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1 Introduction

There is a wide range of economic contexts in which “aggregate costs" have to be
allocated amongst individual agents or components who derive the bene..ts from
a common project. A ..rm has to allocate overhead costs amongst its dicerent
divisions. Regulatory authorities have to set taxes or fees on individual users for
a variety of services. Partners in a joint venture must share costs (and bene..ts) of
the joint venture. In many of these examples, there is no external force such as the
market, which determines the allocation of costs. Thus, the ..nal allocation of costs
is decided either by mutual agreement or by an “arbitrator” on the basis of some
notion of fairness.

A central problem of cooperative game theory is how to divide the bene..ts of
cooperation amongst individual players or agents. Since there is an obvious analogy
between the division of costs and that of bene..ts, the tools of cooperative game
theory have proved very useful in the analysis of cost allocation problems.! Much of
this literature has focused on *“general™ cost allocation problems, so that the ensuing
cost game is identical to that of a typical game in characteristic function form. This
has facilitated the search for “appropriate™ cost allocation rules considerably given
the corresponding results in cooperative game theory.

The purpose of this paper is the analysis of allocation rules in a special class of
cost allocation problems. The common feature of these problems is that a group of
users have to be connected to a single supplier of some service. For instance, several
towns may draw power from a common power plant, and hence have to share the
cost of the distribution network. There is a non-negative cost of connecting each
pair of users (towns) as well as a cost of connecting each user (town) to the common
supplier (power plant). A cost game arises because cooperation reduces aggregate
costs - it may be cheaper for town A to construct a link to town B which is “nearer™
to the power plant, rather than build a separate link to the plant. Clearly, an e¢cient

network must be a tree, which connects all users to the common supplier. That is

1 Moulin[10] and Young [15] are excellent surveys of this literature.



why these games have been labelled minimum cost spanning tree games.

Notice that in the example mentioned above, it makes sense for town B to demand
some compensation from A in order to let A use its own link to the power plant.
But, how much should A agree to pay? This is where both strategic issues as well as
considerations of fairness come into play. Of course, these issues are present in any
surplus-sharing or cost allocation problem. What is special in our context is that
the structure of the problem implies that the domain of the allocation rule will be
smaller than that in a more general cost problem. This smaller domain raises the
possibility of constructing allocation rules satisfying “nice" properties which cannot
always be done in general problems. For instance, it is known that the core of a
minimum cost spanning tree game is always non-empty.

Much of the literature on minimum cost spanning tree games has focused on
algorithmic issues.? In contrast, the derivation of attractive cost allocation rules or
the analysis of axiomatic properties of dicerent rules has received correspondingly
little attention.* This provides the main motivation for this paper. e show that the
allocation rule proposed by Bird [1], which always selects an allocation in the core
of the game, does not satisfy cost monotonicity. Cost monotonicity is an extremely
attractive property, and requires that the cost allocated to agent i does not increase
if the cost of a link involving i goes down, nothing else changing. Notice that if
a rule does not satisfy cost monotonicity, then it may not provide agents with the
appropriate incentives to reduce the costs of constructing links.

The cost allocation rule, which coincides with the Shapley value of the cost game,
satis...es cost monotonicity. However, the Shapley value is unlikely to be used in these
contexts because it is not in the core. This implies that some group of agents may
well ..nd it bene..cial to construct their own network if the Shapley value is used
to allocate costs. We show that cost monotonicity and the core are not mutually

exclusive® by constructing a new rule, which satis..es cost monotonicity and also

®See, for instance, Bird[1], Granot and Huberman [7].

®See for instance Granot and Granot [5], Granot and Huberman [6], Graham and Hell [4].
4Exceptions are Feltkampf [3], Kar [9]. See Sharkey [13] for a survey of this literature.

5This is where the small domain comes in useful. Young [15] shows that in the context of



selects an allocation in the core of the game.

We then go on to provide axiomatic characterizations of the Bird rule as well
as the new rule constructed by us. An important type of axiom used by us is
closely linked to the reduced game properties which have been extensively used in
the axiomatic characterization of solutions in cooperative game theory. These are
consistency conditions, which place restrictions on how solutions of dicerent but
related games de..ned on dicerent player sets behave. We show that Bird rule and
the new allocation rule satisfy dicerent consistency conditions.

The plan of this paper is the following. In section 2, we de..ne the basic struc-
ture of minimum cost spanning tree games. The main purpose of Section 3 is the
construction of the new rule as well as the proof that it satis..es cost monotonic-
ity and also selects an allocation in the core of the game. Section 4 contains the

characterization results.

2 The Framework

Let N = f1;2;:::g be the set of all possible agents. We are interested in graphs or
networks where the nodes are elements of a set N [ fOg, where N 2N, and O is a
distinguished node which we will refer to as the source or root .

Henceforth, for any set N %2 N, we will use N* to denote the set N [ fOg.

A typical graph over N* will be represented by gn = f(ij)ji;j 2 N*g. Two
nodes i and j 2 N are said to be connected in gn if 9(i1i2); (i2i3); :::; (inj1in) such
that (ii+1) 209;1 -k - njl; andip =1;inh = J: Agraph gn is called connected
over N if i;j are connected in gy for all i;j 2 N*: The set of connected graphs
over N is denoted by jy:

Consider any N %2 N, where #N = n. A cost matrix C = (cijj) represents the

cost of direct connection beween any pair of nodes. That is, cjj is the cost of directly

transferable utility games, there is no solution concept which picks an allocation in the core of
the game when the latter is nonempty and also satis..es a property which is analogous to cost

monotonicity.
®See Peleg[11], Thomson [14].



connecting any pair i;j 2 N*. We assume that each cjj > 0 whenever i & j. We
also adopt the convention that for each i 2 N™, ¢jj = 0. So, each cost matrix is
nonnegative, symmetric and of order n + 1. The set of all cost matrices for N is
denoted by Cn. However, we will typically drop the subscript N whenever there is
no cause for confusion about the set of nodes.

Consider any C §<CN' A minimum cost spanning tree (m.c.s.t.) over N* satis..es

gn = argming,; Cij: Note that an m.c.s.t. need not be unique. Clearly a

(i1)2g
minimum cost spanning network must be a tree. Otherwise, we can delete an extra
edge and still obtain a connected graph at a lower cost.

An m.c.s.t. corresponding to C 2 Cn will typically be denoted by gn (C).

Example 1. Consider a set of three rural communities TA;B;Cg, which have to
decide whether to build a system of irrigation channels to an existing dam, which is
the source or root. Each community has to be connected to the dam in order to draw
water from the dam. However, some connection(s) could be indirect. For instance,
community A could be connected directly to the dam, while B and C are connected
to A, and hence indirectly to the source.

There is a cost of building a channel connecting each pair of communities, as well
as a channel connecting each community directly to the dam. Suppose, these costs

are represented by a cost matrix C.
(0] 1

0

2
C=
4

= O DN
N O©O -k B
N W

1 3 0
The minimum cost of building the system of irrigation channels will be 4 units.

Our object of interest in this paper is to see how the total cost of 4 units is to be
distributed amongst A; B and C.

This provides the motivation for the next de..nition.

De..nition 1: A cost allocation rule is a family of functions fAN gnwN With N %2 N,

~

N § N capichn X~N <
AN :Cy ¥ <[ satisfying A (C) . cij for all C 2 Cn.
i2N ()29~ (C)
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We will drop the superscript N for the rest of the paper.

