

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

EQUILIBRIUM AGENDA FORMATION

Bhaskar Dutta,
Matthew O. Jackson
And
Michel Le Breton

No 628

WARWICK ECONOMIC RESEARCH PAPERS

Equilibrium A genda Formation

Bhaskar Dutta, Matthew O. Jackson, Michel Le B reton ${ }^{\text {® }}$

September 2001
Draft: December 11, 2001

Abstract

We develop a de- nition of equilibrium for agenda formation in general voting settings. The de ${ }^{-}$nition is independent of any protocol. We show that the set of equilibrium outcomes for any P areto $\mathrm{e} \pm$ cient voting rule is uniquely determined. We also show that for such voting rules, if preferences are strict then the set of equilibrium outcomes coincides with that of the outcomes generated by considering all full agendas for voting by successive elimination and show that the set of equilibrium outcomes corresponds with the Banks set. We also examine the implications in several other settings.

K eywords: Agenda, Equilibrium, Voting
J EL Classi ${ }^{-}$cation Numbers: D71, D72

[^0]
1 Introduction

The importance of agenda formation in a wide variety of settings, ranging from committees to popular elections, is self-evident. In fact, in some legislative settings where the voting on speci ${ }^{-}$c bills is highly predictable, one might argue that the most interesting strategic interaction takes place in the formation of the agenda.

Indeed, the wide literature that analyzes various aspects of voting recognizes the imp ort ance of the agenda, and has shown how important it can be (e.g., McK elvey (1976, 1979)). N evertheless, we still lack tractable models of agenda formation, and a detailed understanding of how the formation of the agenda ultimately a Rects the outcome of voting. To quote Ordeshook (1993):

M ore problematic is theissue of endogenous agendas, the process whereby agendas areformed via the sequential introduction and labeling of alternatives to be voted on. ... T he particular problem is that to apply game theory we must provide a game form that speci ${ }^{-}$es precisely the identity of decision makers, the sequence with which they make decisions, and the information at their disposal when they act. A nd although agenda voting, like simple descriptions of elections, lends itself readily to the construction of such form, the processes whereby agendas are formed is far less structured and, thereby, less amenable to unambiguous gametheoretical analysis.

O rdeshook's statement points out the di \pm culty of modeling agenda formation stemming from the lack of a clearly de- ned game form.

In this paper we provide a model of agenda formation, and in particular one that does not rest on a speci ${ }^{-}$c game form or protocol. The way in which we do this is to examine the continuation equilibria that might extend from any given agenda. We do this inductively, de- ning sets of possible continuations from any given agenda up to some point, and imposing sequential rationality.

The main way in which we are able to make progress in de- ning equilibrium agenda formation without reference to a speci- c protocol is through a simple observation that ends up having powerful implications. That simple observation concerns when it is possible to stop at some agenda under an
equilibrium: It is an equilibrium to stop at some agenda only if no agent prefers any continuation equilibrium. We show that the sequential rationality and stopping conditions alone provide strong conclusions for what the set of equilibrium agendas can include.

In particular, we show that if a voting rule always selects an outcome that is Pareto $\mathrm{e} \pm$ cient relative to the agenda, then sequential rationality and stopping conditions imply that equilibrium agendas will result in voting outcomes that are P areto $\mathrm{e} \pm$ cient overall. Moreover, one of our main results states that for Pareto e \pm cient voting rules the equilibrium outcomes will always be a subset of what might arise from considering the set of complete agendas (including all outcomes). This result turns out to allow us to make fairly sharp predictions concerning equilibrium agendas in many settings. For example, if the voting rule does not depend on the speci ${ }^{-} \mathrm{c}$ order of the agenda, then equilibrium agendas result in a unique outcome which is that when all alternatives are included in the voting. This also has important implications for voting rules where the order of the agenda does matter, such as the well-studied example of voting by successive elimination. There we show that equilibrium agendas always result in outcomes that lie in the Banks' set. Similarly, for voting rules that always pick outcomes that lie in the top cycle of the alternatives on the agenda, we show that the equilibrium agendas must result in outcomes that lie in the top-cycle of all alternatives. So, if for instance, a Condorcet winner exists and the voting rule is Condorcet consistent, then all equilibrium agendas include (and thus result in) the Condorcet winner.

W hile sequential rationality and stopping conditions already have a substantial impact on identifying agendas, we can impose further conditions to produce more speci- c equilibrium sets and predictions. We also examine a consistency condition which requires that if one continuation is an equilibrium, and some agent prefers another continuation (which would be an equilibrium if the agenda is extended by the addition of one alternative), then this second continuation must also be an equilibrium. The converse is also imposed: unless there is a unique equilibrium agenda, all equilibrium agendas must be rationalizable in that at least some agent must weakly prefer them to some other equilibrium continuation. In the context of Pareto e \pm cient voting rules, we show that the consistency condition ties down the set of equilibrium agendas uniquely and provides a simple algorithm for identifying them.

Some Related Literature

Part of the motivation behind our analysis comes from the literature on I chaos" theorems. For instance, M cK elvey $(1976,1979)$ has shown that in the context of majority rule and E uclidean settings, the top cycle of alternatives is either a singleton (a Condorcet winner) or the whole space. And, as Plott (1973) has shown, the second case is the generic one. ${ }^{1}$ This implies that in most cases, starting from one alternative one can ${ }^{-}$nd a sequence of alternatives leading to any other, where each one in the sequence beats the previous one. While the conclusion that one should draw from such a result and whether or not \chaos" is an appropriate nickname has been debated, it is clear that such a result makes it critical to have an understanding of equilibrium agendas; as otherwise one is left without any prediction. This is essentially the primary motivation for our analysis. As such, we come back below to examine the predictions our equilibrium notion makes in the context of voting by successive elimination, and discuss the relation to chaos theorems.

An alternative approach to modeling agenda formation is to assume a speci- c protocol and analyze its implications. For instance random recognition rules were studied in the context of multilateral bargaining (dividethedollar games) by Baron and Ferejohn (1989) (and the literature that followed). That approach provides for strong analytical conclusions. However, that approach is not so tractable outside of the distributive setting in which it is posed. Moreover, there are many applications where the protocol is not clear, as the above quote of Ordeshook points out. The advantages to the approach taken in this paper are that it can be applied to a general class of voting problems, where for instance, Euclidean preferences may not be appropriate; and it makes protocol-free predictions.

W ith regards to making protocol-free predictions, we remark that the sets of equilibria uncovered here should be viewed as a set of potential equilibria. Adding more knowledge of the speci ${ }^{-}$c protocol may induce selections from the set we identify, and result in morespeci ${ }^{-}$c predictions. Nevertheless, as we shall show, fairly minimal requirements on the equilibrium set already allow for some tight predictions in the context of a variety of voting rules. Thus there are important aspects of equilibrium agendas that can be characterized

[^1]without detailed knowledge of the protocol.
W ork on equilibrium agenda formation has also been done in other contexts. For example, Banks and Gasmi (1987) examined equilibrium agenda formation in three person committees. Their analysis is of a Euclidean setting and onewhere the three committee members can make only one proposal each, and so agendas are truncated. Specifying the problem to this level leads to sharp predictions. M ore recently, Penn (2001), in the context of three person divide-the-dollar games has extended the analysis to allow for arbitrary agenda lengths by a clever adaptation to in ${ }^{-}$nite agendas, and shows that sharp predictions again result (but di ®er from those of Banks and Gasmi). The above results are very encouraging in the face of \backslash chaos" theorems, and may be thought of as answering those theorems by saying that if we do model agenda formation, then we can make speci ${ }^{-}$c predictions. Nevertheless, the above analyses come in very speci ${ }^{-}$c settings and are dependent upon the geometry of E uclidean preferences, and in some cases having three proposers and having a strong symmetry among them. Our analysis attempts to provide an equilibrium de nition that can be applied to a more general set of problems. Our main motivation is to develop a concept that does not require such speci ${ }^{-}$c geometry, and at the same time does not demand detailed spec-\dagger^{-}cation of the proposal protocol. ${ }^{2}$ As such, the predictions our analysis makes are not always as crisp; but nevertheless are fairly speci ${ }^{-}$c in many settings.

Equilibrium agenda formation has also been analyzed in another setting. That is the setting of strategic-candidacy. For instance, in Osborne and Slivinski (1996) and B esley and Coate's (1997) models of citizen- candidates, the decision to enter an election and take a position is studied under equilibrium. In other work (Dutta, J ackson, and Le Breton (1998, 2001)) we have examined the properties of equilibrium sets of candidates for a variety of voting rules and for voting by successive elimi nation. W hile the issue of strategic candidacy is an important example of endogenous agenda formation, modeling agenda formation more generally requires a di ®erent approach. Most

[^2]importantly, the candidacy decision ultimately rests with the candidate. ${ }^{3}$ This means that the proposal abilities of agents are limited. This provides for di ßerent strategic considerations than, for instance, in a legislative setting where proposers are not restricted in the alternatives that they may propose. B elow, we compare the outcomes of strategic agenda formation in the context of strategic candidacy and in the more general setting where proposers are not limited; and see that there are important distinctions.

A nother branch of the literature that has touched on equilibrium agenda formation is that which has looked at sophisticated voting by successive elimination. In particular, a de- nition of equilibrium agendas appears in work by M iller, G rofman, and Feld (1990). In their analysis an agenda is an equilibrium if nobody would gain by adding some alternative to the current agenda. The important di ®erences between such a de- nition and the ones presented here are in the beliefs of the proposers. The de ${ }^{-}$nition just described does not account for the fact that in many cases the agenda will not end, but instead will be subject to further modi ${ }^{-}$cations. Thus, proposers are acting myopically. ${ }^{4}$ If proposers can make any predictions about continuations, rather than myopically assuming the agenda will end, then the outcome could be quite di Berent. This emphasizes an important aspect of our de- nitions. Incorporating such sequential rationality and anticipating equilibrium continuations is the foundation on which we build our de- nitions. We come back to examine the impact of this feature below, when we apply our de- nitions to voting by successive elimination.

Finally, we mention a distantly related literature in terms of applications and speci- cs; but more closely related in terms of ${ }^{-}$nding equilibrium de^{-}nitions that are not tied down to protocol speci- cation. In particular, the literature on coalition formation (and on coalitional bargaining) faces a similar di \pm culty to that expressed in the quote of Ordeshook above Writing down speci ${ }^{-}$c bargaining protocols allows for sharp predictions, but ones that

[^3]may not be robust and are not so easily adapted to settings where the protocol is not obvious. Chwe (1994) provides a de- nition of consistent sets of alternatives that might come out of coalitional bargaining settings, that is not dependent on any speci ${ }^{-}$c protocol and yet still makes intuitively appealing predictions in many applications. Our approach here is intended to do the same thing for agenda formation problems. While there is a paralled in spirit, the actual equilibrium de- nition that we provide and the issues we face bear little resemblance to that in Chwe's work. ${ }^{5}$

2 De- nitions

Alternatives

There is a set of alternatives X. Generic elements are denoted x, y, and Z.

We begin the analysis with the case where X is ${ }^{-}$nite and with $\# X=m$, as this brings out the intuitions most clearly. We then return to show how our analysis extends to the in ${ }^{-}$nite case in Section 5.7.

Society will select one of these alternatives. These may be potential bills that a legislature might enact, a set of candidates that a society might elect, or a list of potential decisions that a committee might reach.

Voters or Decision M akers

The set $N=f 1 ;::: ; n g$ is ${ }^{-}$nite set of voters.
These are the individuals who are involved in determining the agenda and the outcome from that agenda. In Section 6 we discuss the possibility of having special roles for some individuals.

Preferences

Individuals have preferences over the set of alternatives represented by a complete and transitive binary relation, R_{i}. The strict preference relation associated with R_{i} is denoted P_{i}, and is de ned by $x P_{i} y$ if and only if not $y R_{i} x$. As usual, knowing P_{i} similarly de- nes R_{i}, and so we keep track of the strict relationship with the weak one being inferred.

[^4]Let P denote the set of admissible proº les of preference relations. The notation P $2 P$ denotes a generic pro ${ }^{-}$le $P=\left(P_{1} ;::: ; P_{n}\right)$.

In some applications P will be a restricted domain. A number of di ®erent examples appear in what follows.

A gendas

An agenda of length $\mathrm{k} 2 \mathrm{f} 1 ;::: ; \mathrm{mg}$ is a ${ }^{-}$nite vector of alternatives ($x_{1} ;::: ; x_{k}$) $2 X^{k}$, with the restriction that $x_{i} \in x_{j}$ for each $i \in j$.

Let A^{k} denote the set of agendas of length k, and let $A=\left[{ }_{k=1}^{m} A^{k}\right.$ be the set of all agendas.

