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1 Introduction
The importance of agenda formation in a wide variety of settings, ranging
from committees to popular elections, is self-evident. In fact, in some leg-
islative settings where the voting on speci¯c bills is highly predictable, one
might argue that the most interesting strategic interaction takes place in the
formation of the agenda.

Indeed, the wide literature that analyzes various aspects of voting recog-
nizes the importance of the agenda, and has shown how important it can be
(e.g., McKelvey (1976, 1979)). Nevertheless, we still lack tractable models
of agenda formation, and a detailed understanding of how the formation of
the agenda ultimately a®ects the outcome of voting. To quote Ordeshook
(1993):

More problematic is the issue of endogenous agendas, the process whereby
agendas are formed via the sequential introduction and labeling of alter-
natives to be voted on. ... The particular problem is that to apply game
theory we must provide a game form that speci¯es precisely the identity
of decision makers, the sequence with which they make decisions, and
the information at their disposal when they act. And although agenda
voting, like simple descriptions of elections, lends itself readily to the
construction of such form, the processes whereby agendas are formed is
far less structured and, thereby, less amenable to unambiguous game-
theoretical analysis.

Ordeshook's statement points out the di±culty of modeling agenda formation
stemming from the lack of a clearly de¯ned game form.

In this paper we provide a model of agenda formation, and in particular
one that does not rest on a speci¯c game form or protocol. The way in which
we do this is to examine the continuation equilibria that might extend from
any given agenda. We do this inductively, de¯ning sets of possible contin-
uations from any given agenda up to some point, and imposing sequential
rationality.

The main way in which we are able to make progress in de¯ning equilib-
rium agenda formation without reference to a speci¯c protocol is through a
simple observation that ends up having powerful implications. That simple
observation concerns when it is possible to stop at some agenda under an
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equilibrium: It is an equilibrium to stop at some agenda only if no agent
prefers any continuation equilibrium. We show that the sequential rational-
ity and stopping conditions alone provide strong conclusions for what the set
of equilibrium agendas can include.

In particular, we show that if a voting rule always selects an outcome
that is Pareto e±cient relative to the agenda, then sequential rationality and
stopping conditions imply that equilibrium agendas will result in voting out-
comes that are Pareto e±cient overall. Moreover, one of our main results
states that for Pareto e±cient voting rules the equilibrium outcomes will al-
ways be a subset of what might arise from considering the set of complete
agendas (including all outcomes). This result turns out to allow us to make
fairly sharp predictions concerning equilibrium agendas in many settings.
For example, if the voting rule does not depend on the speci¯c order of the
agenda, then equilibrium agendas result in a unique outcome which is that
when all alternatives are included in the voting. This also has important im-
plications for voting rules where the order of the agenda does matter, such as
the well-studied example of voting by successive elimination. There we show
that equilibrium agendas always result in outcomes that lie in the Banks'
set. Similarly, for voting rules that always pick outcomes that lie in the top
cycle of the alternatives on the agenda, we show that the equilibrium agendas
must result in outcomes that lie in the top-cycle of all alternatives. So, if for
instance, a Condorcet winner exists and the voting rule is Condorcet consis-
tent, then all equilibrium agendas include (and thus result in) the Condorcet
winner.

While sequential rationality and stopping conditions already have a sub-
stantial impact on identifying agendas, we can impose further conditions to
produce more speci¯c equilibrium sets and predictions. We also examine
a consistency condition which requires that if one continuation is an equi-
librium, and some agent prefers another continuation (which would be an
equilibrium if the agenda is extended by the addition of one alternative),
then this second continuation must also be an equilibrium. The converse
is also imposed: unless there is a unique equilibrium agenda, all equilibrium
agendas must be rationalizable in that at least some agent must weakly prefer
them to some other equilibrium continuation. In the context of Pareto e±-
cient voting rules, we show that the consistency condition ties down the set of
equilibrium agendas uniquely and provides a simple algorithm for identifying
them.
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Some Related Literature

Part of the motivation behind our analysis comes from the literature on
\chaos" theorems. For instance, McKelvey (1976, 1979) has shown that in the
context of majority rule and Euclidean settings, the top cycle of alternatives
is either a singleton (a Condorcet winner) or the whole space. And, as
Plott (1973) has shown, the second case is the generic one.1 This implies
that in most cases, starting from one alternative one can ¯nd a sequence of
alternatives leading to any other, where each one in the sequence beats the
previous one. While the conclusion that one should draw from such a result
and whether or not \chaos" is an appropriate nickname has been debated,
it is clear that such a result makes it critical to have an understanding of
equilibrium agendas; as otherwise one is left without any prediction. This
is essentially the primary motivation for our analysis. As such, we come
back below to examine the predictions our equilibrium notion makes in the
context of voting by successive elimination, and discuss the relation to chaos
theorems.

An alternative approach to modeling agenda formation is to assume a
speci¯c protocol and analyze its implications. For instance random recogni-
tion rules were studied in the context of multilateral bargaining (divide-the-
dollar games) by Baron and Ferejohn (1989) (and the literature that fol-
lowed). That approach provides for strong analytical conclusions. However,
that approach is not so tractable outside of the distributive setting in which
it is posed. Moreover, there are many applications where the protocol is not
clear, as the above quote of Ordeshook points out. The advantages to the
approach taken in this paper are that it can be applied to a general class
of voting problems, where for instance, Euclidean preferences may not be
appropriate; and it makes protocol-free predictions.

With regards to making protocol-free predictions, we remark that the sets
of equilibria uncovered here should be viewed as a set of potential equilibria.
Adding more knowledge of the speci¯c protocol may induce selections from
the set we identify, and result in more speci¯c predictions. Nevertheless, as we
shall show, fairly minimal requirements on the equilibrium set already allow
for some tight predictions in the context of a variety of voting rules. Thus
there are important aspects of equilibrium agendas that can be characterized

1See Austen-Smith and Banks (1999) for a nice discussion of this literature and exten-
sions of McKelvey's theorem.
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without detailed knowledge of the protocol.
Work on equilibrium agenda formation has also been done in other con-

texts. For example, Banks and Gasmi (1987) examined equilibrium agenda
formation in three person committees. Their analysis is of a Euclidean set-
ting and one where the three committee members can make only one proposal
each, and so agendas are truncated. Specifying the problem to this level leads
to sharp predictions. More recently, Penn (2001), in the context of three per-
son divide-the-dollar games has extended the analysis to allow for arbitrary
agenda lengths by a clever adaptation to in¯nite agendas, and shows that
sharp predictions again result (but di®er from those of Banks and Gasmi).
The above results are very encouraging in the face of \chaos" theorems, and
may be thought of as answering those theorems by saying that if we do model
agenda formation, then we can make speci¯c predictions. Nevertheless, the
above analyses come in very speci¯c settings and are dependent upon the
geometry of Euclidean preferences, and in some cases having three proposers
and having a strong symmetry among them. Our analysis attempts to pro-
vide an equilibrium de¯nition that can be applied to a more general set of
problems. Our main motivation is to develop a concept that does not require
such speci¯c geometry, and at the same time does not demand detailed spec-
i¯cation of the proposal protocol. 2 As such, the predictions our analysis
makes are not always as crisp; but nevertheless are fairly speci¯c in many
settings.

Equilibrium agenda formation has also been analyzed in another setting.
That is the setting of strategic-candidacy. For instance, in Osborne and
Slivinski (1996) and Besley and Coate's (1997) models of citizen- candidates,
the decision to enter an election and take a position is studied under equilib-
rium. In other work (Dutta, Jackson, and Le Breton (1998, 2001)) we have
examined the properties of equilibrium sets of candidates for a variety of vot-
ing rules and for voting by successive elimination. While the issue of strategic
candidacy is an important example of endogenous agenda formation, mod-
eling agenda formation more generally requires a di®erent approach. Most

2Another distinction is that our approach is based on one of inductively de¯ning equi-
librium continuations, and so equilibria are de¯ned in a manner that can be thought of as
analogous to subgame perfect equilibrium (but without a game form). Instead the Banks
and Gasmi (1987) and Penn (2001) formulations use a \maximin-Stackelberg" based equi-
librium notion.
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importantly, the candidacy decision ultimately rests with the candidate.3
This means that the proposal abilities of agents are limited. This provides
for di®erent strategic considerations than, for instance, in a legislative setting
where proposers are not restricted in the alternatives that they may propose.
Below, we compare the outcomes of strategic agenda formation in the con-
text of strategic candidacy and in the more general setting where proposers
are not limited; and see that there are important distinctions.

Another branch of the literature that has touched on equilibrium agenda
formation is that which has looked at sophisticated voting by successive elim-
ination. In particular, a de¯nition of equilibrium agendas appears in work by
Miller, Grofman, and Feld (1990). In their analysis an agenda is an equilib-
rium if nobody would gain by adding some alternative to the current agenda.
The important di®erences between such a de¯nition and the ones presented
here are in the beliefs of the proposers. The de¯nition just described does
not account for the fact that in many cases the agenda will not end, but
instead will be subject to further modi¯cations. Thus, proposers are act-
ing myopically.4 If proposers can make any predictions about continuations,
rather than myopically assuming the agenda will end, then the outcome could
be quite di®erent. This emphasizes an important aspect of our de¯nitions.
Incorporating such sequential rationality and anticipating equilibrium con-
tinuations is the foundation on which we build our de¯nitions. We come back
to examine the impact of this feature below, when we apply our de¯nitions
to voting by successive elimination.