So, given any set of nodes N and any cost matrix C of order (jNj+ 1), a cost
allocation rule speci..es the costs attributed to agents in N. Note that the source 0
is not an active player, and hence does not bear any part of the cost.

A cost allocation rule can be generated by any single-valued game-theoretic so-
lution of a transferable utility game. Thus, consider the transferable utility game
generated by considering the aggregate cost of a minimum cost spanning tree for
each coalition S it N. Given C and S L N, let Cg be the cost matrix restricted to
S. Then, consider a m.c.s.t. gs(Cs) over S™*, and the corresponding minimum cost
of connecting S to the source. Let this cost be denoted cs. For each N % N, this
de..nes a cost game (N;c) where for each S .t N, ¢(S) = c¢s. That is, ¢ is the cost
function, and is analogous to a TU game. Then, if © is a single-valued solution,
©(N; c) can be viewed as the cost allocation rule corresponding to the cost matrix
which generates the cost function c.’

One particularly important game-theoretic property, which will be used subse-
quently is that of the core. If a cost allocation rule does not always pick an element
in the core of the game, then some subset of N will ..nd it pro..table to break up N

and construct its own minimum cost tree. This motivates the following de...nition.

De...nition 2: A cost allocation rule A is a core selection if for all N ,t N and for
>
alC2Cy, A(C) - c(S), where c(S) is the cost of the m.c.s.t. for S, 85 U N.

However,izcsost allocation rules can also be de..ned without appealing to the un-
derlying cost game. For instance, this was the procedure followed by Bird [1]. In
order to describe his procedure, we need some more notations.

The (unique) path from i to j in tree g, isaset U(i; J;g) = fiq; I2;:::;ikg, where
each pair (ik;1ik) 2 g, and ig; i2;:::;ik are all distinct agents with i1 = i;ik =
J. The predecessor set of an agent i in g is de..ned as P(i;g) = fkjk & i; k 2
U(0; 1;9)g: The immediate predecessor of agent i, denoted by ®(i), is the agent who
comes immediately before i, that is, ®(i) 2 P(i;g) and k 2 P (i;g) implies either

"See Kar [9] for an axiomatic characterization of the Shapley value in m.c.s.t. games.



k = ®(i) or k 2 P(®(i);g).2 The followers of agent i, are those agents who come
immediately after i; F(i) = f}Jj®() = ig.
Bird’s method is de..ned with respect to a speci..c tree. Let gn be some m.c.s.t.

corresponding to the cost matrix C. Then,
B|(C) = Ci®(i) 8i 2 N:

So, in the Bird allocation, each node pays the cost of connecting to its immediate
predecessor in the appropriate m.c.s.t.

Notice that this does not de..ne an allocation rule if C gives rise to more than one
m.c.s.t. However, when C does not induce a unique m.c.s.t., one can still use Bird’s
method on each m.c.s.t. derived from C and then take some convex combination of
the allocations corresponding to each m.c.s.t. as the cost allocation rule. In general,
the properties of the resulting cost allocation rule will not be identical to those of the
cost allocation rule given by Bird’s method on cost matrices, which induce unique
m.c.s.t. s.

In section 4, we will use two domain restrictions on the set of permissible cost
matrices. These are de..ned below.

De...nition 3: C1 = fC 2 CjC induces a unique m.c.s.t.8N % N g:
De...nition 4: C2 = fC 2 C!j no two edges of the unique m.c.s.t. have the same cost g:

Notice if C is not in C2, then even a “small™ perturbation of C produces a cost
matrix which is in C2. So, even the stronger domain restriction is relatively mild,

and the permissible sets of cost matrices are large.

3 Cost Monotonicity

The Bird allocation is an attractive rule because it is a core selection. In addition,
it is easy to compute. However, it fails to satisfy cost monotonicity.
De..nition 5: Fix N % N. Leti;j 2 N*, and C;C" 2 Cy be such that ¢y = ¢}, for

all (k) & (i) and cjj > c%j. Then, the allocation rule A satis..es Cost Monotonicity

8Note that since g is a tree, the immediate predecessor must be unique.



if for all m2 N \ fi;jg, A,(C) . A,(CH.

Cost monotonicity is an extremely appealing property. The property applies to
two cost matrices which dizer only in the cost of connecting the pair (ij), c%j being
lower than cjj. Then, cost monotonicity requires that no agent in the pair fi;jg be
charged more when the cost matrix changes from C to C°.

Despite its intuitive appeal, cost monotonicity has a lot of bite.® The following

example shows that the Bird allocation rule does not satisfy cost monotonicity.

Example 2: Let N = f1;2g. The two cost matrices are speci..ed below.
(1) Co1 =4;Cop =4:5;C1p =3
(i) ¢, = 4;cl, =35;c, =3

Then, B1(C) = 4; B,(C) = 3, while B;(C") = 3;B,(C" = 3:5. So, 2 is charged
more when the cost matrix is C’ although ¢}, < cg and the costs of edges involving
1 remain the same.

The cost allocation rule corresponding to the Shapley value of the cost game does
satisfy cost monotonicity. However, it does not always select an outcome which is
in the core of the cost game. Our main purpose in this section is to de..ne a new
allocation rule which will be a core selection and satisfy cost monotonicity. We are
able to do this despite the impossibility result due to Young because of the special
structure of minimum cost spanning tree games - these are a strict subset of the
class of balanced games. Hence, monotonicity in the context of m.c.s.t. games is a
weaker restriction.

We describe an algorithm whose outcome will be the cost allocation prescribed
by the new rule. Our rule is de..ned for all cost matrices in C. However, in order to
economise on notation, we describe the algorithm for a cost matrix in C2. We then

indicate how to construct the rule for all cost matrices.

®In fact, Young [15] shows that an analogous property in the context of TU games cannot be

satis..ed by any solution which selects a core outcome in balanced games.



Fix some N % N, and choose some matrix C 2 CZ. Also, for any A% N, de..ne
A as the complement of Aiin N™. That is Ac=N"nA.

The algorithm proceeds as follows.

Let A° =f0g, g° = ;, t° =0.

Step 1: Choose the ordered pair (a'b') such that (a'b') = argmin.j)a0£gCij:
De..ne t1 = max(t%; cap1), Al = A0 [ fblg, g1 = g° [ f(albb)g:

Step k: De..ne the ordered pair (akbk) = argmin 1Cij, AK = AKI1[fbkg,

(ij)2AkilenKs
g = g*i® [ Fakbk)g, tk = max(tkiL; c ). Also,

A 1(C) = min(t* i cepe): N
The algorithm terminates at step #N =n. Then,
Agn(C) =t" 2

The new allocation rule A” is described by equations (1), (2).

At any step k, AKil js the set of nodes which have already been connected to the
source 0. Then, a new edge is constructed at this step by choosing the lowest-cost
edge between a node in AKil and nodes in AKil. The cost allocation of bKil is
decided at step k. Equation (1) shows that bXi* pays the minimum of t<i1, which is
the maximum cost amongst all edges which have been constructed in previous steps,
and c,xpk, the edge being constructed in step k. Finally, equation (2) shows that b",

the last node to be connected, pays the maximum cost.10

Remark 1: The algorithm has been described for cost matrices in C2. Suppose
that C 2 C2. Then, the algorithm is not well-de..ned because at some step k, two
distinct edges (akb¥) and (akB*) may minimise the cost of connecting nodes in Akil
and AKil, But, there is an easy way to extend the algorithm to deal with matrices
not in C2. Let % be a strict ordering over N. Then, % can be used as a tie-breaking
rule - for instance, choose (akbX) if b¥ is ranked over bk according to %. Any such

tie-breaking rule makes the algorithm well-de..ned. Now, let 8 be the set of all strict

10From Prim[12], it follows that g" is also the m.c.s.t. corresponding to C.



orderings over N. Then, the eventual cost allocation is obtained by taking the simple
average of the “component™ cost allocations obtained for each ordering % 2 8. That
is, for any % 2 §, let Aj,(C) denote the cost allocation obtained from the algorithm

when % is used as the tie-breaking rule. Then,

o >
R(C) == AS(C): 3
#8 %28 4

Wk illustrate this procedure in Example 5 below.

