

Now,
X

i2T[ S

Ã¤i (C) =
X

i2S

Ã¤i (C)+
X

i2T

Ã¤i (C)> c(S)+
KX

k=1

ck¡ max
1· k· K

ck ¸ c(S)+
KX

k=1

ck¡ c0s,

where (0s) 2 gS, them.c.s.t. of S. Note that the last inequality follows from the

fact that ck · c0s for all k 2 f1;: ::K g.

Sinceg = ([ Kk=1a
kbk) [ (gS nf(0s)g) is a connected graph over (T [ S [ f0g),

c(S) +
KX

k=1

ck ¡ c0s ¸ c(S [ T ). Hence,
X

i2S[ T

Ã¤i (C) > c(S [ T), establishing the

contradiction that S [ T is a blocking coalition.

Case 2: 12 S.

Fromthe claim, S is not an initial segment of theintegers. So, we can partition

S into fS1;: ::;SK g, whereeach Sk consists of consecutiveintegers, and i 2 Sk;j 2

Sk+1 implies that i < j . Assumem = maxj2S1 j and n = minj2S2 j . Note that

n >m+1. De…ne T = fm+1; :: :;n ¡ 1g. Wewill show that S [ T is a blocking

coalition, contradicting theassumption that S is a largest blockingcoalition.

14



Now,

X

i2S[ T

Ã¤i (C) =
X

i2S

Ã¤i (C) +
X

i2T

Ã¤i (C)

> c(S) +
X

i2S1[ T

Ã¤i (C) ¡
X

i2S1

Ã¤i (C)

= c(S) +(
nX

i=1

ci ¡ max
1· i· n

ci ) ¡ (
m+1X

i=1

ci ¡ max
1· i· m+1

ci )

= c(S) +(
nX

i=m+2

ci ¡ ( max
1· i· n

ci ¡ max
1· i· m+1

ci ))

Of course, max1· i· n ci ¸ max1· i· m+1ci. If max1· i· n ci = max1· i· m+1ci , then
X

i2S[ T

Ã¤i (C) > c(S) +
nX

i=m+2

ci ¸ c(S [ T), where the latter inequality follows from

the fact that [[ nk=m+2f(a
kbk)g[ gS] is a connected graph over S [ T [ f0g.

I fmax1· i· n ci >max1· i· m+1ci , thenmax1· i· n ci =maxm+2· i· n ci. Then,

X

i2S[ T

Ã¤i (C) > c(S) + max
1· i· m+1

ci +
nX

i=m+2

ci ¡ max
m+2· i· n

ci

¸ c(S) +
nX

i=m+1

ci ¡ max
m+2· i· n

ci

¸ c(S) +
nX

i=m+1

ci ¡ cs1s2

where (s1s2) 2 gS with s1 2 S1 [ f0g; s2 2 N nS1.15 Since the edge (s1s2) could

havebeen connected ( but wasnot) in stepsm+2; :: :;n of thealgorithmfor N , we

must havecs1s2 >ck for k 2 fm+2; :: :;ng. Hence, thelast inequality follows.

But, notethat [gSnf(s1s2)g][
n
k=m+1f(a

kbk)g isaconnectedgraphover S[ T [ f0g.

So,

X

i2S[ T

Ã¤i (C) > c(S) +
nX

i=m+1

ci ¡ cs1s2

¸ c(S [ T ):

So, S [ T is a blockingcoalition, establishing thedesired contradiction.

This concludes theproof of the theorem.

15Such (s1s2) must exist in gS since gS is them.c.s.t. over S.
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4 Characterization Theorems

In this section, we present characterizations of the allocation rules Ã¤ and B .16

We…rst describe the axioms used in the characterization. These characterization

theoremswill beproved for therestricted domainsC1 for B and C2 for Ã¤.

E¢ciency (EF):
X

i2N

Ãi (C) =
X

(i j )2gN (C )

ci j .

This axiom ensures that the agents together pay exactly the cost of the e¢cient

network.

Beforemovingon to our next axiom, weintroducetheconcept of an extremepoint.

Let C 2 CN be such that them.c.s.t. gN (C) is unique. Then, i 2 N is called an

extremepoint of gN (C) (or equivalently of C), if i hasno follower in gN (C).

Extreme Point Monotonicity (EPM): Let C 2 CN , and i be an extreme point of

C. Let ¹C be the restriction of C over the set N+ nf ig. An allocation rulesatis…es

ExtremePoint Monotonicity if Ãk( ¹C) ¸ Ãk(C) 8k 2 N
+nf ig.

Suppose i is an extremepoint of gN (C). Note that i is of no use to the rest

of the network since no nodeis connected to the sourcethrough i. ExtremePoint

Monotonicity essentially states that no “existing" nodek will agreeto pay a higher

cost in order to include i in thenetwork.

The next two axioms are consistency properties, analogous to reduced gameprop-

erties introduced by Davis and Maschler [2] and Hart and Mas-Collel [8].17

We need some further notation before we can formally describe the consistency

axioms. Consider any C with a uniquem.c.s.t. gN (C), and suppose that (i0) 2

gN (C). Let xi be the cost allocation ‘assigned’ to i. Suppose i ‘leaves’ the scene

(or stops bargaining for a di¤erent cost allocation), but other nodes are allowed to

connect through it. Then, thee¤ectivereducedcostmatrix changesfor theremaining

nodes. Wecan think of two alternativeways in which theothers can usenode i.

(i) Theothers can use node i only to connect to thesource.
16See Feltkamp [3] for an alternative characterization of B .
17Thomson[14] contains an excellent discussion of consistency properties in various contexts.
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(ii) Nodei canbeusedmorewidely. That is, nodej canconnect tonodek through

i.