The restriction that the same alternative not appear more than once in an agenda is common to many legislative and committee settings. Given that the set of alternatives X could be quite large and dense, this does not prevent an alternative and a close approximation of it from appearing in an agenda.

D epending on how the voting procedure works, the sequence of the agenda may or may not matter. For instance if the agenda is simply a list of nominated candidates and some neutral voting procedure is used, then the agendas ($x ; y ; z$) and ($z ; y ; x$) would be equivalent. However, if the voting procedure is non-neutral, then the sequence can be important. For instance, under voting by successive elimination where proposed alternatives are voted upon in reverse order of their proposal the agendas ($x ; y ; z$) and ($z ; y ; x$) are not equivalent and could lead to di ®erent outcomes.

Extensions of an Agenda

In many situations of interest, some part of an agenda will already be on the table. For example, if there is a status quo, then it may take the ${ }^{-}$rst place in any agenda that follows. More generally, in building a de- nition of equilibrium we need to be able to make predictions starting from various existing agendas and so it is useful to consider the concept of the extensions of a given agenda.

With this in mind, for any k and a $2 A^{k}$ let $A(a)$ to be the set of all agendas that agree with a in the ${ }^{-}$rst k spots. That is,

$$
A(a)=f a^{0} 2 A j a_{h}^{0}=a_{h} 8 h 2 f 1 ;::: ; k g g:
$$

V oting P rocedures

A voting procedure is a function $\mathrm{V}: \mathrm{A} £ \mathrm{P}$! X such that $\mathrm{V}(\mathrm{a} ; \mathrm{P}) 2 \mathrm{a}$ for all a 2 A and P 2 P.

A voting procedure thus summarizes the choice the society would make from a given agenda at a given preference pro $^{-l}$ e. This formulation is very ${ }^{\circ}$ exible and allows for many applications. For instance, it could be that V is determined by strategic voting or instead by sincere voting. Also, V might depend on the ordering of the agenda or it might not; and V might be anonymous, or it might treat some voters specially.

The details of how V is determined will not be important in developing our de- nition of equilibrium agenda formation. Later, in providing some results about the properties of equilibria, we will specify some properties of potential voting rules V and examine some speci ${ }^{-}$c voting rules.

3 Equilibrium A gendas

B efore presenting the formal de- nitions of equilibrium, we begin with a simple example to motivate and illustrate the de- nitions.

Example 1

$X=f x ; y ; z g$ and x is the status quo.
The voters' preferences form a classic cycle:

```
\({ }^{2} x_{1} y_{1} P_{1} z\)
\({ }^{2} y_{2} \mathrm{ZP}_{2} \mathrm{x}\)
\({ }^{2} Z_{3} X P P_{3} y\)
```

Here x beats y, y beats z, and z beats x under majority rule.
The voting rule is sincere voting by successive elimination. For instance, if the agenda is ($x ; z ; y$), then ${ }^{-r s t}$ a vote is held between y and z, and then the winner is matched against x. Under sincere voting, the outcome of this agenda would be x, as y would defeat z and then x would beat $y .{ }^{6}$ Here,

[^5]the only possible outcomes are x from agendas ($x ; y ; z$), $(x ; z ; y),(x ; y)$ and x ; and z from agenda ($\mathrm{x} ; \mathrm{z}$).

Let us discuss equilibrium conditions based on this example. Once an agenda of three alternatives has been reached, there are no alternatives left to propose, and so an equilibrium continuation is simply the agenda in question. Next let us step back and consider an agenda of length 2 that starts with the status quo x. Thereare only two such agendas to consider. One is the agenda $(x ; z)$. If this agenda is reached, then agent 1 by adding the alternative y would change the outcome from z to x. This would make agent 1 better $0 ®$, and so the agenda ($x ; z$) would not be stable to amendment. ${ }^{7}$ This suggests one of the conditions in our equilibrium de- nition: that stopping at a given agenda is an equilibrium if and only if there is no agent who can bene ${ }^{-t}$ from advancing the agenda to some further continuation equilibrium. So, the only continuation equilibrium following ($x ; z$) is the agenda ($x ; z ; y$). Next, let us back things up. Given the agenda x in place, if some agent proposes z next, then if she should anticipate that the result will be the full agenda ($x ; z ; y$) with outcome x. This embodies another part of the equilibrium de- nition: agents should anticipate equilibrium continuations from extensions of an agenda. In this case, no matter what happens after x, any continuation equilibrium must lead to the outcome of x. This actually means that stopping at x can be an equilibrium. Whether or not the other agendas that lead to x are also included as equilibrium continuations from x, is something that is not mandated by our basic de nitions of equilibrium.

[^6]However, a further consistency condition that we add would imply that the other agendas leading to x would also be equilibria in this example.

W ith some of the basic ideas from this simple example in hand, let us now consider the full de ${ }^{-}$nition of equilibrium agendas.

First, notice as in the above example, de- ning behavior at one agenda requires having some notion of what will happen following various extensions of the given agenda. Thus, the de- nition involves sets of continuation equilibria to be de- ned from each starting point. This is necessarily a set of sets, where a set of continuation equilibria is speci ${ }^{-}$ed starting from each possible agenda.

We deliberately impose only weak requirements in de^{-}ning equilibrium sets. Although taking such an approach allows for various collections to satisfy the de- nition, these weak requirements already have substantial implications for which outcomes might be reached.

A collection of sets of continuation equilibria for a pro^{-}le of preferences $P 2 P$ is a collection $f C E_{V}(a ; P) g_{a 2 A}$, where $C E_{V}(a ; P) 1 / 2 A(a)$ for each a 2 A , that satis ${ }^{-}$es the following properties.

Given $f C E_{V}(a ; P) g_{a 2 A}$, let

$$
C_{V}^{+}(a ; P)=\left[x z_{a} C E_{V}((a ; x) ; P):\right.
$$

So $C_{V}^{+}(a ; P)$ is the set of all continuation equilibria that could result if some alternative is added to an existing agenda $\mathrm{a} .{ }^{8}$

A continuation equilibrium set satis ${ }^{-}$es the following for each a 2 A :
(CE1) (Equilibrium Continuations) $C E_{V}(a ; P)$ is a nonempty subset of $a[$ $\mathrm{C}_{\mathrm{V}}^{+}(\mathrm{a} ; \mathrm{P})$ and
(CE 2) (Stopping Requirements) a $2 \mathrm{CE}_{\mathrm{V}}(\mathrm{a} ; \mathrm{P})$ if and only if $\mathrm{V}(\mathrm{a} ; \mathrm{P}) \mathrm{R}_{\mathrm{i}} \mathrm{V}\left(\mathrm{a}^{0}, \mathrm{P}\right)$ for all $\mathrm{a}^{0} 2 \mathrm{C}_{\mathrm{V}}^{+}(\mathrm{a} ; \mathrm{P})$ and for all i 2 N .

Part (CE1) is a sequential rationality condition that simply says that the possibilities from any agenda a are either to stop at a, or to add a new alternative to the agenda and then follow some continuation equilibrium from

[^7]the resulting agenda. This is a condition that essentially just requires that the sets of equilibria for di ®erent agendas have some minimal relationship to each other: if agents anticipate that $a^{0}=(a ; x ;:::)$ is a continuation equilibrium starting at a, then they must also expect it to still be a continuation equilibrium when they have reached ($a ; x$).

Part (CE 2) describes conditions under which it can be an equilibrium for agents to 'stop' at a. If every agent ${ }^{-}$nds that $\mathrm{V}(\mathrm{a} ; \mathrm{P})$ is at least as good as the outcome corresponding to any other possible continuation equilibrium, then no agent has an incentive to extend a. Conversely, if some agent i^{-}nds the voting outcome corresponding to some continuation equilibrium strictly preferred to $\mathrm{V}(\mathrm{a} ; \mathrm{P})$, then this i will rather make a proposal and follow the preferred continuation equilibrium, and the agenda will not stop at a.

One of our main themes devel oped below is that these minimal conditions already have some very strong implications and imply a great deal about sets of equilibria.

While imposing some restrictions on collections of sets of continuation equilibria, conditions (CE 1) and (CE2) can still allow for a multiplicity of collections of equilibrium continuations that satisfy the de- nition. Essentially, (CE1) and (CE2) give us some weak limitations on what can bein the set of equilibria, but they do not tell us much about which agendas must be included in the set. C onsistency (CE 3), below, addresses this issue.

We say that an agenda $a^{0}=(a ; x ;:::) 2 C_{V}^{+}(a ; P)$ is rationalizable if there exists i 2 N and $\mathrm{a}^{\infty} 2 C E_{V}(\mathrm{a}$; P$)$ with either $\mathrm{a}^{\oplus}=(\mathrm{a} ; \mathrm{y} ;:::$) with $\mathrm{y} G \mathrm{x}$ or $a^{\oplus}=a$ such that $V\left(a^{0}, P\right) R_{i} V\left(a^{\oplus} ; P\right)$.

The idea of rationalizability is that i proposes adding x to the agenda a under the belief that it will result in the agenda a^{0}, and that if i does not propose adding x then instead the continuation would be a^{\oplus}. As a^{∞} is a continuation equilibrium, this belief can be justi ${ }^{-}$ed.

We say that a collection of sets of continuation equilibria is consistent if it satis ${ }^{-}$es
(CE 3) (Consistency) If $a^{0} 2 C_{V}^{+}(a ; P)$ is rationalizable, then $a^{0} 2 C E_{V}(a ; P)$. Conversely, if $a^{0}=(a ; x ;:::) 2 C E_{V}(a ; P)$ and either a $2 C E_{V}(a ; P)$ or $a^{\infty}=(a ; y ;:::) 2 C E_{v}(a ; P)$ for some $y \in x$, then a^{0} is rationalizable.

Part (CE3) is a consistency condition on the collections of sets of continuation equilibria. It says the equilibrium continuations are those which
are rationalizable, subject to two exceptions. One is that stopping is handled under (CE2), and so the rationalization of a itself is already addressed. The second is that an equilibrium continuation agenda does not need to be rationalizable if it is a \unique" equilibrium continuation. Note that in this second case, the ${ }^{-}$rst part of the condition implies that all agents unanimously ${ }^{-}$nd the outcomes under ($a ; x ;:::$) preferred to stopping or adding any other alternative to a.

Later, we come back to discuss other notions of rationalizability and consistency.

We point out some important aspects of the above de- nitions.
First, the de ${ }^{-}$nitions necessarily involve a whole collection of $f C_{v}(a ; P) g$, one set for each a 2 A . This re ects the forward-looking aspect of the denition. In order to know what is an equilibrium starting at one agenda, one has to be able to anticipate what will happen starting at extensions of that agenda. ${ }^{9}$

Second, there always exists at least one collection $f C E E v^{(a ; P)}$ g satisfying (CE1)-(CE 3), which is easily seen via a backwards induction argument, starting with agendas of full length, and then working back to smaller agendas.

Third, the set $C E_{V}(a ; P)$ is not always uniquely determined. That is, there may be several di ®erent sets which satisfy conditions (CE 1) and (CE2); even when consistency (CE 3) is imposed. This stems from the fact that the conditions are designed to be weak, to specify conditions that an equilibrium set should satisfy, but not so strong as to always uniquely determine that set. A gain, this traces back to our deliberate avoidance of any reliance on an ad hoc formulation of the proposal process. To see an easy example of the potential multiplicity of equilibrium continuations, consider a somewhat degenerate voting rule as follows.

Example 2 Multiple Collections of Sets of Continuation Equilibria:
Under V the outcome is always the second alternative proposed in the agenda (or the ${ }^{-} r$ rst if the agenda is a singleton), regardless of the preference pro $^{-1}$ e. So $V(a ; P)=a_{2}$ if a $2 A^{k}$ with $k, 2$ and $V(a ; P)=a_{1}$ if a $2 A^{1}$.

[^8]This is a peculiar voting rule, but one that allows for a simple illustration of the multiplicity of equilibria. Note that in this case, $C E_{V}(a ; P)=A(a)$ is uniquely determined for any a $2 A^{k}$ for k, 2. This follows since once the second alternative has been proposed the outcome is al ready determined and the rest of the agenda is completely irrelevant and so under (CE2) and (CE3) all continuations are then equilibria. Now consider the outcome that is proposed in the second place in the agenda. In particular, let $X=f w ; x ; y ; z g$ and consider a preference pro $^{-}$le where some agents have preferences z, y, x, w, and others have preferences $\mathrm{z}, \mathrm{x}, \mathrm{y}, \mathrm{w}$; where the ordering speci- es the strict preferences where w is the worst alternative. Consider starting at the agenda $\mathrm{a}=\mathrm{f} w \mathrm{~g}$. So, w is the status quo. Conditions (CE 1) and (CE 2) have only very weak implications here: it cannot be an equilibrium to stop at fwg. Beyond that, they allow for a variety of continuation equilibrium sets. Once consistency is added, however, things are tied down to a greater degree. In particular, there are two sets which satisfy (CE1), (CE2) and (CE3). The ${ }^{-}$rst such set consists of all extensions of a with z in second place (i.e., $\left.C E_{V}(a ; P)=A((w ; z))\right)$; and the second such set consists of all extensions of a with any of x, y, or z in second place (i.e., $C E_{V}(a ; P)=$ $A((w ; x))[A((w ; y))[A((w ; z)))$.

