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COMPUTING POWER INDICES FOR LARGE VOTING GAMES

by Dennis Leech, University of Warwick

ABSTRACT

Voting Power Indices enable the analysis of the distribution of power in alegislature or voting body in
which different members have different numbers of votes. Although this approach to the measurement
of power, based on co-operative game theory, has been known for along time its empirical application
has been to some extent limited, in part by the difficulty of computing the indices when there are many
players. This paper presents new agorithms for computing the power indices of Shapley and Shubik
and of Banzhaf, that are essentially modifications of approximation methods due to Owen, and have
been shown to work well in real applications. They are of most utility in situations where both the
number of playersislarge and their voting weights are very concentrated, some members having
considerably larger numbers of votes than others, where Owen's approximation methods are |east

accurate.

JEL Classification numbers: C63, C71, D71, D72
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COMPUTING POWER INDICES FOR LARGE VOTING GAMES

Many organizations have systems of governance by voting that are designed to give different
amounts of influence over decision making to different members. For example the joint stock company
gives each shareholder a number of votesin proportion to his ownership of ordinary stock; the
shareholder body is designed to be a democratic decision-making group with each share having equal
influence but with individual shareholders having different numbers of shares to reflect their relative
capital contributions. Many international economic organizations have been designed on asimilar
principle, each country being entitled to a number of votes based on its financial contribution, the most
prominent examples being the Bretton Woods institutions: the International Monetary Fund and World
Bank. Federal political bodies which use the principle of weighted voting where the weights reflect
populations rather than contributions include the European Union Council of Ministers and the US

Presidential Electoral College, where theindividual states votes are cast as blocs of different sizes.

As genera voting systems, considered in the abstract without reference to their different contexts,
these are all formally similar and can be classed as weighted voting games. They contain considerable
analytical interest because, when we consider their practical implications, by studying all theoretically
possible voting outcomes, and how individual members' votes relate to them, then it turns out that the
resulting distribution of power is often different from what the designers intended. On the other hand, it is
amost aways assumed, by writers analysing the distribution of votes, that the power of a member isthe
same as his share of the votes. For example, it is often the case in discussions of the IMF, that a member
with five percent of the votesis described as possessing five percent of the voting power, or that the
United States with almost 18 percent of the votes, thereby has 18 percent of the voting power. Y et the
proportion of decisionsthat may - at |east theoretically - be taken by vote in which the member who has

five percent may be pivotal in determining the outcome may not actually be five percent at all, and the votes



of the United States may in fact be capable of being decisivein more or less than 18 percent of cases.

Thereforeit is untrue to claim that their respective shares of the total voting power are 5% and 18%".

A simple example that illustrates the point clearly isthat of a company with three shareholders, two
having 49 percent of the shares each and the third with 2 percent. It is not useful to describe these figures
as shares of the power each hasin running the company because if the decision rule requires asimple
majority of more than 50 percent of the votes, then any two shareholders are required to support a motion
for it to pass. Any shareholder can win by combining with one other and therefore the one with 2 percent
has exactly the same power as one with 49 percent. Therefore by considering all possible voting outcomes
it becomes clear that each shareholder has equal power despite the disparity in their votes. Many such
examples can be constructed or found in the real world, in which the distribution of power among
members of aweighted voting body - a member's power being his ability to join coalitions of others which
do not have the required majority and make them winning - is not at all the same as the distribution of

votes.

Another, well known, example isthe original Council of the European Economic Community.
Between 1958 and 1972 it had six member countries and used a system of qualified majority voting that
alocated 4 votes each to France, West Germany and Italy, 2 votes each to Belgium and the Netherlands
and one vote to Luxembourg. From these figures one might assume that the smaller countries would have
adisproportionately large amount of power. For example, Luxembourg, with 5.88 percent of the votes and
less than 0.2 percent of the population, had 25 percent as many votes as West Germany with only 0.57%
of its population; Luxembourg had one vote for 310,000 people while West Germany had one vote for
every 13,572,500, suggesting that L uxemburgers were 43.78 times more powerful than Germans. In fact,
however, since the number of votes required for adecision was fixed at 12, Luxembourg's one vote could
never make any difference: it wasimpossible for it to add its vote to those of any losing group of other

countries with precisely 11 votes and therefore its formal voting power was precisely zero. Thisisan