In case (i), the connection costs on N+ n f ig are described by the following

equations:

For all j 6= i; ¹cj0=min(cj0;cj i +ci0 ¡ xi ) (7)

If f j ;kg\ f i;0g= ; ; then ¹cj k =cj k (8)

Equation7captures the notion that node j ’s cost of connecting to thesourceis the

cheaper of twooptions - the…rst option beingtheoriginal oneof connectingdirectly

to the source, while the second is the indirect oneof connecting through node i. In

the latter case, thecost borne by j isadjusted for thefact that i pays xi . Equation

8captures thenotion that node i can only beused to connect to thesource.

Let Csr
xi represent the reduced cost matrix derived through equations7, 8.

Consider nowcase(ii).

For all j ;k 2 N+ nf ig; ¹cj k =min(cj k;cj i +cki ¡ xi): (9)

Equation 9captures thenotion that j can use i to connect to any other nodek,

where k isnot necessarily the source.

Let C tr
xi represent the reduced cost matrix derived through equation 9.

Wecan nowde…nethetwo consistency conditions.

SourceConsistency (SR): Let C 2 C1N , and (0i) 2 gN (C). Then, theallocation rule

Ã satis…es SourceConsistency if Ãk(C
sr
Ãi (C )

) = Ãk(C) for all k 2 N nf igwhenever

Csr
Ãi (C )

2 C1Nni.

Tree Consistency (TR): Let C 2 C2N , and (0i) 2 gN (C). Then, the allocation rule

Ã satis…es Tree Consistency if Ãk(C
tr
Ãi (C )

) = Ãk(C) for all k 2 N nf igwhenever

Ctr
Ãi (C )

2 C2Nni.

The two consistency conditions require that the cost allocated to any agent be

the sameon theoriginal and reduced cost matrix. This ensures that oncean agent

connected to thesourceagrees toa particular cost allocation and then subsequently

17



allows other agents to useits location for possibleconnections, theremainingagents

do not have any incentiveto reopen the debate about what is an appropriate allo-

cation of costs.

Thefollowing lemmaswill beused in the proofsof Theorems2and 3.

Lemma 1 : Let C 2 C1N , and i 2 N . If cik = min
l2N+nf ig

ci l, then (ik) 2 gN (C).

Proof : Suppose (ik) =2 gN (C). As gN (C) is a connected graph over N+, 9 j 2

N+ nf i;kg such that (i j ) 2 gN (C) and j is on the path between i and k. But,

fgN [ (ik)gnf(ij )g is still a connected graph which costs no more than gN (C), as

cik · ci j . This isnot possibleas gN (C) is the only m.c.s.t. of C.

Lemma 2 : Let C 2 C2N ; and (01) 2 gN (C). Let Ã1(C) =mink2N+nf1gc1k: Then,

Ctr
Ã1(C )

2 C2Nnf1g.

Proof : Wewill denoteCtr
Ã1(C )

by ¹C for therest of this proof.

Let Ã1(C) =mink2N+nf1g c1k =c1k¤ (say).

Suppose there exists (ij ) 2 gN (C) such that i;j 6= 1. Since (ij ) 2 gN (C), either

i precedes j or viceversa. Without loss of generality assume i precedes j in gN (C).

Since (01); (ij ) 2 gN (C), (1j ) =2 gN (C). Then, c1j >ci j . AsÃ1(C) · ci1, ci1+c1j ¡

Ã1(C) ¸ c1j >cij . Hence¹ci j =ci j8(ij ) 2 gN (C); such that i ;j 6=1.

Now, suppose there is j 2 N such that j 6= k¤ and (1j ) 2 gN (C). Since

(1j ); (1k¤) 2 gN (C), (j k¤) =2 gN (C). Hence, c1j <ck¤j . Thus,

¹ck¤j =minf(c1j +c1k¤ ¡ Ã1(C));ck¤j g=min(c1j ;ck¤j ) = c1j .

Next, let ¹gNnf1g, bea connected graph over N
+nf1g, de…nedas follows.

¹gNnf 1g= f (ij )j either (ij ) 2 gN (C) s.t. i; j 6= 1or (ij ) = (k¤l) where (1l) 2 gN (C)g:

Notethat no two edges haveequal cost in ¹gNnf 1g.

Also,
X

(i j )2¹gN nf 1g

¹ci j =
X

(ij )2gN (C)

ci j ¡ c1k¤: (10)

Weprovethat ¹C belongs toC2N nf 1g by showing that ¹gN nf 1g is theonlym.c.s.t. of ¹C.

18



Supposethis isnot true, so that g¤Nnf1g isan m.c.s.t. corresponding to
¹C . Then,

using10,
X

(i j )2g¤
N nf 1g

¹ci j ·
X

(ij )2gN (C)

ci j ¡ c1k¤ (11)

Let g¤Nnf 1g =g1 [ g2, where

g1 = f(ij )j(ij ) 2 g¤Nnf 1g;ci j = ¹cij g

g2 = g¤Nnf1gng
1

I f (ij ) 2 g2, then

¹ci j = min(ci j ;c1i +c1j ¡ Ã1(C))

= c1i +c1j ¡ Ã1(C)

¸ max(c1i;c1j )

wherethelast inequality followsfromtheassumption that Ã1(C) =mink2N+ nf 1gc1k.

So,

¹ci j = cij if (ij ) 2 g1

¸ max(c1i ;c1j ) if (ij ) 2 g2: (12)

Now, extend g¤Nnf1g to a connected graph g0N over N+ as follows. Letting g =

f(1i)j(ij ) 2 g2; j 2 U(i;k¤;g¤Nnf1g)g, de…ne

g0N = g1 [ (1k¤) [ g:

Claim: g0N is a connected graph over N+.

