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QUANTILE GRAPHICAL MODELS: PREDICTION AND CONDITIONAL

INDEPENDENCE WITH APPLICATIONS TO FINANCIAL RISK MANAGEMENT

ALEXANDRE BELLONI∗, MINGLI CHEN‡, AND VICTOR CHERNOZHUKOV†

Abstract. We propose Quantile Graphical Models (QGMs) to characterize predictive and conditional

independence relationships within a set of random variables of interest. This framework is intended to

quantify the dependence in non-Gaussian settings which are ubiquitous in many econometric applica-

tions. We consider two distinct QGMs. First, Condition Independence QGMs characterize conditional

independence at each quantile index revealing the distributional dependence structure. Second, Predic-

tive QGMs characterize the best linear predictor under asymmetric loss functions. Under Gaussianity

these notions essentially coincide but non-Gaussian settings lead us to different models as prediction

and conditional independence are fundamentally different properties. Combined the models comple-

ment the methods based on normal and nonparanormal distributions that study mean predictability

and use covariance and precision matrices for conditional independence.

We also propose estimators for each QGMs. The estimators are based on high-dimension techniques

including (a continuum of) ℓ1-penalized quantile regressions and low biased equations, which allows us

to handle the potentially large number of variables. We build upon recent results to obtain valid choice

of the penalty parameters and rates of convergence. These results are derived without any assumptions

on the separation from zero and are uniformly valid across a wide-range of models. With the additional

assumptions that the coefficients are well-separated from zero, we can consistently estimate the graph

associated with the dependence structure by hard thresholding the proposed estimators.

Further we show how QGM can be used to represent the tail interdependence of the variables which

plays an important role in application concern with extreme events in opposition to average behavior.

We show that the associated tail risk network can be used for measuring systemic risk contributions.

We also apply the framework to study financial contagion and the impact of downside movement in

the market on the dependence structure of assets’ return. Finally, we illustrate the properties of the

proposed framework through simulated examples.
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2 BELLONI, CHEN, AND CHERNOZHUKOV

1. Introduction

We propose Quantile Graphical Models (QGMs) to characterize and visualize the dependence struc-

ture of a set of random variables. The proposed framework allows us to understand prediction and

conditional independence between these variables. Moreover, it also enable us to focus on specific parts

of the distributions of these variables such as tail events. Such understanding plays an important role

in applications like financial contagion and systemic risk measuring where extreme events are the main

interest for regulators. Our techniques are intended to be applied in high-dimensional settings where the

total number of variables (or additional conditioning variables) is large – possibly larger than the sample

size.

In this work we provide an alternative route to estimate conditional independence and predictability

under asymmetric loss functions that is appealing to non-Gaussian settings. In the Gaussian setting these

notions essentially coincide but to pursue these questions in non-Gaussian settings different approaches

are needed. Conditional independence interpretation hinges on the equivalence between conditional

probabilities and conditional quantiles to characterize a random variable. Prediction performance under

asymmetric loss function hinges of the solution of a quantile regression (M -estimation problem) with

non-vanishing misspecification. Although we build upon the quantile regression literature ([43, 17]), we

derive new results on penalized quantile regression in high dimensional settings that enables us to handle

misspecification, many controls and a continuum of additional conditioning events.

Our interest lies on understanding the dependence and prediction properties among the components

of a d-dimensional random vector XV , where the set V contains the labels of the components. Quantile

graphical models (QGMs) allow us to visualize dependence for each specific quantile index τ through a

graph where the set of nodes V represents the components of XV and edges represent a relation between

the corresponding components. Therefore we have a graph process indexed by τ ∈ (0, 1). The structure

represented by the τ -quantile graph represents a local relation and can be valuable in applications where

the tail interdependence (high or low quantile index) is the main interest.

A motivation of predictive quantile graphical models is to allow for a possible misspecified model.

This approach was first properly justified by [8] where it was shown that we recover a suitable “best

approximation” for the conditional quantile function. In particular, we can guarantee good prediction

properties under asymmetric loss function. Other papers also investigated the impact of misspecification

in the specification of the quantile function, see [8], [42], [47] and [1]. This work is the first to accommodate

non-vanishing misspecification for high-dimensional quantile regression.

Our work is complementary to a large body of work that focused on the case of jointly Gaussian

random variables [45]. Indeed, under Gaussianity the “population” conditional independence graphs and

prediction graphs coincide. In such setting, it is well known that conditional independence structure is

completely characterized by the covariance matrix of the random variables of interest. Indeed, a zero entry

in the precision matrix (inverse of the covariance matrix) identifies a pair of conditionally independent

variables. Thus the precision matrix can be directly translated into a Gaussian graphical model (GGM)



QUANTILE GRAPHICAL MODELS 3

which can be used to study the interdependence. Further this approach characterize the conditional mean

predictability of one set of the variables by linear combinations of the other variables.

The network produced by QGMs has several important features. First, it enables different strength

of the links in different directions. This is important because for undirected networks, the distinction

between exposure and contribution is unclear. Second, compared with Gaussian Graphical Models (which

is characterized by the covariance matrix), QGMs are able to capture the tail interdependence through

estimating at up or low quantiles. Third, QGMs can capture the asymmetric dependence structure at

different quantiles, which can be particularly useful in applications (e.g., stock market returns, exchange

rate dependence). In addition, by considering all the quantiles we can characterize the conditional in-

dependence structure between the variables. This is useful specially when the variables are not jointly

Gaussian distributed, in which case the covariance matrix cannot completely characterize establish con-

ditional independence.