1 'Voting power in the system of governance of the IMF has recently been studied in Leech (forthcoming, b).
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extreme case, but areal one, which illustrates the analytical importance of looking at the possible outcomes
of aweighted majority vote, aswell as the nominal voting strengths, in considering voting power. The
same point arises also in the context of the corporation when we study the power of large stockholders.
Obvioudly if thereisamajority shareholder he has al the voting power and none of the other shareholders
has any voting power at all. However, it iswell known that if the largest shareholder has avery substantial
minority holding his vote will often be decisive in aproxy ballot or fully attended company meeting, even
to the extent that he could be said to have working control of the corporation, if his voting power were
sufficiently large. For example, it isamost universally accepted by writers who have studied corporate
ownership and control that a single 20 percent shareholder faced with many small shareholdersisvery
powerful indeed?. This power is certainly not reflected in the number of its shares and may in fact be very
close to that of a mgjority shareholder. Although necessarily strictly less than 100 percent, it may be

extremely closeto it.

The question has been studied by the use of power indices as measures of the ability of members
to influence voting outcomes. As a branch of co-operative game theory the field of power indices may be
thought to date from the publication of the seminal paper by Shapley and Shubik in 1954. However it has
failed to achieve wide acceptance due to ambiguity because different power indices have been defined on
the basis of different voting models. Different indices yield different resultsin practical applications and
research has so far provided little insight into the comparative merits of each. This has meant that the field
has remained at the frontier for almost fifty years. Good surveys are provided by Straffin (1994),
Felsenthal and Machover (1998) and Lucas (1983)°.

2 For example La Porta, et al. (1999).

® There has recently been an increase in interest in the power indices approach with studies of the European Union Council
and other international organizations being published. See Lane and Berg (1999), Felsenthal and Machover (2001) and Leech
(forthcoming a) on the use of power indices for the European Union Council and the Nice Summit. It is useful in the design
of congtitutions where it is necessary to conceptualise voting in a priori terms allowing for al possible constellations of
preferences. The point is made elegantly and concisely in hisimportant paper on the measurement of voting power by
Coleman (1971). Theoretical discussions of the relative merits of the two ‘classical’ power indices considered here can be
found in Felsenthal et. al. (1998), Holler (1981), Felsenthal and Machover (1995, 1998).



This paper is concerned only with the computation of the so called classical power indices,
proposed by Shapley and Shubik (1954) and by Banzhaf (1965)*, both of which have been widely
applied. Both indices are based on a common idea that a member's power rests on how often he can add
his votes to those of alosing coalition so that it wins, but they differ in the way that such coalitions are
counted. In consequence, where both indices have been used to analyse the same voting body, they have
been found to give different results. This has meant that in the absence of any objective evidence on the
actual distribution of power against which to test the indices, it has not been possible either to test the
power indices approach or to establish the respective utility of the indices. This question is not addressed

in the present paper; however, see Leech (2002).

The difficulty of computing power indices when the number of membersis large has been amajor
factor limiting the use of the technique as a means of studying real institutions. The International
Monetary Fund® for example has not far short of 200 members and a typical large company has many
thousands of shareholders, and for such large games the direct application of the definitions of power
indices is computationally impossible. The only methods previously available for such large finite games
are approximation methods due to Owen (1972, 1975a, or 1995) but in some cases these have been found
to have relatively large approximation errors (see Section. V below; also Widgren (2000)). This paper
proposes new algorithms, modifications of those of Owen, whose approximation errors are negligible.
These algorithms have been applied empirically to compute power indices for large voting bodiesin Leech

(2001, 2002, forthcoming b).

The notation used and the power indices are defined formally in Section |. Section |1 describes the
direct enumeration method of computation, its limitations and those of other exact methods. Section I11

describes the approximate methods for large games due Owen, before the proposed new agorithms, which

* Actually originally proposed by Penrose (1946). See Felsenthal and Machover (1998) for the history of the measurement
of voting power.