In this example, consistency (CE3) still does not uniquely tie things down. O ne might argue that extensions of ($w ; z$) are really the only sensible equilibrium continuations in the above example, as they are unanimously preferred to prop osals x and y. One may wish to impose such additional conditions on the notion of equilibrium (and we discuss this more fully in Section 6). However, as we shall see, if we restrict attention to more sensible voting rules, such as those which satisfy a Pareto e \pm ciency condition, consistency will already tie things down uniquely without the imposition of any additional conditions.

Given the potential multiplicity of collections of equilibria, we now show that in many cases of interest the set of continuation equilibria is in fact uniquely determined under consistency. This allows us to develop an equivalent de- nition that is not self-referential.

4 Equilibrium Agendas for Pareto $\mathrm{E} \pm$ cient Voting Rules

An alternative $\times 2 \mathrm{~B} \quad 1 / 2 \mathrm{X}$ is Pareto $\mathrm{e} \pm$ cient relative to P and B if there does not exist y 2 B such that $y R_{i} x$ for all i 2 N and $y P_{j} x$ for some 2 N .
V is Pareto $e \pm$ cient if $V(a ; P)$ is Pareto $e \pm$ cient relative to P and the alternatives in a, for each a $2 A$ and $P 2 P$.

Given a collection $f \mathrm{CE}_{V}(\mathrm{a} ; \mathrm{P}) \mathrm{g}_{\mathrm{a} 2 \mathrm{~A}}$ and any a 2 A , let $P E_{V}(\mathrm{a} ; \mathrm{P})$ denote the set of agendas in $\mathrm{C}_{V}^{+}(\mathrm{a} ; \mathrm{P})$ [a that result in Pareto $\mathrm{e} \pm$ cient alternatives (considering all of X).

Theorem 1 For any Pareto e \pm cient voting rule V and preference prole $P 2 P$ and collection of sets of continuation equilibria $f C E v(a ; P) g_{a 2} A$, $V\left(a^{0} ; P\right)$ is P areto $e \pm$ cient (considering all alternatives) for all a and $a^{0} 2$ $C E_{V}(a ; P) .{ }^{10}$ M oreover, if consistency is satis ${ }^{-}$ed, then $f C E_{V}(a ; P) g_{a 2}$ is uniquely de^{-}ned and described by

$$
C E_{V}(a ; P)=\begin{array}{ll}
\left(P E_{V}(a ; P)\right. \\
P E_{V}(a ; P) \text { na } & \text { if } V(a ; P) R_{i} V(a ; P) 8 i \text { and } a^{0} 2 C_{V}^{+}(a ; P) \\
\end{array}
$$

The ${ }^{-}$rst result in Theorem 1 is that equilibrium agendas of Pareto e \pm cient voting rules must result in outcomes that are Pareto e \pm cient overall. This conclusion is not quite as obvious as it seems. For instance, it could be that x is P areto dominated by y, but that $V\left(a^{Q}, P\right) \in y$ for all $a^{0} 2 A(a)$. This means that since y is never in the range of V, it does not threaten x. The proof uses the fact that if y is added to an agenda containing x, then the outcome cannot be x and must instead be some other outcome that some voter prefers to x. Building on this reasoning we rule out equilibrium agendas leading to x. The details are provided in the proof in the appendix.

The second result in Theorem 1 is that under consistency the continuation equilibria of P areto $e \pm$ cient voting rules are uniquely determined and described by a simple algorithm.

[^9]The implications of Theorem 1 are even stronger when preferences satisfy a mild restriction.

Let P^{∞} be the set of all pro$^{-}$les satisfying the restriction:

$$
8 x ; y 2 x ; 9 i 2 N \text { such that } x P_{i} y \text { or } y P_{i} x:
$$

So, P^{x} is the set of pro les such that it is never the case that all individuals are indi Rerent between some pair of alternatives $x ; y$. Of course, this condition is satis ${ }^{-}$ed when individual preferences are strict, but also holds more generally including where some transfers or distribution of resources are possible. In this case, we obtain a characterization of continuation equilibrium outcomes that does not even require an inductive de ${ }^{-}$nition. ${ }^{11}$

Theorem 2 Consider a Pareto e \pm cient voting rule V and pro${ }^{-}$le of preferences $P 2 P$. If $f C E_{V}(a ; P) g_{a 2 A}$ is a collection of sets of continuation equilibria, then the outcomes corresponding to continuation equilibria following some agenda a are a subset of those that can be found by considering only full length agendas that are extensions of a. That is,

$$
\left[a^{0} 2 C E_{V}(a ; P) V\left(a^{0}, P\right) 1 / 2\left[a^{0} 2 A(a) \backslash A^{m} V\left(a^{Q}, P\right):\right.\right.
$$

If in addition consistency is satis ${ }^{-}$ed, then these sets are equal:

$$
\left[a^{0} 2 C E_{V}(a ; P) V\left(a^{0}, P\right)=\left[a^{0} 2 A(a) \backslash A m V\left(a^{0} ; P\right):\right.\right.
$$

Theorem 2 shows how powerful the implications of the simple stopping condition are. It states that the equilibrium outcomes correspond to those where complete agendas are considered. The idea behind this follows an inductive proof. Suppose this is true once an agenda is of length k or more. Now suppose that some agenda of length $\mathrm{k}_{\mathrm{i}} 1$ is an equilibrium agenda and results in an outcome that dißers from all full length agendas, and thus all continuation equilibria if any outcome is added. Given Pareto e \pm ciency, some agent must prefer some outcome of a longer agenda that is a continuation

[^10]equilibrium if some alternative is added to the current agenda to that of stopping. Then (CE 2) implies that stopping cannot be an equilibrium.

The proof of Theorem 2 is in the Appendix. The second half of the proof actually follows from a stronger claim which does not invoke Pareto $\mathrm{e} \pm$ ciency of the voting procedure. Since this is of independent interest, we state it here. ${ }^{12}$

Claim 1 For any voting procedure V , preference prole P 2 P and a 2 A , if $f C E_{V}(a ; P) g_{a 2 A}$ is a collection of sets of continuation equilibria satisfying consistency, then any Pareto e \pm cient alter native that can be reached via some full length continuation of a is an equilibrium continuation outcome following a at $P .{ }^{13}$

5 A pplications to Speci ${ }^{-}$c Voting Rules and Settings

In order to demonstrate the implications and usefulness of Theorems 1 and 2, we apply them to a number of settings including some prominent ones.

5.1 Order Independent Voting Rules

A voting rule V is order independent if $V(a ; P)=V(a ; P)$ whenever $f \times 2$ $a g=f \times 2 a^{0} g$.

Order independent voting rules are those for which the ordering of the agenda does not matter. Neutral voting rules are order independent, but there are also important order independent voting rules that are non-neutral. Consider the following example: candidates are people who are seeded according to their age (or experience, rank, etc.). Regardless of the order in which they are proposed or nominated, the two youngest candidates are voted

[^11]upon, then the winner of that vote is pitted against the next youngest, etc.. This rule is independent of the order in which the candidates are proposed, and yet it is still a sequential rule and is clearly not neutral. Therefore, we emphasize that \order independence" refers only to the order of the agenda and does not mean that the voting rule itself is not based on some implicit ordering of alternatives.

Note that for any order independent voting rule, $\mathrm{V}(\mathrm{a} ; \mathrm{P})=\mathrm{V}\left(\mathrm{a}^{\mathrm{a}} ; \mathrm{P}\right)$ for any a and a^{0} in A^{m}. With an abuse of notation, we write this outcome as V(X;P).

The following is a direct corollary of Theorem 2.
Corollary 1 For any P areto $\mathrm{e} \pm$ cient and order independent voting rule V, preference pro $^{-l}$ le of preferences $P 2 P^{x}$, collection of sets of continuation equilibria $f C E_{V}(a ; P) g_{a 2 A}$ (i.e., satisfying (CE1) and (CE2)), and agenda a 2 A , there is a unique continuation equilibrium outcome

$$
[\operatorname{aOCEv}(a ; P) V(a ; P)=V(X ; P):
$$

An important remark about Corollary 1 is that it does not require consistency, but follows from (CE 1) and (CE2) in the de- nition.

The following example shows how B orda's rule is covered under Corollary 1.

Example 3

Voters' preferences are :
${ }^{2} x P_{1} w P_{1} y P_{1} z$
${ }^{2} x_{P}{ }_{2} \mathrm{wP}_{2} \mathrm{yP}_{2} z$
${ }^{2} z_{3} w P_{3} y P_{3} x$
Voting is (sincere) voting according to Borda's rule. An alternative receives three points for a ${ }^{-}$rst place ranking in a voter's preferences, two points for a second place ranking, one point for a third place ranking, and no points for a fourth place ranking; and the alternative with the highest score is the outcome (with ties broken according to any deterministic rule). These are adjusted for the restricted ranking if some subset of alternatives is considered.

This is a Pareto e \pm cient and order independent voting rule.
It is easily checked that w wins whenever it is on the agenda. Also, x wins if it is present but w is not. If just y and z are present, then y wins. z only wins if it is the only proposed alternative.

Corollary 1 implies that the outcome of any equilibrium agenda must be w in this example. Indeed, it is easily seen that no agenda leading to y or z can be an equilibrium, as adding w to the agenda will lead to a continuation equilibrium outcome of w which would be preferred over y or z by some agent. Similarly, if an agenda leads to x, then adding w will lead to a continuation equilibrium of w, which is better for voter 3 than x.

5.2 Tournaments and Top Cycle Consistent Rules

The following de nitions are useful in some of the remaining applications.

Tournaments

In many contexts, the preferences of the voters can be summarized (even for strategic purposes) by the majority voting relation that is induced over pairs of alternatives. A tournament is a binary relation that summarizes the important aspects of voters' preferences in some contexts. ${ }^{14} \mathrm{M}$ ore formally, the majority voting tournament is de^{-}ned as follows.

Given P 2 P, denote by $T(P)$ the binary relation de ${ }^{-}$ned by

$$
x T(P) y, \quad \# \text { fi } 2 N: x P_{i} y g>\# f i 2 N: y P_{i} x g
$$

$T(P)$ is al ways asymmetric and if n is odd and individual preferences are strict then $T(P)$ is complete. If we break ties in some deterministic manner, then even in cases with an even number of voters or indi®erences $T(P)$ is also complete, and therefore a tournament (an asymmetric and complete binary relation). In what follows, unless speci- ed otherwise, we will assume that ties are broken so that $T(P)$ is complete. $T(P)$ is referred to as the majority tournament induced by P.
The Top Cycle

[^12]As the majority tournament is not necessarily transitive, it can have cycles. A prominent cycle that we refer to in the sequel is the top cycle associated with a tournament.

The top cycle of $T(P)$, denoted by $T C(X ; P)$ is the set $f x 2 X: 8 y 2$ $X ; 9 x_{1} ;::: ; x_{k}$ in X such that $x_{1}=x ; x_{k}=y$ and $x_{i} T(P) x_{i+1} 8 i=1 ;::: ; k_{i}$ $1 g$ i.e the set of alternatives that can reach any other alternative in X via a $T(P)$-chain of arbitrary length. For subsets of alternatives, $\mathrm{B} 1 / 2 \mathrm{X}$, there is a corresponding de ${ }^{-}$nition and we denote that set $T C(B ; P)$. W hen there is no $B 1 / 2 X$ indicated, then we are referring to the top cycle relative to X, and we use the notation $\mathrm{TC}(\mathrm{a} ; \mathrm{P})$ to denote the top cycle relative to the set of alternatives in the agenda a under the tournament $T(P)$.

A voting rule is top cycleconsistent at a P such that $T(P)$ is a tournament if $\mathrm{V}(\mathrm{a} ; \mathrm{P}) 2 \mathrm{TC}(\mathrm{a} ; \mathrm{P})$ for any a 2 A .
Condorcet Winners and Consistency
A n alternativef $x g$ is a Condorcet winner relativeto $B 1 / 2 X$ ifTC($B ; P)=$ fxg . That is, a Condorcet winner is an alternative that beats every other alternative in B under $T(P)$.

A voting rule V is C ondorcet consistent if $\mathrm{V}(\mathrm{a} ; \mathrm{P})$ selects a C ondorcet winner whenever one exists relative to $T(P)$ and the alternatives in a.