Remark 2: Notice that A" only depends on the m.c.s.t.s corresponding to any cost
matrix. This property of Tree Invariance adds to the computational simplicity of
the rule, and distinguishes it from rules such as the Shapley Value and nucleolus.

We now construct a few examples to illustrate the algorithm.

Example 3: Suppose C! is such that the m.c.s.t. is unique and is a line. That is,

where ag = 0; #N = n, with the predecessor set of a,, P(ax;9) = f0;a1;:::;ax;10.
Then,

8 k < n; A3 (C1) = min(maxo - t<kCacacs1; Cayayss) 4
and
A;n CchH = JMaX Cagay., 5)

Example 4: Let N =*1;2;3; 4g, and

0455 5T
4 02 15
C2=B5 2 0 5 5
5150 3
555 30

There is only one m.c.s.t. of C2.
Step 1: We have (albl) = (01), tt =cop = 4; Al = 0; 1g:
Step 2: Next, (@%h?) = (13), AJ(C?) = min(tl;ciz) = 1, 2 = max(t}; ci13) = 4,
A? =10;1;3g.

10



Step 3: We now have (a%b%) = (12), A3(C?) = min(t?;c) = 2, £ = max(t?;c) =
4, A® = £0; 1;2; 3g:
Step 4: Next, (@*?*) = (34), A3(C?) = min(t3;cy) = 3, t* = max(t3;cs) = 4,
A% =10;1;2;3; 4g.

Since A* =N+, Aj(C?) =t* =4, and the algorithm is terminated.

So, A”(C?) = (1;3;2;4). This example shows that it is not necessary for a node
to be assigned the cost of its preceding or following edge. Here 2 pays the cost of
the edge (34), while 3 pays the cost of the edge (12). 11

The next example involves a cost matrix which has more than one m.c.s.t., with

one of the trees having edges which cost the same.

Example 5: Let N =f1;2;3g, and

%0 4 4 57

40 2 2
c?=

4205

52 50

C3 has two m.c.s.t.s - gy = F(01); (12); (13)g and g, = F(02); (12); (13)g. Also,
in gy, the edges (12) and (13) have the same cost.12

Suppose the algorithm is ..rst applied to gy. Then, we have bt = 1. In step
2, a®> = 1, but b? can be either 2 or 3. Taking each in turn, we get the vectors
xt = (2;2;4) and X*> = (2;4,2).

Now, consider gg;, which is a line. So, as we have described in Example 3, the
resulting cost allocation is & = (2;2; 4).

The algorithm will “generate™ g§, instead of gn for all % 2 § which ranks 2 over
1. Hence, the “weight™ attached to gf, is half. Similarly, the weight attached to x*
and x2 must be one-sixth and one-third.

Hence, A*(C3) = (2;§;4).

Given C, let gy (C) be the (unique) m.c.s.t. of C. Suppose gn(C) = gn, L

ONz - it [ Onk s Where each gn, is the m.c.s.t. on N for the cost matrix C restricted

1 For m.cs.t. of C? see Fig. 1.
12For m.cs.t. of C3 see Fig. 2.

11



to N7, with 1Nk =N and N; \ N;j = ©8i & j. We will call such a partition the
m.c.s.t. partition of gn (C).

We now show that A” is a core selection and also satis..es Cost Monotonicity.

Theorem 1: The cost allocation rule A” satis..es Cost Monotonicity and is a core

selection.

Proof: We ..rst show that A" satis..es Cost Monotonicity.

Fix any N ¥ N. We give our proof for cost matrices in C2, and then indicate
how the proof can be extended to cover all cost matrices. Let C;C 2 C2 be such
that for some i;j 2 N™, cij > &j, and ¢ = & for all other pairs (kl). We need to
show that A3(C) _ AZ(C) for k 2 N\ fi; jg.

In describing the algorithm which is used in constructing A%, we ..xed a speci..c
cost matrix, and so did not have to specify the dependence of AX; t<; ak; b etc. on the
cost matrix. But, now we need to distinguish between these entities for the two cost
matrices C and €. We adopt the following notation in the rest of the proof of the
thorem. Let AK;tk; ak: bk: gy etc. refer to the cost matrix C, while Ak; &; ak: Bk: ay
etc. will denote the entities corresponding to €.

Case 1. (ij) 2 &\ .

Then, @y = gn. Since the cost of all edges in gn remain the same, Aﬁ(é) =AR(C)

for all k 2 N.

Case 2: (ij) 2 &.

Without loss of generality, let i be a predecessor of j in @y. Since the source
never pays anything, we only consider the case where i is not the source.

Suppose i = BKil, As the cost of all other edges remain the same, Akil = Akil
and kit = il Now, AY(C) = min(il;duq) and AF(C) = min(t<i; c o).
Since &gk - Cakpe, AT(C) - AL (C).

We now show that AS(C) - AJ(C). Let j =b'and j = B™. Note that | _ m,
and that A™ p Al and ! _ M.

Now, A}’(é) = min(t™; &m+1gm-+1), while AJ(C) = min(t';cgrery+1). Since t' |

tm, we only need to show that &ym+1gm+1 - Chrezgiei-

12



Case 2(a): Suppose a'** 2 A™. Since b 2 N* n A™, &ymiagmer - Baeipier -

Cal+1p1+1.

Case 2(b): Suppose a*1 @ A™. Then, al*1 & j. Also, a"*1 2 Al, and so

Cal+1pi+1  Caly (6)
Wk need to consider two sub-cases.

Case 2(bi): a 2 Alil nAmil,
Then, since Al = Alil [ fjg and A = AMil [ fjg, a' 2 Al nA™M.
Now since j 2 AM™ and a! @ A™, &,n1pm - &

jal " C

jal = Caipt- Using equation

6, Ca+ipi+1 o Cqpy o Eameigm-i:

Case 2(bii): al 2 Amil = Amil,

Then, capr . Campm Since m - 1.

Also, AM Al and a*1 2 Aln AM imply that #A™ < #Al. That is, | >m. So,
bM & j =b'. This implies b™ & (AMil [ fjg) = AM.

Now, am 2 Amil = Amil g9 gm 2 Am Byt a™ 2 A™M and b™ @ A™ together
imply that &;m+agm+1 - &mpm - Campm.

So, using equation 6, &;m+1gm+1 = Campm = Caipt = Cgreipi+i:

Hence, A® satis..es cost monotonicity.13

We now show that for all C 2 C, A*(C) is an element in the core of the cost game
corresponding to C.

Again, we present the proof for any C 2 C? in order to avoid notational compli-
cations.’* We want to show that for all S p N, XA?(C) - ¢(S).

i2S
Without loss of generality, assume that for all i 2 N; b' = i and denote C .« = cX.