Finally, we mention a distantly related literature in terms of applications
and speci¯cs; but more closely related in terms of ¯nding equilibrium de¯-
nitions that are not tied down to protocol speci¯cation. In particular, the
literature on coalition formation (and on coalitional bargaining) faces a sim-
ilar di±culty to that expressed in the quote of Ordeshook above. Writing
down speci¯c bargaining protocols allows for sharp predictions, but ones that

3Even if one allows candidates to be nominated, they usually have the option to decline
to run.

4Austen-Smith (1987) and Groseclose and Krehbiel (1993) also examine equilibrium
agenda formation under voting by successive elimination. Their approach does not have
the myopic problem of Miller, Grofman, and Feld; but they avoid this by assuming a ¯xed
ordering over individuals who can each make a single proposal. However, their focus is
on analyzing sophisticated sincerity, and not on characterizing equilibrium agendas more
broadly.
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may not be robust and are not so easily adapted to settings where the pro-
tocol is not obvious. Chwe (1994) provides a de¯nition of consistent sets of
alternatives that might come out of coalitional bargaining settings, that is
not dependent on any speci¯c protocol and yet still makes intuitively appeal-
ing predictions in many applications. Our approach here is intended to do
the same thing for agenda formation problems. While there is a parallel in
spirit, the actual equilibrium de¯nition that we provide and the issues we
face bear little resemblance to that in Chwe's work.5

2 De¯nitions

Alternatives

There is a set of alternatives X. Generic elements are denoted x, y, and
z.

We begin the analysis with the case where X is ¯nite and with #X = m,
as this brings out the intuitions most clearly. We then return to show how
our analysis extends to the in¯nite case in Section 5.7.

Society will select one of these alternatives. These may be potential bills
that a legislature might enact, a set of candidates that a society might elect,
or a list of potential decisions that a committee might reach.

Voters or Decision Makers

The set N = f1; : : : ; ng is a ¯nite set of voters.
These are the individuals who are involved in determining the agenda

and the outcome from that agenda. In Section 6 we discuss the possibility
of having special roles for some individuals.

Preferences

Individuals have preferences over the set of alternatives represented by
a complete and transitive binary relation, Ri. The strict preference relation
associated with Ri is denoted Pi, and is de¯ned by xPiy if and only if not
yRix. As usual, knowing Pi similarly de¯nes Ri, and so we keep track of the
strict relationship with the weak one being inferred.

5As a note, our use of the word consistency has no relationship to that of Chwe's
consistent sets.
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Let P denote the set of admissible pro¯les of preference relations. The
notation P 2 P denotes a generic pro¯le P = (P1; : : : ; Pn).

In some applications P will be a restricted domain. A number of di®erent
examples appear in what follows.

Agendas

An agenda of length k 2 f1; : : : ;mg is a ¯nite vector of alternatives
(x1; : : : ; xk) 2 Xk, with the restriction that xi 6= xj for each i 6= j.

Let Ak denote the set of agendas of length k, and let A = [mk=1Ak be the
set of all agendas.

The restriction that the same alternative not appear more than once in
an agenda is common to many legislative and committee settings. Given
that the set of alternatives X could be quite large and dense, this does not
prevent an alternative and a close approximation of it from appearing in an
agenda.

Depending on how the voting procedure works, the sequence of the agenda
may or may not matter. For instance if the agenda is simply a list of nomi-
nated candidates and some neutral voting procedure is used, then the agendas
(x; y; z) and (z; y; x) would be equivalent. However, if the voting procedure
is non-neutral, then the sequence can be important. For instance, under
voting by successive elimination where proposed alternatives are voted upon
in reverse order of their proposal the agendas (x; y; z) and (z; y; x) are not
equivalent and could lead to di®erent outcomes.

Extensions of an Agenda

In many situations of interest, some part of an agenda will already be on
the table. For example, if there is a status quo, then it may take the ¯rst
place in any agenda that follows. More generally, in building a de¯nition
of equilibrium we need to be able to make predictions starting from various
existing agendas and so it is useful to consider the concept of the extensions
of a given agenda.

With this in mind, for any k and a 2 Ak let A(a) to be the set of all
agendas that agree with a in the ¯rst k spots. That is,

A(a) = fa0 2 A j a0h = ah 8h 2 f1; : : : ; kgg:

Voting Procedures
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A voting procedure is a function V : A£ P ! X such that V (a; P ) 2 a
for all a 2 A and P 2 P.

A voting procedure thus summarizes the choice the society would make
from a given agenda at a given preference pro l̄e. This formulation is very
°exible and allows for many applications. For instance, it could be that
V is determined by strategic voting or instead by sincere voting. Also, V
might depend on the ordering of the agenda or it might not; and V might be
anonymous, or it might treat some voters specially.

The details of how V is determined will not be important in developing
our de¯nition of equilibrium agenda formation. Later, in providing some
results about the properties of equilibria, we will specify some properties of
potential voting rules V and examine some speci¯c voting rules.

3 Equilibrium Agendas
Before presenting the formal de¯nitions of equilibrium, we begin with a sim-
ple example to motivate and illustrate the de¯nitions.

Example 1

X = fx; y; zg and x is the status quo.
The voters' preferences form a classic cycle:

² xP1yP1z

² yP2zP2x

² zP3xP3y

Here x beats y, y beats z, and z beats x under majority rule.
The voting rule is sincere voting by successive elimination. For instance,

if the agenda is (x; z; y), then ¯rst a vote is held between y and z, and then
the winner is matched against x. Under sincere voting, the outcome of this
agenda would be x, as y would defeat z and then x would beat y.6 Here,

6A situation which approximately ¯ts this one is that of the Powell amendment dis-
cussed by Denzau, Riker, and Shepsle (1985) and others. The alternative x would be the
status quo of no U.S. federal funding of local public schools. The bill z under consideration
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the only possible outcomes are x from agendas (x; y; z), (x; z; y), (x; y) and
x; and z from agenda (x; z).

Let us discuss equilibrium conditions based on this example. Once an
agenda of three alternatives has been reached, there are no alternatives left to
propose, and so an equilibrium continuation is simply the agenda in question.
Next let us step back and consider an agenda of length 2 that starts with the
status quo x. There are only two such agendas to consider. One is the agenda
(x; z). If this agenda is reached, then agent 1 by adding the alternative y
would change the outcome from z to x. This would make agent 1 better
o®, and so the agenda (x; z) would not be stable to amendment.7 This
suggests one of the conditions in our equilibrium de¯nition: that stopping
at a given agenda is an equilibrium if and only if there is no agent who can
bene¯t from advancing the agenda to some further continuation equilibrium.
So, the only continuation equilibrium following (x; z) is the agenda (x; z; y).
Next, let us back things up. Given the agenda x in place, if some agent
proposes z next, then if she should anticipate that the result will be the
full agenda (x; z; y) with outcome x. This embodies another part of the
equilibrium de¯nition: agents should anticipate equilibrium continuations
from extensions of an agenda. In this case, no matter what happens after x,
any continuation equilibrium must lead to the outcome of x. This actually
means that stopping at x can be an equilibrium. Whether or not the other
agendas that lead to x are also included as equilibrium continuations from
x, is something that is not mandated by our basic de¯nitions of equilibrium.

in the House of Representatives was one that would introduce some federal funding of local
public schools. The amendment to the bill y introduced by Powell was to deny federal
funding to public schools that practiced segregation (this was in the 1950's). As Denzau,
Riker and Shepsle argue, sincere voting could be explained by the di±culty in explaining
voting against the Powell amendment to one's constituency. In fact, the situation had
some mixture of sincere and sophisticated voting, as some representatives who opposed
funding (and supported segregation) may have voted for the Powell amendment in the ¯rst
round and then against it in the second round. So there may have been some conservative
representatives who had the preferences of voter 1 except with z and y reversed, but who
when voting strategically would vote the same as voter 1 would vote when voting sincerely.

7Interestingly, in this example if we require a second agent to support a proposal in
order for it to become part of the agenda, neither of the remaining agents would second
the proposal. This turns out to be an artifact of the sincere voting and also the fact that
there is only one agent with any given preference pro¯le. We discuss how this is not a
problem for sophisticated voting below.
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However, a further consistency condition that we add would imply that the
other agendas leading to x would also be equilibria in this example.

With some of the basic ideas from this simple example in hand, let us
now consider the full de¯nition of equilibrium agendas.

First, notice as in the above example, de¯ning behavior at one agenda
requires having some notion of what will happen following various extensions
of the given agenda. Thus, the de¯nition involves sets of continuation equi-
libria to be de¯ned from each starting point. This is necessarily a set of sets,
where a set of continuation equilibria is speci¯ed starting from each possible
agenda.

We deliberately impose only weak requirements in de¯ning equilibrium
sets. Although taking such an approach allows for various collections to
satisfy the de¯nition, these weak requirements already have substantial im-
plications for which outcomes might be reached.

A collection of sets of continuation equilibria for a pro¯le of preferences
P 2 P is a collection fCEV (a; P )ga2A, where CEV (a; P ) ½ A(a) for each
a 2 A, that satis¯es the following properties.

Given fCEV (a; P )ga2A, let

C+
V (a; P ) = [x=2aCEV ((a; x); P ):

So C+
V (a; P ) is the set of all continuation equilibria that could result if some

alternative is added to an existing agenda a.8

A continuation equilibrium set satis¯es the following for each a 2 A:

(CE1) (Equilibrium Continuations) CEV (a; P ) is a nonempty subset of a [
C+
V (a; P ) and

(CE2) (Stopping Requirements) a 2 CEV (a; P ) if and only if V (a; P )RiV (a0; P )
for all a0 2 C+

V (a; P ) and for all i 2 N .