® Studied by Leech (forthcoming b).



combine elements of both, are described in Section V. Two numerical examples of their application are

described in Section V and Section VI concludes.

|. Power Indices: Notation and Definitions

| consider aweighted majority game of voting in alegislature with n members or players
represented by aset N ={1, 2, . . ., n} whose voting weightsarew,,w,, ..., w, . The players are ordered
by their weight representing their respective number of votes, so that w, > w,,, for al i. The combined

voting weight of all members of a coalition represented by asubset T, T [ N, isdenoted by the function

w(T), wherew(T) = Z w, A sum of squares function will also be needed: let this be h(T) = Z w2,
igT ioT
The decision rule is defined in terms of a quota, g, by which a coalition of players represented by
subset T iswinning if w(T) = gand losing if w(T) < q. It is customary to impose the restriction

g >w(N)/2 to ensure a unique decision and that the voting game is a proper game.

A power index is an n-vector whose elements denote the respective ability of each player to
determine the outcome of ageneral vote. Theindex for each player is defined in terms of the relative
number of times that player can influence the decision by transferring his voting weight to a coalition
which islosing without him but wins with him. Thisisreferred to as a swing. Formally a swing for player
I isdefined asapair of subsets, (T, T, + {i}) suchthat T, islosing, but T, + {i} iswinning. In terms of

voting weight,.T.isaswing if q-w, < w(T) <q.

The power index for player i is defined as the relative frequency or probability of swingsfor i
with respect to a coalition model where, in some sense, each possible coalition istreated equally; if
coalitions are regarded as being formed randomly then the index is a probability. The two indices however,

employ different probability models and are mathematically distinct.

The Shapley-Shubik index is the probability that i swings (or is"pivotal" in the terminology of
Shapley and Shubik) if all orderings of players are equaly likely. Thus, given a particular swing for a



member, the index is the number of orderings of both the members of the coalition T, and the players not
in T, relative to the number of orderings of the set of all players N: every reordering is counted separately.

The index is the probability of a swing for the player within this probability model.

For agiven swing for player i, the number of orderings of the members of the subset T, and its
complement (apart from player i ), N-T-{i}, is t!(n-t-1)! wheret is the number of membersof T, and nis

the total number of players, members of N. The total number of swingsfor i defined in thisway for this

coalition model is z ti(n—t-1!. Theindex, @ , is this number as a proportion of the number of
Ti
orderings of all playersinN,

(R:Zt!(n—nf—l)!_ @

If all orderings are equiprobable, it is the probability of a swing.

The Banzhaf index, on the other hand, treats al coalitions T, as equiprobable, players being
arranged in no particular order. A member's power index is then the number of swings expressed asa
fraction of either the total number of coalitions (measuring the probability of a swing), or of the total

number of swingsfor all players (measuring the player’ s relative capacity to swing).

The number of swingsisthen z 1. Thetwo versions of the index are defined by expressing this
T,

number over different denominators. The Non-Normalized Banzhaf index (or Banzhaf Swing
Probability), B.', uses the number of coalitions which do not includei , 2**, the number of subsets of

N—{ i}, as denominator, and therefore it can be written as:

B'= > 12" 2

The Normalized Banzhaf Index, 3, uses the total number of swingsfor all playersasthe

denominator in order that it can be used to allocate voting power among players:



B = Zl/Z Zl. (3)

The normalized indices sum to unity over players. ZBi =1. See Shapley and Shubik (1954), Banzhaf

(1965), Dubey and Shapley (1979), Lucas (1983), Straffin (1994), Owen (1995), Felsenthal and
Machover (1998).

In the discussion of computation of the Banzhaf index below it is only necessary to consider the

details of computing the swing probability version, (2), since {3, =3,/ Z B,

[1. Computing the Indices by Exact Methods

Several methods are available to compute the Shapley-Shubik indices, with simple modifications
for the Banzhaf indices: Direct Enumeration; Monte Carlo ssmulation (Mann and Shapley (1960));
Generating Functions (Mann and Shapley (1962)); Multilinear Extensions (Owen (1972, 1975a)); MLE
Approximation (Owen (1972, 1975a)).