>,
Claim 1: If S =f1;2;::: Kg where K - #N, then  A{(C) - ¢(S).
i2s

¥suppose C 8 C2. What we have shown above is that the outcome of the algorithm for each

tie-breaking rule satis..es cost monotonicity. Hence, the average must also satisfy cost monotonicity.
14 Suppose instead that C & C2. Then, our subsequent proof shows that the outcome of the

algorithm is in the core for each % 2 §&. Since the core is a convex set, the average (that is, A%)

must be in the core if each A is in the core.

13



Proof of Claim: Clearly, g = [I<;fakkg is a connected graph over S [ f0g.

Also, g is in fact the m.c.s.t. over S.

X < I X
So,c(S)= ¢ Also, A;(C)= c“j max c° - ¢t =c¢(9).
k=1 i2s k=1 1-k-K+1 k=1
Hence, a blocking coalition cannot consist of an initial set of integers, given our
assumption that bk = k for all k 2 N.

Now, let S be a largest blocking coalition. That is,
- X~u
B AI(C)>c(S).
i2s

<
(i) IF S%T, then  AZ(C) - c(T).
i2T

There are two possible cases.
Case 1: 12 S.
Let K= minjzsj. Consider T =f1;:::;K j 1g. We will show that S [T is also
a blocking coalition, contradicting the description of S.
Now,
. <. <. x K x
AiC)= A/C)+ A/C)>c(S)+ i max ¢, c(S)+ cjcCos,
i2T[S i2s i2T k=1 1TK-K k=1
where (0s) 2 gs, the m.c.s.t. of S. Note that the last inequality follows from the
fact that ck - cos for all k 2 F1;::: Kg.
Since g = ([},a*b%) [ (gs n F(0s)g) is a connected graph over (T [S [ f0g),

k X ~ - -

c(S) + ¢ cos . C(SLT). Hence, A7(C) > c¢(S [ T), establishing the
k=1 i2S[T

contradiction that S [ T is a blocking coalition.

Case 2: 12S.

From the claim, S is not an initial segment of the integers. So, we can partition

coalition, contradicting the assumption that S is a largest blocking coalition.
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Now,

> > >
Ai(C) = AiC)+ A (C)
i2S[T i2s 12T <
> ¢(S)+ A©C)i A©)
i25, [T i2s,
X . . 1 .
= cS)+( c"imaxc)i( c'ji max c)
i=1 1-i-n i=1 1-i-m+1
= (S)+( ¢ i(maxc'i max c")
i=m=+2 1-i-n 1-i-m+1

Of course, maxi-i-nC' . mMaxi-i-m+1c'. If Maxi.i-nc = maxi.i-m+1c', then

- >
Aj(C) >c(S) + ¢' _ ¢(S[T), where the latter inequality follows from
i2S[T i=m-+2
the fact that [[R—,.,T(ab)g [ gs] is a connected graph over S [ T [ f0g.

If maxi-i-nC > maxq-i-m+1¢, then maxi.j-nc = Maxms2-i-ncl. Then,

. . x .
A7(C) > c¢(S)+ max c'+ c'i max
! 1-i-m+1 m+2-i-n
i2S [T i=m+2

X .
c(S) + c'i max c
i=m+1 m+2-i-n
X i
c(S) + ¢ i Css,

i=m+1

where (S1S2) 2 gs with s3 2 S; [ f0g;s2 2 N nS;.15 Since the edge (s1s) could

=

must have cs,s, > ¢ for k 2 fm +2;:::; ng. Hence, the last inequality follows.
But, note that [gsnf(s152)g] [F— 1 F(@b)g is a connected graph over ST [0g.
So,
RO > oS+ s,

i2S[T i=m-+1
¢S [T):

=

So, S [T is a blocking coalition, establishing the desired contradiction.

This concludes the proof of the theorem.

15Such (s1s2) must exist in gs since gs is the m.c.s.t. over S.
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4 Characterization Theorems

In this section, we present characterizations of the allocation rules A® and B.16
We ..rst describe the axioms used in the characterization. These characterization
theorems will be proved for the restricted domains C! for B and C2 for A°.
) > >
Edciency (EF): A;(C) = Cij -
) ) i2N (i29n(C) ]
This axiom ensures that the agents together pay exactly the cost of the e@cient

network.

Before moving on to our next axiom, we introduce the concept of an extreme point.
Let C 2 Cn be such that the m.c.s.t. gn(C) is unique. Then, 1 2 N is called an

extreme point of gn (C) (or equivalently of C), if i has no follower in gn (C).

Extreme Point Monotonicity (EPM): Let C 2 Cn, and i be an extreme point of
C. Let € be the restriction of C over the set N™ n fig. An allocation rule satis..es
Extreme Point Monotonicity if A (¢) _ Ac(C) 8k 2 N* n fig.

Suppose i is an extreme point of gny(C). Note that i is of no use to the rest
of the network since no node is connected to the source through i. Extreme Point
Monotonicity essentially states that no “existing™ node k will agree to pay a higher

cost in order to include i in the network.

The next two axioms are consistency properties, analogous to reduced game prop-
erties introduced by Davis and Maschler [2] and Hart and Mas-Collel [8].1

We need some further notation before we can formally describe the consistency
axioms. Consider any C with a unique m.c.s.t. gn(C), and suppose that (i0) 2
gn(C). Let x; be the cost allocation *‘assigned’ to i. Suppose i ‘leaves’ the scene
(or stops bargaining for a dizerent cost allocation), but other nodes are allowed to
connect through it. Then, the ecective reduced cost matrix changes for the remaining

nodes. We can think of two alternative ways in which the others can use node i.

(i) The others can use node i only to connect to the source.

16See Feltkamp [3] for an alternative characterization of B.
1" Thomson[14] contains an excellent discussion of consistency properties in various contexts.
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(i) Node i can be used more widely. That is, node j can connect to node k through

In case (i), the connection costs on N* n fig are described by the following
equations:

For all j & i;&jo0 = min(Cjo; Cji + Cio i Xi) @)

If fJ; kg \ fi; 0g = ;; then & = cjk (8)

Equation 7 captures the notion that node j’s cost of connecting to the source is the

cheaper of two options - the ..rst option being the original one of connecting directly

to the source, while the second is the indirect one of connecting through node i. In

the latter case, the cost borne by j is adjusted for the fact that i pays x;. Equation
8 captures the notion that node i can only be used to connect to the source.

Let C3! represent the reduced cost matrix derived through equations 7, 8.

Consider now case (ii).
For all j;k 2 N™ n fig; &jk = min(Cjk; Cji + Cki i Xi): 9

Equation 9 captures the notion that j can use i to connect to any other node k,
where k is not necessarily the source.
Let C{¥ represent the reduced cost matrix derived through equation 9.

We can now de..ne the two consistency conditions.

Source Consistency (SR): Let C 2 CL, and (0i) 2 gn (C). Then, the allocation rule
A satis..es Source Consistency if Ak(C?{i(C)) = A(C) for all k 2 N n fig whenever
Ci(c) 2 Clini-
Tree Consistency (TR): Let C 2 C&, and (0i) 2 gn(C). Then, the allocation rule
A satis..es Tree Consistency if Ak(C}{i(C)) = A (C) for all k 2 N n fig whenever
C/tiri(C) 2 CRipi-

The two consistency conditions require that the cost allocated to any agent be

the same on the original and reduced cost matrix. This ensures that once an agent

connected to the source agrees to a particular cost allocation and then subsequently

17



allows other agents to use its location for possible connections, the remaining agents
do not have any incentive to reopen the debate about what is an appropriate allo-
cation of costs.