Part (CE1) is a sequential rationality condition that simply says that the
possibilities from any agenda a are either to stop at a, or to add a new al-
ternative to the agenda and then follow some continuation equilibrium from

8We remark that if a 2 Am , then C+
V (a; P ) = ;. Under (CE1) and (CE2) below, this

implies that CEV (a; P ) = fag if a 2 Am.
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the resulting agenda. This is a condition that essentially just requires that
the sets of equilibria for di®erent agendas have some minimal relationship to
each other: if agents anticipate that a0 = (a; x; : : :) is a continuation equilib-
rium starting at a, then they must also expect it to still be a continuation
equilibrium when they have reached (a; x).

Part (CE2) describes conditions under which it can be an equilibrium for
agents to `stop' at a. If every agent ¯nds that V (a; P ) is at least as good as
the outcome corresponding to any other possible continuation equilibrium,
then no agent has an incentive to extend a. Conversely, if some agent i ¯nds
the voting outcome corresponding to some continuation equilibrium strictly
preferred to V (a; P ), then this i will rather make a proposal and follow the
preferred continuation equilibrium, and the agenda will not stop at a.

One of our main themes developed below is that these minimal conditions
already have some very strong implications and imply a great deal about sets
of equilibria.

While imposing some restrictions on collections of sets of continuation
equilibria, conditions (CE1) and (CE2) can still allow for a multiplicity of
collections of equilibrium continuations that satisfy the de¯nition. Essen-
tially, (CE1) and (CE2) give us some weak limitations on what can be in the
set of equilibria, but they do not tell us much about which agendas must be
included in the set. Consistency (CE3), below, addresses this issue.

We say that an agenda a0 = (a; x; : : :) 2 C+
V (a; P ) is rationalizable if there

exists i 2 N and a00 2 CEV (a; P ) with either a00 = (a; y; : : :) with y 6= x or
a00 = a such that V (a0; P )RiV (a00; P ).

The idea of rationalizability is that i proposes adding x to the agenda a
under the belief that it will result in the agenda a0, and that if i does not
propose adding x then instead the continuation would be a00. As a00 is a
continuation equilibrium, this belief can be justi¯ed.

We say that a collection of sets of continuation equilibria is consistent if
it satis¯es

(CE3) (Consistency) If a0 2 C+
V (a; P ) is rationalizable, then a0 2 CEV (a; P ).

Conversely, if a0 = (a; x; : : :) 2 CEV (a; P ) and either a 2 CEV (a; P ) or
a00 = (a; y; : : :) 2 CEV (a; P ) for some y 6= x, then a0 is rationalizable.

Part (CE3) is a consistency condition on the collections of sets of con-
tinuation equilibria. It says the equilibrium continuations are those which
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are rationalizable, subject to two exceptions. One is that stopping is han-
dled under (CE2), and so the rationalization of a itself is already addressed.
The second is that an equilibrium continuation agenda does not need to be
rationalizable if it is a \unique" equilibrium continuation. Note that in this
second case, the ¯rst part of the condition implies that all agents unani-
mously ¯nd the outcomes under (a; x; : : :) preferred to stopping or adding
any other alternative to a.

Later, we come back to discuss other notions of rationalizability and
consistency.

We point out some important aspects of the above de¯nitions.
First, the de¯nitions necessarily involve a whole collection of fCEV (a; P )g,

one set for each a 2 A. This re°ects the forward-looking aspect of the de¯-
nition. In order to know what is an equilibrium starting at one agenda, one
has to be able to anticipate what will happen starting at extensions of that
agenda.9

Second, there always exists at least one collection fCEV (a; P )g satisfy-
ing (CE1)-(CE3), which is easily seen via a backwards induction argument,
starting with agendas of full length, and then working back to smaller agen-
das.

Third, the set CEV (a; P ) is not always uniquely determined. That is,
there may be several di®erent sets which satisfy conditions (CE1) and (CE2);
even when consistency (CE3) is imposed. This stems from the fact that the
conditions are designed to be weak, to specify conditions that an equilibrium
set should satisfy, but not so strong as to always uniquely determine that
set. Again, this traces back to our deliberate avoidance of any reliance on
an ad hoc formulation of the proposal process. To see an easy example of
the potential multiplicity of equilibrium continuations, consider a somewhat
degenerate voting rule as follows.

Example 2 Multiple Collections of Sets of Continuation Equilibria:

Under V the outcome is always the second alternative proposed in the
agenda (or the ¯rst if the agenda is a singleton), regardless of the preference
pro¯le. So V (a; P ) = a2 if a 2 Ak with k ¸ 2 and V (a; P ) = a1 if a 2 A1.

9Of course, this is similar to a de¯nition such as subgame perfect equilibrium where
continuation strategies must be speci¯ed for each possible subgame.
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This is a peculiar voting rule, but one that allows for a simple illustration
of the multiplicity of equilibria. Note that in this case, CEV (a; P ) = A(a)
is uniquely determined for any a 2 Ak for k ¸ 2. This follows since once
the second alternative has been proposed the outcome is already determined
and the rest of the agenda is completely irrelevant and so under (CE2) and
(CE3) all continuations are then equilibria. Now consider the outcome that is
proposed in the second place in the agenda. In particular, let X = fw; x; y; zg
and consider a preference pro¯le where some agents have preferences z, y,
x, w, and others have preferences z, x, y, w; where the ordering speci¯es
the strict preferences where w is the worst alternative. Consider starting at
the agenda a = fwg. So, w is the status quo. Conditions (CE1) and (CE2)
have only very weak implications here: it cannot be an equilibrium to stop
at fwg. Beyond that, they allow for a variety of continuation equilibrium
sets. Once consistency is added, however, things are tied down to a greater
degree. In particular, there are two sets which satisfy (CE1), (CE2) and
(CE3). The ¯rst such set consists of all extensions of a with z in second
place (i.e., CEV (a; P ) = A((w; z))); and the second such set consists of all
extensions of a with any of x, y, or z in second place (i.e., CEV (a; P ) =
A((w; x))[ A((w; y)) [A((w; z))).

In this example, consistency (CE3) still does not uniquely tie things down.
One might argue that extensions of (w; z) are really the only sensible equilib-
rium continuations in the above example, as they are unanimously preferred
to proposals x and y . One may wish to impose such additional conditions on
the notion of equilibrium (and we discuss this more fully in Section 6). How-
ever, as we shall see, if we restrict attention to more sensible voting rules,
such as those which satisfy a Pareto e±ciency condition, consistency will
already tie things down uniquely without the imposition of any additional
conditions.

Given the potential multiplicity of collections of equilibria, we now show
that in many cases of interest the set of continuation equilibria is in fact
uniquely determined under consistency. This allows us to develop an equiv-
alent de¯nition that is not self-referential.
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4 Equilibrium Agendas for Pareto E±cient
Voting Rules

An alternative x 2 B ½ X is Pareto e±cient relative to P and B if there
does not exist y 2 B such that yRix for all i 2 N and yPjx for some j 2 N .
V is Pareto e±cient if V (a; P ) is Pareto e±cient relative to P and the

alternatives in a, for each a 2 A and P 2 P .
Given a collection fCEV (a; P )ga2A and any a 2 A, let PEV (a; P ) denote

the set of agendas in C+
V (a; P )[ a that result in Pareto e±cient alternatives

(considering all of X).

Theorem 1 For any Pareto e±cient voting rule V and preference pro l̄e
P 2 P and collection of sets of continuation equilibria fCEV (a; P )ga2A,
V (a0; P ) is Pareto e±cient (considering all alternatives) for all a and a0 2
CEV (a; P ). 10 Moreover, if consistency is satis¯ed, then fCEV (a; P )ga2A is
uniquely de¯ned and described by

CEV (a; P ) =
(
PEV (a; P ) if V (a; P )RiV (a0; P ) 8i and a0 2 C+

V (a; P )
PEV (a; P ) n a otherwise.

The ¯rst result in Theorem 1 is that equilibrium agendas of Pareto e±-
cient voting rules must result in outcomes that are Pareto e±cient overall.
This conclusion is not quite as obvious as it seems. For instance, it could be
that x is Pareto dominated by y, but that V (a0; P ) 6= y for all a0 2 A(a).
This means that since y is never in the range of V , it does not threaten
x. The proof uses the fact that if y is added to an agenda containing x,
then the outcome cannot be x and must instead be some other outcome that
some voter prefers to x. Building on this reasoning we rule out equilibrium
agendas leading to x. The details are provided in the proof in the appendix.

The second result in Theorem 1 is that under consistency the continua-
tion equilibria of Pareto e±cient voting rules are uniquely determined and
described by a simple algorithm.

10Theorem 1 also holds if one replaces Pareto e±ciency everywhere by weak Pareto
e±ciency, where an alternative x 2 B ½ X is weakly Pareto e±cient relative to P and B
if there does not exist y 2 B such that yPix for all i 2 N . This weakens the assumptions
of the theorem, but then also the conclusions.
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The implications of Theorem 1 are even stronger when preferences satisfy
a mild restriction.