The simplest approach is Direct Enumeration, which consists of searching over all possible
coalitions and applying the fundamental definitions of the indices directly. This method is straightforward
but only feasible for small and medium sized games. Experience with it suggestsit is practical for values
of n up to about 30, beyond which computing times become very large.® The method of generating
functions of Mann and Shapley (1962) and Owen's (1972) multilinear extensions method are aternative
exact methods which are usually regarded as more suitable for small (or at most medium sized) games
than for large games. Lucas (1983) discusses the applicability of the method of generating functions.

Widgren (1994) presents a case where the use of the exact multilinear extensions approach did not prove

® This method has the advantage that it can be applied not only to evaluating power indices for simple games but it can be
easily adapted to find Shapley values, Banzhaf values (and other value concepts for cooperative games which assign a
characteristic function to each coalition of players).



computationally feasible for a game with 19 members and Owen’s MLE approximation method had to be

used instead.

The Direct Enumeration method is very inefficient and has exponential complexity. It requiresthe
use of an algorithm to find each subset of players exactly once (via a search which finds each corner of a
hypercube just once, known as a“Hamilton walk™). The number of subsets of N is2" . For each (proper)

subset it finds al swings and updates expressions (1) and (2) repeatedly. That is, for each S [ N, it

evaluates w(S) = Z w, which requires n operations, summing over al n players taking account of
jos

whether each isamember of Sor not. Then for eachi = 1, nit testsfor a swing and updates as follows: if
ION-Sand g—w, < w(S)<q then (for the Shapley-Shubik index) set @ = @ + s!(n-s-1)!/n! (which
requires s function multiplications), and (for the Banzhaf index) add oneswing,n,=n, + landason =
n + 1, wheren, is the number of swings for player i and n isthe total number of swingsfor al players.
Then move to the next subset S and repeat. When all subsets have been searched the Shapley-Shubik
indices (1) are found and the Banzhaf indices can be obtained by, for eachi =1, n, setting 3,’= n./2"* and
B, = n/n. Therefore evaluating the indices for each player has complexity at least of order 2". The Non-
Normalised Banzhaf indices 3" have complexity of the order of 2",. while the Normalised indices [3;
require the normalizing constant and therefore cannot be obtained separately; therefore their complexity is
of order n2". The Shapley-Shubik indices require additional calculations because of the need to evaluate
sl(n-s-1)!/n! . Thisisfound by the recursion: set x=1/n, then for j=1,s, set x=x.j/(n-s+j-1); sinces< n-1
the complexity is of order n. Therefore the Shapley-Shubik index for each player has complexity of the

order of n2".

This paper proposes to overcome this by a mixed approach combining direct enumeration with the
approximation methods due to Owen (1972, 1975a) which uses variations of the central limit theorem to
get approximations to expressions (1) and (2). In order to describe the algorithms proposed in this paper,

it isfirst necessary to describe those of Owen.



[11. Owen's MLE Approximation Algorithms

Expression (1) for the Shapley-Shubik index can be rewritten by noting that the term inside the
summation is a beta function:

t(n-t-1)! _

B(t+1, n-t) = o =

J’:xt(l )"k (4)

The integrand on the RHS of (4), x'(1-x)™"*, can be regarded as the probability that the (random)
subset T, appears, when x is the probability that any member joins T, , assumed constant and independent
for al playersj,j LN - {i}. Summing this expression over all swings gives the probability of a swing for

I. Let uscall this probability f,(x):
=5 x(@x)" (5

Ti

Integrating x out of (5) gives the Shapley-Shubik index, because, substituting (4) into (1) gives.

@=Y [X@-0""dx = [, [Y X" o

1
= [, 9 dx. (6)
We can evaluate @ approximately using a suitable approximation for f,(x). In large games with many

small weights, and no very large weights, this can be done with reasonable accuracy using suitable

probabilistic voting assumptions and the normal distribution.

The probability of aswing f,(x) can be approximated using the following probabilistic-voting
model. Assuming each player j # 1 votes the same way asi with probability x, independently of the others,
defines arandom variable, v; with the following dichotomous distribution:

Pr(v=w) =%, Pr(v=0)=1-x, Pr(v#w andv # 0)=0.
The random variable v, can be interpreted as the number of votes cast by player j, at random, on the same
side as those of player i. Itsfirst two moments are:

E(v) = xw,, Var(v) = x(1-x)w?, al j.