We also provide estimation methods to learn QGMs from data. The estimators are geared to cover

high-dimensional settings where the size of the model is large relative to the sample size. These estimators

are based on ℓ1-penalized quantile regression and low biased equations. For the CIQGMs, under mild

regularities conditions, we discuss rates of convergence and properties of the selected graph structure that

hold uniformly over a large class of data generating process. We provide simultaneously valid confidence

regions (post-selection) for the coefficients of the CIQGM that are uniformly valid despite of possible

model selection mistakes. Furthermore, based on proper thresholding, recovery of the QGMs pattern is

possible when coefficients are well separated from zero which parallel the results for graph recovery in

the Gaussian case based on the estimation of the precision matrix. (Similar to the graph recovery in

the Gaussian case such exact recover is subject to the lack of uniformity validity critiques of Leeb and

Pötscher [48].) For the PQGMs, we provide an estimate that achieves an adaptive rate of convergence

which might differ for different conditioning events.

QGMs can play an important role in applications where tail events are relevant. With certain rescaling

of the edge weights, we are able to capture the importance of each node or measuring its systemic risk

contribution. In parallel with [5], many approaches to systemic risk measurement fit naturally into the

QGMs. For example, one can view the ∆CoV aR
b|a
τ , a, b ∈ V (suitably scaled), as a measure of the impact

of firm a on firm b, as the weight in the edge of a QGM at quantile τ . Then, the systemic risk of firm a,

∆CoV aR
sys|a
τ which measures contributions of individual firms to systemic network event, equals to the

sum of coefficients over b ∈ V ,
∑
b∈V ∆CoV aR

b|a
τ . Similarly, the sum over a ∈ V measures exposures of

individual firms to systemic shocks from the network.

QGMs can also be used to study contagion and network spillover effects since it is useful for studying

tail risk spillovers. We consider the study of international financial contagion in volatilities, specializing in

estimating the risk transmission channels, see [28] for an overview on international financial contagions.

After estimating the risk transmission channels, we can use our ∆CoV aR measure to calculate the

contribution and exposure of each country to the whole market. Our method applies to the case where

many countries involved, overcome the problem of curse of dimensionality that traditional methods might

have.
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Understanding the dependence between stock returns plays a key role in hedging strategies. However,

these strategies are critical precisely during downside movement of the market. The union of QGMs

can be more informative in representing conditional independence than Gaussian graphical models in

this setting. Indeed, recent empirical evidence [7, 6, 56] points to non-Gaussianity of the distribution of

stock returns, especially during market downturns. Further, hedging decisions are typically interested

on extreme outcomes rather than average outcomes. Finally, it is also instructive to understand how

the dependence (and policies) would change as the downside movement of the market becomes more

extreme. This application motivated us to consider conditional QGMs that extend the previous models

to be conditional on additional events (e.g. downside movement of the market).

Regarding the conditional independence structure for high dimensional models, this paper relates

to the large statistic literature on estimating high dimensional Gaussian Graphical Models. It is well

known that recovering the structure of an undirected Gaussian graph is equivalent to recovering the

support of the precision matrix, i.e. covariance matrix estimation, [30] and [45, 29, 35]. Several methods

for covariance matrix estimation involves hypothesis testing, [35, 32, 33, 34]. In the high-dimensional

setting, [54] propose neighborhood selection with the Lasso for each node in the graph and combine the

results column-by-column to get the final Gaussian graphs. [66, 9, 39] directly estimate the precision

matrix through penalizing the log-likelihood function directly. Other refinement estimators including

[65, 23, 52, 59, 51]. [50] extended the result to a more general class of models called nonparanormal

models or semiparametric Gaussian copula models, i.e., the variables follow a joint normal distribution

after a set of unknown monotone transformations. See also [49, 63, 64]. However, all those methods

assume the (transformed) random matrix follows a joint normal distribution. The proposed work provides

a complementary method for additional settings by giving up efficiency in the Gaussian case.

Notation. For an integer k, we let [k] := {1, . . . , k} denote the set of integers from 1 to k. For a random

variable X we note by X its support. We use the notation a∨b = max{a, b} and a∧b = min{a, b}. We use

‖v‖k to denote the p-norm of a vector v. We denote the ℓ0-“norm” by ‖ · ‖0 (i.e., the number of nonzero

components). Given a vector δ ∈ R
p, and a set of indices T ⊂ {1, ..., d}, we denote by δT the vector in

which δTj = δj if j ∈ T , δTj = 0 if j /∈ T . The check function is denoted by ρτ (t) = t(τ − 1{t 6 0}).

2. Quantile Graphical Models

In this section we describe quantile graphical models associated with a d-dimensional random vector

X = XV where the set V = [d] = {1, . . . , d} denotes the labels of the components. These models aim to

provide a description of the interdependence between the random variables in XV . In particular, they

induce graphs that allow for visualization of dependence structures. However, different models arise from

different objectives as we discuss below.

2.1. Conditional Independence Quantile Graphs. Conditional independence graphs have been used

to provide a visualization and insight on the dependence structure between random variables. Each node

of the graph is associated with a component of XV . We denote the conditional independence graph as

GI = (V,EI) where GI is an undirected graph with vertex set V and edge set E which is represented
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by an adjacency matrix (EIa,b = 1 if the edge (a, b) ∈ GI , and EIa,b = 0 otherwise). An edge (a, b) is not

contained in the graph if and only if

Xa ⊥ Xb | XV \{a,b}, (2.1)

namely Xb and Xa are independent conditional on all remaining variablesXV \{a,b} = {Xk; k ∈ V \{a, b}}.

Comment 2.1 (Conditional Independence Under Gaussianity). In the case that X is jointly normally

distributed, XV ∼ Nd(0,Σ) with Σ as the covariance matrix of XV , the conditional independence struc-

ture between two components is determined by the inverse of covariance matrix, i.e. the precision matrix

Θ = Σ−1. It follows that the nonzero elements in the precision matrix corresponds to the nonzero coef-

ficients of the associated (high dimensional) mean regression. The family of Gaussian distributions with

this property is known as a Gauss-Markov random field with respect to the graph G. This observation

has motivated a large literature [45] and some extension that allow transformations of Gaussian variables.