Let P¤ be the set of all pro¯les satisfying the restriction:

8x; y 2 X;9i 2 N such that xPiy or yPix:

So, P ¤ is the set of pro¯les such that it is never the case that all indi-
viduals are indi®erent between some pair of alternatives x; y . Of course, this
condition is satis¯ed when individual preferences are strict, but also holds
more generally including where some transfers or distribution of resources
are possible. In this case, we obtain a characterization of continuation equi-
librium outcomes that does not even require an inductive de¯nition.11

Theorem 2 Consider a Pareto e±cient voting rule V and pro¯le of pref-
erences P 2 P ¤. If fCEV (a; P )ga2A is a collection of sets of continuation
equilibria, then the outcomes corresponding to continuation equilibria follow-
ing some agenda a are a subset of those that can be found by considering only
full length agendas that are extensions of a. That is,

[a02CEV (a;P )V (a0; P ) ½ [a02A(a)\AmV (a0; P ):

If in addition consistency is satis¯ed, then these sets are equal:

[a02CEV (a;P )V (a0; P ) = [a02A(a)\AmV (a0; P ):

Theorem 2 shows how powerful the implications of the simple stopping
condition are. It states that the equilibrium outcomes correspond to those
where complete agendas are considered. The idea behind this follows an
inductive proof. Suppose this is true once an agenda is of length k or more.
Now suppose that some agenda of length k¡ 1 is an equilibrium agenda and
results in an outcome that di®ers from all full length agendas, and thus all
continuation equilibria if any outcome is added. Given Pareto e±ciency, some
agent must prefer some outcome of a longer agenda that is a continuation

11To see an example of why this condition is needed in the theorem, consider a situation
where all voters are indi®erent between all alternatives, and when there is a tie in voting
the last item in the agenda wins. It can be an equilibrium to stop at any agenda (including
the status quo) given full indi®erence, and yet the status-quo can never be reached by a
full length agenda.
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equilibrium if some alternative is added to the current agenda to that of
stopping. Then (CE2) implies that stopping cannot be an equilibrium.

The proof of Theorem 2 is in the Appendix. The second half of the
proof actually follows from a stronger claim which does not invoke Pareto
e±ciency of the voting procedure. Since this is of independent interest, we
state it here.12

Claim 1 For any voting procedure V , preference pro¯le P 2 P and a 2 A,
if fCEV (a; P )ga2A is a collection of sets of continuation equilibria satisfying
consistency, then any Pareto e±cient alternative that can be reached via some
full length continuation of a is an equilibrium continuation outcome following
a at P .13

5 Applications to Speci¯c Voting Rules and
Settings

In order to demonstrate the implications and usefulness of Theorems 1 and
2, we apply them to a number of settings including some prominent ones.

5.1 Order Independent Voting Rules

A voting rule V is order independent if V (a; P ) = V (a0; P ) whenever fx 2
ag = fx 2 a0g.

Order independent voting rules are those for which the ordering of the
agenda does not matter. Neutral voting rules are order independent, but
there are also important order independent voting rules that are non-neutral.
Consider the following example: candidates are people who are seeded ac-
cording to their age (or experience, rank, etc.). Regardless of the order in
which they are proposed or nominated, the two youngest candidates are voted

12In fact we prove stronger statements in the appendix, showing that even for ine±cient
voting rules there is a minimal consistent set of equilibria (in terms of set inclusion), which
corresponds to the de¯nition under the algorithm above. It is under Pareto e±ciency that
this must coincide with all consistent sets of equilibria.

13Since we show in the appendix that there is a minimal consistent set of equilibria (in
terms of set inclusion), this must hold for the minimal consistent set of equilibria.
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upon, then the winner of that vote is pitted against the next youngest, etc..
This rule is independent of the order in which the candidates are proposed,
and yet it is still a sequential rule and is clearly not neutral. Therefore, we
emphasize that \order independence" refers only to the order of the agenda
and does not mean that the voting rule itself is not based on some implicit
ordering of alternatives.

Note that for any order independent voting rule, V (a; P ) = V (a0; P ) for
any a and a0 in Am. With an abuse of notation, we write this outcome as
V (X;P ).

The following is a direct corollary of Theorem 2.

Corollary 1 For any Pareto e±cient and order independent voting rule
V , preference pro l̄e of preferences P 2 P ¤, collection of sets of continuation
equilibria fCEV (a; P )ga2A (i.e., satisfying (CE1) and (CE2)), and agenda
a 2 A, there is a unique continuation equilibrium outcome

[a02CEV (a;P )V (a0; P ) = V (X;P ):

An important remark about Corollary 1 is that it does not require con-
sistency, but follows from (CE1) and (CE2) in the de¯nition.

The following example shows how Borda's rule is covered under Corollary
1.

Example 3

Voters' preferences are :

² xP1wP1yP1z

² xP2wP2yP2z

² zP3wP3yP3x

Voting is (sincere) voting according to Borda's rule. An alternative re-
ceives three points for a ¯rst place ranking in a voter's preferences, two points
for a second place ranking, one point for a third place ranking, and no points
for a fourth place ranking; and the alternative with the highest score is the
outcome (with ties broken according to any deterministic rule). These are
adjusted for the restricted ranking if some subset of alternatives is considered.

18



This is a Pareto e±cient and order independent voting rule.
It is easily checked that w wins whenever it is on the agenda. Also, x

wins if it is present but w is not. If just y and z are present, then y wins. z
only wins if it is the only proposed alternative.

Corollary 1 implies that the outcome of any equilibrium agenda must be
w in this example. Indeed, it is easily seen that no agenda leading to y or z
can be an equilibrium, as adding w to the agenda will lead to a continuation
equilibrium outcome ofw which would be preferred over y or z by some agent.
Similarly, if an agenda leads to x, then adding w will lead to a continuation
equilibrium of w, which is better for voter 3 than x.

5.2 Tournaments and Top Cycle Consistent Rules

The following de¯nitions are useful in some of the remaining applications.

Tournaments

In many contexts, the preferences of the voters can be summarized (even
for strategic purposes) by the majority voting relation that is induced over
pairs of alternatives. A tournament is a binary relation that summarizes the
important aspects of voters' preferences in some contexts.14 More formally,
the majority voting tournament is de¯ned as follows.

Given P 2 P, denote by T(P ) the binary relation de¯ned by

xT(P )y , #fi 2 N : xPiyg > # fi 2 N : yPixg

T(P ) is always asymmetric and if n is odd and individual preferences are
strict then T (P ) is complete. If we break ties in some deterministic manner,
then even in cases with an even number of voters or indi®erences T(P ) is also
complete, and therefore a tournament (an asymmetric and complete binary
relation). In what follows, unless speci¯ed otherwise, we will assume that
ties are broken so that T(P ) is complete. T(P ) is referred to as the majority
tournament induced by P .

The Top Cycle
14See Laslier [11] for an illuminating account of the principal results in the vast literature

on tournaments.
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As the majority tournament is not necessarily transitive, it can have
cycles. A prominent cycle that we refer to in the sequel is the top cycle
associated with a tournament.

The top cycle of T (P ), denoted by TC(X;P ) is the set fx 2 X : 8y 2
X;9x1; : : : ; xk in X such that x1 = x; xk = y and xiT(P )xi+18i = 1; : : : ; k¡
1g i.e. the set of alternatives that can reach any other alternative in X via
a T(P )-chain of arbitrary length. For subsets of alternatives, B ½ X, there
is a corresponding de¯nition and we denote that set TC(B;P ). When there
is no B ½ X indicated, then we are referring to the top cycle relative to X,
and we use the notation TC(a; P ) to denote the top cycle relative to the set
of alternatives in the agenda a under the tournament T (P ).

A voting rule is top cycle consistent at a P such that T (P ) is a tournament
if V (a; P ) 2 TC(a; P ) for any a 2 A.
Condorcet Winners and Consistency

An alternative fxg is a Condorcet winner relative to B ½ X if TC(B;P ) =
fxg. That is, a Condorcet winner is an alternative that beats every other
alternative in B under T(P ).

A voting rule V is Condorcet consistent if V (a; P ) selects a Condorcet
winner whenever one exists relative to T (P ) and the alternatives in a.

5.3 Equilibrium Agendas for Top Cycle and Condorcet
Consistent Voting Rules

If the voting procedure V arises from strategic voting on a binary tree, then
it follows from McKelvey and Niemi (1978) that V is top cycle consistent.
Thus, the following proposition covers a wide variety of applications.

Proposition 1 Consider a P such that T (P ) is a well-de¯ned tournament
and a collection of sets of continuation equilibria fCEV (a; P )ga2A (i.e., sat-
isfying (CE1) and (CE2)). If V is top cycle consistent, then all equilibrium
outcomes following any agenda are in the (overall) top cycle. Moreover, if V
is Condorcet consistent and there exists a Condorcet winner x at P , then all
of the equilibrium continuations from any agenda lead to x.

Again, remark that Proposition 1 does not require consistency (CE3).
The second statement does not quite follow from the ¯rst, since Condorcet

consistency does not imply top cycle consistency. The proof of Proposition
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1 is straightforward for the case where the preference pro¯les in P ¤ are strict
and the voting rule is Pareto e±cient. Then, from Theorem 2 we know
that the equilibrium outcomes coincide with those that are full agendas and
extensions of the starting agenda. These must select from the top cycle. The
proof when the preference pro¯les are not necessarily in P ¤ or the voting
rule is ine±cient is slightly more complicated, as then Theorem 2 cannot be
applied. The proof is still relatively short and appears in the appendix.

A direct corollary of Proposition 1 is that all equilibrium agendas in a
setting with single-peaked preferences and a Condorcet consistent voting rule
lead to the outcome of the median of the voters' peaks.

5.4 Voting by Successive Elimination and Equilibrium
Agendas

The voting procedure of voting by successive elimination is de¯ned as follows.
Consider some agenda a 2 A and let a = (x1; : : : ; xk). In the successive
elimination procedure, a vote is ¯rst taken to eliminate either xk or xk¡1.
The `winning' alternative from the ¯rst round is compared to xk¡2, and a
vote is taken to eliminate either surviving alternative from the ¯rst vote or
xk¡2, and so on. After (k ¡ 1) comparisons, the last surviving alternative is
declared to be the voting outcome.