Proof of Claim: It is su¢cient to show that every i 2 N+ n f1g is connected

to 1 in g0N . Clearly, this is true for i = k¤. Take any i 2 N+ n f1;k¤g. Let

U(i;k¤;g¤Nnf 1g) = f(m0m1);: :: ;(mpmp+1)g wherem0 = i and mp+1 = k¤. If all

theseedges arein g1, then they arealso in g0N , and thereis nothing to prove.

So, suppose there is (mtmt+1) 2 g2 while all edges in f(m0m1);: :: ;(mt¡ 1mt)g

belong to g1. In this case, (mt1) as well as all edges in f(m0m1);: :: ;(mt¡ 1mt)g

belong tog0N . Hence, i is connected to 1.
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To completetheproof of the lemma, notethat

X

(i j )2g0
N

ci j =
X

(i j )2g1
ci j +c1k¤ +

X

(i j )2g

c1i:

Using (12),

X

(ij )2g0
N

ci j ·
X

(i j )2g1
¹ci j +c1k¤ +

X

(ij )2g2
¹ci j =

X

(ij )2g¤
N nf 1g

¹cij +c1k¤

Finally, using (11),
X

(i j )2g0
N

ci j ·
X

(i j )2gN (C)

ci j :

But, this contradicts theassumption that gN (C) is theuniquem.c.s.t. for C .

Lemma 3 : Let C 2 C1N , (10) 2 gN (C). Suppose Ã1(C) = c01. Then Csr
Ã1(C )

2

C1Nnf 1g.

Proof : Throughout theproof of this lemma, wedenoteCsr
Ã1(C )

by ¹C .

WeknowÃ1(C) = c01. Suppose (ij ) 2 gN (C) such that f i;jg\ f0;1g= ; . Then

¹ci j =ci j .

On the other hand if (i0) 2 gN (C), and i 6= 1, then ¹c0i = minf (ci1+ c10 ¡

Ã1(C));c0ig=min(ci1;ci0) = ci0. Note that the last equality follows from the fact

that (i0) 2 gN (C) but (i1) =2 gN (C) implies that ci1 >ci0.

I f (i1) 2 gN (C), then ¹ci0=minf(ci1+c10 ¡ Ã1(C));ci0g=min(ci1;ci0) = ci1, as

(i1) 2 gN (C) but (i0) =2 gN (C).

Nowweconstruct ¹gNnf 1g, a connected graph over N
+nf1gas follows.

¹gNnf 1g= f (ij )j either (ij ) 2 gN (C) s.t. i; j 6= 1or (ij ) = (l0) where (l1) 2 gN (C)g

Then, ¹gNnf 1g must be the only m.c.s.t. of ¹C . For if there is another g¤N nf 1g which

is also anm.c.s.t. of ¹C, then one can show that gN (C) cannot be the only m.c.s.t.

coresponding toC .18

Lemma 4: SupposeÃ satis…es TR, EPM and EF. Let C 2 C2N . If (i0) 2 gN (C),

then Ãi(C) ¸ mink2N +nf igcik.

18Theproof of this assertion is analogous to that of the corresponding assertion in Lemma 2, and

is henceomitted.
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Proof : Consider any C 2 C2N , (i0) 2 gN (C), and Ã satisfyingTR, EPM, EF. Let

Ã(C) =x, and cim =mink2N +nf igcik. Wewant to show that xi ¸ cim.

Choose j 62 N , and de…ne ¹N = N [ f jg. Let ¹C 2 C2¹N besuch that

(i) ¹C coincides with C onN +.

(ii) For all k 2 N+ nf ig, ¹cj k> ¹ci j >
X

(pq)2gN (C)

cpq.19

Hence, g¹N ( ¹C) =gN (C) [ f(ij )g.

Noticethat j is an extremepoint of ¹C. DenotingÃ( ¹C) = ¹x, EPM implies that

xi ¸ ¹xi (13)

Weprovethelemmaby showing that ¹xi ¸ ¹cim =cim.

Let ¹C tr
¹xi =C0, and N0= ¹N nf ig;Ã(C0) =x0. Assume ¹xi < ¹cim.

Case 1: C02 C2N 0.

Suppose thereis some k 2 N0such that (ik) 62 g¹N ( ¹C). Let l be the predecessor

of k ing ¹N ( ¹C). Since (kl) 2 g¹N ( ¹C) and (ik) 62 g¹N ( ¹C), ¹ckl < ¹cki. Also, ¹cil ¸ ¹cim > ¹xi.

Hence,

c0kl =min(¹ckl; ¹cki +¹cl i ¡ ¹xi ) = ¹ckl (14)

Now, consider k 2 (N0[ f0g)nfm;jg such that (ik) 2 g¹N ( ¹C). Notethat (km) 62

g¹N ( ¹C) since (im) 2 g¹N ( ¹C) from lemma1. Hence, ¹ckm > ¹cik since (ik) 2 g¹N ( ¹C) and

(km) 62 g¹N ( ¹C). So,

c0km=min(¹ckm; ¹cik +¹cim ¡ ¹xi) > ¹cik (15)

Take any (kl) 62 g¹N ( ¹C). Suppose (s1s2) 2 U(k; l;g¹N ( ¹C)). Then, ¹cs1s2 <

min(¹ckl; ¹cik;¹ci l). So, 8(s1s2) 2 U(k; l;g¹N ( ¹C))

c0kl =min(¹cki +¹ci l ¡ ¹xi ; ¹ckl) > ¹cs1s2 (16)

19Note that the exact lower bound on ¹ci j will play no role in the subsequent proof. All that we

require is that ¹ci j is “high" sothat thereduced cost matrix C 0, to bede…ned below, hasappropriate

properties.
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Next, note that since ¹cjm can bechosen arbitrarily high,

c0jm =min(¹cj m; ¹ci j +¹cim ¡ ¹xi ) = ¹ci j +¹cim ¡ ¹xi (17)

Since for all t 2 (N0[ f0g) nfm;jg, c0j t = ¹cij +¹cit ¡ ¹xi >c0jm, (jm) 2 gN 0(C0).