The following lemmas will be used in the proofs of Theorems 2 and 3.

Lemma l: LetC 2 C,{,, and 1 2 N. Ifcik = I2’\rlrlirr]]ﬁg Ci1, then (ik) 2 gn(C).
Proof : Suppose (ik) 2 gn(C). As gn(C) is a connected graph over N*, 9 2
N* n fi; kg such that (i j) 2 gn(C) and j is on the path between i and k. But,
fgn [ (ik)g n F(ij)g is still a connected graph which costs no more than gy (C), as
Cik - Cij. This is not possible as gn(C) is the only m.c.s.t. of C.

Lemma 2: Let C 2 CZ; and (01) 2 gn(C). Let A(C) = MiN N +nf1g C1k: Then,
CX.(c) 2 Clinfig:
Proof : We will denote C,%{l(c) by ¢ for the rest of this proof.

Let Ay (C) = minon+nfig Cik = Cike (Say).

Suppose there exists (ij) 2 gn(C) such that i;j 6 1. Since (iJ) 2 gn(C), either
i precedes j or vice versa. Without loss of generality assume i precedes j in gn(C).
Since (02); (ij) 2 gn(C), (L)) 2gn(C). Then, c1j > cij. AsA;(C) - Ci1, Ci1 +Cyj i
A,(C) . c1j >cij. Hence & =c¢ij8(ij) 2 gn(C); such that i;j 6 1.

Now, suppose there is j 2 N such that j & k° and (1J) 2 gn(C). Since
(1J); Ak®) 2gn(C), (K®) 2 gn(C). Hence, ¢yj < Cyej. Thus,

&xej = Minf(cyj + e § AL(C));Chejd = MIN(Cyj; Ckej) = Cyj-

Next, let §nng, be a connected graph over N™ n fig, de..ned as follows.
&nnrig = F(1J)j either (i) 29n(C) st i3 & Lor (if) = (k"1 where (11) 2 gn(C)g:

Note that no two edges have equal cost in &nnrig-

Also,
> >
&j = Cij i Cike' (10)
(1) 28N nr1g (i1)29n (C)
We prove that € belongs to C,%l nflg by showing that gy nyg is the only m.c.s.t. of ¢.
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Suppose this is not true, so that g,ﬂ,nﬂg is an m.c.s.t. corresponding to €. Then,
using 10,
=< >
&ij - Cij i Cik® (11)
(1) 295 nr1g (ii)29n (C)

Let gRinp1g = gt [ g2, where

1

g = T(@iDi(1)) 2 9Nnfg: Cij = &9
92 = gﬁlnflg n gl

If (ij) 2 g2, then
&j = min(Cij;Cui +Cyj i A1((3))

= ai+cij i Al(C)

max(Cti; C1j)

E3

where the last inequality follows from the assumption that A;(C) = MiNoN+nf1g Clk-
So,

& = cij if (ij) 29"
. max(caiscy) if (i) 2 g% (12)
Now, extend gyp4 to @ connected graph gy over N* as follows. Letting g =
f(1)j(ij) 2 g% j 2 U(i; k™ Nnfig)0s de..ne

on =9" LK) Lo

Claim: g?\, is a connected graph over N ™.

Proof of Claim: It is su€cient to show that every i 2 N* n flg is connected
to 1in g}. Clearly, this is true for i = k™. Take any i 2 N* nf1;k"g. Let
U(i; K, ORinf1g) = T(momy);:::; (Mpmp+1)g where mo =i and mp+q = k™ If all
these edges are in g1, then they are also in gk, and there is nothing to prove.

So, suppose there is (MtMme+1) 2 g2 while all edges in f(momy);:::; (Mg ;1Me)g
belong to g*. In this case, (Mm¢1) as well as all edges in f(moma);:::; (Mt ;1Mk)g

belong to g},. Hence, i is connected to 1.
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To complete the proof of the lemma, note that

> > >
Cij = Cij ¥ C= + Cai-
(i)29} (i1)2g* (1)2g
Using (12),
< < > =<
Cij - &ij + Cii= + &j = &jj + Cike
(i)2dy (ih)2g* (i1)2¢? (129819
Finally, using (11),
< <
Cij - ClJ
(i2gy, (i1)29n (©)

But, this contradicts the assumption that gn (C) is the unique m.c.s.t. for C.

Lemma 3 : Let C 2 C%, (10) 2 gn(C). Suppose A;(C) = cor. Then C,%E(C) 2
g
Proof : Throughout the proof of this lemma, we denote CEZ(C) by C.

We know A; (C) = co1. Suppose (ij) 2 gn (C) such that fi: jg\ f0;1g = ;. Then
¢l =cij.

On the other hand if (i0) 2 gn(C), and i & 1, then &; = minf(ci1 + C10 i
Al(C)); Coig = min(Ci1; Cio) = Cio. Note that the last equality follows from the fact
that (i0) 2 gn(C) but (i1) 2 gy (C) implies that cj; > cjp.

If (i1) 2 gn(C), then &g = minf(ciy + c10 i A1(C));Ciod = Min(Cit; Cio) = Ciy, @S
(11) 2 gn(C) but (i0) 2 gn (C).

Now we construct nnrig, @ connected graph over N *n flg as follows.

&nnrig = T(1))] either (ij) 2 gn(C) s.t. i, j & 1 or (i) = (10) where (11) 2 gn(C)g

Then, &nnrig Must be the only m.c.s.t. of €. For if there is another N nflg which
is also an m.c.s.t. of &, then one can show that gn(C) cannot be the only m.c.s.t.

coresponding to C.18

Lemma 4: Suppose A satis.es TR, EPM and EF. Let C 2 C4. If (i0) 2 gn(C),

then A;(C) .. minyon +nfig Cik-

'8 The proof of this assertion is analogous to that of the corresponding assertion in Lemma 2, and

is hence omitted.
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Proof: Consider any C 2 C3, (i0) 2 gn(C), and A satisfying TR, EPM, EF. Let
A(C) =X, and Cim = MiNyop +nfig Cik- VWe want to show that X; _ Cim.
Choose j N, and de..ne N = N [ fjg. Let C 2 C3 be such that

(i) € coincides with C on N*.

>
(i) Forall k 2 N* n fig, &k > &; > Coq- 12

(P9)29n (C©)

Hence, gx(€) = gn (C) L (ij)g-
Notice that j is an extreme point of ¢. Denoting A(C) = %, EPM implies that

Xi . % (13)
We prove the lemma by showing that %; _ &m = Cim.
Let Cff = C, and N* = N nfig; A(C?) = X'. Assume % < &m.

Case 1: C!' 2 C}p.
Suppose there is some k 2 N such that (ik) g,g,(é). Let I be the predecessor
of k in gt (€). Since (kI) 2 gz (€) and (ik) 8 g (C), &g < &. Also, & _ &im > %i.