5.3 Equilibrium A gendas for Top Cycle and Condorcet Consistent Voting Rules

If the voting procedure V arises from strategic voting on a binary tree, then it follows from McK elvey and Niemi (1978) that V is top cycle consistent. Thus, the following proposition covers a wide variety of applications.

Proposition 1 Consider a P such that $T(P)$ is a well-de- ned tournament and a collection of sets of continuation equilibria $f C E_{V}(a ; P) g_{a 2}$ (i.e., satisfying (CE1) and (CE2)). If V is top cycle consistent, then all equilibrium outcomes following any agenda are in the (overall) top cycle. M oreover, if V is Condorcet consistent and there exists a Condorcet winner x at P, then all of the equilibrium continuations from any agenda lead to x.

A gain, remark that Proposition 1 does not require consistency (CE3).
Thesecond statement does not quite follow from the ${ }^{-}$rst, since C ondorcet consistency does not imply top cycle consistency. The proof of Proposition

1 is straightforward for the case where the preference pro ${ }^{-}$les in P^{x} are strict and the voting rule is Pareto e \pm cient. Then, from Theorem 2 we know that the equilibrium outcomes coincide with those that are full agendas and extensions of the starting agenda. These must select from the top cycle. The proof when the preference pro${ }^{-}$les are not necessarily in P^{\star} or the voting rule is ine \pm cient is slightly more complicated, as then Theorem 2 cannot be applied. The proof is still relatively short and appears in the appendix.

A direct corollary of Proposition 1 is that all equilibrium agendas in a setting with single-peaked preferences and a Condorcet consistent voting rule lead to the outcome of the median of the voters' peaks.

5.4 Voting by Successive Elimination and Equilibrium A gendas

The voting procedure of voting by successive elimination is de ${ }^{-}$ned as follows. Consider some agenda a 2 A and let $\mathrm{a}=\left(\mathrm{x}_{1} ;::: ; \mathrm{x}_{\mathrm{k}}\right)$. In the successive elimination procedure, a vote is ${ }^{-}$rst taken to eliminate either x_{k} or $x_{k_{i} 1}$. The 'winning' alternative from the ${ }^{-}$rst round is compared to $x_{k_{i}}$, and a vote is taken to eliminate either surviving alternative from the ${ }^{-r}$ rst vote or $x_{k_{i} 2}$, and so on. After ($\mathrm{k}_{\mathrm{i}} 1$) comparisons, the last surviving alternative is declared to be the voting outcome.

At each stage, the elimination of one alternative is according to majority voting. This is well-speci- ed when $T(P)$ is complete. However, in cases where there are ties under the majority preference relation, either resulting from personal indi Berences or from an even number of voters, $T(P)$ is not complete. In this case, voting by successive elimination needs to be more completely speci ${ }^{-}$ed.

We do so as follows. At each stage allow individuals to vote for one of the two alternatives or to abstain (in the case where they may be indi ®erent). In case of a tie in the voting between alternatives x_{i} and x_{j}, x_{i} is elected if and only if x_{i} comes before x_{j} in the ordering of voting ($i<j$). This favors alternatives proposed earlier in the agenda under ties, which is a natural way to break ties (given that they have not already been broken under $T(P)$).

At the last stage of voting, if the voting boils down to a comparison of x and y where x precedes y in the successive elimination procedure, then x wins if not $y T(P) x$ and y wins otherwise.

However, in order to determine the eventual voting outcome, it is also necessary to describe how voters act. We ${ }^{-}$rst examine the case where they vote strategically at each stage, and so focus on the sophisticated voting outcome of this binary vot ing procedure. This is the outcome under the iterative elimination of weakly dominated strategies that has been well-studied (see Shepsle and Weingast (1984) for the algorithm identifying the outcome).

Let $\mathrm{S}(\mathrm{a} ; \mathrm{P})$ denote the sophisticated voting outcome under voting by successive elimination on agenda a.

The B anks Set

The Banks set associated with the tournament T(P), denoted BS(P), is de- ned by

$$
B S(P)=[\operatorname{a2AmS}(a ; P):
$$

Thus, the Banks set is the set of sophisticated voting outcomes under voting by successive elimination under all possible full agendas.

Thereare situations, however, where some orderings of X arenot relevant. For instance, X may contain a distinguished alternative X_{1} which acts as the status quo. In many legislative procedures, the status quo is treated as if it were the ${ }^{-}$rst proposal in the agenda. Recall that our tie-breaking rule in case $T(P)$ is not complete naturally privileges the status quo against the amendments. We generalize the de- nition of the Banks set in the following way.

Given any a $2 \mathrm{~A}^{\mathrm{k}}$, let

$$
B S(a ; P)=\left[a^{0} 2 A(a) \backslash A m S\left(a^{a}, P\right):\right.
$$

Equilibrium Agendas and Voting by Successive Elimination

Given that voting by successive elimination is a Pareto $\mathrm{e} \pm$ cient voting rule, we have the following corollary of Theorem 2.

[^13]Corollary 2 Consider a collection of sets of continuation equilibria $f C E v(a ; P) g_{a 2 A}$ (satisfying (CE1) and (CE2)) and any pro le of preferences $\mathrm{P} 2 \mathrm{P}^{\text {a }}$. For all a 2 A ,
and if consistency (CE3) is also satis ${ }^{-}$ed, then

$$
\left[\operatorname{aqCE}_{v}(a ; P) S\left(a^{a}, P\right)=B S(a ; P):\right.
$$

Note that the result above also holds if we set the starting agenda a to be the emptyset. ${ }^{16}$

Corollary 2 states that not only does the Banks' set capture the set of outcomes that could arise from arbitrary full length agendas, but that these are also precisely the set of potential equilibrium outcomes when the agendas are endogenous.

While C orollary 2 provides a precise characterization of equilibrium agenda outcomes for an important voting procedure, it is still useful to show that this characterization completely ties down the outcome in some interesting cases. We now show this in the context of an interesting \pork barrel politics" setting. In particular, even though in some cases the top cycle of the majority voting relation may be very large, the Banks set, and thus the set of equilibrium agenda outcomes, can be a singleton.

5.5 Voting over Projects

Ferejohn, Fiorina, and McK elvey (1987) consider the following model. N is a set of legislators (with n odd), each of whom has a project for their constituency. The projects have value only for their constituents, but the cost of a project, if it is undertaken, is split evenly among all constituencies. ${ }^{17}$ Ferejohn, Fiorina, and McK elvey assume that projects have di ®erent costs, so as to ensure that $\mathrm{T}(\mathrm{P})$ is complete, but that is not assumed here (as we can extend their result given our procedure for breaking ties).

[^14]So, this is a model of pure \backslash pork-barrel" politics. Here the set of alternatives X is simply a list of which projects are undertaken, and so $X=f 0 ; 1 g^{n}$. Voting over an agenda is done by sophisticated voting by successive elimination.

Given this setting, legislators' preferences take a speci ${ }^{-}$c form. Their favorite alternative is to have their own project undertaken and no other projects undertaken. Beyond the decision concerning a legislator's own project, he or she simply prefers to minimize the costs of the other projects undertaken. The critical freedom in the preferences is in the relative costs of projects, which determines which projects a legislator might tolerate being undertaken in conjunction with his or her own, before the cost becomes so high that he or she would prefer to have none built at all.

An interesting aspect of the Ferejohn, Fiorina, and McK elvey (1987) model is the importance of a status quo. The status quo is that no projects are undertaken. Applying our equilibrium approach to this model is of particular interest as it shows how the status quo can tie down equilibrium agendas, and illustrates why we have been careful to de- ned continuation equilibrium concepts that allow for a status quo. It also shows that the conclusions reached by Ferejohn, Fiorina, and McK elvey (1987) without an equilibrium analysis, are robust to an equilibrium formulation.

Let $X^{\mathbb{M}}(\mathrm{P})$ denote the set of x 2 X that (i) undertake exactly $\frac{\mathrm{n}+1}{2}$ projects, (ii) are as cheap as any other choice of exactly $\frac{\mathrm{n}+1}{2}$ projects, and (iii) are such that $\mathrm{xT}(\mathrm{P}) 0$.

Corollary 3 Consider any prole of admissible preferences P 2 P and collection of sets of continuation equilibria $f \mathrm{CE}_{\mathrm{V}}(\mathrm{a} ; \mathrm{P}) \mathrm{g}_{\mathrm{a} 2 \mathrm{~A}}$ (satisfying (CE1) and (CE 2)) in the extension of the Ferejohn, Fiorina, and M cK elvey setting where some projects may have identical costs.

$$
\left[a_{a 2 C E v}^{v}(a ; P) S\left(a^{a} ; P\right)={ }^{1 / 2} X^{x}(P) \quad \text { if } X^{x}(P) \xi ;\right.
$$

Here the equilibrium agendas result in collections of projects corresponding to majorities of minimal size and which choose the cheapest projects. This minimal winning size is an interesting qualitative feature which has been extensively discussed in various areas of political science since Riker (1962). The proof of Corollary 3 appears in the appendix.

5.6 Sincere Voting and an A bsence of Chaos

The previous results show that equilibrium conditions on agendas can make narrow predictions. The results concerning the Banks set and voting by successive elimination were constrained to sophisticated voting. A s much of the literature on chaos theorems (e.g., McK elvey (1979)) was restricted to sincere voting we show that the same is true there. In particular, we show that even in situations where the top cycle is large (even the whole set of alternatives), considering only equilibrium agendas still narrows the set of predictions in well-de- ned ways.

W hile the setting we consider in this section is a - nite one (see the next section for the in ${ }^{-}$nite case), we can still see the essence of chaos theorems in the following way. Consider sincere voting by successive elimination, where when asked to compare any two alternatives, voters vote for the one that they prefer, not anticipating the outcome of the votes yet to come in the sequence. ${ }^{18} 19$

The critical observation is that for any $\times 2 \mathrm{TC}(\mathrm{T}(\mathrm{P}))$ and any k, there exists an agenda a $2 A^{k}$, such that $V(a ; P)=x$, where V is sincere voting by successive elimination. In particular, setting $k=m$, any x in the top cycle can be reached by at least one full length agenda (in fact at least two). ${ }^{20}$

[^15]This means that if we are not able to do any selection over agendas, then any alternative in the top cycle can be an outcome.

The following example, however, illustrates that our de- nition of equilibrium selectsfrom the agendas. Here only a subset of thetop cycle alternatives are equilibrium outcomes, even though all alternatives (other than a unanimously bad status quo) are in the top cycle. Thus, the notion of equilibrium does preclude alternatives and make selections from the top cycle. ${ }^{21}$

Example 4

Voters' preferences are :
${ }^{2} X_{5} P_{1} x_{2} P_{1} x_{3} P_{1} x_{4} P_{1} x_{1} P_{1} x_{0}$
${ }^{2} X_{4} P_{2} x_{5} P_{2} x_{1} P_{2} x_{2} P_{2} x_{3} P_{2} x_{0}$
${ }^{2} x_{3} P_{3} x_{4} P_{3} x_{5} P_{3} x_{1} P_{3} x_{2} P_{3} x_{0}$
The induced tournament $T(P)$ is that
${ }^{2} x_{5}$ beats x_{0}, x_{1}, x_{2}, and x_{3},
${ }^{2} x_{4}$ beats x_{0}, x_{1}, x_{2}, and x_{5},
${ }^{2} x_{3}$ beats x_{0}, x_{1}, and x_{4},
${ }^{2} x_{2}$ beats x_{0} and x_{3},
${ }^{2} x_{1}$ beats x_{0} and x_{2}.
N ote that here $B S\left(f x_{0} g ; P\right)=f x_{3} ; x_{4} ; x_{5} g$ and $T C(X ; P)=f x_{1} ; x_{2} ; x_{3} ; x_{4} ; x_{5} g ;$ and also that both x_{4} and x_{5} Pareto dominate x_{1}.

U nder sincere voting by successive elimination, the agendas (with a status quo of x_{0}) that can lead to an outcome of x_{1} are thoset hat follow the ordering
the out come.
${ }^{21}$ In light of Proposition 1, equilibria under sincere voting by successive elimination will always end up in the top cycle, and so the example shows it can end up being a strict subset that is selected.
of the index of the alternatives without gaps, starting at x_{0}, except possibly that the last two alternatives may be switched. ${ }^{22}$

N one of these are equilibrium agendas when the status quo is $a=f x_{0} g$ (i.e., none of these are in $C E_{V}\left(f x_{0} g ; P\right)$). Thus, x_{1} is not an equilibrium agenda outcome when V is sincere voting by successive elimination.