FromTR, wehave x0k = ¹xk for all k 2 N0. UsingEF, and equations 14, 15, 16,

17,
X

k2 ¹N nf ig

¹xk =
X

k2N 0

x0k= c(gN 0(C0)) > c(g ¹N ( ¹C )) ¡ ¹xi (18)

But, this violates EF since
X

k2 ¹N

¹xk >c(g¹N ( ¹C)).

Case 2: C0=2 C2N 0.

This implies that there exist (pn); (kl) such that c0pn = c0kl, and both (pn);(kl)

belong to somem.c.s.t. (not necessarily thesameone) corresponding toC0.

Note that i 62 fp;n;k;lg. So, if (pn) 2 g ¹N ( ¹C), then ¹cpn = c0pn. Similarly, if

(kl) 2 g ¹N ( ¹C), then ¹ckl =c0kl . So, both pairscannot be in g¹N ( ¹C) since ¹C 2 C2¹N .

Without loss of generality, assumethat (pn) 62 g¹N ( ¹C). Thereexistsa path from

p ton denoted byU(p;n;g¹N ( ¹C)) = fs1; s2;: :: ;sK g. We…rst want to show that

c0pn > ¹csksk+1 for all k=1;: ::K ¡ 1: (19)

Notethat c0pn =min(¹cpi+¹cin¡ ¹xi; ¹cpn). If (19) isnot true, theneither (a)¹cpn · ¹csksk+1

or (b)¹cpi +¹cni ¡ ¹xi · ¹csksk+1
for somek.

Suppose (a) holds. Then, (g¹N ( ¹C) [ f(pn)g) n f(sksk+1)g is a m.c.s.t. for ¹N

corresponding to ¹C, contradicting thefact that ¹C 2 C2¹N .

Suppose(b) holds. Then, ¹cpi · ¹csksk+1 and ¹cni · ¹csksk+1 sincemin(¹cpi; ¹cni) > ¹xi.

I f (pi)( or (ni)) 62 g ¹N ( ¹C), then we can delete (sksk+1), join (pi)( or (ni)), and

contradict thefact that g¹N ( ¹C) is theuniquem.c.s.t.

So, the only remainingpossibility is that the path U(p;n;g¹N ( ¹C)) = f (ni);(pi)g.

But, in this case, we already know that ¹cni + ¹cpi ¡ ¹xi > max(¹cni; ¹cpi) since ¹xi <

min(¹cni; ¹cpi).

So, (19) is true.
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Now, chooseq62 ¹N , and de…ne bN = ¹N [ fqg. Consider a cost matrix bC 2 C2bN

such that

(i) bC coincides with ¹C on ¹N +.

(ii) bcqp=mink2 ¹N + bcqk.

(iii) c0pn >bcqn >max(st)2U(p;n;g ¹N ( ¹C )) ¹cst.
20

(iv) bcqt is “su¢ciently" largefor all t 6=p;n.

Then, wehavegbN (
bC) = g¹N ( ¹C) [ f(qp)g, so that q is an extremepoint of bC. Let

Ã( bC) = bx. FromEPM,

¹xi ¸ bxi (20)

Now, consider the reduced cost matrix eC ´ bC tr
bxi
. Weassert that eC 2 C2bNnf ig

.21 This

isbecause (pn) is now “irrelevant" sincein them.c.s.t. corresponding to eC , pandn

will beconnected through thepath (pq) and (qn). To seethis, note thefollowing.

First,

c0pn = min(¹cpi +¹cin ¡ ¹xi; ¹cpn)

· min(bcpi +bcin ¡ bxi;bcpn)

= ecpn

since ¹cpn = bcpn; ¹cpi =bcpi ;¹cin =bcin and ¹xi ¸ bxi from(20).

Second, c0pn > bcqn by construction. Lastly, bcqn = ecqn since ecqn =min(bcqn;bcqi +

bcin ¡ bxi ) and bcqi has been chosen su¢ ciently large.

So, ecpn > ecqn. Since (qp) 2 gbNnf ig(
eC) from Lemma 1, this shows that (pn) 62

gbNnf ig(
eC).

Since eC 2 C2bNnf ig
, we apply the conclusion of Case 1 of the lemma to conclude

that bxi ¸ bcim= ¹cim. Equation (20) now establishes that ¹xi ¸ ¹cim.
20Note that this speci…cation of costs is valid because (19) is true.
21This assertion is contingent on (pn);(kl) being the only pairs of nodes in somem.c.s.t. of C0

having the same cost. However, the proof described here can be adapted to establish a similar

conclusion if there aremoresuch pairs.
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Westatewithout proof the corresponding lemmawhen TR is replaced with SR.

Theproof isalmost identical to that of Lemma 4.

Lemma 5: SupposeÃ satis…es SR, EPM and EF. Let C 2 C1N . If (i0) 2 gN (C),

then Ãi(C) ¸ mink2N +nf igcik.

Wenowpresent a characterization of Ã¤ in termsof TreeConsistency, E¢ciency

and ExtremePoint Monotonicity.