The total number of votes cast by players| in the same way asthat of player i isarandom variable



vi(X) = Z v; . Thenv,(x) has an approximate normal distribution with moments:
joN=(

E(vi(x)) = xw(N-{i}) = p(x), say, and
Var(v,(x)) = x(1-x) h(N-{i}) = o,(x)°.
Then the required probability,
fi(x) = Prlq - w, < v(x) <, (7)
can be obtained approximately using the normal distribution function, ®(.) by evaluating the expression:

0= oS S

(8)

The Shapley-Shubik index in (6) is approximated by numerically integrating out x in (8). The
Banzhaf index is abtained by setting x = 0.5 in (8), since then (5), for which (8) is an approximation,
reduces to (2), the definition of the Banzhaf Swing probability.

These methods have linear complexity. The calculations for the Shapley-Shubik index and the
Non-Normalised Banzhaf index for a player depend on the number of players n only in the data input and
calculation of the statistics w(N) and h(N) (which need only be done once since they are common to all
players) because neither (8) nor its numerical integral (6) depend on n. The Normalised Banzhaf indices

require the normalizing constant which necessitates that all n indices are found simultaneously.

These methods for both indices have been used in a number of studies’. but their accuracy
depends on the validity of the normal approximation. In some real world weighted voting bodies the
approximation is not good and consequent computation errors are large because of afailure of the central
limit theorem due to concentration of the voting weights w.. in the hands of afew. An example of this has

recently been reported by Widgren (2000).

" For example Owen (19753, 1975b), Leech (1988, 1992).
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V. Modified Owen Algorithms for Large Finite Games

For games where nistoo large for exact methods to be feasible, and where the distribution of
weightsis highly skewed, we can combine the essential features of both approaches. The genera

procedure is as follows.

The players are divided into two subsets: major players with the largest weight, M ={1, 2,.. , m}
and minor players N - M. The value of mis chosen for computational convenience, along a tradeoff
between accuracy and efficiency. A general rule would be to choose m as large as possible while

computing timeis not too great.

The agorithm searches al subsets of M. Given a particular subset, S [0 M, it then evaluates the
approximate conditional swing probability for each player making Owen’ s standard assumptions about
random voting by minor players only, conditional on S. The probability of the swing is then obtained as
the product of the probability of the formation of S, by random voting by major players, and that of the
conditional swing. The index is obtained by summing these joint probabilities over al the subsets. There

are two cases to consider: (1) player i isamajor player,i LIM; (2) i isa minor player,i LIN - M.

(1) Major Players

It is necessary to search over all subsets of M which do not include player i; any subset of which i
isamember cannnot define a swing and the swing probability associated with it is definitionally zero. For

each such subset consider the probability of its forming and the probability of its being a swing for i.

Suppose Sisasubset of M - {i}. Welet the swing probability be f.(x) as before. This can be

written as;

fi(x) = Pr(swing for i) = Z Pr(S)Pr(swing for i|S)

S
Defining the conditional probability of a swing given S as the function g,(S, x), and the probability of

selecting S randomly by the function p(s, m-1, x), we can write:

11



) =3 pls, M1 x)g(S x).

S
Thefirst factor inside the summation is:
p(s, m-1, x) = x5(1-x)™=*,
To find the second factor, define the random variable:

V()= > v,

where v, is as before, to represent the random number of votes cast by the minor players.
so, E(v,(¥)) = xW(N-M) = (%),
and Var(v,(x)) = x(1-x)h(N-M) = g,(x)*.
Using these moments and the normal approximation to the distribution of v,(x), we can obtain the required
probability as:
6,(S, x) = Pr[q - w(S) -w; = vi(x) < q - w(S)]

QW) (), |4 A=W ~W, (9

~ o 5,(x)

9
Therefore, we can write

fO = 5 XX g(S x). (10)

soM={i}

The required index isthen:

Q= fOOdk=[ [ 5 *(1xg(S X

sOM={i}

=y f; X(1-X)™g(S, X)dx (11)

SOM—{i}
which can be found by searching over all subsets of M-{i}, integrating out x by numerical quadrature at
each subset then summing. The Banzhaf index 3", is obtained from (10) on setting x=0.5 instead of

integrating it out, then summing to give 3", = £,(0.5).