Hence,

=

Chy = Min @ & + & § %) = & (14)

Now, consider k 2 (N [ f0g) n fm; jg such that (ik) 2 g,g,(é). Note that (km)

g (€) since (im) 2 gy (&) from lemma 1. Hence, &, > & since (ik) 2 gg (€) and
(km) & gg(€). So,

Chm = MiN(&m; ik + &im i %) > Gk (15)

Take any (kl) 8 gg(C). Suppose (s152) 2 U(k; ;g (C)). Then, &, <
min(&q; &i; &). So, 8(s152) 2 U (k; I;93 (C))

cly = min(@i + &1 i %i;8x) > &,s, (16)

¥ Note that the exact lower bound on & will play no role in the subsequent proof. All that we
require is that & is “high" so that the reduced cost matrix C°, to be de..ned below, has appropriate

properties.
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Next, note that since &jm, can be chosen arbitrarily high,

Sy = MinE@jm; & +&im i %) =& + &m i % (17

Since for all t2 (N" [ fog) nfm; jg, ¢}, = &;j +&it i % >}, (iM) 2 gno(CY).
From TR, we have x}, = %, for all k 2 N°. Using EF, and equations 14, 15, 16,

17,
>

>
%= Xie=c(gne(CY) > ey i % (18)
k2N nfig k2N?

- - - X
But, this violates EF since % > c(gn ().
k2N

Case 2: C!' 2 C}y.

This implies that there exist (pn); (kl) such that ¢, = c};, and both (pn); (kl)
belong to some m.c.s.t. (not necessarily the same one) corresponding to C.

Note that i @ fp;n;k;lg. So, if (pn) 2 gu(€), then &on = c%n. Similarly, if
(kl) 294 (€), then &y =c};. So, both pairs cannot be in gg(€) since € 2 C3.

Without loss of generality, assume that (pn) & gg (&). There exists a path from

p to n denoted by U (p; n; g (€)) = fs1;s2;: 12 ;Skg. We ..rst want to show that
Con > Bsesis fOrall k =1;:::K j Lt (19)

Note that cfon = min(pi +&in i %i; &n). If (19) is not true, then either (@)épn - &, 5.1
or ()& +éni i %i - &,s,,, for some k.

Suppose (a) holds. Then, (gg(€) [ f(pn)g) n f(skSk+1)g is a mcst. for N
corresponding to €, contradicting the fact that € 2 C3.

Suppose (b) holds. Then, & - &, and & - &g, ., since min(&y;; &,;) > %;.

If (pi)(or (ni)) & gg(&), then we can delete (skSk+1), join (pi)( or (ni)), and
contradict the fact that gg (C) is the unique m.c.s.t.

So, the only remaining possibility is that the path U(p; n; g (€)) = F(ni); (pi)g.
But, in this case, we already know that éni + & § %i > max(&ni; &) since % <
min(@éni; &;).

So, (19) is true.
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Now, choose q & N, and de.ne R = N [ fgg. Consider a cost matrix ® 2 Cﬁo
such that

(i) € coincides with & on N+,
(iii) C%n > Bgn = MaXst)2u (pinigg (@)) 8520

(iv) byt is “succiently” large for all t & p; n.

Then, we have gy, (€) = gg(€) [ f(gp)g, so that q is an extreme point of €. Let
A(®) = 1. From EPM,

% . X (20)

=

Now, consider the reduced cost matrix € ~ @g. We assert that € 2 Czrhnﬁg?l This

is because (pn) is now “irrelevant™ since in the m.c.s.t. corresponding to €, pand n

will be connected through the path (pg) and (gn). To see this, note the following.
First,

c%n = min(&; +&n i %i; &n)
- min(byi + 6in i Xi; Byn)

ep n

Since é‘pn = bpn;é'pi = bpi;éin = bin and *i - hi from (20)

Second, Cpy, > byn by construction. Lastly, by, = €gn since egn = min(byn; byi +
bin i Xi) and byi has been chosen su¢ciently large.

So, €n > egn. Since (gp) 2 ghnﬁg(@) from Lemma 1, this shows that (pn) &
gIhnfig(@)'

Since € 2 C2 _ , we apply the conclusion of Case 1 of the lemma to conclude

I‘bnfig
that ®; _ &im = &m. Equation (20) now establishes that %; _ &m.

20 Note that this speci..cation of costs is valid because (19) is true.
21 This assertion is contingent on (pn); (k1) being the only pairs of nodes in some m.c.s.t. of C°

having the same cost. However, the proof described here can be adapted to establish a similar

conclusion if there are more such pairs.
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We state without proof the corresponding lemma when TR is replaced with SR.

The proof is almost identical to that of Lemma 4.

Lemma 5: Suppose A satis..es SR, EPM and EF. Let C 2 Ch. If (i0) 2 gn(C),

then Aj(C) . minyon +nrig Cik-

We now present a characterization of A” in terms of Tree Consistency, E¢ciency
and Extreme Point Monotonicity.
Theorem 2 : Over the domain C2, a cost allocation rule A satis..es TR, EF and
EPM if and only if A = A®.

Proof : First, we prove that A" satis..es all the three axioms.

Let C 2 C2.

Ecciency follows trivially from the algorithm which de..nes the allocation.

Next, we show that A” satis..es TR.

Let (10) = argmingon Cko. Hence, the algorithm yields b* = 1, and Aj(C) =
min(Cyo; C42p2). There are two possible choice of a2.
Case1: a2 =1. Then, we get cy2 = MiNKoNnfig Cik- Therefore AZ(C) = min(Ci; Crp2) =
MiNKoN-+nf1g Cik-
Case 2: a2 = 0. Then, c2p - C;x 8k 2 N nflg. Since cipo - Cpzg, We conclude
A%(C) = min(C10; Chzo) = €10 = MiNkoN+nf1g C1k-

So, in either case, 1 pays its minimum cost.

Let Af(C) = X; = MiNoN+nf1gCik = Cike. Denoting CIF by €, we know from
Lemma 2, that C 2 C2. Hence, the algorithm is well de..ned on €.

Let a]k;fj"; , etc denote the relevant variables of the algorithm corresponding to

.
Claim: 8i 2 N nflg, A7(C) = A?(¢). That is, A" satis..es Tree Consistency.
Proof of Claim: From the proof of lemma 2,

(1) &;j =cij 8(iJ) 29n(C) st 1, & 1.

(ii) &s=j = cyj for j 2 N* nfk g s.t. (1j) 29n(C).
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Also,
Innfrg(€) = F(i))j(ij) 2 9n (C)if i; j & 1 and (ij) = (K°1) if (11) 2 gn(C)g:

Letb? =i. Either k® = 0 ork® =i. In either case, &y = Co1 < &oj for j & 10;1; ig.
Hence, B! = .

Now, t2 = max(Catpt; Cazpz) = Max(Cio; Cq2i) = &oi = &

Also, a® 2 10;1; ig, while b3 2 f0; 1;ig.. If a2 2 f0; ig, then &2 = a8, If a8 =1,

then a2 = k°. In all cases, b3 =2, and caerz = &215. SO,
AJ(C) = min(t?; caepe) = min(®; &,4) = AF(C): (21)

The claim is established for th3;:::;b"g by using the strucure of ganlg(C’:), the
de..nition of ¢ given above, and the following induction hypothesis. The details are
left to the reader.

Foralli=2;:::;k §1,

(i) Bt =1
Gi tit=+t.
(i) a'i' =a'ifa' 61, and @il =Kk’ ifa' = 1.

We now have to show that A® satis..es EPM.

Let i 2 N be an extreme point of gn(C), and & be the restriction of C over
N n fig. Of course, € 2 C2.

In order to dicerentiate between the algorithms on C and ®, we denote the
outcomes corresponding to the latter by bK; B<: gk, etc.