�

Our main interest is to allow for non-Gaussian distributions. In order to achieve a tractable concept

in such generality, we use that (2.1) occurs if and only if

FXa(· | XV \{a}) = FXa(· | XV \{a,b}) for all XV \{a} ∈ XV \{a}. (2.2)

In turn, by the equivalence between conditional probabilities and conditional quantiles to characterize a

random variable, we have that (2.1) occurs if and only if

QXa(τ |XV \{a}) = QXa(τ |XV \{a,b}) for all τ ∈ (0, 1), and XV \{a} ∈ XV \{a}. (2.3)

For a quantile index τ ∈ (0, 1), we define the τ -quantile conditional independence graph as the directed

graph G(τ) = (V,EI(τ)) with vertex set V and edge set EI(τ). An edge (a, b) is not contained in the

edge set EI(τ) if and only if

QXa(τ | XV \{a}) = QXa(τ |XV \{a,b}) for all XV \{a} ∈ XV \{a}. (2.4)

By the equivalence between (2.2) and (2.3), the union of τ -quantile graphs over τ ∈ (0, 1) represents

the conditional independence structure of X , namely EI = ∪τ∈(0,1)E
I(τ). This motivates us to consider

a relaxation of (2.1). For a set of quantile indices T ⊂ (0, 1), we say that

Xa ⊥T Xb | XV \{a,b}, (2.5)

Xa and Xb are T -conditionally independent given XV \{a,b}, if (2.4) holds for all τ ∈ T . Thus, we have

that (2.1) implies (2.5).We define the quantile graph associated with T as GI(T ) = (V,EI(T )) where

EI(T ) = ∪τ∈T E
I(τ).

Although the conditional independence concept relates to all quantile indices, the quantile characteriza-

tion described above also lends itself to quantile specific impacts which can be of independent interest.1

1For example, we might be interested in some extreme events which typically correspond to crises in financial systems.
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Comment 2.2 (Simulation and Conditional Independence). The tools developed here can also be useful

to develop simulation tools for high-dimensional random vectors. For example, we can simulate a random

vector X as follows

X1 ∼ QX1
(U1), X2 ∼ QX2

(U2 | X1), X3 ∼ QX3
(U3 | X1, X2), . . . , Xd ∼ QXd

(Ud | X1, . . . , Xd−1)

where Uj ∼ Uniform(0, 1) and estimates of the conditional quantiles can be obtained based on a sample

(Xi ∈ Rd)ni=1 and the tools discussed here. It is also clear that the order of the procedure can impact the

estimation. In particular, if most variables are independent of (say) Xd, skipping them from the process

are likely to increase the accuracy of the simulation procedure.

2.2. Prediction Quantile Graphs. Prediction Quantile Graph Models (PQGMs) are concerned with

prediction accuracy (instead of conditional independence as in Section 2.1). More precisely, for each

a ∈ V , we are interested on the predicting Xa based on linear combinations of the remaining variables,

XV \{a}, where accuracy is measured with respect to an asymmetric loss function. Formally, PQGMs

measure accuracy as

La(τ | V \ {a}) = min
β

E[ρτ (Xa −X ′
−aβ)] (2.6)

where X−a = (1, X ′
V \{a})

′, and we use the asymmetric loss function ρτ (t) = (τ − 1{t 6 0}) t is the check

function used in Koenker and Basset (1978).

Importantly, PQGMs are concerned with the best linear predictor under the asymmetric loss function

ρτ . This is a fundamental distinction with respect to CIQGMs discussed in Section 2.1 where the spec-

ification of the conditional quantile was approximately a linear function of transformations Za. Indeed,

we note that under suitable conditions the linear predictor that solves the minimization problem in (2.6)

approximates the conditional quantile regression as shown in [13]. (In fact, the conditional quantile func-

tion would be linear if the vector XV was jointly Gaussian.) However, PQGMs do not assume that the

conditional quantile function of Xa is well approximated by a linear function and instead it focuses on

the best linear predictor.

In principle each component of XV can have predictive power for other components. However, we say

that Xb is predictively uninformative for Xa given XV \{a,b} if

La(τ | V \ {a}) = La(τ | V \ {a, b}) for all τ ∈ (0, 1).

Therefore, considering a linear function of Xb does not improve our performance of predicting Xa with

respect to the asymmetric loss function ρτ .

Again we can visualize the prediction relations using a graph process indexed by τ ∈ (0, 1). PQGMs

allow us to visualize which variables are predictively informative to another variable by using a directed

graph GP (τ) = (V,EP (τ)) where edge (a, b) is in the graph only if Xb is predictively informative for Xa

given XV \{a,b} at the quantile τ . Finally we define the PQGM associated with T ⊂ (0, 1) as GP (T ) =

(V,EP (T )) where

EP (T ) = ∪τ∈T E
P (τ).
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2.3. W-Conditional Quantile Graphical Models. In this section we discuss an useful extension of

the QGMs discussed in Sections 2.1 and 2.2. It allows for conditioning on additional events ̟ ∈ W
which is a possibly infinite collection of events. (By abuse of notation, we let ̟ to denote the event

and also the index of such event. For example, we write P(̟) as a shorthand for P(W ∈ Ω̟)) This is

motivated by several applications where the interdependence between the random variables in XV maybe

substantially impacted by additional observable events. This general framework allows to accommodate

different forms of conditioning. The main implication of this extension is that the QGMs are now graph

processes indexed by τ ∈ T ⊂ (0, 1) and ̟ ∈ W .