Theorem 2 : Over the domain C2, a cost allocation ruleÃ satis…es TR, EF and

EPM if and only if Ã=Ã¤.

Proof : First, weprovethat Ã¤ satis…es all thethreeaxioms.

Let C 2 C2.

E¢ciency followstrivially fromthealgorithmwhich de…nestheallocation.

Next, weshow that Ã¤ satis…es TR.

Let (10) = argmink2N ck0. Hence, the algorithm yields b1 = 1, and Ã¤1(C) =

min(c10;ca2b2). Thereare twopossiblechoiceof a2.

Case1: a2=1. Then,weget c1b2 =mink2Nnf1gc1k. ThereforeÃ
¤
1(C) =min(c10;c1b2) =

mink2N+nf1gc1k.

Case 2: a2 = 0. Then, cb20 · c1k 8k 2 N nf1g. Since c10 · cb20, we conclude

Ã¤1(C) =min(c10;cb20) = c10=mink2N+ nf 1gc1k.

So, in either case, 1pays itsminimumcost.

Let Ã¤1(C) = x1 = mink2N+nf 1gc1k = c1k¤ . Denoting Ctr
x1 by

¹C , we know from

Lemma2, that ¹C 2 C2. Hence, thealgorithm is well de…ned on ¹C.

Let ¹ak;¹bk; ¹tk, etc denotetherelevant variablesof thealgorithmcorresponding to

¹C.

Claim: 8i 2 N nf1g, Ã¤i (C) = Ã¤i ( ¹C). That is, Ã
¤ satis…es TreeConsistency.

Proof of Claim: Fromtheproof of lemma 2,

(i) ¹ci j =ci j 8(ij ) 2 gN (C) s.t. i;j 6=1.

(ii) ¹ck¤j = c1j for j 2 N+ nf k¤g s.t. (1j ) 2 gN (C).
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Also,

gNnf 1g( ¹C) = f(ij )j(ij ) 2 gN (C)if i; j 6=1and (ij ) = (k¤l) if (1l) 2 gN (C)g:

Let b2 = i. Either k¤= 0or k¤ = i. In either case, ¹c0i =c01< ¹c0j for j 62 f0;1; ig.

Hence, ¹b1 = i.

Now, t2=max(ca1b1;ca2b2) =max(c10;ca2i) = ¹c0i =¹t1:

Also, a3 2 f0;1; ig, whileb3 2 f0;1; igc. I f a3 2 f0; ig, then ¹a2 = a3. If a3 = 1,

then ¹a2=k¤. In all cases, b3 =¹b2, and ca3b3 =¹c¹a2¹b2. So,

Ã¤i (C) =min(t2;ca3b3) =min(¹t1;¹c¹a2¹b2) =Ã¤i ( ¹C): (21)

Theclaim is established for fb3;: :: ;bngby using thestrucureof gNnf 1g( ¹C), the

de…nition of ¹C given above, and thefollowing induction hypothesis. The details are

left to thereader.

For all i =2; :: :;k ¡ 1,

(i) ¹bi¡ 1= bi.

(ii ¹ti¡ 1= ti.

(iii) ¹ai¡ 1 =ai if ai 6=1, and ¹ai¡ 1= k¤ if ai = 1.

Wenow haveto show that Ã¤ satis…esEPM.

Let i 2 N bean extreme point of gN (C), and bC be the restriction of C over

N nf ig. Of course, bC 2 C2.

In order to di¤erentiate between the algorithms on C and bC, we denote the

outcomes corresponding to thelatter by bak;bbk;btk, etc.

Supposebk = i. Clearly, thealgorithmwill produce the sameoutcomestill step

(k ¡ 1), and soÃ¤j (C) = Ã¤j ( bC) for all j 2 fb1; :: :;bk¡ 2g, and tk¡ 1= btk¡ 1.

Now, let uscalculateÃ¤j (C) where j =bk¡ 1. As i is anextremepoint of gN , and

(aki) 2 gN , ak+1 6= i. Also, Ak = Ak¡ 1 [ f ig. Hence, ak+1 2 Ak¡ 1. This implies

cak i · cak+1bk+1 . But i =2 bAk¡ 1
c . Hence (bakbbk) = (ak+1bk+1). Thus,

Ã¤j (C) =min(tk¡ 1;cak i) · min(btk¡ 1;cak+1bk+1) = Ã¤j ( bC) (22)
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Also, btk = max(btk¡ 1;cak+1bk+1) ¸ max(tk¡ 1;cak i ;cak+1bk+1 ) = tk+1. The algorithm

on C determines thecost allocation for i in step (k+1). Since i isan extremepoint

of gN , i 6= as for any s. Hence, thechoiceof aj andbj must bethesamein C and bC

for j ¸ k+1. So, for all j 2 fk+1; ::: ;#Ng, aj = baj ¡ 1;bj =bbj ¡ 1;tj · btj ¡ 1. Hence,

Ã¤bj (C) =min(tj ;caj +1bj+1) · min(btj ¡ 1;cbajbbj ) =Ã¤bj ¡ 1( bC) (23)

Hence, wecan concludethat Ã¤ satis…es ExtremePoint Monotonicity.

Next, wewill provethat only one allocation ruleoverC2satis…esall threeaxioms.

Let Ãbeanallocation rulesatisfyingall thethreeaxioms. Wewill showby induction

on thecardinality of theset of nodes that Ã isunique.

Let us start by showing that the result is true for jN j = 2. There are several

cases.

Case 1: c12 > c10;c20. From Lemma 4, Ã1(C) ¸ c10;Ã2(C) ¸ c20. By EF,

Ã1(C) +Ã2(C) =c10+c20. Thus Ã1(C) =c10; and Ã2(C) =c20. So, theallocation

isunique.