Suppose bX = i. Clearly, the algorithm will produce the same outcomes till step
(k i 1), and so Aj(C) = AJ(®) for all j 2 fbl;:::;bki2g, and thil = Bil,

Now, let us calculate Aj‘ (C) where j =bkil, Asiis an extreme point of gy, and
@ki) 2 gn, @*1 & Q. Also, Ak = AKil [ fig. Hence, ak*1 2 AKil This implies

Caki = Cokripkes. BUt i 2 RKiL Hence (akBk) = (ak+1bk*1), Thus,
A3(C) = mint it;c o) - min(E it Coeraprs) = AS(®) (22)
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Also, ¥ = max(B1L; ckripres) . Max(til; coxi; Cakripkrr) = X1 The algorithm
on C determines the cost allocation for i in step (k+1). Since i is an extreme point
of gn, | & & for any s. Hence, the choice of al and bl must be the same in C and €
forj _ k+1.So, forall j 2 fk+1;:::;#Ng, a =alil;pi =Riil;ti - @il Hence,

A5 (C) = min(t); caivapi+1) - min(Bi%; o) = Afia(€) (23)
Hence, we can conclude that A® satis..es Extreme Point Monotonicity.

Next, we will prove that only one allocation rule over C2 satis...es all three axioms.
Let A be an allocation rule satisfying all the three axioms. We will show by induction
on the cardinality of the set of nodes that A is unique.

Let us start by showing that the result is true for jNj = 2. There are several
cases.

Case 1. c1» > C10;C0. From Lemma 4, A;(C) . c10;A,(C) . c20. By EF,
A,(C)+ A,(C) =c10+ C0. Thus A (C) =ci0; and A,(C) =cy. So, the allocation
is unique.

Case 2. Ccyp > C12 > c19. Introduce a third agent 3 and costs cxp < &3 <
min(&s,; &5). Let the restriction of € on f1;2g™* coincide with C. Hence, Of1:239 =
f(01); (12); (13)g. Let A(&) = %. From Lemma 4, X; _ Cqg.

Denote the reduced matrix C¥ as €. Now, b = min(Bo1 + &12 i %1;8p) =
o1 +2&12 § *1. Similarly, 03 = min(&13+8&12 i Xa; &3). Noting that x; _ €10;83 > &2
and &3 > &9, we conclude that

boz < b3:

Analogously, bgz = &1 + &13 j %1 < bpa.
Hence, gg.24(€) = 1(02); (03)g. So, € 2 C%. Using TR,

A (®) =A,C), Ay (®) =Ay(©C) (24)
From Case 1 above,

Ro(®) = o + 212 i %1, Ag(®) =80 +213 § %y (25)
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From (24) and (25),

RC)+A3(C) = Bou+eipi % +éo +éi3 i K
or % +A,(C) + Ay(C) = oy + 81+ 3+ (Boy i K1)

But, from EF, %; + A,(€) + Ay(€) = &y + &y, + &13. S0, % = 8. So, A,(®) =
Ay (C) =21 = c1o.

By EPM, %; - A;(C), and A,(&) - A,(C). Using EF, it follows that A; (C) = co1
and A,(C) =c1. Hence, A is unique.

The case ci1g > €12 = Cyg IS similar.
Case 3: c0 > C10 > C12.

We again introduce a third agent (say 3). Consider the cost matrix ¢, coinciding

wih C on f1;2g™, and such that
(1) 32> #13 > éx.
(i) &0 > &0+ &3

Then, € 2 C2 since it has the unique m.c.s.t. gn(€) = F(01); (12); (13)g, where
no two edges have the same cost.
Note that 3 is an extreme point of the m.c.s.t. corresponding to €. Using EPM,
we get
Ay(C) . AY@);Ay(C) . Ay@): (26)

Now, &9 < min(&,g;&5). Consider the reduced cost matrix Ul(é) on 2;3g.
Denote CI' = € for ease of notation. Since A;(C) _ & from Lemma 4, it follows
that &, + 81 j A;(C) - 810 <8, and &2+ 813 j A(C) - 813 <&3. Hence,

boo = 812 + 810 i A(C)ibas = Ero+ 13§ Aj(C)ibm =3+ i A(C)  (27)
Note that
e +e10 i Ag(C) < + 813 Ay(C) <éyp +e13 i A (C)
Hence, grzs4(®) = F(02); (23)0.
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Applying case 2, Ay (®) = byo = 1o + 10 § A1(C) and Az(€) = bys = + 13 j
A(@). Using TR, A, (®) = A,(C); Az(®) = A3(€). EF on € gives,
AL(C)+ Ay(C) + Ay(C) = ey +81p + 613
or Ag(C)+ @iz + 10 i AC)) + (Bro+ &3 i Ag(C)) =0 + 212+
or A@C)=¢ep
Hence A,(€) = &10; A3(€) = &13. From equation 26, A;(C) _ &12;A,(C) . 8o.

Using EF on C we can conclude that, A;(C) = c¢;, and A,(C) = cyg, i.e. the
allocation is unique.

The case c10 > €20 > C12 is similar.

This completes the proof of the case jNj = 2.2

Suppose the theorem is true for all C 2 CZ, where jNj <m. We will show that
the result is true for all C 2 C& such that jNj = m.

Let C 2 CZ. Without loss of generality, assume cio = minkan Cko-2® Thus
(10) 2 gn(C). There are two possible cases.

Case 1. c1p = MiNgoN+nfig Cik-

Then choose J 2 N such that (j0) 2 gn(C) or (J1) 2 gy (C).
Case 2: ¢1j = MiNgon-+nfig Cik-

Then from Lemma 1, (1)) 2 gn(C).

In either Case 1 or 2, let C denote the restriction of C on f1; jg. Then, from the
case when #N = 2, it follows that A; (C) = minkan+nf1g Cik-

Now, by iterative elimination of extreme points and repeated application of EPM,
it follows that Ay(C) - A1(C) = minkan-+nfigCik. But, C 2 CY, and A satis..es EF,
TR and EPM. So, from lemma 4, it follows that A;(C) . MiNoN+nf1g C1k- HeENce,
A1(C) = mingon+nfig C1k = X1 (say).

We remove 1 to get reduced cost matrix CIf. From lemma 2, C' 2 C2. By TR,
Ak(C}(E) = A, (C) 8k & 1. From the induction hypothesis, the allocation is unique

on CI" and hence on C.

22 Note that these three cases cover all possibilities since equality between dicerent costs will result

in the cost matrix not being in C3.
23 This is unique as C 2 C3.
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This completes the proof of the theorem.

We now show that the three axioms used in the theorem are independent. The
examples constructed below are all variants of A®. So, ak; b are derived from the

algorithm used to construct A",

Example 6: We construct a rule A which satis..es EPM and TR but violates EF.
Let A (C) =AZ(C) 8k & b™; A (C) =Afn(C) + 2; where 2> 0.
Using the result that A” satis..es EPM and TR it can be easily checked that A
also satis..es these axioms. Also note that |:)E:lAk(C) = Prk‘:l AZ(C) +2>¢(N),

and hence A violates EF.

Example 7: We now construct a rule * which satis..es EF and TR, but does not
satisfy EPM.
Forn=1, 1,(C) =cg. Forn _ 2,

(i) 1(C)=AR(C)8k &p"il:pn,

(A:n il (C) +A§n (C))
2 .