At each stage, the elimination of one alternative is according to majority
voting. This is well-speci¯ed when T (P ) is complete. However, in cases
where there are ties under the majority preference relation, either resulting
from personal indi®erences or from an even number of voters, T (P ) is not
complete. In this case, voting by successive elimination needs to be more
completely speci¯ed.

We do so as follows. At each stage allow individuals to vote for one of the
two alternatives or to abstain (in the case where they may be indi®erent).
In case of a tie in the voting between alternatives xi and xj, xi is elected if
and only if xi comes before xj in the ordering of voting (i < j). This favors
alternatives proposed earlier in the agenda under ties, which is a natural way
to break ties (given that they have not already been broken under T(P )).

At the last stage of voting, if the voting boils down to a comparison of
x and y where x precedes y in the successive elimination procedure, then x
wins if not yT (P )x and y wins otherwise.
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However, in order to determine the eventual voting outcome, it is also
necessary to describe how voters act. We ¯rst examine the case where they
vote strategically at each stage, and so focus on the sophisticated voting out-
come of this binary voting procedure. This is the outcome under the iterative
elimination of weakly dominated strategies that has been well-studied (see
Shepsle and Weingast (1984) for the algorithm identifying the outcome). 15

Let S(a; P ) denote the sophisticated voting outcome under voting by
successive elimination on agenda a.

The Banks Set

The Banks set associated with the tournament T (P ), denoted BS(P ), is
de¯ned by

BS(P ) = [a2AmS(a; P ):
Thus, the Banks set is the set of sophisticated voting outcomes under

voting by successive elimination under all possible full agendas.
There are situations, however, where some orderings ofX are not relevant.

For instance, X may contain a distinguished alternative x1 which acts as the
status quo. In many legislative procedures, the status quo is treated as if
it were the ¯rst proposal in the agenda. Recall that our tie-breaking rule
in case T(P ) is not complete naturally privileges the status quo against the
amendments. We generalize the de¯nition of the Banks set in the following
way.

Given any a 2 Ak, let

BS(a; P ) = [a02A(a)\AmS(a0; P ):

Equilibrium Agendas and Voting by Successive Elimination

Given that voting by successive elimination is a Pareto e±cient voting
rule, we have the following corollary of Theorem 2.

15The Shepsle-Weingast algorithm was de¯ned for the case where T(P ) is complete. Our
procedure of breaking possible ties in the majority preference relation coming earlier in the
ordering a ensures that the sophisticated outcome can be derived from a straightforward
variation on the algorithm derived by Shepsle and Weingast.
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Corollary 2 Consider a collection of sets of continuation equilibria fCEV (a; P )ga2A
(satisfying (CE1) and (CE2)) and any pro¯le of preferences P 2 P¤. For all
a 2 A,

[a02CEV (a;P )S(a0; P ) ½ BS(a; P );
and if consistency (CE3) is also satis¯ed, then

[a02CEV (a;P )S(a0; P ) = BS(a; P ):

Note that the result above also holds if we set the starting agenda a to
be the emptyset.16

Corollary 2 states that not only does the Banks' set capture the set of
outcomes that could arise from arbitrary full length agendas, but that these
are also precisely the set of potential equilibrium outcomes when the agendas
are endogenous.

While Corollary 2 provides a precise characterization of equilibrium agenda
outcomes for an important voting procedure, it is still useful to show that
this characterization completely ties down the outcome in some interesting
cases. We now show this in the context of an interesting \pork barrel poli-
tics" setting. In particular, even though in some cases the top cycle of the
majority voting relation may be very large, the Banks set, and thus the set
of equilibrium agenda outcomes, can be a singleton.

5.5 Voting over Projects
Ferejohn, Fiorina, and McKelvey (1987) consider the following model. N
is a set of legislators (with n odd), each of whom has a project for their
constituency. The projects have value only for their constituents, but the
cost of a project, if it is undertaken, is split evenly among all constituencies.17
Ferejohn, Fiorina, and McKelvey assume that projects have di®erent costs,
so as to ensure that T (P ) is complete, but that is not assumed here (as we
can extend their result given our procedure for breaking ties).

16An easy way to see this is simply to extend the set of alternatives to include some x0
such that all alternatives are preferred to x0 by all agents under P , and then set a = fx0g
and then apply the theorem as it stands.

17This assumption is not necessary. All that matters is that the legislators agree about
the relative rankings of how costly (in terms of how much they each pay) di®erent projects
are.
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So, this is a model of pure \pork-barrel" politics. Here the set of alterna-
tivesX is simply a list of which projects are undertaken, and so X = f0; 1gn.
Voting over an agenda is done by sophisticated voting by successive elimina-
tion.

Given this setting, legislators' preferences take a speci¯c form. Their
favorite alternative is to have their own project undertaken and no other
projects undertaken. Beyond the decision concerning a legislator's own project,
he or she simply prefers to minimize the costs of the other projects under-
taken. The critical freedom in the preferences is in the relative costs of
projects, which determines which projects a legislator might tolerate being
undertaken in conjunction with his or her own, before the cost becomes so
high that he or she would prefer to have none built at all.

An interesting aspect of the Ferejohn, Fiorina, and McKelvey (1987)
model is the importance of a status quo. The status quo is that no projects
are undertaken. Applying our equilibrium approach to this model is of par-
ticular interest as it shows how the status quo can tie down equilibrium
agendas, and illustrates why we have been careful to de¯ned continuation
equilibrium concepts that allow for a status quo. It also shows that the
conclusions reached by Ferejohn, Fiorina, and McKelvey (1987) without an
equilibrium analysis, are robust to an equilibrium formulation.

Let X¤(P ) denote the set of x 2 X that (i) undertake exactly n+1
2

projects, (ii) are as cheap as any other choice of exactly n+1
2 projects, and

(iii) are such that xT(P )0.

Corollary 3 Consider any pro¯le of admissible preferences P 2 P and
collection of sets of continuation equilibria fCEV (a; P )ga2A (satisfying (CE1)
and (CE2)) in the extension of the Ferejohn, Fiorina, and McKelvey setting
where some projects may have identical costs.

[a02CEV (a0;P )S(a0; P ) =
½
X¤(P ) if X¤(P ) 6= ;
0 otherwise.

Here the equilibrium agendas result in collections of projects correspond-
ing to majorities of minimal size and which choose the cheapest projects.
This minimal winning size is an interesting qualitative feature which has
been extensively discussed in various areas of political science since Riker
(1962). The proof of Corollary 3 appears in the appendix.
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5.6 Sincere Voting and an Absence of Chaos

The previous results show that equilibrium conditions on agendas can make
narrow predictions. The results concerning the Banks set and voting by
successive elimination were constrained to sophisticated voting. As much of
the literature on chaos theorems (e.g., McKelvey (1979)) was restricted to
sincere voting we show that the same is true there. In particular, we show
that even in situations where the top cycle is large (even the whole set of
alternatives), considering only equilibrium agendas still narrows the set of
predictions in well-de¯ned ways.

While the setting we consider in this section is a ¯nite one (see the next
section for the in¯nite case), we can still see the essence of chaos theorems in
the following way. Consider sincere voting by successive elimination, where
when asked to compare any two alternatives, voters vote for the one that
they prefer, not anticipating the outcome of the votes yet to come in the
sequence.18 19

The critical observation is that for any x 2 TC(T(P )) and any k, there
exists an agenda a 2 Ak, such that V (a; P ) = x, where V is sincere voting by
successive elimination. In particular, setting k = m, any x in the top cycle
can be reached by at least one full length agenda (in fact at least two).20

18One might also term this myopic voting. Note, however, that this corresponds to
sophisticated voting under the following alternative voting rule. That is important, as
otherwise there would a schizophrenia between sophisticated (forward looking) agenda
formation and myopic voting, and this exercise would only serve as a comment on the
chaos literature. The closely related voting procedure for which this is sophisticated is as
follows. On an agenda a = (x1; : : : ; xK), select x1 unless a majority votes to move on to
x2; then select x2 unless a majority votes to move on to x3, and so forth. Sophisticated
voting on this rule can be solved as follows. If one gets to the last decision of whether
or not to select xK¡1 or move on, then the vote will be a sincere vote between xK and
xK¡1. Anticipating this, the previous vote is a sincere vote between xK¡2 and the sincere
winner between xK and xK¡1. Rolling this back up the voting tree, this is solved exactly
as a sincere vote by successive elimination.

19Note that sophisticated behavior in voting by successive elimination can preclude some
alternatives from the top cycle as ever being equilibrium outcomes as we already saw in
Corollary 2.

20A recipe is as follows. Find an ordering of the K alternatives in the top cycle x =
x1; x2; : : : ; xK , such that xiT (P )xi+1 for each i < K. Such an ordering always exists.
Consider any agenda where the top cycle alternatives maintain this relative ordering and
the other alternatives fall in any place. Sincere voting by successive elimination will lead
to x. The second variation is to switch the position of xK and xK¡1, which does not a®ect
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This means that if we are not able to do any selection over agendas, then
any alternative in the top cycle can be an outcome.