First, it is easily checked that $f x_{0} ; x_{1} g$ and $f x_{0} ; x_{2} ; x_{1} g$, are not continuation equilibrium agendas (i.e., stopping once they are reached), as adding x_{5} will lead to an outcome of either X_{4} or x_{5} which are unanimously preferred to x_{1}; and so (CE2) is violated. Thus they could not be equilibrium agendas beginning at x_{0}. We can also check that the agenda $f x_{0} ; x_{1} ; x_{3} ; x_{2} g$ is not a continuation equilibrium. If either x_{5} or x_{4} is added one obtains either x_{3} as the only equilibrium outcome. ${ }^{23}$ Then it cannot be an equilibrium to stop, as voters 1 or 3 would gain by proposing either x_{4} or x_{5}.

The agendas that remain to be checked that might lead to x_{1} are those in $A\left(f x_{0} ; x_{1} ; x_{2} g\right)$. Note that for any $a^{0} 2 A\left(f x_{0} ; x_{1} ; x_{2} ; x_{3} g\right)$, the outcome is x_{1}, while for any a $2 A\left(f x_{0} ; x_{1} ; x_{2} ; x_{5} g\right)$ the outcome x_{4} or x_{5}. Thus, consistency (CE3) implies that if x_{1} is an equilibrium outcome following $f x_{0} ; x_{1} ; x_{2} g$, then also x_{4} or x_{5} is an equilibrium outcome following $f x_{0} ; x_{1} ; x_{2} g$, and that x_{1} can only come from proposing x_{3} next. Also, note that x_{3} is not an outcome under any agenda in $A\left(f x_{0} ; x_{1} ; x_{2} g\right)$ as it loses to x_{2}, and also x_{2} and x_{0} are never outcomes under any agendas in $A\left(f x_{0} ; x_{1} ; x_{2} g\right)$. Then by (CE3) it follows that x_{1} is not an equilibrium outcome following $f x_{0} ; x_{1} ; x_{2} g$, and those equilibrium outcomes are a subset of $f x_{4} ; x_{5} g$.

The example uses the fact that agendas that lead to x_{1} must have x_{1} in one of the ${ }^{-}$rst three places in the agenda. This al ways leaves additional alternatives that can be proposed that would lead to other outcomes, and the preference for some of these other outcomes prevents the speci ${ }^{-}$c agendas leading to x_{1} from being equilibrium agendas.

Thus, chaos is avoided and we have predictions that we end up inside a strict subset of the top cycle.

In fact, we also have a \lower bound" on the set of possible outcomes

[^16]of sincere voting under sequential elimination - Claim 1 in the appendix implies that all Pareto optimal elements in the top cycle can be supported as outcomes of continuation equilibria.

Finally, we show that equilibrium agendas under sincere voting under sequential elimination can lead to Pareto ine \pm cient outcomes.

Example 5

Let $X=f x_{0} ; x_{1} ; x_{2} ; x_{3} ; x_{4} ; x_{5} g$. The status quo is x_{0}. There are 3 individuals, with preferences given below.
${ }^{2} X_{1} P_{1} x_{2} P_{1} x_{5} P_{1} x_{3} P_{1} x_{4} P_{1} x_{0}$
${ }^{2} X_{5} P_{2} x_{3} P_{2} x_{4} P_{2} x_{1} P_{2} x_{2} P_{1} x_{0}$
${ }^{2} X_{4} P_{3} x_{1} P_{3} x_{5} P_{3} x_{2} P_{3} x_{3} P_{1} x_{0}$
The induced tournament $T(P)$ is :
${ }^{2} x_{1}$ beats x_{0}, x_{2}, x_{3}, and x_{5},
${ }^{2} x_{2}$ beats x_{0} and x_{3},
${ }^{2} x_{3}$ beats x_{0} and x_{4},
${ }^{2} x_{4}$ beats x_{0}, x_{1} and x_{2},
${ }^{2} x_{5}$ beats x_{0}, x_{2}, x_{3} and x_{4}.
N ote that x_{2} is P areto dominated by x_{1}.
Let us arguethat $a=\left(x_{0} ; x_{2} ; x_{3} ; x_{4} ; x_{1}\right)$ which results in x_{2} is in $C E_{V}\left(f x_{0} g ; P\right)$. Since adding X_{5} makes no di ®erence to the outcome, this is an equilibrium agenda once a is reached. Moving back, a is an equilibrium continuation of ($x_{0} ; x_{2} ; x_{3} ; x_{4}$). If instead x_{5} is added so to get ($x_{0} ; x_{2} ; x_{3} ; x_{4} ; x_{5}$), then it will not be an equilibrium to stop as the outcome would be x_{5} and agent 1 would prefer to add x_{1} so that the outcome would again be x_{2}. Thus, all equilibrium continuations of ($x_{0} ; x_{2} ; x_{3} ; x_{4}$) lead to x_{2}.

Next, note that $a^{0}=\left(x_{0} ; x_{2} ; x_{3} ; x_{5} ; x_{4} ; x_{1}\right)$ results in x_{5}, which is voter 2's favorite. Thus, we know that it is possible to reach ($x_{0} ; x_{2} ; x_{3}$). Then under (CE3), voter 1 is willing to prop ose x_{4} expecting the continuation of a leading to x_{2}, given that there is another continuation equilibrium leading to x_{5}. As argued above, we then have a as an equilibrium continuation once ($x_{0} ; x_{2} ; x_{3} ; x_{4}$) has been reached.

Thus x_{2} is an equilibrium outcome when the status quo is x_{0}.

5.7 Handling In^{-}nities

O ur discussion so far has focused on a - nite set of alternatives X. We now demonstrate how our analysis works in more general settings where the set of alternatives may be in ${ }^{-}$nite. An important ${ }^{-}$rst remark is that the de ${ }^{-}$nitions we have for continuation equilibria, (CE1)-(CE3), can be applied directly to the in ${ }^{-}$nite case without modi ${ }^{-}$cation.

However, there are new challenges that arise in applying the de- nition of equilibria in in ${ }^{-}$nite settings, which we will address below. One challenge is whether or not to de ne voting rules on in ${ }^{-}$nite sequences of alternatives, and if it is done, how to do it. There are dierent ways that this might be done and the speci ${ }^{-}$c choice of how to do it is usually speci ${ }^{-} \mathrm{c}$ to the setting in question. A nother challenge is to establish existence of equilibrium sets. In the - nite case existence was straightforward as we could follow a simple backward induction argument. In the in ${ }^{-}$nite case the issue is more subtle and will require using some characteristics of the setting being analyzed. A third challenge is that even when collections of sets of agenda equilibria can be shown to exist, it may still be hard to get a handle on a characterization of them as, again, a simply backward induction approach is precluded.

N evertheless, despite these challenges the de- nitions turn out to bequite manageable in several ways as we now show.

Consider an in ${ }^{-}$nite X. Let $A=\left[{ }_{k} A^{k}\right.$ be now the set of arbitrary length - nite agendas. ${ }^{24}$

[^17]Given a voting rule V, say that an agenda a 2 A is maximal at P if $\mathrm{V}\left(\mathrm{a}^{0} ; \mathrm{P}\right)=\mathrm{V}(\mathrm{a} ; \mathrm{P})$ for all $\mathrm{a}^{0} 2 \mathrm{~A}(\mathrm{a})$. Denote the set of maximal agendas for V and P that are the continuation of some a by $M_{V}(a ; P)$.

The anal ogue of Theorem 2 now follows.
First, we show that when the set of maximal agendas is nonempty, then there exists a natural set of continuation equilibria.

Lemma 1 Consider an in ${ }^{-}$nite X, a pro${ }^{-}$e of preferences $P 2 P^{x}$, and a P areto $e \pm$ cient voting rule V such that $M_{V}(a ; P)$ is nonempty for all agendas a 2 A . Then there exists a collection of sets of continuation equilibria $f C E_{V}(a ; P) g_{a 2 A}$ satisfying (CE1)-(CE3), which is to set $C E v(a ; P)=$ $M_{V}(a ; P)$ for each a.

Lemma 1 leaves open the question of when $M_{V}(a ; P)$ is nonempty for all agendas. This is easy to check in some cases as when there is a Condorcet winner, and can also be veri- ed in some settings such as the three person divide-the-dollar game analyzed by Penn (2001). We leave the exploration of more subtle conditions guaranteeing nonemptyness for future research.

N ow we can establish the analog of T heorem 2 for the in ${ }^{-}$nite case.
Theorem 3 Consider an in nite X, a pro${ }^{-1}$ le of preferences $P 2 P^{x}$, and a P areto $e \pm$ cient voting rule V such that $M_{V}(a ; P)$ is nonempty for all agendas a 2 A . For any collection of sets of continuation equilibria $f C E v(a ; P) g_{a z A}$ (satisfying (CE1) and (CE2)), and any ${ }^{-}$nite a 2 A,

$$
\left[a^{0} 2 C E v(a ; P) V\left(a^{0} ; P\right) 1 / 2\left[b 2 M_{v}(a ; P) V(b ; P) ;\right.\right.
$$

and if consistency (CE3) is also satis ${ }^{-}$ed, then

$$
\left[a^{0} 2 C E_{V}(a ; P) V\left(a^{0} ; P\right)=\left[b 2 M_{V}(a ; P) V(b ; P):\right.\right.
$$

The proof of Theorem3 is provided in the appendix. Here, we provide the basic intuition. The proof of T heorem 2 exploited the possibility of backward induction from agendas a $2 \mathrm{~A}^{\mathrm{m}}$. N otice that if a is a maximal agenda, then all b2 A(a) can essentially be ignored. Hence, maximal agendas play the same role in the in^{-}nite setting that agendas in A^{m} play in the ${ }^{-}$nite environment.

6 Discussion of the De- nition of Equilibrium

Proposals to Stop the A genda or Seconds to Continue an A genda

Some procedures may allow an individual to propose a motion that voting take place immediately on the existing agenda. This motion is voted \yes" or \no", and a majority support can stop the existing agenda. A lternatively, a procedure may require at least two agents to support a proposal in order to add it to the agenda.

If either of these variations are present, it makes no di ®erence to the analysis, at least under sophisticated voting by successive elimination. Let us orer a heuristic argument for why Corollary 6 extends in this way.

We argue by induction. It is clearly true starting at some full length agenda. Suppose it is true starting at agendas of length at least $\mathrm{k}+1$. Consider an existing agenda a $2 \mathrm{~A}^{\mathrm{k}}, \mathrm{S}(\mathrm{a} ; \mathrm{P})=\mathrm{x}$, and individual i proposes the motion that voting take place immediately. If i's motion is defeated, then her proposal is irrelevant. On the other hand, if i 's motion is accepted, then x becomes the - nal outcome. This implies that a majority prefers x to any outcome that can be obtained by some further continuation equilibrium, which from the induction step and the corollary corresponds to the outcome of some $a^{0} 2 A(a) \backslash A^{m}$. If x already corresponds to such an outcome, then the claim is true. If not, then by the Shepsle-W eingast algorithm, there must be some alternative y z a such that y is preferred by a majority to x and such that y is the outcome under a continuation equilibrium $a^{0} 2 A(a) \backslash A^{m}$. This, however, implies that a majority would vote to continue rather than stop at x, which would be a contradiction. Thus the claim is true.

The argument for having a second agent move a proposal to make it part of an agenda is analogous, noting that if a majority prefer y to x, then at least two agents must prefer to follow the continuation equilibrium leading to y rather than stopping at x .
Modi- cations of Consistency
The notion of consistency (CE3) is one that produces a large set of equilibria relative to those which might be considered (witness Theorem 2 and Claim 1). We now consider a more stringent form of rationalizability, that in turn corresponds to a di ®erent form of consistency that includes fewer continuation equilibria.

We say that an agenda $a^{0}=(a ; x ;:::) 2 C_{V}^{+}(a ; P)$ is strongly rationalizable if there exists i 2 N such that for any y za and $\mathrm{y} \in \mathrm{x}$ there exists some $a^{\infty} 2 C E_{V}((a ; y) ; P)$ such that $V\left(a^{0}, P\right) R_{i} V\left(a^{\infty}, P\right)$, and if a $2 C E_{V}(a ; P)$ then also $V(a, P) R i V(a ; P)$.

Strong rationalizability only allows for an agenda ($a ; x ;:::$) which is a continuation of a to be supported only if there is some agent who does not prefer all equilibrium continuations of ($a ; y$) to those of ($a ; x$). The idea being that an agent who prefers all continuations of $(a ; y)$ to those of $(a ; x)$ would not proposex, but would instead propose y (or possibly some other alternative). This di ®ers from rationalizability, in that rationalizability allows some i to propose x if there is some alternative continuation that the agent ${ }^{-}$nds worse; but this does not consider the fact that the agent might prefer to propose something else in y's place.