In order to generalize CIQGMs, we say that Xa and Xb are (T , ̟)-conditionally independent,

Xa ⊥T Xb | XV \{a,b}, ̟ (2.7)

provided that for all τ ∈ T we have

QXa(τ |XV \{a}, ̟) = QXa(τ |XV \{a,b}, ̟). (2.8)

The conditional independence edge set associated with (τ,̟) is defined analogously as before. We denote

them by EI(τ,̟) and EI(T , ̟) = ∪τ∈T EI(τ,̟) for each ̟ ∈ W .

The extension of PQGMs proceeds by defining the accuracy under the asymmetric loss function con-

ditionally on ̟. More precisely, we define

La(τ | V \ {a}, ̟) = min
β

E[ρτ (Xa −X ′
−aβ) | ̟]. (2.9)

The predictive edge set associated with (τ,̟) is also defined analogously as before. We denote asEP (τ,̟)

and EP (T , ̟) = ∪τ∈T EP (τ,̟).

Example 1 (Predictive QGMs of Stock Returns Under Downside Market Movement). Hedging decisions

rely on the dependence of the returns of various stocks. However, hedging’s performance is more relevant

during downside movements of the market. In such setting it is of interest to understand interdependence

conditionally on downside movements. We can parameterize the downside movements by using a random

variable M , which denotes a market index, and condition the on the event Ω̟ = {M 6 ̟}. This allows
us to define conditional predictive quantile graphical models GP (τ,̟) = (V,EP (τ,̟)), for each ̟ ∈ W .

�

3. Estimators for High-Dimensional Quantile Graphical Models

In this section we propose and discuss estimators for QGMs introduced in Section 2. Throughout this

section it is assumed that we observe i.i.d. observations of the d-dimensional random vector XV , namely

{XiV : i = 1, . . . , n}. Based on the data, unless additional assumptions are imposed we cannot estimate

the quantities of interest for all τ ∈ (0, 1). We will consider a (compact) set of quantile index T ⊂ (0, 1).

Nonetheless, the estimators are intended to handle high dimensional models.
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3.1. Estimators for Conditional Independence Quantile Graphs. We will consider a conditional

quantile representation for each a ∈ V . It is based on transformations of the original covariates XV \{a}
that creates a p-dimensional vector Za = Za(XV \{a}) ∈ Rp so that

QXa(τ |XV \{a}) = Zaβaτ + raτ , βaτ ∈ R
p, for all τ ∈ T (3.10)

where raτ denotes a small approximation error. For b ∈ V \ {a} we let Ia(b) := {j : Zaj depends on Xb}.
That is, Ia(b) contains the components of Za that are functions of Xb. Under correct specification, if Xa

and Xb are conditionally independent, we have βaτ,j = 0 for all j ∈ Ia(b), τ ∈ (0, 1).

This allows us to connect the conditional independence quantile graph estimation problem with a

model selection within quantile regression. Indeed, the representation (3.10) has been used in several

quantile regression models, see [43]. Under mild conditions this model allows us to identify the process

(βaτ )τ∈T as the solution of the following moment equation

E[(τ − 1{Xa 6 Zaβaτ + raτ})Za] = 0. (3.11)

In order to allow a flexible specification, so that the approximation errors are negligible, it is attractive

to consider a high-dimensional vector of Za where its dimension p is possibly larger than the sample

size. In turn, having a large number of technical controls creates an estimation challenge if the number

of coefficients p is not negligible with respect to the sample size n. In such high dimensional setting a

widely applicable condition that makes estimation possible is approximate sparsity [37, 19, 20]. Formally

we require

max
a∈V

sup
τ∈T

‖βaτ‖0 6 s, max
a∈V

sup
τ∈T

{E[r2aτ ]}1/2 .
√
s/n, and max

a∈V
sup
τ∈T

|E[faτraτZa]| = o(n−1/2) (3.12)

where the sparsity parameter s of the model is allowed to grow (at a slower rate) as n grows, and faτ =

fXa|XV \{a}
(QXa(τ | XV \{a}) | XV \{a}) denotes the conditional probability density function evaluated at

the corresponding conditional quantile value. The sparsity has implications on the maximum degree of

the associated quantile graph.

Algorithm 3.1 below contains our proposal to estimate βaτ , a ∈ V, τ ∈ T . It is based on three

procedures in order to overcome the high-dimensionality. In the first step we apply a (post-)ℓ1-penalized

quantile regression. The second step applies (post-)Lasso where the data is weighted by the conditional

density function at the conditional quantile. 2 Finally the third step relies on (orthogonal) score function

that provides immunity to (unavoidable) model selection mistakes.

There are several parameters that need to be specified for Algorithm 3.1. The penalty parameter λV T
is chosen to be larger than the ℓ∞-norm of the (rescaled) score at the true quantile function. The work

in [10] exploits the fact that this quantity is pivotal in their setting. Here additional correlation structure

could impact and the distribution is pivotal only for each a ∈ V . The penalty is based on the maximum

of the quantiles of the following random variables (each with pivotal distribution), for a ∈ V

ΛaT = sup
τ∈T

max
j∈[p]

|En[(1{U 6 τ} − τ)Zaj ]|√
τ(1 − τ)σ̂aj

(3.13)

2We note that an estimate for faτ is available from ℓ1-penalized quantile regression estimators for τ +h and τ −h where

h is a bandwidth parameter, see [43, 21].
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where {Ui : i = 1, . . . , n} are i.i.d. uniform (0, 1) random variables, and σ̂2
aj = En[(Z

a
j )

2] for j ∈ [p]. The

penalty parameter λV T is defined as

λV T := max
a∈V

ΛaT (1 − ξ/|V | | X−a),

that is, the maximum of the 1 − ξ/|V | conditional quantile of ΛaT given in (3.13). Regarding the

parameters for the weighted Lasso in Step 2, we recommend a (theoretically valid) iterative choice. We

refer to the Appendix A where we collect the implementation details of the algorithm. We denote by

‖β‖1,σ̂ :=
∑
j |βj |σ̂aj the standardized version of the ℓ1-norm.