The summation in expression (10) aboveis over al subsets of M-{i}, but it is clear that

operationally we can search over al subsets of M since any set which includes i has a zero probability of a

12



swing for i. Writing g.(S,x) = O for al Swherei LI S, and as expression (9) where il S then we can

rewrite (10) and (11) as:
[0 = 3 XX g(S ), (12)
=Y [, XS X (13)

SUM

and the Banzhaf index

B'= > 05™g(505)=f,(05). (14)

SUM
It is therefore possible to compute the indices for both major and minor playersin asingle search over the

subsets of M.

(2) Minor Players

Now the computation of the indices for the smaller players, i LI N-M, isdescribed. The subset S
can now be considered to be any subset of M. Since we are now treating the votes of all m major players
as random (not just m-1 of them), the probability of the subset Sis:

Pr(S) = p(s, m, x) =x3(1-x)™".
The behavior of the minor players other thani is described by arandom variable

y.(X) = Z v, which has an approximate normal distribution with moments:
JON=M -{i}

H(X) = xw(N-M-{i})
and 0.(x)? = x(1-x)h(N-M-{i}).
Hence we can evaluate the conditional swing probability g.(S, x) which now can be written as
6i(S. %) = Pr[q - w(S) - w, < y,(x) < q - w(S)],
approximately by the normal probability in expression (9) after making the required notational
substitutions.
Writing

)= pls.m, x) g(S x),(15)

SLM

13



the Shapley-Shubik index is found again by quadrature, then summing,

9=y [, emNgS N (16

SOM

and the Banzhaf index by setting x=0.5, then summing,

B'= Y 05"g(S05)=f(05). (17)

SUM

within the same subset search as before, S 0 M.

These algorithms require a search over all subsets S of M, in order to find (10), therefore the
caculations have to be repeated 2™ times. Expression (9) does not depend on either m or n once the
statistics w(N-M) and h(N-M) have been evaluated, requiring O(n) operations, and these are common to

all players. Therefore the indices have complexity exponential in m and linear in n.

These algorithms have proved to be efficient and accurate® in large games. Leech (forthcoming b)
has n=178 and in Leech (2001, 2002) there are numerous cases of company voting games with n>400.
These applications have required only a moderate choice of m. The obvious rule for choosing the value of
m isthat it should be large enough to ensure accuracy without being too large to prevent all subsets of M

to be enumerated in a reasonable computing time.

V. Two Examples

This section presents the results of using the algorithmsin practical computations. The
implementation uses a subroutine that finds every subset of a set exactly once, given in Nijenhuis and Wilf
(1983), a quadrature subroutine due to Patterson (1968) for the Shapley-Shubik index, and double
precision arithmetic. Two examples are presented, areal one from the International Monetary Fund in
which there is one member with avery large weight, and an artificial one in which the distribution of

weightsis concentrated with several members having much larger weight than the others.
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Example 1: The IMF Board of Governors

The algorithms have been used to calculate the measures of voting power for the governing body
of the International Monetary Fund. The United States has weight much greater than the other countries
and we might expect some error in the normal approximation in consequence; the Shapley-Shubik indices
and the Non-Normalised Banzhaf indices for the other members, and the Normalised Banzahf indices for
all members, are likely to be affected by this. The results are presented in Table 1 for m=0 (corresponding
to Owen’s methods) and various values of m up to 15 for certain representative members, including the
largest three and the smallest. The relative approximation errors are graphed in Figure 1 for all m. The
error in calculating the Shapley-Shubik indices is never greater than 2 percent and becomes much less
than 0.1percent for m=1, the case where the very large weight for the United States is removed from the

approximation part of the algorithm.

Thereis amuch greater approximation error in the Banzhaf calculations, for both the non-
normalised and normalised versions of the index for m=0. For the former the error in the index for the
USA islessthan 1 percent as would be expected but there are very large errorsin the others, over 35
percent in the case of the second member, Japan, and well over 25 percent for al other members.
Increasing m reduces the error until it becomes negligible by the time m has been increased to 10. The
figures for thenormalised Banzhaf index calculated by the Owen algorithm are also subject to error,
including the index for the USA, because the failure of the normal approximation leads to overestimation
of thenormalising constant. Again the algorithm reduces the error and it is well under 1 percent for al

members when m=5 and negligible when m=10.