We say that a collection of sets of continuation equilibria is strongly consistent if it satis ${ }^{-} \mathrm{es}^{25}$
(CE4) (Strong Consistency) If $\mathrm{a}^{0} 2 \mathrm{C}_{\mathrm{V}}^{+}(\mathrm{a} ; \mathrm{P})$ is strongly rationalizable, then $a^{0} 2 C E_{V}(a ; P)$. Conversely, if $a^{0}=(a ; x ;:::) 2 C E_{V}(a ; P)$ and either a $2 C E_{v}(a ; P)$ or $a^{\infty}=(a ; y ;:::) 2 C E_{v}(a ; P)$ for some $y \in x$, then a^{0} is strongly rationalizable.

N ote that from Theorem 1 we know that for Pareto e \pm cient rules continuation equilibria satisfying strong consistency (CE4) always are a subset of those satisfying consistency (CE3). Example 1 is easily seen to be one where this is a strict subset. However, that is an ine \pm cient voting rule. The following example shows that the selection may be strict even for sophisticated voting by successive elimination, where strong consistency results in a strict subset of the Banks' set.

Example 6

Let $X=f x_{1} ; x_{2} ; x_{3} ; x_{4} ; x_{5} g$ and $N=f 1 ; 2 ; 3 g$.
The preference pro ${ }^{-1}$ e is:

[^18]${ }^{2} \mathrm{X}_{1} \mathrm{P}_{1} \mathrm{X}_{3} \mathrm{P}_{1} \mathrm{X}_{2} \mathrm{P}_{1} \mathrm{X}_{4} \mathrm{P}_{1} \mathrm{X}_{5}$
${ }^{2} x_{5} P_{2} x_{3} P_{2} x_{4} P_{2} x_{1} P_{2} x_{2}$
${ }^{2} X_{2} P_{3} X_{4} P_{3} x_{5} P_{3} x_{1} P_{3} X_{3}$
Then, the induced tournament $T(P)$ is
${ }^{2} x_{4}$ beats x_{1} and x_{5}.
${ }^{2} x_{1}$ beats x_{2} and x_{3}.
${ }^{2} x_{2}$ beats x_{4} and x_{5}.
${ }^{2} x_{3}$ beats x_{2} and x_{4}.
${ }^{2} x_{5}$ beats x_{1} and x_{3}.
Then, $B S\left(f x_{0} g ; P\right)=X$. We want to show that if $C E\left(f x_{0} g ; P\right)$ satisfy (CE1), (CE2) and strong consistency, then $E O_{V}(a ; P)=f x_{1} ; x_{2} ; x_{5} g$.

First, note that if a $2 C_{S}^{+}\left(f x_{0} ; x_{1} g ; P\right)$, then $S(a ; P)=x_{4}$. For if a 2 $A\left(f x_{1} g\right)$, the possible outcomes are in $f x_{5} ; x_{4} g$. But since x_{4} beats x_{5}, (CE 2) implies that $S(a ; P)=x_{4}$ if a $2 C_{S}^{+}\left(f x_{0} ; x_{1} g ; P\right)$.

A nalogously, the following are true.
${ }^{2}$ If a $2 C_{S}^{+}\left(f x_{0} ; x_{2} g ; P\right)$, then $S(a ; P)=x_{1}$.
${ }^{2}$ If a $2 C_{S}^{+}\left(f x_{0} ; x_{5} g\right)$, then $S(a ; P)=x_{2}$.
${ }^{2}$ If a $2 C_{S}^{+}\left(f x_{0} ; x_{3} g\right)$, then $S(a ; P)=x_{5}$.
${ }^{2}$ If a $2 C_{S}^{+}\left(f x_{0} ; x_{4} g ; P\right)$, then $S(a ; P)=x_{3}$.
The proof is completed by showing that no one wants to propose x_{1} or x_{4} initially.

This must be true since 1 prefers to propose x_{2} initially. This guarantees choice of x_{1}, which is 1's most preferred element in X. Similarly, 2 and 3 prefer initial proposals of x_{3} and x_{5} respectively.

References

A usten-Smith, D. (1987), "Sophisticated Sincerity: Voting over Endogenous A gendas" , A merican P olitical Science Review, 81, pp 132329.

A usten-Smith, D. and J.S. B anks, (1999), P ositive Political T heory I : C ollective P reference, University of Michigan Press, A nn Arbor.

B anks, J.S. (1985), \Sophisticated Voting Outcomes and A genda Control," Social Choice and Welfare, 1, pp 295-306.

B anks, J.S. and F. Gasmi (1987), \ Endogenous A genda Formation in T hrœ-Person Committees", Social Choice and Welfare, 4, pp 133-152.

B aron, D. and J. Ferejohn (1989) \B argaining in Legislatures," American P olitical Science Review, vol. 83, pp 1181-1206.

B esley, T . and S. C oate (1997), \A n E conomic M odel of Representative Democracy, Quarterly J ournal of Economics, 112, pp 85-114.

Chwe, M. S-Y. (1994), \Farsighted Coalitional stability", J ournal of E conomic Theory, 63, pp 299-325.

Denzau, A., W. Riker, and K.A. Shepsle (1985), \Farquharson and Fenno: Sophisticated Voting and Home Style," A merican P olitical Science Review, vol. 79, pp 1117-1135.

Dutta, B., M.O. J ackson and M . Le Breton (1998), \Voting by Successive Elimination and Strategic Candidacy," forthcoming in the J ournal of E conomic Theory.

Dutta, B., M.O. J ackson and M. Le Breton (2001), \Strategic Candidacy and Voting Procedures," Econometrica, Vol. 69, pp 1013\{1037.

Farquharson, R. (1969), Theory of V oting, New Haven: Y ale University Press.

Ferejohn, J., Fiorina, M. and R.D. M cK elvey (1987), "Sophisticated Voting and A genda Independence in the Distributive Politics Setting", A merican J ournal of Political Science, 31, pp 169-194.

Groseclose, T. and K rehbiel, K. (1993), "On the Pervasiveness of Sophisticated Sincerity", Chapter 10 in: W.A. Barnett, M.J. Hinich, and N.J. Schoeld (eds), Political Economy: Institutions, Competition, and Representation, Cambridge University Press, pp 247-277.

L aslier, J .F . (1997), Tournament Solutions and M ajority V oting, Berlin/ Heidelberg: Springer-Verlag.

M cK elvey, R.D. (1976), \Intransitivities in Multidimensional Voting M odels and some Implications for A genda C ontrol," J ournal of Economic Theory, Vol. 12, pp 472\{482.

M cK elvey, R.D. (1979), \G eneral C onditions for Global Intransitivities in Formal Voting Models," E conometrica, Vol. 47, pp $1085\{1112$.

M cK elvey, R.D. and Niemi, R.G. (1978), "A M ultistage Game Representation of Sophisticated Voting for Binary Procedures", Journal of E conomic Theory, 18, 1-22.

M iller, N.R., Grofman, B and S.L. Feld (1990), \Cycle Avoiding Trajectories, Strategic A gendas, and the Duality of Memory and Foresight: An Informal Exposition", Public Choice, 64, pp 265-277.

Ordeshook, P. (1993), "The Development of Contemporary Political Theory", Chapter 4 in: W.A. B arnett, M.J. Hinich, and N.J. Schoeld (eds), Political Economy: Institutions, Competition, and Representation, Cambridge University Press, pp 71-104.

Ordeshook, P. and Schwartz (1987), \A gendas and the C ontrol of Political Outcomes", A merican Political Science Review, 81, pp 179-200.

O sborne, M.J. and A. Slivinski (1996), \A Model of Political Competition with Citizen Candidates," Quarterly J ournal of Economics, 111, pp 65-96.

Penn, E.M. (2001), \A Distributive N-A mendment Game with Endogenous A genda Formation," mimeo: Caltech.

Plott, C. (1967), \A Notion of Equilibrium and its Possibility under M ajority Rule, A merican E conomic R eview, Vol. 57, pp 787\{806.

Riker, W.H. (1962), The Theory of Political Coalitions, New Haven, Y ale University Press.

Shepsle, K. and B. Weingast (1984), \U ncovered Sets and Sophisticated V oting Outcomes with Implications for A genda Institutions," A merican J ournal of Political Science, 28, pp 49-74.

A ppendix

Let

$$
E O_{V}(a ; P)=\left[a_{a} C_{E} E_{V}(a ; P) V(a ; P):\right.
$$

We ${ }^{-}$rst state and prove a lemma which will be used repeatedly.

Lemma 2 Consider any P $2 P$ and a $2 A$. Supposethat $\left[b 2 A(a) \backslash A^{m} V(b ; P) 1 / 2\right.$ $D(P)$, for some $D(P) 1 / 2 X$ such that if $x ; y 2 X$, and $x Z D(P) ; y 2 D(P)$ then 9 i 2 N such that $\mathrm{yP}_{\mathrm{i}} \mathrm{X}$. Under (CE1) and (CE2) $E O_{V}(\mathrm{a} ; \mathrm{P}) 1 / 2 \mathrm{D}(\mathrm{P})$.

Proof of Lemma 2: We prove this by induction on the cardinality of a. If a $2 A^{m}$, then $C E_{V}(a ; P)=f a g$, and so the assertion must be true. Suppose that for some $K<m$, the claim is true for each $k>K$ and a $2 A^{k}$. We show that the claim is true for a $2 A^{K}$.

From the induction hypothesis it follows that $\mathrm{CE}_{\mathrm{V}}^{+}(\mathrm{a} ; \mathrm{P})^{1 / 2} \mathrm{D}(\mathrm{P})$, and so from (CE1) we only need to show that if $V(a ; P) Z D(P)$, then a Z $C E_{V}(a ; P)$. Consider any $x z a$, and $b 2 C E_{V}((a ; x) ; P) 1 / 2 D(P)$. Since $V(a ; P) Z D(P)$, it follows from the properties of $D(P)$ that $V(b ; P) P i V(a ; P)$ for some i. (CE2) then implies that a $Z C_{V}(a ; P)$, as required.
Proof of Theorem 1: Fix a Pareto e \pm cient V and a prole P .
The proof that $V\left(a^{0} ; P\right)$ is Pareto $e \pm$ cient for any a^{0} in $C E_{V}(a ; P)$ and a 2 A follows directly from Lemma 2, by letting $D(P)$ in the lemma be the set of P areto $\mathrm{e} \pm$ cient alternatives in X.

To complete the proof of the theorem, we show that (CE1), (CE2) and (CE3) can be satis ${ }^{-}$ed if and only if26
$C E_{V}(a ; P)=\begin{array}{ll}\left(\begin{array}{l}P E_{V}(a ; P) \\ P E_{V}(a ; P)\end{array}\right. & \text { if } V(a ; P) R_{i} V\left(a^{0}, P\right) \text { for all } i \text { and } a^{0} 2 C_{V}^{+}(a ; P) \\ \text { if } V\left(a^{0} ; P\right) P i V(a ; P) \text { for some } i \text { and } a^{0} 2 C_{V}^{+}(a ; P) .\end{array}$
It is straightforward to check if $\mathrm{CE}_{v}(\mathrm{a} ; \mathrm{P})$ is de ${ }^{-}$ned above then (CE1), (CE2) and (CE 3) are satis ${ }^{-}$ed. So we show the converse.

Consider $\mathrm{CE}_{\mathrm{V}}(\mathrm{a} ; \mathrm{P})$ satisfying (CE 1), (CE 2) and (CE3). The proof proceeds by induction. Note that for any a $2 A^{m}, C E_{V}(a ; P)=f a g$ and that by the Pareto e \pm ciency of V the claim follows directly. So, consider some

[^19]$K<m$ and suppose that the claims are true for any agenda in A^{k} for any $k>K$, and let us show that they hold for a $2 A^{K}$.

First, consider the case where $\mathrm{V}(\mathrm{a} ; \mathrm{P}) \mathrm{R}_{\mathrm{i}} \mathrm{V}\left(\mathrm{a}^{0} ; \mathrm{P}\right)$ for all i and $\mathrm{a}^{0} 2 \mathrm{C}_{\mathrm{V}}^{+}(\mathrm{a} ; \mathrm{P})$. In this case it follows from (CE 2) that a $2 \mathrm{CE}(\mathrm{a} ; \mathrm{P})$. By the induction step, any $\mathrm{a}^{0} 2 \mathrm{C}_{V}^{+}(\mathrm{a} ; \mathrm{P})$ must result in a Pareto $\mathrm{e} \pm$ cient outcome, and so it follows that a^{0} is rationalizable relative to a and so by (CE 3), $a^{0} 2 C E_{V}(a ; P)$. This implies that $P E_{V}(a ; P) 1 / 2 C E_{v}(a ; P)$. Also, from the induction step $V\left(a^{0} ; P\right)$ is Pareto $e \pm$ cient (relative to X) for any $a^{0} 2 C_{V}^{+}(a ; P)$, and so $C E_{V}(a ; P) 1 / 2 P E_{V}(a ; P)$. It follows that $C E_{V}(a ; P)=P E_{V}(a ; P)$.