Algorithm 3.1. (Conditional Independence QGM estimator.) For each a ∈ V , and j ∈ [p], and τ ∈ T
Step 1. Compute β̂aτ from ‖·‖1,σ̂-penalized τ-quantile regression of Xa on Z

a with penalty λV T
√
τ(1 − τ).

Compute β̃aτ from τ-quantile regression of Xa on {Zak : |β̂aτk| > λV T
√
τ(1 − τ)/σ̂k}.

Step 2. Compute γ̃jaτ from the post-Lasso estimator of faτZ
a
j on faτZ

a
−j.

Step 3. Construct the score function ψ̂i(α) = (τ − 1{Xa 6 Zaj α+ Za−j β̃aτ})faτi(Zaj − Za−j γ̃
j
aτ ), and

for Laτj(α) = |En[ψ̂i(α)]|2/En[ψ̂2
i (α)], set β̌aτ,j ∈ argminα∈Aaτj Laτj(α).

Algorithm 1 above has been studied in [21] when it is applied to a single triple (a, τ, j). Under similar

conditions, results that hold uniformly over (a, τ, j) ∈ V × [p] × T are achievable (as shown in the next

sections) building upon the tools developed in [10] and [25]. Algorithm 1 is tailored to achieve good rates

of convergence in the ℓ∞-norm. In particular, under standard regularity conditions, with probability

going to 1 we have

sup
τ∈T

‖βaτ − β̌aτ‖∞ .

√
log(p|V |n)

n
.

In order to create an estimate of EI(τ) = {(a, b) ∈ V × V : maxj∈Ia(b) |βaτ,j| > 0}, we define

ÊI(τ) =

{
(a, b) ∈ V × V : max

j∈Ia(b)
|β̌aτ,j|

se(β̌aτ,j)
> cv

}

where se(β̌aτ,j) = {τ(1 − τ)En[ṽ
2
aτ,j ]}1/2 is an estimate of the standard deviation of the estimator, and

the critical value cv is set to account for the uniformity over a ∈ V , j ∈ [p], and τ ∈ T . We discuss in

the following sections a data driven procedure based on multiplier bootstrap that is theoretically valid in

this high dimensional setting.

Comment 3.1 (Stepdown procedure for cv). Setting a critical value cv that accounts for the multiple

hypothesis that are being tested plays an important role to select the graph ÊI(τ). Further improvements

can be obtained by considering the stepdown procedure of [58] for multiple hypothesis testing that was

studied for the high-dimensional case in [24]. The procedure iteratively creates a suitable sequence of

decreasing critical values. In each step only null hypotheses that were not rejected are considered to

determine the critical value. Thus, as long as any hypothesis is rejected at a step, the critical value

decreases and we continue to the next iteration. The procedure stops when no hypothesis in the current

active set is rejected. �

Comment 3.2 (Estimation of conditional probability density function). The algorithm above requires

the conditional probability density function faτ which typically needs to be estimated in practice. It
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turns out that estimation of conditional quantiles yields a natural estimator for the conditional density

function as

faτ =
1

∂QXa(τ | X−a)/∂τ

Therefore, based on ℓ1-penalized quantile regression estimates of τ + hn and τ − hn conditional quantile

where hn → 0 denotes a bandwidth parameter, we have

f̂aτ =
2h

Q̂Xa(τ + h | X−a)− Q̂Xa(τ − h | X−a)
(3.14)

be an estimator of faτ . Under smoothness conditions, it has the bias of order h2n. See [21] and the

references therein for additional comments and estimators. �

3.2. Estimators for Prediction Quantile Graphs. Next we discuss the specification and propose an

estimator for PQGMs. In this case we are interested on studying prediction of Xa, a ∈ V , using a linear

combination of XV \{a} under the asymmetric loss discussed in (2.6). We will add an intercept as one of

the variables for the sake of notation so that X−a = (1, X ′
V \{a})

′. Given the loss function ρτ , the target

d-dimensional vector of parameters βaτ is defined as (part of) the solution of the following optimization

problem

βaτ ∈ argmin
β

E[ρτ (Xa −X ′
−aβ)]. (3.15)

By considering the case that d is large, the use of high-dimensional tools to achieve good estimators is

of interest. The estimation procedure we propose is based on ℓ1-penalized quantile regression. Again we

consider models that satisfy an approximately sparse condition. Formally, we require the existence of

sparse coefficients {β̄aτ : a ∈ V, τ ∈ T } such that

max
a∈V

sup
τ∈T

‖β̄aτ‖0 6 s and max
a∈V

sup
τ∈T

{E[{X ′
−a(βaτ − β̄aτ )}2]}1/2 .

√
s/n, (3.16)

where (again) the sparsity parameter s of the model is allowed to grow as n grows. The high-dimensionality

prevents us from using (standard) quantile regression methods and regularization methods are needed to

achieve good prediction properties.

A key issue is to set the penalty parameter properly so that it bounds from above

max
a∈V

sup
τ∈T

max
j∈[d]

|En[(1{Xa 6 X ′
−aβaτ} − τ)X−a,j ]|. (3.17)

However, it is important to note that we do not assume that the conditional quantile of Xa is a linear

function of X−a. Under correct linear specification of the conditional quantile function, ℓ1-penalized

quantile regression estimator has been studied in [10]. The case that the conditional quantile function

differs from a linear specification by a vanishing approximation errors has been considered in [40] and

[21]. The analysis proposed here aims to allow for non-vanishing misspecification of the quantile function

relative to a linear specification while still guarantee good rates of convergence in the ℓ2-norm to the best

linear specification. Thus we pursue the penalty parameter in the penalized quantile regression needs to

account for such misspecification and is no longer pivotal as in [10].