Case 2: c20 > c12 > c10. Introduce a third agent 3 and costs c20 < ¹c13 <

min(¹c32; ¹c30). Let the restriction of ¹C on f1;2g+ coincidewith C . Hence, gf 1;2;3g =

f(01);(12); (13)g. Let Ã( ¹C) = ¹x. FromLemma4, x1 ¸ c10.

Denote the reduced matrix ¹Ctr
¹x1 as

bC. Now, bc02 = min(¹c01+ ¹c12 ¡ ¹x1; ¹c02) =

¹c01+¹c12¡ ¹x1. Similarly, bc23 =min(¹c13+¹c12¡ x1; ¹c23). Notingthat x1 ¸ ¹c10;¹c23> ¹c12

and ¹c13> ¹c10, weconcludethat

bc02 <bc23:

Analogously, bc03= ¹c01+¹c13 ¡ ¹x1< bc23.

Hence, gf2;3g( bC) = f(02); (03)g. So, bC 2 C2. UsingTR,

Ã2( bC) =Ã2( ¹C);Ã3( bC) =Ã3( ¹C) (24)

FromCase1above,

Ã2( bC) = ¹c01+¹c12 ¡ ¹x1;Ã3( bC) = ¹c01+¹c13 ¡ ¹x1 (25)
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From(24) and (25),

Ã2( ¹C) +Ã3( ¹C) = ¹c01+¹c12 ¡ ¹x1+¹c01+¹c13 ¡ ¹x1

or ¹x1+Ã2( ¹C) +Ã3( ¹C) = ¹c01+¹c12+¹c13+(¹c01 ¡ ¹x1)

But, from EF, ¹x1+ Ã2( ¹C) + Ã3( ¹C) = ¹c01+¹c12+ ¹c13. So, ¹x1 = ¹c01. So, Ã2(bC) =

Ã2( ¹C) = ¹c12= c12.

ByEPM, ¹x1 · Ã1(C), andÃ2( ¹C) · Ã2(C). UsingEF, it followsthat Ã1(C) = c01

and Ã2(C) =c12. Hence, Ã is unique.

Thecasec10> c12>c20 is similar.

Case 3: c20>c10 >c12.

Weagain introduceathird agent (say 3). Consider thecost matrix ¹C, coinciding

wih C on f1;2g+, and such that

(i) ¹c32> ¹c13> ¹c20.

(ii) ¹c30> ¹c10+¹c13.

Then, ¹C 2 C2 since it has theuniquem.c.s.t. gN ( ¹C) = f(01);(12);(13)g, where

no two edgeshave thesamecost.

Notethat 3 is anextremepoint of them.c.s.t. corresponding to ¹C . UsingEPM,

weget

Ã1(C) ¸ Ã1( ¹C);Ã2(C) ¸ Ã2( ¹C): (26)

Now, ¹c10 < min(¹c20; ¹c30). Consider the reduced cost matrix ¹Ctr
Ã1(

¹C) on f2;3g.

Denote ¹C tr
x1 =

bC for ease of notation. SinceÃ1( ¹C) ¸ ¹c12 fromLemma4, it follows

that ¹c12+¹c10 ¡ Ã1( ¹C) · ¹c10< ¹c20, and ¹c12+¹c13 ¡ Ã1( ¹C) · ¹c13 < ¹c23. Hence,

bc20= ¹c12+¹c10 ¡ Ã1( ¹C);bc23= ¹c12+¹c13 ¡ Ã1( ¹C);bc30 =¹c13+¹c10 ¡ Ã1( ¹C) (27)

Notethat

¹c21+¹c10 ¡ Ã1( ¹C)< ¹c21+¹c13 ¡ Ã1( ¹C) < ¹c10+¹c13 ¡ Ã1( ¹C)

Hence, gf 23g( bC) = f (02); (23)g.
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Applyingcase2, Ã2( bC) = bc20= ¹c12+¹c10 ¡ Ã1( ¹C) andÃ3(bC) = bc23= ¹c21+¹c13 ¡

Ã1( ¹C). UsingTR, Ã2(bC) = Ã2( ¹C);Ã3(bC) = Ã3( ¹C). EF on ¹C gives,

Ã1( ¹C)+Ã2( ¹C) +Ã3( ¹C) = ¹c10+¹c12+¹c13

or Ã1( ¹C)+ (¹c12+¹c10 ¡ Ã1( ¹C)) +(¹c12+¹c13 ¡ Ã1( ¹C)) = ¹c10+¹c12+¹c13

or Ã1( ¹C) = ¹c12
HenceÃ2( ¹C) = ¹c10;Ã3( ¹C) = ¹c13. From equation 26, Ã1(C) ¸ ¹c12;Ã2(C) ¸ ¹c10.

Using EF on C we can conclude that, Ã1(C) = c12 and Ã2(C) = c10, i.e. the

allocation is unique.

Thecasec10> c20>c12 is similar.

This completes the proof of thecase jN j = 2.22

Suppose the theorem is truefor all C 2 C2N , where jN j <m. Wewill show that

the result is true for all C 2 C2N such that jN j =m.

Let C 2 C2N . Without loss of generality, assume c10 = mink2N ck0.23 Thus

(10) 2 gN (C). Thereare twopossible cases.

Case 1: c10=mink2N+nf 1gc1k.

Then choose j 2 N such that (j0) 2 gN (C) or (j1) 2 gN (C).

Case 2: c1j =mink2N+nf1gc1k.

Then fromLemma 1, (1j ) 2 gN (C).