Next, consider the case where $\mathrm{V}\left(\mathrm{a}^{0} ; \mathrm{P}\right) \mathrm{P}, \mathrm{V}(\mathrm{a} ; \mathrm{P})$ for some i and $\mathrm{a}^{0} 2$ $C_{V}^{+}(a ; P)$. In this case, by (CE2) a $Z=E_{V}(a ; P)$. Thus, by nonemptiness (CE1), there is some $a^{0} 2 C E_{V}(a ; P)$, where $a^{0} G$ a. By our induction any $\mathrm{a}^{\infty} 2 \mathrm{C}_{\mathrm{V}}^{+}(\mathrm{a} ; \mathrm{P})$ is Pareto $\mathrm{e} \pm$ cient, and so is rationalizable relative to a^{0}, and so by (CE3) $a^{\oplus} 2 C E_{V}(a ; P)$. This implies that $P E_{V}(a ; P)$ na $1 / 2$ $C E_{V}(a ; P)$. Also, from the induction step $V\left(a^{a} ; P\right)$ is Pareto $e \pm$ cient for any $a^{0} 2 C_{V}^{+}(a ; P)$, and so $C E_{V}(a ; P) 1 / 2 P E_{V}(a ; P) n a$. It follows that $C E_{V}(a ; P)=P E_{V}(a ; P) n a . \|$
Proof of Claim 1: Take any Pareto $e \pm$ cient x such that $x=V(a ; P)$ for some $a=\left(a_{1} ;::: ; a_{m}\right)$. We prove by induction on k that a $2 C_{V}\left(\left(a_{1} ;::: ; a_{k}\right) ; P\right)$ for all $k=1 ;:::: ; m$. The proof is obvious for $k=m$.

Now, assume that the assertion holds for $\mathrm{k}>\mathrm{K}$ where $\mathrm{K}<\mathrm{m}$, let us show it holds for K. By the Pareto e \pm ciency of V, given any $y \in V(a ; P)$, there exists i such that $V(a ; P) R_{i} y$. By theinduction step, a $2 \mathrm{C}_{V}^{+}\left(\left(\mathrm{a}_{1} ;:::: ; \mathrm{a}_{\mathrm{K}}\right) ; \mathrm{P}\right)$, and so (CE3) then directly implies that a $2 \operatorname{CE}_{V}\left(\left(a_{1} ;::: ; a_{k}\right) ; P\right)$.
Proof of Theorem 2: We ${ }^{-}$rst show the ${ }^{-}$rst claim in the theorem. We use Lemma 2. Choose a 2 A and any prole $\mathrm{P} 2 \mathrm{P}^{\text {a }}$. Let $\mathrm{D}(\mathrm{P})=$ $\left[b_{2 A}(a) \backslash A^{m} V(b, P)\right.$. We show that $D(P)$ satis ${ }^{-}$es the conditions of lemma2.

Take any y $2 \mathrm{D}(\mathrm{P})$ and $\mathrm{x} \underset{\mathrm{Z}}{\mathrm{D}}(\mathrm{P})$. Since V is Pareto $\mathrm{e} \pm$ cient, y is not P areto dominated by x. Given that $P 2 P^{a}$, this means that there is i $2 N$ such that $y P_{i} x$.

Since $D(P)$ satis ${ }^{-}$es the required condition from the lemma, it follows that $E O_{V}(a ; P) 1 / 2\left[{ }^{1} 2 A(a) \backslash A^{m} V(b ; P)\right.$, as claimed in the theorem.

Next, we show that equality holds if consistency is satis ${ }^{-}$ed. N ote that since V is P areto $\mathrm{e} \pm$ cient, the outcomes from full length extensions of a must be Pareto e \pm cient. It follows from Claim 1 that (CE1), (CE2) and (CE 3) imply that the equilibrium continuation outcomes following a coincide with
the outcomes of full length agenda continuations of a.]
We now show the claim that the algorithm in Theorem 2 de- nes a minimal set of consistent continuation equilibria, even when V may not be Pareto $\mathrm{e} \pm$ cient.

Consider the following de- nition of smallness on continuation equilibria. Given two collections of sets of continuation equilibria $f C E_{V}(a ; P) g_{a 2 A}$ and $f C E_{V}^{0}(a ; P) g_{a 2 A}$, we say that $f C E_{V}(a ; P) g_{a 2 A}$ is smaller than $f C E_{V}^{0}(a ; P) g_{a 2 A}$ if $C E_{V}(a ; P) 1 / 2 C E_{V}^{0}(a ; P)$ for all a $2 A$.

The minimal set of continuation equilibria may be identi ${ }^{-}$ed as follows, as we shall prove below.

We de- ne $C E_{V}^{\mathfrak{Z}}(\mathrm{a} ; \mathrm{P})$ by induction on the length of a. Consider a 2 A of length k and let

$$
C_{V}^{\alpha+}(a ; P)=\left[x z_{a} C E_{V}^{\alpha}((a ; x) ; P)\right.
$$

Then we construct $C_{1 V}^{x}(a ; P)$ as follows.
-E ither $V(a ; P) R_{i} V\left(a^{0} ; P\right)$ for all $a^{0} 2 C_{V}^{a+}(a ; P)$ and for all i $2 N$. Then $C_{1 v}^{a}(a ; P)=f a g$
-Or $\mathrm{V}\left(\mathrm{a}^{0}, \mathrm{P}\right) \mathrm{P}_{\mathrm{i}} \mathrm{V}(\mathrm{a} ; \mathrm{P})$ for some $\mathrm{a}^{0} 2 \mathrm{C}_{\mathrm{V}}^{\mathrm{a}}(\mathrm{a} ; \mathrm{P})$ and some i 2 N . Let $C_{i}(a ; P)$ be the subset of $C_{V}^{x+}(a ; P)$ consisting of the agendas bin $C_{V}^{x+}(a ; P)$ such that $V(b ; P) R_{i} V(a ; P)$ for all $a^{0} 2 C_{V}^{a+}(a ; P)$. Then $C_{1 V}^{a}(a ; P)=$ [${ }_{i 2 N} C_{i}(a ; P)$.

Then $C_{2 v}^{x}(a ; P)$ is d^{-}ned as the set
n
$a^{0} 2 C_{V}^{\alpha_{+}}(a ; P): V\left(a^{0}, P\right) R_{i} V(b, P)$ for some $b 2 C_{1 V}^{a}(a ; P)$ and some i $2 N^{0}$
Sincet he set $C_{V}^{a+}(a ; P)$ is ${ }^{-}$nite, there exists j such that $C_{j V}^{p}(a ; P)=C_{j+1 v}^{x}(a ; P)$: De e^{-}ne $C V_{V}^{g}(a ; P)$ as such a set.

It follows quite easily from the above construction that $f C E_{V}^{g}(a ; P) g_{a 2 A}$ is a collection of sets of consistent continuation equilibria.

Next, let $f C E=\sqrt{\text { ma }}(a ; P) g_{a 2 A}$ be de ${ }^{-}$ned inductively by
$C E_{V}^{x a x}(a ; P)=\begin{aligned} & P E_{V}(a ; P) \text { if } V(a ; P) R_{i} V\left(a^{a} ; P\right) 8 i 2 N \text { and } 8 a^{0} 2 C_{V}^{x a+}(a ; P) \\ & P E_{V}(a ; P) \text { na otherwise }\end{aligned}$
Claim 2 There exists a unique smallest collection of sets of consistent continuation equilibria which is given by $f C E_{V}^{\sharp g}(a ; P) g_{a 2 A}$ above, and this coincides with $f C E_{V}^{a x}(a ; P) g_{a 2 A}$.

Proof of Claim 2:

Step 1: $f C E E_{V}^{\mathrm{mad}}(\mathrm{a} ; \mathrm{P}) \mathrm{g}_{\mathrm{a} 2 \mathrm{~A}}$ is a collection of sets of consistent continuation equilibria and $C E v(a ; P)=C E V(a ; P)$ for all a $2 A$ and all P $2 P$.

It is straightforward to see that $f C E=\sqrt{\mathrm{za}}(a ; P) g_{a 2 A}$ is a collection of sets of consistent continuation equilibria .We prove the above identity by induction over \# a. A ssume that $C E_{V}^{\mathrm{xam}}(\mathrm{a} ; \mathrm{P})=\mathrm{CE}_{\mathrm{V}}^{\mathfrak{g}}(\mathrm{a} ; \mathrm{P})$ for all a such that $\# \mathrm{a}>\mathrm{K}$ and let a be such that $\# \mathrm{a}=\mathrm{K}$.

A ssume ${ }^{-}$rst that a $\left.2 C E v a ; P\right)$. Then it follows from the induction hypothesis that $V(a ; P) R_{i} V\left(a^{0} ; P\right) 8 i 2 N$ and $8 a^{0} 2 C_{V}^{a+}(a ; P)=C_{V}^{\mathrm{ma+}}(a ; P)$ and therefore from (CE2), a $2 C E_{V}^{g}(a ; P)$. We prove similarly that if a 2 $C E_{V}^{\mathfrak{g}}(a ; P)$, then a $2 C E_{V}^{x a}(a ; P)$. In that case, if $b 2 C E_{V}^{x a}(a ; P)$, then b2 CE ${ }_{V}^{\mathfrak{q}}(\mathrm{a} ; \mathrm{P})$ as there exists at least one i 2 N such that $\mathrm{V}(\mathrm{b}, \mathrm{P}) \mathrm{R}_{\mathrm{i}} \mathrm{V}(\mathrm{a}$; P$)$. Similarly, if b $2 C E_{V}^{a}(a ; P)$, then $b 2 C E_{V}^{m a}(a ; P)$. A ssume indeed on the contrary that there exists c $2 \mathrm{C}_{V}^{\text {na+ }}(\mathrm{a} ; \mathrm{P})$ such that $\mathrm{V}(\mathrm{c} ; \mathrm{P}) \mathrm{P}_{\mathrm{i}} \mathrm{V}(\mathrm{b} ; \mathrm{P}) 8 \mathrm{8} 2$ N. Since from the induction hypothesis, c $2 C_{V}^{a+}(a ; P)$; we contradict our construction of $C E{ }_{V}^{\dot{\prime}}(a ; P)$.

The proof of equality in the case where a $Z C E_{V}^{\mathrm{nax}}(\mathrm{a} ; \mathrm{P})$ is similar.
Step 2: Step 2: $f C E_{V}^{g}(a ; P) g_{a 2 A}$ is the unique smallest collection of sets of consistent continuation equilibria.

This follows from Claim 1 and the characterization of $f C E_{V}^{g}(a ; P) g_{a 2 A}$ in Step 1.【
Proof of Proposition 1:
Both assertions in the proposition follow from Lemma 2. First, let $D(P)=T C(P)$. Since $T C(P)$ satis es the requirements of $D(P)$ in the lemma, it follows from that if V is top cycle consistent, then $E O_{V}(a ; P) 1 / 2$ TC(T(P)).

To prove the second statement concerning Condorcet consistency, let P be any prole with a Condorcet winner, say x. Then, let $D(P)=f x g$. Since $D(P)$ satis ${ }^{-}$es the requirements of the lemma, the statement follows. \square
Proof of Corollary 3: Note the following observations: (i) A ny y which beats 0 must have at least $\frac{n+1}{2}$ projects built. (ii) Any $\times 2 X^{\text {a }}(P)$ beats any y such that $y T(P) 0$ and $y z X^{x}(P)$ (as then y must involve at least $\frac{n+1}{2}$ projects and yet be more expensive than x).
U sing these observations, it follows from (i) than only 0 or some choice of at least $\frac{n+1}{2}$ projects can be the outcome of a full length agenda. From (ii) it follows that only choices in $X^{x}(P)$ can be the outcome of a full length agenda
in $A\left(a_{0}\right)$. This implies that only outcomes in $X^{x}(P)$ (if it is nonempty) can be the outcomes of full length agendas in $A\left(a_{0}\right)$. Next note that no element in $X^{x}(P)$ beats any other element in $X^{x}(P)$, and so the ${ }^{-}$rst one appearing in the agenda will be the outcome. This means that each element in $X^{\mathbb{x}}(P)$ is the outcome of at least one full length agenda in $A\left(a_{0}\right)$. The result then follows from Corollary 2. II

Proof of Lemma 1: Let us show that setting $C E_{v}(a ; P)=M(a ; P)$ for each a satis ${ }^{-}$es (CE1)-(CE3).