In order to handle this issue we make a two step estimation. In the first step the penalty parameter

λ0 is conservative and set via bounds constructed based on symmetrization arguments, similar in spirit
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to [60, 14]. That leads to λ0 = cn−1/22(1 + 1/16)
√
2 log(8|V |2{ne}2/ξ). Although this is conservative,

under mild conditions leads to estimates that can be leverage to fine tune the penalty choice. The second

step uses the preliminary estimator to bootstrap (3.17) based on the tools in [24] as follows. For estimates

ε̂i of the “noise” εaτi = 1{Xia 6 X ′
i,−aβaτ} − τ for i ∈ [n], the new penalty parameter λ̄V T is defined as

the (1− ξ)-quantile of

Λ := 1.1max
a∈V

sup
τ∈T

max
j∈[d]\{a}

|En[gε̂aτXj ]|
{En[ε̂2aτX2

j ]}1/2
(3.18)

where (gi)
n
i=1 is a sequence of i.i.d. standard Gaussian random variables. The penalty choice above adapts

to the unknown correlation structure across components and quantile indices. The following algorithm

states the procedure where we denote weighted ℓ1-norms. We denote by ‖β‖1,σ̂ :=
∑
j |βj |{En[X2

j ]}1/2 the
standardized version of the ℓ1-norm and ‖β‖1,ε̂ :=

∑
j |βj |En[ε̂2aτX2

j ]}1/2 a norm based on the estimated

residuals.

Algorithm 3.2. (Predictive QGM estimator.) For each a ∈ V , and τ ∈ T
Step 1. Compute β̂aτ from ‖ · ‖1,σ̂-penalized τ-quantile regression of Xa on X−a with penalty λ0.

Compute β̃aτ from τ-quantile regression of Xa on {Xk : |β̂aτk| > λ0/σ̂j}.
Step 2. For ε̂aτi = 1{Xia 6 X ′

i,−aβ̃aτ} − τ for i ∈ [n], and ξ = 1/n, compute λ̄V T via (3.18).

Step 3. Compute β̂aτ from ‖ · ‖1,ε̂-penalized τ-quantile regression of Xa on X−a with penalty λ̄V T .

Compute β̌aτ from τ-quantile regression of Xa on {Xk : |β̂aτk| > λ̄V T /{En[ε̂2aτX2
j ]}1/2}.

Under regularity conditions with probability going to 1 we have

max
a∈V

sup
τ∈T

‖βaτ − β̌aτ‖ .

√
s log(|V |n)

n
.

The estimate of the prediction quantile graph is given by the support of (β̌aτ )τ∈T ,a∈V , namely

ÊP (τ) =
{
(a, b) ∈ V × V : |β̂aτ,b| > λ̄V T /{En[ε̂2aτX2

b ]}1/2
}
,

that is, it is induced by the covariates selected by the ℓ1-penalized estimator. These thresholded estimators

not only have the same rates of convergence as the original penalized estimator but possess additional

sparsity guarantees.

3.3. W-Conditional Quantile Graph Models. In order to handle the additional conditional events

Ω̟, ̟ ∈ W , we propose to modify the Algorithms 1 and 2 based on kernel smoothing. To that extent,

we assume that the observed data is of the form {(XiV ,Wi) : i = 1, . . . , n}, where Wi might be defined

through additional variables. Furthermore, we assume that for each conditioning event ̟ ∈ W we have

access to a kernel function K̟ that is applied to W , to represent the relevant observations associated

with ̟ (recall that we denote P(W ∈ Ω̟) as P(̟)). We assume that K̟(W ) = 1{W ∈ Ω̟}.

Example 2 (Predictive QGMs of Stock Returns Under Downside Market Movements, continued). In

Example 1, we haveW denote the market return and the conditioning event to be Ω̟ = {W 6 ̟} which

is parameterized by ̟ ∈ W , a closed interval in R. We might be interest on a fixed ̟ or on a family of

values ̟ ∈ (− ¯̟ , 0]. The latter induces W = { Ω̟ = {W 6 ̟} : ̟ ∈ (− ¯̟ , 0]}. The kernel function is

simply K̟(t) = 1{t 6 ̟}.
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This framework encompasses the previous framework by having K̟(W ) = 1 for all W . However, it

allows for a richer class of estimands which require estimators whose properties should hold uniformly

over ̟ ∈ W as well. Next we present estimators for this setting that generalize the previous methods to

account for the additional conditioning on ̟ ∈ W .

In what follows, we abuse the notation we use ̟ to denote not only the index but also the event Ω̟.

For further notational convenience, we let u = (a, τ,̟) ∈ U = V × T ×W so that the set U collects all

the three relevant indices. Define the following weighted ℓ1-norm

‖β‖1,̟ =
∑

j∈[p]

{En[K̟(W )(Zaj )
2]}1/2|βj |.

This norm is ̟ dependent and provides the proper adjustments as we condition on different events

associated with different ̟’s.

First we consider the conditional independence setting where the model is, up to small approximation

errors, correctly specified. The definition of the penalty parameter will be based on the random variable

ΛaT W = sup
τ∈T ,̟∈W,j∈[p]

∣∣∣∣∣
En[K̟(W )(1{U 6 τ} − τ)Zaj ]√
τ(1 − τ)En[K̟(W )(Zaj )

2]1/2

∣∣∣∣∣

where Ui are independent uniform (0, 1) random variables, and set the penalty

λaτ̟ =
√
τ(1 − τ)ΛaT W(1− γ/{|V |n1+2dW } | X−a,W )

where ΛaTW(1 − ξ | X−a,W ) is the (1 − ξ)-quantile of Λ conditional on {(Xi,−a,Wi) : i = 1, . . . , n}.
Algorithm 3.3 provides the definition of the estimators.