In either Case1or 2, let ¹C denotetherestriction of C on f1; jg. Then, fromthe

casewhen#N =2, it follows that Ã1( ¹C) =mink2N+nf 1gc1k.

Now,by iterativeeliminationof extremepointsand repeatedapplicationof EPM,

it follows that Ã1(C) · Ã1( ¹C) =mink2N+ nf 1gc1k. But, C 2 C2N , and Ã satis…es EF,

TR and EPM. So, from lemma4, it follows that Ã1(C) ¸ mink2N+nf 1gc1k. Hence,

Ã1(C) =mink2N+nf 1gc1k =x1 (say).

Weremove1 to get reduced cost matrix Ctr
x1. From lemma2, C tr

x1 2 C2. By TR,

Ãk(C
tr
x1) = Ãk(C) 8k 6= 1. From the induction hypothesis, the allocation is unique

on Ctr
x1 and henceon C.

22Notethat thesethreecasescover all possibilitiessinceequality between di¤erent costswill result

in thecost matrix not being in C2N .
23This is uniqueas C 2 C2N .
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This completes the proof of thetheorem.

Wenowshow that the three axioms used in thetheoremare independent. The

examples constructed below are all variants of Ã¤. So, ak;bk are derived from the

algorithmused to construct Ã¤.

Example 6: We construct a ruleÁwhich satis…es EPM and TR but violates EF.

Let Ák(C) =Ã¤k(C) 8k 6=bn; Ábn (C) =Ã¤bn (C) + ²; where² >0.

Using theresult that Ã¤ satis…es EPM and TR it can be easily checked that Á

also satis…es theseaxioms. Also note that
P n

k=1Ák(C) =
P n

k=1Ã
¤
k(C) + ² > c(N ),

and henceÁ violates EF.

Example 7: Wenow construct a rule ¹ which satis…es EF and TR, but does not

satisfy EPM.

For n= 1, ¹1(C) =c10. For n ¸ 2,

(i) ¹ k(C) = Ã¤k(C) 8k 6=bn¡ 1;bn.

(ii) ¹ bn¡ 1 (C) = ¹ bn (C) =
(Ã¤

bn¡ 1(C)+Ã
¤
bn
(C))

2 .

Thisallocation satis…esEF andTR but violatesEPM. In order to seethelatter,

consider thefollowingcost matrixC .

C =

0

B
B
B
B
B
B
@

0 3 5 7

3 0 1 2

5 1 0 4

7 2 4 0

1

C
C
C
C
C
C
A

:

Then, gN (C) = f (01);(12);(13)g. Clearly, 3 isanextremepoint of C . Let ¹C denote

the restriction of C over {0,1,2}. Then, ¹2(C) = 2:5> 2= ¹ 2( ¹C) and henceEPM

isviolated.

Weremark in thenext theoremthat theBird ruleB satis…esEF andEPM. Since

B 6= Ã¤, it follows that B doesnot satisfy TR. Here is an explicit example to show
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that B violates TR.

C =

0

B
B
B
B
B
B
@

0 2 3:5 3

2 0 1:5 1

3:5 1:5 0 2:5

3 1 2:5 0

1

C
C
C
C
C
C
A

Then, B1(C) = 2;B2(C) = 1:5 and B3(C) = 1: The reduced cost matrix is Ctr
x1 is

shown below.

Ctr
x1 =

0

B
B
@

0 1:5 1

1:5 0 0:5

1 0:5 0

1

C
C
A :

Then, B2(Ctr
x1 ) = 0:5andB3(C tr

x1) =1. ThereforeTR is violated.

However, B does satisfy SourceConsistency on the domain C1. In fact, wenow

show that B is the only rule satisfyingEF, EPM and SR.

Theorem 3 : Over the domain C1, an allocation ruleÁ satis…es SR, EF and EPM

i¤ Á=B .

Proof : We…rst show that B satis…es all the three axioms. EF and EPM follows

trivially fromthede…nition. It is only necessary to show that B satis…es SR.

Let (10) 2 gN . Then, B1(C) = c01. Let us denote thereduced cost matrix Csr
B1

by ¹C . FromLemma3, ¹C 2 C1. Also, them.c.s.t. over N nf1gcorrespondingto ¹C is

gNnf1g= f(ij )j either (ij ) 2 gN with i;j 6=1or (ij ) = (l0) where (1l) 2 gNg:

Also, for all i; j 2 N nf1g, ¹ci j = cij if (ij ) 2 gN , and for k 2 N nf1g;¹ck0 = c1k if

(1k) 2 gN . Hence, for all k 2 N nf1g; ¹ck®(k) = ck®(k). So, Bk( ¹C) = Bk(C) for all

k 2 N nf1gandB satis…es SourceConsistency.

Next, we show that B is the only allocation rule over C1, which satis…es all the

threeaxioms. This proof isby induction on thecardinality of the set of agents.

We remark that the proof for the case jN j = 2 is virtually identical to that of

Theorem2, withSR replacingTR and Lemma 5replacingLemma4.
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Suppose B is the only cost allocation rule satisfying the three axioms, for all

C 2 C1, where jN j < m. We will show that the result is true for all C 2 C1 such

that jN j =m.

Let C 2 C1. Without loss of generality, assume (10) 2 gN (C). There are two

possiblecases.

Case 1 : Thereare at least two extremepoints of C , saym1 andm2.

First, removem1 and consider thecost matrixCm1, which is therestriction of C

over (N+ nfm1g). By EPM, Ãi(C) · Ãi(C
m1) for all i 6=m1. As Cm1 has (m ¡ 1)

agents, the induction hypothesis gives Ãi (C
m1) = ci®(i): So, Ãi(C) · ci®(i) 8i 6=

m1. Similarly by eliminatingm2 and using EPM, weget Ãi (C) · ci®(i) 8i 6= m2.