The following example, however, illustrates that our de¯nition of equilib-
rium selects from the agendas. Here only a subset of the top cycle alternatives
are equilibrium outcomes, even though all alternatives (other than a unani-
mously bad status quo) are in the top cycle. Thus, the notion of equilibrium
does preclude alternatives and make selections from the top cycle.21

Example 4

Voters' preferences are :

² x5P1x2P1x3P1x4P1x1P1x0
² x4P2x5P2x1P2x2P2x3P2x0
² x3P3x4P3x5P3x1P3x2P3x0

The induced tournament T(P ) is that

² x5 beats x0, x1, x2, and x3,

² x4 beats x0, x1, x2, and x5,

² x3 beats x0, x1, and x4,

² x2 beats x0 and x3,

² x1 beats x0 and x2.

Note that hereBS(fx0g; P ) = fx3; x4; x5g and TC(X;P ) = fx1; x2; x3; x4; x5g;
and also that both x4 and x5 Pareto dominate x1.

Under sincere voting by successive elimination, the agendas (with a status
quo of x0) that can lead to an outcome of x1 are those that follow the ordering

the outcome.
21In light of Proposition 1, equilibria under sincere voting by successive elimination will

always end up in the top cycle, and so the example shows it can end up being a strict
subset that is selected.
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of the index of the alternatives without gaps, starting at x0, except possibly
that the last two alternatives may be switched.22

None of these are equilibrium agendas when the status quo is a = fx0g
(i.e., none of these are in CEV (fx0g; P )). Thus, x1 is not an equilibrium
agenda outcome when V is sincere voting by successive elimination.

First, it is easily checked that fx0; x1g and fx0; x2; x1g, are not continua-
tion equilibrium agendas (i.e., stopping once they are reached), as adding x5
will lead to an outcome of either x4 or x5 which are unanimously preferred
to x1; and so (CE2) is violated. Thus they could not be equilibrium agendas
beginning at x0. We can also check that the agenda fx0; x1; x3; x2g is not a
continuation equilibrium. If either x5 or x4 is added one obtains either x3 as
the only equilibrium outcome.23 Then it cannot be an equilibrium to stop,
as voters 1 or 3 would gain by proposing either x4 or x5.

The agendas that remain to be checked that might lead to x1 are those in
A(fx0; x1; x2g). Note that for any a0 2 A(fx0; x1; x2; x3g), the outcome is x1,
while for any a 2 A(fx0; x1; x2; x5g) the outcome x4 or x5. Thus, consistency
(CE3) implies that if x1 is an equilibrium outcome following fx0; x1; x2g, then
also x4 or x5 is an equilibrium outcome following fx0; x1; x2g, and that x1
can only come from proposing x3 next. Also, note that x3 is not an outcome
under any agenda in A(fx0;x1; x2g) as it loses to x2, and also x2 and x0
are never outcomes under any agendas in A(fx0; x1; x2g). Then by (CE3)
it follows that x1 is not an equilibrium outcome following fx0; x1; x2g, and
those equilibrium outcomes are a subset of fx4; x5g.

The example uses the fact that agendas that lead to x1 must have x1
in one of the ¯rst three places in the agenda. This always leaves additional
alternatives that can be proposed that would lead to other outcomes, and
the preference for some of these other outcomes prevents the speci¯c agendas
leading to x1 from being equilibrium agendas.

Thus, chaos is avoided and we have predictions that we end up inside a
strict subset of the top cycle.

In fact, we also have a \lower bound" on the set of possible outcomes
22Explicitly, the agendas leading to an outcome of x1

are fx0; x1; x2; x3; x5; x4g, fx0; x1; x2; x3; x4; x5g, fx0; x1; x2; x3; x4g, fx0; x1; x2; x4; x3g,
fx0; x1; x2;x3g, fx0; x1; x3; x2g, fx0; x1; x2g, fx0; x2; x1g, and fx0; x1g.

23By reasoning similar to that above, it is easily checked that if x5 is added next, then
x4 would be also added next in equilibrium.
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of sincere voting under sequential elimination - Claim 1 in the appendix
implies that all Pareto optimal elements in the top cycle can be supported
as outcomes of continuation equilibria.

Finally, we show that equilibrium agendas under sincere voting under
sequential elimination can lead to Pareto ine±cient outcomes.

Example 5

Let X = fx0; x1; x2; x3; x4; x5g. The status quo is x0. There are 3 indi-
viduals, with preferences given below.

² x1P1x2P1x5P1x3P1x4P1x0
² x5P2x3P2x4P2x1P2x2P1x0
² x4P3x1P3x5P3x2P3x3P1x0

The induced tournament T(P ) is :

² x1 beats x0, x2, x3, and x5,

² x2 beats x0 and x3,

² x3 beats x0 and x4,

² x4 beats x0, x1 and x2,

² x5 beats x0, x2, x3 and x4.

Note that x2 is Pareto dominated by x1.
Let us argue that a = (x0; x2; x3; x4; x1) which results in x2 is inCEV (fx0g; P ).

Since adding x5 makes no di®erence to the outcome, this is an equilibrium
agenda once a is reached. Moving back, a is an equilibrium continuation
of (x0; x2; x3; x4). If instead x5 is added so to get (x0; x2; x3; x4; x5), then it
will not be an equilibrium to stop as the outcome would be x5 and agent 1
would prefer to add x1 so that the outcome would again be x2. Thus, all
equilibrium continuations of (x0; x2; x3; x4) lead to x2.
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Next, note that a0 = (x0; x2; x3; x5; x4; x1) results in x5, which is voter
2's favorite. Thus, we know that it is possible to reach (x0; x2; x3). Then
under (CE3), voter 1 is willing to propose x4 expecting the continuation of
a leading to x2, given that there is another continuation equilibrium leading
to x5. As argued above, we then have a as an equilibrium continuation once
(x0; x2; x3; x4) has been reached.

Thus x2 is an equilibrium outcome when the status quo is x0.

5.7 Handling In¯nities
Our discussion so far has focused on a ¯nite set of alternatives X . We now
demonstrate how our analysis works in more general settings where the set of
alternatives may be in¯nite. An important ¯rst remark is that the de¯nitions
we have for continuation equilibria, (CE1)-(CE3), can be applied directly to
the in¯nite case without modi¯cation.

However, there are new challenges that arise in applying the de¯nition
of equilibria in in¯nite settings, which we will address below. One challenge
is whether or not to de¯ne voting rules on in¯nite sequences of alternatives,
and if it is done, how to do it. There are di®erent ways that this might be
done and the speci¯c choice of how to do it is usually speci¯c to the setting
in question. Another challenge is to establish existence of equilibrium sets.
In the ¯nite case existence was straightforward as we could follow a simple
backward induction argument. In the in¯nite case the issue is more subtle
and will require using some characteristics of the setting being analyzed. A
third challenge is that even when collections of sets of agenda equilibria can
be shown to exist, it may still be hard to get a handle on a characterization
of them as, again, a simply backward induction approach is precluded.

Nevertheless, despite these challenges the de¯nitions turn out to be quite
manageable in several ways as we now show.

Consider an in¯nite X. Let A = [kAk be now the set of arbitrary length
¯nite agendas.24

24Here we could extend a voting rule V to be de¯ned over in¯nite agendas, but it is
not necessary. For the interested reader, one way of de¯ning V over in¯nite agendas is as
follows. Consider an in¯nite a, and let ak be the agenda consisting of the ¯rst k proposed
alternatives. If there exists some K such that V (ak ; P ) = V (aK ; P ) for all k ¸ K, then
de¯ne V (a; P ) = V (aK ; P ). Have some rule for assigning V (a; P ) otherwise, such as ¯xing
a status quo x and if voting never resolves itself then the status quo stays in place.
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Given a voting rule V , say that an agenda a 2 A is maximal at P if
V (a0; P ) = V (a; P ) for all a0 2 A(a). Denote the set of maximal agendas for
V and P that are the continuation of some a by MV (a; P ).

The analogue of Theorem 2 now follows.

First, we show that when the set of maximal agendas is nonempty, then
there exists a natural set of continuation equilibria.

Lemma 1 Consider an in¯nite X, a pro¯le of preferences P 2 P¤, and a
Pareto e±cient voting rule V such that MV (a; P ) is nonempty for all agen-
das a 2 A. Then there exists a collection of sets of continuation equilib-
ria fCEV (a; P )ga2A satisfying (CE1)-(CE3), which is to set CEV (a; P ) =
MV (a; P ) for each a.

Lemma 1 leaves open the question of when MV (a; P ) is nonempty for all
agendas. This is easy to check in some cases as when there is a Condorcet
winner, and can also be veri¯ed in some settings such as the three person
divide-the-dollar game analyzed by Penn (2001). We leave the exploration
of more subtle conditions guaranteeing nonemptyness for future research.

Now we can establish the analog of Theorem 2 for the in¯nite case.

Theorem 3 Consider an in¯nite X, a pro¯le of preferences P 2 P¤, and a
Pareto e±cient voting rule V such that MV (a; P ) is nonempty for all agendas
a 2 A. For any collection of sets of continuation equilibria fCEV (a; P )ga2A
(satisfying (CE1) and (CE2)), and any ¯nite a 2 A,

[a02CEV (a;P )V (a0; P ) ½ [b2MV (a;P )V (b; P );

and if consistency (CE3) is also satis¯ed, then

[a02CEV (a;P )V (a0; P ) = [b2MV (a;P )V (b; P ):

The proof of Theorem3 is provided in the appendix. Here, we provide the
basic intuition. The proof of Theorem 2 exploited the possibility of backward
induction from agendas a 2 Am. Notice that if a is a maximal agenda, then all
b 2 A(a) can essentially be ignored. Hence, maximal agendas play the same
role in the in¯nite setting that agendas in Am play in the ¯nite environment.