Algorithm 3.3. (W-Conditional Independence QGM estimator.) For (a, τ,̟) ∈ V ×T ×W and j ∈ [p]

Step 1. Let β̂aτ̟ solve ‖ · ‖1,̟-penalized τ-quantile regression of K̟(W )(Xa;Z
a) with penalty λaτ̟.

Compute β̃aτ̟ based on the τ-quantile regression of the thresholded support of β̂aτ̟k, namely

based on the data K̟(W )(Xa; {Zak : |β̂aτ̟k| > λaτ̟/En[K̟(W )(Zaj )
2]1/2}).

Step 2. Compute γ̃jaτ̟ from the post-Lasso estimator of K̟(W )faτ̟Z
a
j on K̟(W )faτ̟Z

a
−j.

Step 3. Construct the score function

ψ̂i(α) = K̟(Wi)(τ − 1{Xia 6 Zaijα+ Zai,−j β̃aτ̟})faτ̟i(Zaij − Zai,−j γ̃
j
aτ̟)

and for Laτ̟j(α) = |En[ψ̂i(α)]|2/En[ψ̂2
i (α)], set β̌aτ̟,j ∈ argminα∈Aaτ̟j Laτ̟j(α).

Next we consider estimators of the prediction quantile graphical models conditionally on the events in

W . Similarly to the previous case, the function K̟ will select the relevant subsample for each ̟ ∈ W .

This has implications on the penalty choices which are again not pivotal. the new penalty parameter is

defined as the (1− ξ)-quantile of

Λ := 1.1max
a∈V

sup
τ∈T ,̟∈W

max
j∈[d]\{a}

|En[K̟(W )gε̂aτ̟Xj]|
En[K̟(W )ε̂2aτ̟X

2
j ]

1/2
(3.19)

where (gi)
n
i=1 is a sequence of i.i.d. standard Gaussian random variables. It will also be useful to define

another weighted ℓ1-norm, ‖β‖1,̟ǫ̂ :=
∑
j |βj |{En[K̟(W )ε̂2aτ̟X

2
j ]}1/2 the weighted. The penalty choice
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and weighted ℓ1-norm adapt to the unknown correlation structure across components and quantile indices.

The following algorithm states the procedure.

Algorithm 3.4. (W-Predictive QGM estimator.) For (a, τ,̟) ∈ V × T ×W
Step 1. Compute β̂aτ̟ from ‖ · ‖1,̟-penalized τ-quantile regression of Xa on X−a with penalty λ0W .

Compute β̃aτ̟ based on the τ-quantile regression associated with the thresholded β̂aτ̟, namely

τ-quantile regression of Xa on {Xk : |β̂aτk| > λ0W/{En[K̟(W )X2
j ]}1/2}.

Step 2. For ε̂aτ̟i = 1{Xia 6 X ′
i,−aβ̃aτ̟} − τ for i ∈ [n], and ξ = 1/n, compute λ̄V T W via (3.19).

Step 3. Recompute β̂aτ̟ from ‖ · ‖1,̟ε̂-penalized τ-quantile regression of K̟(W )Xa on K̟(W )X−a
with penalty λ̄V T W . Compute β̌aτ̟ from τ-quantile regression of K̟(W )Xa on {K̟(W )Xk : |β̂aτk| >
λ̄V T W/{En[K̟(W )ε̂2aτ̟X

2
j ]}1/2}.

Comment 3.3 (Computation of Penalty Parameter overW). the penalty choices require one to maximize

over a ∈ V , τ ∈ T and ̟ ∈ W . The set V is discrete and does not pose a significant challenge. However

both other sets are continuous and additional care is needed. In most applications we are concerned with,

W is a low dimensional VC class of sets and it impacts the calculation only through indicator functions.

This is precisely the case of T . It follows that only a polynomial number (in n) of different values of ̟

and τ needed to be considered. �

4. Theoretical Results

This section is devoted to theoretical guarantees associated with the proposed estimators. We will

establish rates of convergence results for the proposed estimators as well as the (uniform) validity of

confidence regions. These results build upon and contribute to an increasing literature on the estimation

of many process of interest under (high-dimensional) nuisance parameters.

Throughout we will provide results for the estimators based on the W-conditional quantile graphical

models as they generalized the other models by setting K̟(W ) = 1. Although some of the tools are

similar, the conditional independence quantile graphical model and the predictive quantile graphical

model require different estimators and are subject to different assumptions. Thus, substantial different

analysis are required.

4.1. W-Conditional Independence Quantile Graphical Model. For u = (a, τ,̟) ∈ U , define the

conditional τ -conditional quantile function of Xa given XV \{a} and ̟ as

QXa(τ | XV \a, ̟) = Zaβu + ru (4.20)

where Za is a p-dimensional vector of (known) transformations ofXV \a, and r(a, τ,̟) is an approximation

error. The event ̟ ∈ W will be used to further conditioning through the function K̟(W ) = 1{W ∈ ̟}.

We let fXa|XV \a,̟(· | X \ a,̟) denote the conditional density function of Xa given XV \a and ̟ ∈ W ,

and define fu := fXa|XV \a,̟(QXa(τ | XV \a, ̟) | XV \a, ̟) denote the value of the conditional density
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function evaluated at the τ -conditional quantile. In our analysis we will consider for u ∈ U

f
u
= inf

‖δ‖=1

E[fu{Zaδ}2 | ̟]

E[{Zaδ}2 | ̟]
and fU = min

u∈U
f
u
. (4.21)

Moreover, for each j ∈ [p] and u ∈ U define

γju = argmin
γ

E[f2
uK̟(W )(Zaj − Za−jγ)

2] (4.22)

where Za = (Zaj , Z
a
−j). This provides a weighted projection to construct the residuals

vuj = fu(Z
a
j − Za−jγ

j
u)

that satisfy E[fuZ
a
−jvuj | ̟] = 0 for each (u, j) ∈ U × [p].