It follows from the de ${ }^{-}$nition of maximal agenda that if a $2 M_{V}(a ; P)$ then $M_{V}(a ; P)=A(a)$ and moreover, that $M_{V}(b ; P)=A(b)$ for all $b 2 A(a)$. Then it easily follows that (CE1)-(CE 3) are satis ${ }^{-}$ed starting at any maximal a at P. So, consider a 2 A that is not maximal. B y the de nition of $\mathrm{CE}_{\mathrm{v}}(\mathrm{a} ; \mathrm{P})$, it follows that $C_{V}^{+}(a ; P)=\left[x Z_{a}((a ; x) ; P)\right.$. It follows from the de ${ }^{-}$nition of maximality that $\left[x z_{a} M_{V}((a ; x) ; P)=M_{V}(a ; P)\right.$. So, $C E_{V}(a ; P)=$ $C_{V}^{+}(a ; P)=M_{V}(a ; P)$. It then follows directly (noting nonemptiness of M) that (CE1) is satis ${ }^{-}$ed. Next, using Pareto e \pmciency of V, since a Z $M_{V}(a ; P)$, there must be $b 2 M_{V}(a ; P)$ such that $V(b ; P) P_{i} V(a ; P)$ for some i. Since a $Z M_{V}(a ; P)$, we know that a $Z C E_{V}(a ; P)$, which then satis-- es (CE2) since we have established that $V(b, P) P_{i} V(a ; P)$ for some i and b $2 M_{V}(a ; P)=C_{V}^{+}(a ; P)$. Finally, note that given Pareto $e \pm$ ciency of V, any b $2 \mathrm{M}_{\mathrm{V}}(\mathrm{a} ; \mathrm{P})$ must be Pareto optimal (if not, some y Pareto dominates $x=V(b ; P)$, which implies that $y Z=b$, but then by Pareto optimality $\mathrm{V}((\mathrm{b} ; \mathrm{y}) ; \mathrm{P}) \boldsymbol{G} \mathrm{x}$ which is a contradiction). It then follows that for all distinct pairs $\mathrm{b}, \mathrm{c} 2 \mathrm{M}_{\mathrm{V}}(\mathrm{a} ; \mathrm{P})$, there exist $\mathrm{i} ; j$ with $b R_{i} \mathrm{c}$ and $c R_{j} b$ It then follows that all of $C_{V}^{+}(a ; P)=M_{V}(a ; P)=C E_{V}(a ; P)$ is rationalizable and that (CE3) holds. 【

Proof of Theorem 3: Consider an in ${ }^{-}$nite X , a Pareto $\mathrm{e} \pm$ cient voting rule V and a prole of preferences $P 2 P$ such that $M_{V}(a ; P)$ is nonempty for each a 2 A .

The remaining part of the proof is identical to that of Theorem 2 after noting that Lemma 2 and Claim 1 remain valid after someslight modi- cation. That is, if [b2 $A(a) \backslash A^{m} V(b ; P)$ is replaced by [b2A $(a) \backslash M_{v}(a ; P) V(b ; P)$ in Lemma 2, the modi ${ }^{-}$ed statement remains true. Similarly, Claim 1 can be modi ed to show that if V is Pareto $\mathrm{e} \pm$ cient and $\mathrm{x}=\mathrm{V}(\mathrm{b} ; \mathrm{P})$ for some $\mathrm{b} 2 \mathrm{M}_{\mathrm{V}}(\mathrm{a} ; \mathrm{P})$ for some a, then a $2 E O_{v}(a ; P)$. The details are left to the reader.

[^0]: ${ }^{\text {m }}$ D utta is at the Indian Statistical Institute, New Delhi 110016, India, and the University of Warwick, Coventry CV 4 7AL, England (B.Dutta@warwick.ac.uk). Jackson is at the division of Humanities and Social Sciences, 228-77, California Institute of Technology, Pasadena, California 91125, USA, (jacksonm@hss.caltech.edu). Le Breton is at Universit $\$$ d'Aix-M arseille, 14 avenue Jules Ferry, Aix en Provence, 13621, France (lebreton@univaix.fr). Financial support under NSF grant SES-9986190 and an RTDF grant from the University of Warwick are also gratefully acknowledged.

[^1]: ${ }^{1}$ See Austen-Smith and Banks (1999) for a nice discussion of this literature and extensions of MCK elvey's theorem.

[^2]: ${ }^{2}$ A nother distinction is that our approach is based on one of inductively de- ning equilibrium continuations, and so equilibria are de- ned in a manner that can be thought of as analogous to subgame perfect equilibrium (but without a game form). Instead the Banks and Gasmi (1987) and Penn (2001) formulations use a \backslash maximin-Stackelberg" based equilibrium notion.

[^3]: ${ }^{3} E$ ven if one allows candidates to be nominated, they usually have the option to decline to run.
 ${ }^{4}$ A usten-Smith (1987) and Groseclose and K rehbiel (1993) also examine equilibrium agenda formation under voting by successive elimination. Their approach does not have the myopic problem of M iller, Grofman, and Feld; but they avoid this by assuming a ${ }^{-}$xed ordering over individuals who can each make a single proposal. However, their focus is on analyzing sophisticated sincerity, and not on characterizing equilibrium agendas more broadly.

[^4]: ${ }^{5}$ As a note, our use of the word consistency has no relationship to that of Chwe's consistent sets.

[^5]: ${ }^{6} \mathrm{~A}$ situation which approximately ${ }^{-}$ts this one is that of the Powell amendment discussed by Denzau, Riker, and Shepsle (1985) and others. The alternative x would be the status quo of no U.S. federal funding of local public schools. The bill z under consideration

[^6]: in the H ouse of Representatives was one that would introduce some federal funding of local public schools. The amendment to the bill y introduced by Powell was to deny federal funding to public schools that practiced segregation (this was in the 1950's). As D enzau, Riker and Shepsle argue, sincere voting could be explained by the di \pm culty in explaining voting against the Powell amendment to one's constituency. In fact, the situation had some mixture of sincere and sophisticated voting, as some representatives who opposed funding (and supported segregation) may have voted for the P owell amendment in the - rst round and then against it in the second round. So there may have been some conservative representatives who had the preferences of voter 1 except with z and y reversed, but who when voting strategically would vote the same as voter 1 would vote when voting sincerely.
 ${ }^{7}$ Interestingly, in this example if we require a second agent to support a proposal in order for it to become part of the agenda, neither of the remaining agents would second the proposal. This turns out to be an artifact of the sincere voting and also the fact that there is only one agent with any given preference proe. We discuss how this is not a problem for sophisticated voting below.

[^7]: ${ }^{8} \mathrm{~W}$ e remark that if a $2 \mathrm{~A}^{\mathrm{m}}$, then $\mathrm{C}_{\mathrm{v}}^{+}(\mathrm{a} ; \mathrm{P})=$; . Under (CE1) and (CE2) below, this implies that $C E_{V}(a ; P)=f$ ag if a $2 A^{m}$.

[^8]: ${ }^{9}$ Of course, this is similar to a de- nition such as subgame perfect equilibrium where continuation strategies must be speci- ed for each possible subgame.

[^9]: ${ }^{10}$ Theorem 1 also holds if one replaces P areto $e \pm$ ciency everywhere by weak P areto $\mathrm{e} \pm$ ciency, where an alternative $\times 2 \mathrm{~B} 1 / 2 \mathrm{X}$ is weakly P areto $e \pm$ cient relative to P and B if there does not exist y 2 B such that $\mathrm{yP} \mathrm{P}_{\mathrm{i}} \mathrm{x}$ for all i 2 N . This weakens the assumptions of the theorem, but then also the conclusions.

[^10]: ${ }^{11}$ T o see an example of why this condition is needed in the theorem, consider a situation where all voters are indi®erent between all alternatives, and when there is a tie in voting the last item in the agenda wins. It can be an equilibrium to stop at any agenda (including the status quo) given full indi®erence, and yet the status-quo can never be reached by a full length agenda.

[^11]: ${ }^{12}$ In fact we prove stronger statements in the appendix, showing that even for ine \pm cient voting rules there is a minimal consistent set of equilibria (in terms of set inclusion), which corresponds to the de- nition under the algorithm above. It is under Pareto e \pm ciency that this must coincide with all consistent sets of equilibria.
 ${ }^{13}$ Since we show in the appendix that there is a minimal consistent set of equilibria (in terms of set inclusion), this must hold for the minimal consistent set of equilibria.

[^12]: ${ }^{14}$ See Laslier [11] for an illuminating account of the principal results in the vast literature on tournaments.

[^13]: ${ }^{15}$ T he Shepsle-Weingast al gorithm was de- ned for the case where $T(P)$ is complete. Our procedure of breaking possible ties in the majority preference relation coming earlier in the ordering a ensures that the sophisticated outcome can be derived from a straightforward variation on the algorithm derived by Shepsle and Weingast.

[^14]: ${ }^{16} \mathrm{~A} n$ easy way to see this is simply to extend the set of alternatives to include some x_{0} such that all alternatives are preferred to x_{0} by all agents under P, and then set $a=f x_{0} g$ and then apply the theorem as it stands.
 ${ }^{17}$ T his assumption is not necessary. All that matters is that the legislators agree about the relative rankings of how costly (in terms of how much they each pay) di Berent projects are.

[^15]: ${ }^{18} 0$ ne might also term this myopic voting. Note, however, that this corresponds to sophisticated voting under the following alternative voting rule. That is important, as otherwise there would a schizophrenia between sophisticated (forward looking) agenda formation and myopic voting, and this exercise would only serve as a comment on the chaos literature. The closely related voting procedure for which this is sophisticated is as follows. On an agenda $a=\left(x_{1} ;::: ; x_{K}\right)$, select x_{1} unless a majority votes to move on to x_{2}; then select x_{2} unless a majority votes to move on to x_{3}, and so forth. Sophisticated voting on this rule can be solved as follows. If one gets to the last decision of whether or not to select $X_{K_{i} 1}$ or move on, then the vote will be a sincere vote between x_{k} and $x_{K_{i} 1}$. A nticipating this, the previous vote is a sincere vote between $x_{K_{i} 2}$ and the sincere winner between x_{K} and $x_{K_{i} 1}$. Rolling this back up the voting tree, this is solved exactly as a sincere vote by successive elimination.
 ${ }^{19}$ N ote that sophisticated behavior in voting by successive elimination can preclude some alternatives from the top cycle as ever being equilibrium outcomes as we already saw in Corollary 2.
 ${ }^{20} \mathrm{~A}$ recipe is as follows. Find an ordering of the K alternatives in the top cycle $\mathrm{x}=$ $x_{1} ; x_{2} ;::: ; x_{K}$, such that $x_{i} T(P) x_{i+1}$ for each $i<K$. Such an ordering always exists. Consider any agenda where the top cycle alter natives maintain this relative ordering and the other alternatives fall in any place. Sincere vot ing by successive elimination will lead to x. The second variation is to switch the position of X_{K} and $x_{K}{ }_{1}$, which does not a Rect

[^16]: ${ }^{22}$ Explicitly, the agendas leading to an outcome of x_{1} are $f x_{0} ; x_{1} ; x_{2} ; x_{3} ; x_{5} ; x_{4} g, f x_{0} ; x_{1} ; x_{2} ; x_{3} ; x_{4} ; x_{5} g, f x_{0} ; x_{1} ; x_{2} ; x_{3} ; x_{4} g, f x_{0} ; x_{1} ; x_{2} ; x_{4} ; x_{3} g$, $f x_{0} ; x_{1} ; x_{2} ; x_{3} g, f x_{0} ; x_{1} ; x_{3} ; x_{2} g, f x_{0} ; x_{1} ; x_{2} g, f x_{0} ; x_{2} ; x_{1} g$, and $f x_{0} ; x_{1} g$.
 ${ }^{23} \mathrm{~B}$ y reasoning similar to that above, it is easily checked that if x_{5} is added next, then x_{4} would be also added next in equilibrium.

[^17]: ${ }^{24}$ Here we could extend a voting rule V to be de- ned over in ${ }^{-}$nite agendas, but it is not necessary. For the interested reader, one way of de ${ }^{-}$ning V over in ${ }^{-}$nite agendas is as follows. Consider an in ${ }^{-}$nite a, and let a_{k} be the agenda consist ing of the ${ }^{-}$rst k proposed alternatives. If there exists some K such that $V\left(a_{k} ; P\right)=V\left(a_{k} ; P\right)$ for all k, K, then de ${ }^{-}$ne $V(a ; P)=V\left(a_{k} ; P\right)$. Have some rule for assigning $V(a ; P)$ otherwise, such as ${ }^{-}$xing a status quo x and if voting never resolves itself then the status quo stays in place.

[^18]: ${ }^{25}$ W hen we modify (CE3) to (CE4), we might also consider adding another condition, which was implied under (CE1), (CE2) and (CE3), but not under (CE1), (CE2) and (CE4). The condition is (5) If $(a ; x ;:::) 2 C E_{v}(a ; P)$ then $C E_{v}((a ; x) ; P) 1 / 2 C E v(a ; P)$. This is irrelevant in the discussion below.

[^19]: ${ }^{26}$ Note that in the second case it must be that $P E_{V}(a ; P)$ na is nonempty.