Combining the two, weget Ãi(C) · ci®(i) 8i 2 N .

But from EF, we know that
P

i2N Ãi(C) = c(N ) =
P

i2N ci®(i). Therefore

Ãi(C) =ci®(i) 8i 2 N , and hencetheallocation isunique.

Case2: I f thereisonlyoneextremepoint of C, then gN (C)must bea line, i.e. each

agent has atmost onefollower. Without lossof generality, assume1 is connected to

2and0. Let ¹C betherestrictionof C over theset f0;1;2g:By iterativeelimination

of the extremepoints and use of EPM weget Ãi(C) · Ãi( ¹C). Using theinduction

hypothesis, weget Ã1(C) · c10 and Ã2(C) · c12.

Suppose Ã1(C) = x1 = c10 ¡ ², where ² ¸ 0. Now consider the reduced cost

matrixCsr
x1 , which will bedenoted by

bC. I t canbeeasily checked that gNnf 1g is also

alinewhere2 is connected to0. ThusÃ2( bC) = cc20= c21+c10¡ Ã1(C) = c21+². By

SR,Ã2(C) =Ã2( bC) =c21+². But fromEPM Ã2(C) · Ã2( ¹C) =c21. This ispossible

only if ² = 0. Therefore, Ã1(C) = c10. Using SR and the induction hypothesis, we

can concludethat Ã=B .

Wenow show that thethreeaxiomsused in Theorem3areindependent.

Example 8: Thefollowingallocation ruleÁ satis…es EPM andSR but violates EF.

Let Ák(C) =Bk(C) 8k 6= i, where i is an extremepoint of C with (i0) 62 gN (C),

and Ái(C) =Bi (C) +²; ² >0.

Using the result that B satis…es EPM and SR it can be easily checked that Á also
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satis…es these axioms. Also note that
P n

k=1Ák(C) =
P n

k=1Bk(C) + ² > c(N ), and

henceÁ violates EF.

Example9: Thefollowingexampleshowsthat EPM isindependent of other axioms.

For n ¸ 2, let ¹ coincidewith B on all m.c.s.t. s which are not lines. Over a

lineg if k is the extremepoint, and (kl);(lm) 2 g, then ¹ i (C) = Bi (C) 8i 6= k;l,

¹ k(C) = ¹ l(C) =
ckl+clm

2 .

This rule satis…esEF and SR but violates EPM. Let thecost matrixC be

C =

0

B
B
B
B
B
B
@

0 3 5 7

3 0 1 2

5 1 0 4

7 2 4 0

1

C
C
C
C
C
C
A

Then, gN (C) = f(01);(12); (13)g. Here, 3 is an extremepoint of C. Let ¹C be the

restriction of C over {0,1,2}, and gNnf 3g( ¹C) = f(01);(12)g: Then ¹ 1(C) = 3> 2=

¹1( ¹C) and henceEPM is violated.

Our new allocation rule Ã¤ satis…es all the axioms but SR. The fact that Ã¤

satis…es EF and EPM is proved in the previous theorem. Here is an example to

show that our allocation rulemay violatesSR.

C =

0

B
B
B
B
B
B
@

0 2 3 4

2 0 1:5 1

3 1:5 0 3:5

4 1 3:5 0

1

C
C
C
C
C
C
A

Then, Ã¤1(C) =1;Ã¤2(C) =2and Ã¤3(C) =1:5. Thereduced cost matrix is bC ,

bC =

0

B
B
@

0 2:5 2

2:5 0 3:5

2 3:5 0

1

C
C
A

Ã¤2( bC) =2:5 and Ã¤3( bC) =2. ThereforeSR isviolated.

InTheorem2, wehaverestrictedattention tocostmatrices inC2. This isbecause

Ã¤ does not satisfy TR outsideC2. Thenext exampleillustrates.
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Example 10: Consider

C =

0

B
B
B
B
B
B
@

0 3 4 3

3 0 2 5

4 2 0 1

3 5 1 0

1

C
C
C
C
C
C
A

Then, g1N (C) = f (10);(12);(23)gand g2N (C) = f(30); (32); (21)garethetwom.c.s.t.

s corresponding to C. Taking the average of the two cost allocations derived from

the algorithm, weget Ã¤(C) = (2:5;1:5;2). I f weremove1, which is connected to0

in g1N , thereducedcost matrix bC is:

bC =

0

B
B
@

0 2:5 3

2:5 0 1

3 1 0

1

C
C
A

Then, Ã¤2( bC) =1and Ã¤3(C) =2:5. So, TR is violated.

Remark 3: Notethat in thepreviousexampleC liesoutsideC1. I f wetakeacost

matrix in C1 nC2, then Lemma2 will no longer be valid - the reduced cost matrix

may lie outside C1 even when a node connected to the source pays the minimum

cost amongst all its links. Thus, Ã¤ will satisfy TR vacuously. But theremay exist

allocation rulesother than Ã¤ which satis…es EF, TR and EPM over C1.

Similarly, B doesnot satisfy SR outsideC1.

Example 11: Consider thesamecost matrix as inExample10. Recall that B(C) =

(2:5;1:5;2).

I f weremove1, which isconnected to0 in g1N , the reduced cost matrix
bC is:

bC =

0

B
B
@

0 2:5 3

2:5 0 1

3 1 0

1

C
C
A

Then, B2( bC) =2:5and B3( bC) =1. ThereforeSR isviolated.

Remark 4: An interesting open question is the characterization of Ã¤ using cost

monotonicity and other axioms.
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