30



6 Discussion of the De¯nition of Equilibrium

Proposals to Stop the Agenda or Seconds to Continue an Agenda

Some procedures may allow an individual to propose a motion that voting
take place immediately on the existing agenda. This motion is voted \yes"
or \no", and a majority support can stop the existing agenda. Alternatively,
a procedure may require at least two agents to support a proposal in order
to add it to the agenda.

If either of these variations are present, it makes no di®erence to the
analysis, at least under sophisticated voting by successive elimination. Let
us o®er a heuristic argument for why Corollary 6 extends in this way.

We argue by induction. It is clearly true starting at some full length
agenda. Suppose it is true starting at agendas of length at least k + 1.
Consider an existing agenda a 2 Ak, S(a; P ) = x, and individual i proposes
the motion that voting take place immediately. If i's motion is defeated,
then her proposal is irrelevant. On the other hand, if i's motion is accepted,
then x becomes the ¯nal outcome. This implies that a majority prefers x to
any outcome that can be obtained by some further continuation equilibrium,
which from the induction step and the corollary corresponds to the outcome
of some a0 2 A(a)\ Am. If x already corresponds to such an outcome, then
the claim is true. If not, then by the Shepsle-Weingast algorithm, there must
be some alternative y =2 a such that y is preferred by a majority to x and
such that y is the outcome under a continuation equilibrium a0 2 A(a)\Am.
This, however, implies that a majority would vote to continue rather than
stop at x, which would be a contradiction. Thus the claim is true.

The argument for having a second agent move a proposal to make it part
of an agenda is analogous, noting that if a majority prefer y to x, then at
least two agents must prefer to follow the continuation equilibrium leading
to y rather than stopping at x.

Modi¯cations of Consistency

The notion of consistency (CE3) is one that produces a large set of equi-
libria relative to those which might be considered (witness Theorem 2 and
Claim 1). We now consider a more stringent form of rationalizability, that
in turn corresponds to a di®erent form of consistency that includes fewer
continuation equilibria.
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We say that an agenda a0 = (a; x; : : :) 2 C+
V (a; P ) is strongly rationaliz-

able if there exists i 2 N such that for any y =2 a and y 6= x there exists some
a00 2 CEV ((a; y); P ) such that V (a0; P )RiV (a00; P ), and if a 2 CEV (a; P )
then also V (a0; P )RiV (a; P ).

Strong rationalizability only allows for an agenda (a; x; : : :) which is a
continuation of a to be supported only if there is some agent who does not
prefer all equilibrium continuations of (a; y) to those of (a; x). The idea being
that an agent who prefers all continuations of (a; y) to those of (a; x) would
not propose x, but would instead propose y (or possibly some other alterna-
tive). This di®ers from rationalizability, in that rationalizability allows some
i to propose x if there is some alternative continuation that the agent ¯nds
worse; but this does not consider the fact that the agent might prefer to
propose something else in y's place.

We say that a collection of sets of continuation equilibria is strongly
consistent if it satis¯es25

(CE4) (Strong Consistency) If a0 2 C+
V (a; P ) is strongly rationalizable, then

a0 2 CEV (a; P ). Conversely, if a0 = (a; x; : : :) 2 CEV (a; P ) and either
a 2 CEV (a; P ) or a00 = (a; y; : : :) 2 CEV (a;P ) for some y 6= x, then a0
is strongly rationalizable.

Note that from Theorem 1 we know that for Pareto e±cient rules contin-
uation equilibria satisfying strong consistency (CE4) always are a subset of
those satisfying consistency (CE3). Example 1 is easily seen to be one where
this is a strict subset. However, that is an ine±cient voting rule. The fol-
lowing example shows that the selection may be strict even for sophisticated
voting by successive elimination, where strong consistency results in a strict
subset of the Banks' set.

Example 6

Let X = fx1; x2; x3; x4; x5g and N = f1; 2; 3g.
The preference pro l̄e is:

25When we modify (CE3) to (CE4), we might also consider adding another condition,
which was implied under (CE1), (CE2) and (CE3), but not under (CE1), (CE2) and
(CE4). The condition is (5) If (a; x; : : :) 2 CEV (a; P ) then CEV ((a; x); P ) ½ CEV (a; P ).
This is irrelevant in the discussion below.
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² x1P1x3P1x2P1x4P1x5
² x5P2x3P2x4P2x1P2x2
² x2P3x4P3x5P3x1P3x3

Then, the induced tournament T (P ) is

² x4 beats x1 and x5.

² x1 beats x2 and x3.

² x2 beats x4 and x5.

² x3 beats x2 and x4.

² x5 beats x1 and x3.

Then, BS(fx0g; P ) = X. We want to show that if CE(fx0g; P ) satisfy
(CE1),(CE2) and strong consistency, then EOV (a; P ) = fx1; x2; x5g.

First, note that if a 2 C+
S (fx0; x1g; P ), then S(a;P ) = x4. For if a 2

A(fx1g), the possible outcomes are in fx5; x4g. But since x4 beats x5, (CE2)
implies that S(a; P ) = x4 if a 2 C+

S (fx0; x1g; P ).
Analogously, the following are true.

² If a 2 C+
S (fx0; x2g; P ), then S(a; P ) = x1.

² If a 2 C+
S (fx0; x5g), then S(a; P ) = x2.

² If a 2 C+
S (fx0; x3g), then S(a; P ) = x5.

² If a 2 C+
S (fx0; x4g; P ), then S(a; P ) = x3.

The proof is completed by showing that no one wants to propose x1 or
x4 initially.

This must be true since 1 prefers to propose x2 initially. This guarantees
choice of x1, which is 1's most preferred element in X . Similarly, 2 and 3
prefer initial proposals of x3 and x5 respectively.
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Appendix

Let
EOV (a; P ) = [a02CEV (a;P )V (a0; P ):

We ¯rst state and prove a lemma which will be used repeatedly.

Lemma 2 Consider any P 2 P and a 2 A. Suppose that [b2A(a)\AmV (b; P ) ½
D(P ), for some D(P ) ½ X such that if x; y 2 X , and x =2 D(P ); y 2 D(P )
then 9i 2 N such that yPix. Under (CE1) and (CE2) EOV (a; P ) ½D(P ).

Proof of Lemma 2: We prove this by induction on the cardinality of a. If
a 2 Am, then CEV (a; P ) = fag, and so the assertion must be true. Suppose
that for some K < m, the claim is true for each k > K and a 2 Ak. We
show that the claim is true for a 2 AK.

From the induction hypothesis it follows that CE+
V (a; P ) ½ D(P ), and

so from (CE1) we only need to show that if V (a; P ) =2 D(P ), then a =2
CEV (a; P ). Consider any x =2 a, and b 2 CEV ((a; x); P ) ½ D(P ). Since
V (a; P ) =2 D(P ), it follows from the properties ofD(P ) that V (b; P )PiV (a; P )
for some i. (CE2) then implies that a =2 CEV (a; P ), as required.
Proof of Theorem 1: Fix a Pareto e±cient V and a pro l̄e P .

The proof that V (a0; P ) is Pareto e±cient for any a0 in CEV (a; P ) and
a 2 A follows directly from Lemma 2, by letting D(P ) in the lemma be the
set of Pareto e±cient alternatives in X.

To complete the proof of the theorem, we show that (CE1), (CE2) and
(CE3) can be satis¯ed if and only if26

CEV (a; P ) =
(
PEV (a; P ) if V (a; P )RiV (a0; P ) for all i and a0 2 C+

V (a; P )
PEV (a; P ) n a if V (a0; P )PiV (a; P ) for some i and a0 2 C+

V (a; P ).

It is straightforward to check if CEV (a; P ) is de¯ned above then (CE1),
(CE2) and (CE3) are satis¯ed. So we show the converse.

Consider CEV (a; P ) satisfying (CE1), (CE2) and (CE3). The proof pro-
ceeds by induction. Note that for any a 2 Am, CEV (a; P ) = fag and that
by the Pareto e±ciency of V the claim follows directly. So, consider some

26Note that in the second case it must be that PEV (a; P ) n a is nonempty.
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K < m and suppose that the claims are true for any agenda in Ak for any
k > K , and let us show that they hold for a 2 AK.

First, consider the case where V (a; P )RiV (a0; P ) for all i and a0 2 C+
V (a; P ).

In this case it follows from (CE2) that a 2 CE(a; P ). By the induction step,
any a0 2 C+

V (a; P ) must result in a Pareto e±cient outcome, and so it fol-
lows that a0 is rationalizable relative to a and so by (CE3), a0 2 CEV (a; P ).
This implies that PEV (a; P ) ½ CEV (a; P ). Also, from the induction step
V (a0; P ) is Pareto e±cient (relative to X) for any a0 2 C+

V (a; P ), and so
CEV (a; P ) ½ PEV (a; P ). It follows that CEV (a; P ) = PEV (a; P ).

Next, consider the case where V (a0; P )PiV (a; P ) for some i and a0 2
C+
V (a; P ). In this case, by (CE2) a =2 CEV (a; P ). Thus, by nonemptiness

(CE1), there is some a0 2 CEV (a; P ), where a0 6= a. By our induction
any a00 2 C+

V (a; P ) is Pareto e±cient, and so is rationalizable relative to
a0, and so by (CE3) a00 2 CEV (a; P ). This implies that PEV (a; P ) n a ½
CEV (a; P ). Also, from the induction step V (a0; P ) is Pareto e±cient for
any a0 2 C+

V (a; P ), and so CEV (a; P ) ½ PEV (a; P ) n a. It follows that
CEV (a; P ) = PEV (a; P ) n a.
Proof of Claim 1: Take any Pareto e±cient x such that x = V (a; P ) for
some a = (a1; ::::; am). We prove by induction on k that a 2 CEV ((a1; ::::; ak); P )
for all k = 1; :::::;m. The proof is obvious for k = m.