The general conclusion from this exampleis that the algorithms perform well in combining

accuracy with speed and that there is very little to be gained in improved accuracy by increasing m much

8 Accuracy of the computer implementation has been established by calculating the Shapley-Shubik indices for games of
small or moderate size for which the indices are known from other methods; in particular the US Presidential Electoral
College in the example given by Lambert (1988).
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beyond 5 when the relative accuracy for all the indicesis around one tenth of one percent. The problem of

accuracy is more serious for the Banzhaf indices than the Shapley-Shubik index.
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Figure 1. Voting Power in the IME

m= 0 15 0 1 2 3 4 5 10 15

Weight%  Shapley-Shubik Index Relative Error %
i=1 USA 17.55 0.2067 02061 | 0.30 0.30 022 013 009 005 001 0.00
i=2 Japan 6.30 0.0640 0.0628 |1.89 0.06 006 0.04 003 002 0.00 0.00
i=3 Germany 6.15 0.0624 0.0613 |1.88 0.06 004 004 003 002 0.00 0.00
i=10 Netherlands 2.45 0.0239 00235 | 165 0.08 006 0.04 003 001 0.00 0.00
i=50 Greece 0.40 0.0038 0.0038 | 155 0.09 006 0.04 003 002 0.00 0.00
i=100 Lithuania 0.08 0.0008 0.0008 |153 0.09 006 0.04 003 002 0.00 0.00
i=178 Marshall Is. 0.01 0.0001 0.0001 |152 0.09 007 0.04 003 002 0.00 0.00

Weight% Non-Normalised Bz Index Relative Error %
i=1 USA 17.55 0.7706 0.7636 092 092 063 034 021 009 001 0.00
i=2 Japan 6.30 0.2258 0.1672 |35.11 -347 -347 -162 -095 -036 -004 000
i=3 Germany 6.15 0.2204 0.1638 |3455 -357 -155 -155 -091 -035 -0.04 000
i=10 Netherlands 2.45 0.0859 0.0670 |28.18 -347 -2.02 -094 -059 -019 -0.02 000
i=50 Greece 0.40 0.0140 0.0110 |27.40 -329 -193 -091 -057 -020 -0.02 0.00
i=100 Lithuania 0.08 0.0028 0.0022 |27.38 -329 -193 -0.90 -057 -020 -0.02 0.00
i=178 Marshall Is. 0.01 0.0005 0.0004 |27.38 -329 -193 -0.90 -057 -020 -0.02 0.00

Weight% Normalised Bz Index Relative Error %
i=1 USA 17.55 0.2098 0.2538 -1734 334 204 100 062 024 003 000
i=2 Japan 6.30 0.0615 0.0556 1066 -116 -212 -097 -054 -022 -002 0.00
i=3 Germany 6.15 0.0600 0.0545 1020 -126 -018 -091 -050 -020 -0.02 0.00
i=10 Netherlands 2.45 0.0234 0.0223 498 -115 -065 -029 -018 -004 -0.01 0.00
i=50 Greece 0.40 0.0038 0.0037 434 -097 -056 -026 -016 -005 -0.01 0.00
i=100 Lithuania 0.08 0.0008 0.0007 433 -097 -055 -025 -016 -005 -0.01 0.00
i=178 Marshall Is. 0.01 0.0001 0.0001 432 -096 -056 -025 -016 -005 -0.01 0.00
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Figure 1(a): Relative Approximation Errors, Shapley-Shubik |ndex
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Figure 1(b): Relative Approximation Errors, Non-Normalised Banzhaf |ndex
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Example 2: An Artificial Example

The second example is a game with artificially generated weights constructed to capture the
characteristic pattern encountered in real voting bodies with alarge number of members, in which there are
afew members with large weights and many with small weights. The concentration of weight among these
large players, could make the normal approximation somewhat inaccurate. Very good results are obtained

using the new algorithms, however.