(i) Tpnin(C) =1 (C) =

This allocation satis..es EF and TR but violates EPM. In order to see the latter,

consider the following cost matrix C.
(@) 1

~N o1 w O

3
0
1
2

A~ O B, O,
o B~ NN

Then, gy (C) = F(01); (12); (13)g. Clearly, 3 is an extreme point of C. Let & denote
the restriction of C over {0,1,2}. Then, 1,(C) = 2:5 > 2 = 1,(&) and hence EPM

is violated.

We remark in the next theorem that the Bird rule B satis..es EF and EPM. Since

B & A”, it follows that B does not satisfy TR. Here is an explicit example to show
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that B violates TR. fo) 1

35 15 0 25
3 1 25 0
Then, B1(C) = 2;B2(C) = 1.5 and B3(C) = 1. The reduced cost matrix is C}{ is

shown below.

Op 15 11
cr = g 15 0 0:5§:
1 05 O

Then, B2(C).) = 0:5 and B3(Cy.) = 1. Therefore TR is violated.

However, B does satisfy Source Consistency on the domain C. In fact, we now
show that B is the only rule satisfying EF, EPM and SR.

Theorem 3 : Over the domain C!, an allocation rule A satis..es SR, EF and EPM
ioc A =B.

Proof : We ..rst show that B satis..es all the three axioms. EF and EPM follows
trivially from the de..nition. It is only necessary to show that B satis..es SR.

Let (10) 2 gn. Then, B1(C) = co1. Let us denote the reduced cost matrix CE{I
by €. From Lemma 3, € 2 C1. Also, the m.c.s.t. over N nflg corresponding to € is

Onnfig = T(iJ)j either (iJ) 2 gn with i;j & 1 or (ij) = (10) where (1I) 2 gno:

Also, for all i;J 2 N nflg, & = cj if (iJ) 2 gn, and for K 2 N n flg; 8o = cuk if
(1k) 2 gn. Hence, for all k 2 N n f1g; &y = Ckew)- SO, Bk(¢) = Bk(C) for all
k 2 N n flg and B satis..es Source Consistency.

Next, we show that B is the only allocation rule over C1, which satis..es all the
three axioms. This proof is by induction on the cardinality of the set of agents.
We remark that the proof for the case jNj = 2 is virtually identical to that of

Theorem 2, with SR replacing TR and Lemma 5 replacing Lemma 4.
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Suppose B is the only cost allocation rule satisfying the three axioms, for all
C 2 C!, where jNj < m. We will show that the result is true for all C 2 C! such
that jJNj =m.

Let C 2 CL. Without loss of generality, assume (10) 2 gn(C). There are two

possible cases.

Case 1 : There are at least two extreme points of C, say m; and m;.

First, remove m; and consider the cost matrix C™, which is the restriction of C
over (N* nfmyg). By EPM, A,(C) - A,(C™) forall i & my. As C™ has (m j 1)
agents, the induction hypothesis gives A;(C™) = Cig(iy: S0, A;(C) - Cig(y 8i &
m,. Similarly by eliminating m, and using EPM, we get Ai(C) - Cigg) 81 & my.
Combining the two, we get Ai(C) - Ciggy 8i 2N.

But from EF, we know that PiZN Ai(C) = ¢(N) = PizN Cieg)- Therefore

Ai(C) = Cieg) 81 2 N, and hence the allocation is unique.

Case 2: If there is only one extreme point of C, then gn(C) must be a line, i.e. each
agent has atmost one follower. Without loss of generality, assume 1 is connected to
2 and 0. Let € be the restriction of C over the set f0; 1; 20: By iterative elimination
of the extreme points and use of EPM we get A;(C) - Ai(é). Using the induction
hypothesis, we get A;(C) - cio and A,(C) - c12.

Suppose A;(C) = x13 =10 i 2 where 2 _ 0. Now consider the reduced cost
matrix Cg!', which will be denoted by ®. It can be easily checked that INnf1g IS also
a line where 2 is connected to 0. Thus A,(€) = og = cy1 +Cy0 § A (C) = Cp1+2. By
SR, A,(C) = Ay(€) = ¢z +2 But from EPM A,(C) - A,(C) = cp1. This is possible
only if 2 = 0. Therefore, A;(C) = c10. Using SR and the induction hypothesis, we

can conclude that A = B.
We now show that the three axioms used in Theorem 3 are independent.

Example 8: The following allocation rule A satis..es EPM and SR but violates EF.
Let A, (C) = Bk(C) 8k & i, where i is an extreme point of C with (i0) 8 gn(C),

and A;(C) =Bi(C) +2; 2>0.

Using the result that B satis..es EPM and SR it can be easily checked that A also
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P P
satis..es these axioms. Also note that [—; A((C) = g=1Bk(C) +2>¢(N), and

hence A violates EF.

Example 9: The following example shows that EPM is independent of other axioms.

For n _ 2, let * coincide with B on all m.c.s.t. s which are not lines. Over a
line g if k is the extreme point, and (kl);(Im) 2 g, then 3,(C) = Bi(C) 8i & k;l,
1,(C) = 3(C) = S,

This rule satis..es EF and SR but violates EPM. Let the cost matrix C be

% 35 77"

3 01 2
51 0 4
7 2 40

@)
Il

Then, gn(C) = F(01); (12); (13)g. Here, 3 is an extreme point of C. Let C be the
restriction of C over {0,1,2}, and gan3g(é) = f(01);(12)g: Then 14(C) =3>2 =
1, (&) and hence EPM is violated.

Our new allocation rule A® satis..es all the axioms but SR. The fact that A®
satis..es EF and EPM is proved in the previous theorem. Here is an example to

show that our allocation rule may violates SR.

% 2 3 41
2 0 15 1
C=
3 15 0 35
4 1 35 0

Then, Aj(C) = 1; A3(C) = 2 and A§(C) = 1:5. The reduced cost matrix is &,

0 25 2%
@=§25 0 35§
2 35 0

A5(®) = 2:5 and A3(®) = 2. Therefore SR is violated.

In Theorem 2, we have restricted attention to cost matrices in C2. This is because

A® does not satisfy TR outside C2. The next example illustrates.

32



Example 10: Consider

= O W

© 0 3
30
4 2
5 0
Then, gh(C) = 1(10); (12); (23)g and gN (C) = 1(30); (32); (21)g are the two m.c.s.t.

s corresponding to C. Taking the average of the two cost allocations derived from
the algorithm, we get A®(C) = (2:5; 1:5; 2). If we remove 1, which is connected to 0

O N B

in glN, the reduced cost matrix ® is:

25 371

%9
@zgz:s 0 1§
3 .10

Then, A3(®) =1 and A5(C) = 2:5. So, TR is violated.

Remark 3: Note that in the previous example C lies outside C1. 1f we take a cost
matrix in C1 n C2, then Lemma 2 will no longer be valid - the reduced cost matrix
may lie outside C! even when a node connected to the source pays the minimum
cost amongst all its links. Thus, A® will satisfy TR vacuously. But there may exist

allocation rules other than A® which satis..es EF, TR and EPM over C1.
Similarly, B does not satisfy SR outside C1.

Example 11: Consider the same cost matrix as in Example 10. Recall that B(C) =
(2:5;1:5;2).
If we remove 1, which is connected to 0 in g, the reduced cost matrix ® is:

0253

= gzs

Then, B(®) = 2:5 and B3(®) = 1. Therefore SR is violated.

1

Remark 4: An interesting open question is the characterization of A® using cost

monotonicity and other axioms.
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