Now, assume that the assertion holds for k > K whereK < m, let us show
it holds for K. By the Pareto e±ciency of V , given any y 6= V (a;P ), there
exists i such that V (a; P )Riy. By the induction step, a 2 C+

V ((a1; ::::; aK); P ),
and so (CE3) then directly implies that a 2 CEV ((a1; ::::; aK); P ).
Proof of Theorem 2: We ¯rst show the ¯rst claim in the theorem. We
use Lemma 2. Choose a 2 A and any pro l̄e P 2 P¤. Let D(P ) =
[b2A(a)\AmV (b; P ). We show that D(P ) satis¯es the conditions of lemma2.

Take any y 2 D(P ) and x =2 D(P ). Since V is Pareto e±cient, y is not
Pareto dominated by x. Given that P 2 P ¤, this means that there is i 2 N
such that yPix.

Since D(P ) satis¯es the required condition from the lemma, it follows
that EOV (a; P ) ½ [b2A(a)\AmV (b; P ), as claimed in the theorem.

Next, we show that equality holds if consistency is satis¯ed. Note that
since V is Pareto e±cient, the outcomes from full length extensions of amust
be Pareto e±cient. It follows from Claim 1 that (CE1), (CE2) and (CE3)
imply that the equilibrium continuation outcomes following a coincide with
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the outcomes of full length agenda continuations of a.

We now show the claim that the algorithm in Theorem 2 de¯nes a minimal
set of consistent continuation equilibria, even when V may not be Pareto
e±cient.

Consider the following de¯nition of smallness on continuation equilibria.
Given two collections of sets of continuation equilibria fCEV (a; P )ga2A and
fCE0V (a; P )ga2A, we say that fCEV (a; P )ga2A is smaller than fCE 0V (a; P )ga2A
if CEV (a; P ) ½ CE0V (a; P ) for all a 2 A.

The minimal set of continuation equilibria may be identi¯ed as follows,
as we shall prove below.

We de¯ne CE¤V (a; P ) by induction on the length of a. Consider a 2 A of
length k and let

C ¤+V (a; P ) = [x=2aCE¤V ((a; x); P )
Then we construct C¤1V (a; P ) as follows.

-Either V (a; P )RiV (a0; P ) for all a0 2 C¤+V (a; P ) and for all i 2 N . Then
C ¤1V (a; P ) = fag

-Or V (a0; P )PiV (a; P ) for some a0 2 C¤+V (a; P ) and some i 2 N . Let
Ci(a; P ) be the subset of C¤+V (a; P ) consisting of the agendas b in C¤+V (a; P )
such that V (b; P )RiV (a0; P ) for all a0 2 C¤+V (a; P ). Then C¤1V (a; P ) =
[i2NCi(a; P ).

Then C¤2V (a; P ) is de¯ned as the set
n
a0 2 C¤+V (a; P ) : V (a0; P )RiV (b; P ) for some b 2 C¤1V (a; P ) and some i 2 N

o

Since the setC ¤+V (a; P ) is ¯nite, there exists j such thatC ¤jV (a; P ) = C¤j+1V (a; P ):
De¯ne CE¤V (a; P ) as such a set.

It follows quite easily from the above construction that fCE¤V (a; P )ga2A
is a collection of sets of consistent continuation equilibria.

Next, let fCE¤¤V (a; P )ga2A be de¯ned inductively by

CE¤¤V (a; P ) =
(
PEV (a; P ) if V (a; P )RiV (a0; P ) 8i 2 N and 8a0 2 C¤¤+V (a; P )
PEV (a; P )na otherwise

Claim 2 There exists a unique smallest collection of sets of consistent con-
tinuation equilibria which is given by fCE¤V (a; P )ga2A above, and this coin-
cides with fCE¤¤V (a; P )ga2A.
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Proof of Claim 2 :
Step 1: fCE¤¤V (a; P )ga2A is a collection of sets of consistent continuation

equilibria and CE¤¤V (a; P ) = CE¤V (a; P ) for all a 2 A and all P 2 P .
It is straightforward to see that fCE¤¤V (a; P )ga2A is a collection of sets of

consistent continuation equilibria .We prove the above identity by induction
over #a. Assume that CE¤¤V (a; P ) = CE¤V (a; P ) for all a such that #a > K
and let a be such that #a =K .

Assume ¯rst that a 2 CE¤¤V (a; P ). Then it follows from the induction
hypothesis that V (a; P )RiV (a0; P ) 8i 2 N and 8a0 2 C¤+V (a; P ) = C¤¤+V (a; P )
and therefore from (CE2), a 2 CE¤V (a; P ). We prove similarly that if a 2
CE¤V (a; P ), then a 2 CE¤¤V (a; P ). In that case, if b 2 CE¤¤V (a; P ), then
b 2 CE¤V (a; P ) as there exists at least one i 2 N such that V (b; P )RiV (a; P ).
Similarly, if b 2 CE¤V (a; P ), then b 2 CE¤¤V (a; P ). Assume indeed on the
contrary that there exists c 2 C¤¤+V (a; P ) such that V (c; P )PiV (b; P ) 8i 2
N . Since from the induction hypothesis, c 2 C ¤+V (a; P ); we contradict our
construction of CE¤V (a; P ).

The proof of equality in the case where a =2 CE¤¤V (a; P ) is similar.
Step 2: Step 2: fCE¤V (a; P )ga2A is the unique smallest collection of sets

of consistent continuation equilibria.
This follows from Claim 1 and the characterization of fCE¤V (a; P )ga2A in

Step 1.

Proof of Proposition 1:
Both assertions in the proposition follow from Lemma 2 . First, let

D(P ) = TC(P ). Since TC(P ) satis¯es the requirements of D(P ) in the
lemma, it follows from that if V is top cycle consistent, then EOV (a; P ) ½
TC(T(P )).

To prove the second statement concerning Condorcet consistency, let P
be any pro l̄e with a Condorcet winner, say x. Then, let D(P ) = fxg. Since
D(P ) satis¯es the requirements of the lemma, the statement follows.

Proof of Corollary 3: Note the following observations: (i) Any y which
beats 0 must have at least n+1

2 projects built. (ii) Any x 2 X¤(P ) beats
any y such that yT (P )0 and y =2 X ¤(P ) (as then y must involve at least n+12
projects and yet be more expensive than x).

Using these observations, it follows from (i) than only 0 or some choice of
at least n+1

2 projects can be the outcome of a full length agenda. From (ii) it
follows that only choices in X¤(P ) can be the outcome of a full length agenda
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in A(a0). This implies that only outcomes in X¤(P ) (if it is nonempty) can
be the outcomes of full length agendas in A(a0). Next note that no element
in X¤(P ) beats any other element in X¤(P ), and so the ¯rst one appearing
in the agenda will be the outcome. This means that each element in X¤(P )
is the outcome of at least one full length agenda in A(a0). The result then
follows from Corollary 2.

Proof of Lemma 1: Let us show that setting CEV (a; P ) = M (a; P ) for
each a satis¯es (CE1)-(CE3).

It follows from the de¯nition of maximal agenda that if a 2MV (a; P ) then
MV (a; P ) = A(a) and moreover, thatMV (b; P ) = A(b) for all b 2 A(a). Then
it easily follows that (CE1)-(CE3) are satis¯ed starting at any maximal a at
P . So, consider a 2 A that is not maximal. By the de¯nition of CEV (a; P ),
it follows that C+

V (a; P ) = [x =2 aMV ((a; x); P ). It follows from the de¯ni-
tion of maximality that [x=2aMV ((a; x); P ) = MV (a; P ). So, CEV (a; P ) =
C+
V (a; P ) = MV (a; P ). It then follows directly (noting nonemptiness of
M ) that (CE1) is satis¯ed. Next, using Pareto e±ciency of V , since a =2
MV (a; P ), there must be b 2MV (a; P ) such that V (b; P )PiV (a; P ) for some
i. Since a =2 MV (a; P ), we know that a =2 CEV (a; P ), which then satis-
¯es (CE2) since we have established that V (b; P )PiV (a; P ) for some i and
b 2 MV (a; P ) = C+

V (a; P ). Finally, note that given Pareto e±ciency of V ,
any b 2 MV (a; P ) must be Pareto optimal (if not, some y Pareto domi-
nates x = V (b; P ), which implies that y =2 b; but then by Pareto optimality
V ((b; y); P ) 6= x which is a contradiction). It then follows that for all distinct
pairs b; c 2 MV (a; P ), there exist i; j with bRic and cRjb. It then follows that
all of C+

V (a; P ) = MV (a; P ) = CEV (a; P ) is rationalizable and that (CE3)
holds.

Proof of Theorem 3: Consider an in¯nite X, a Pareto e±cient voting rule
V and a pro¯le of preferences P 2 P such that MV (a; P ) is nonempty for
each a 2 A.

The remaining part of the proof is identical to that of Theorem 2 after
noting that Lemma 2 and Claim 1 remain valid after some slight modi¯cation.
That is, if [b2A(a)\AmV (b; P ) is replaced by [b2A(a)\MV (a;P )V (b; P ) in Lemma
2, the modi¯ed statement remains true. Similarly, Claim 1 can be modi¯ed
to show that if V is Pareto e±cient and x = V (b; P ) for some b 2MV (a; P )
for some a, then a 2 EOV (a; P ). The details are left to the reader.
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