The game was chosen with n=100, g=55% and the weights have been generated at random (before
being expressed as percentages) from a suitable distribution: w,, w,, . .., w,, are asample from the
Lognormal Distribution A(4.3, 3). The resulting distribution of votesis very concentrated: one player has
29%, two further players have over 10% and a further 2 more than 5% of the total votes. The smallest
player has 0.00001 percent of the votes. Although this concentration makes it necessary to choose a value
of m greater than zero to get good accuracy, for the same reason it is not necessary to use alarge value of
m. Table 2 shows the power indices for certain selected players, i=1,2,3,6,30,60 and 100, calculated for
m=0 and m=12. It also shows the relative approximation errors for m=0,1,2,3,4, 8 and 12 (identically zero
since the values calculated with m=12 are taken as fully accurate.) The graphsin Figure 2 show the relative

approximation errors for these players and al values of m<12.

In this example, the MLE approximation methods are very inaccurate (the case m=0), the index for
i=2 being overestimated by 15% and that for i=1 by 5%. However for the large players the errorsin al
indices become negligible for m=5. For the small players the errors in the Shapley-Shubik indices and the
Non-normalized Banzhaf indices become negligible for m=5 and those in the Normalized Banzhaf indices
for m= 7 in the case of the smallest player, i=100. (This result may be affected by rounding error and the

index in this caseis anyway very small).
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Table 2: Artificial Example: Power Indices and Relative Approximation Errors for Selected Players

m= 0 12 0 1 2 3 4 8 12
Player  Weight % Shapley-Shubik Index Relative Error %
1 29.15164 0.3696 03506 |542 542 011 011 032 003 0
2 19.50868 0.2135 0.1850 1540 -2.07 -207 027 044 -001 O
3 11.70222 0.1160 0.1142 |155 -761 228 228 032 0.06 0
6 2.4785 0.0225 0.0217 |3.80 -269 064 -147 -136 -030 O
30 8.55 0.00076 0.00073 |4.12 -196 045 -1.37 -097 0.06 0
60 0.636 5.65E-05 543E-05 |[416 -190 048 -1.33 -092 0.07 0
100 0.00001 9.00E-08  9.00E-08 |0.00 -11.11 0.00 -11.11 11.11 0.00 0
Player Weight %  Non-Normalised Bz Index Relative Error %
29.15164 0.6991 0.6706 425 425 025 -001 -077 000 O
19.59868 0.4193 0.3258 2868 -361 -361 -178 097 -001 O
11.70222 0.2370 0.2184 854 -11.34 483 485 258 -008 O
2.4785 0.0489 0.0391 2510 562 1762 1392 23.07 -051 O
30 8.55 0.00168 0.00139 | 2095 226 1361 1021 1781 -034 O
60 0.636 125E-04 1.04E-04 | 2095 226 1360 1020 1781 -034 O
100 0.00001 2.00E-07 1.60E-07 | 25.00 6.25 1250 1250 1875 000 O
Player Weight % Normalised Bz Index Relative Error %
29.15164 0.3269 03522 | -7.21 646 -240 -135 -463 006 O
19.59868 0.1960 0.1711 | 1453 -157 -616 -3.10 -296 005 O
11.70222 0.1108 0.1147 | -339 -946 206 343 -141 -001 O
2.4785 0.0228 0.0205 |11.35 7.86 1451 1238 1828 -045 O
30 8.55 0.00079 0.00073 | 765 4.42 1061 872 1323 -028 O
60 0.636 5.85E-05 544E-05| 765 441 1059 870 1322 -029 O
100 0.00001 9.00E-08 9.00E-08] 0.00 0.00 0.00 000 1111 000 O
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Fiqure 2(b): Relative Approximation Errors: Non-Normalised Banzhaf |ndex
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V1. Conclusion

This paper has described two agorithms for computing power indices for voting games, enabling
the easier analysis of power in the kind of large weighted voting bodies that often occur in reality. They
are capable of achieving a high degree of accuracy without excessive cost in terms of computing timein
real applications and can be applied to voting bodies of any size. The algorithms are a hybrid between the
direct application of the definitions of the indices, whose feasibility for all but small gamesis severely
limited by computing time because of their exponential complexity, and approximation methods due to
Owen, where the accuracy of the approximation may be limited when voting weights are very concentrated.
By treating a small number of members with large weights differently from the minor members, the
methods achieve a significant reduction in approximation error at little cost in terms of computer time.
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