The estimands of interest are βu ∈ Rp, u ∈ U , can be written as the solution of (a continuum of)

moment equations. Letting βuj denote the jth component of βu so that βuj ∈ R solves

E[ψuj(X,W, β, ηuj)] = 0

where the function ψuj is given by

ψuj(X,W, β, η) = K̟(W )(τ − 1{Xa 6 Zaj β + Za−jη
(1) + η(3)})(Zaj − Za−jη

(2))fu

and the true value of the nuisance parameter is given by ηuj = (η
(1)
uj , η

(2)
uj , η

(3)
uj ) with η

(1)
uj = βu,−j ,

η
(2)
uj = γju, and η

(3)
uj = ru. In what follows c, C denote some fixed constant, δn and ∆n denote sequences

going to zero with δn = n−µ for some sufficiently small µ.

Condition CI. (i) Let U = V × T × W and (Xi,Wi)
n
i=1 denote a sequence independent and iden-

tically distributed random vectors generated accordingly to models (4.20) and (4.22) for u ∈ U . Sup-

pose that supu∈U ,j∈[p]{‖βu‖ + ‖γju‖} 6 C and T is a fixed compact set. The conditional distribu-

tion function of Xa given XV \a and ̟ is absolutely continuous with continuously differentiable density

fXa|XV \a,̟(t | XV \a, ̟) is bounded by f̄ and its derivative is bounded by f̄ ′ uniformly over u ∈ U .
Further, |fu − fu′ | 6 Lf‖u − u′‖ and ‖βu − βu′‖ 6 Lβ‖u − u′‖κ and κ ∈ [1/2, 1]. The VC di-

mension dW of the set W is fixed, and {QXa(τ | X−a, ̟) : (τ,̟) ∈ W × T } is a VC-subgraph

with VC-dimension 1 + CdW for every a ∈ V , µW = inf̟∈W P(̟), and E[|K̟(W ) − K̟′(W )|] 6

L̄‖̟ − ̟′‖. There exists s = sn such that supu∈U ,j∈[p]{‖βu‖0 + ‖γ̄ju‖0} 6 s, where supu∈U ,j∈[p] ‖γ̄ju −
γju‖ + s−1/2‖γ̄ju − γju‖1 6 C{n−1s log(|V |pn)}1/2. (ii) The following moment conditions hold uniformly

over u ∈ U and j ∈ [p]: maxa∈V sup‖δ‖=1 E[{(Xa, Z
a)δ}4 | ̟] 6 C, E[f2

u(Z
aδ)2 | ̟] 6 Cf2

u
E[(Zaδ)2 |

̟], c 6 κ := mina∈V inf‖δ‖=1 E[{(Xa, Z
a)δ}2 | ̟], supu∈U ,‖ξ‖=1E[|(Xa, Z

a)ξ|2r2u | ̟] 6 CE[r2u |
̟], maxj∈[p],u∈U |E[furuvuj | ̟]| 6 δnn

−1/2, E[|fuvujZak |2 | ̟]1/2 6 Cf
u
, maxj,k{E[|fuvujZak |3 |

̟]1/3/E[|fuvujZak |2 | ̟]1/2} log1/2(pn|V |) 6 δn{nP(̟)}1/6; (iii) Furthermore, with probability 1 −∆n:

supu∈U ,j∈[p] En[r
2
uv

2
uj | ̟]+En[r

2
u | ̟] . n−1s log(p|V |n), E[maxi6n supu∈U |K̟(W )rui|q] 6 C. (iv) For

some fixed q > 4∨ (1 + 2dW ), Ln > E[supu∈U ,j∈[p] |vuj |q]1/q and Mn > {E[‖X‖q∞ ∨maxa∈V ‖Za‖q∞]}1/q,
diam(W) 6 n1/2q, n1/qMns

√
log(pn|V |) 6 δn

√
nµW , s3 log3(pn|V |) 6 δ4nnf

2

Uµ
3
W , s2 log2(p|V |n) 6

δ2nnf
4

Uµ
6
W , L2

nn
2/qs log3/2(pn|V |) 6 δnfU(nµW)1/2, {Lf + L̄}2M2

n log
2(p|V |n)/{µWf2U}

3 6 δnn, and

n4/qM4
n log(pn|V |) log n 6 δ2nnµ

2
Wf2

U .
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Based on Condition CI, we derive our main results regarding the proposed estimator. Moreover, we

also establish new results for ℓ1-penalized quantile regression methods that hold uniformly over the indices

u ∈ U . The following theorems summarize these results.

Theorem 1 (Uniform Rates of Convergence for W-Conditional Penalized Quantile Regression). Under

Condition CI, we have that with probability at least 1− o(1)

‖β̂u − βu‖ .

√
s(1 + dW ) log(p|V |n)

nf
u
P(̟)

, uniformly over u = (a, τ,̟) ∈ U

Moreover, the thresholded estimator β̂λ̄, with λ̄ =
√
(1 + dW ) log(|V |n)/n and β̂λ̄uj = β̂j1{|β̂uj| >

λ̄En[K̟(W )(Zaj )
2]1/2}, satisfies the same rate and ‖β̂λ̄‖0 . s.

Theorem 1 builds upon ideas in [10] however the proof strategy is design to derive rates that are

adaptive to each u ∈ U . Indeed the rates of convergence are u-dependent and they show a slower rate for

rare events ̟ ∈ W .

Theorem 2 (Uniform Rates of Convergence for W-Conditional Weighted Lasso). Under Condition CI,

we have that with probability at least 1− o(1)

‖γ̂ju − γju‖ .
1

f
u

√
(1 + dW )s log(p|V |n)

nP(̟)
and ‖γ̂ju‖0 . s, uniformly over u = (a, τ,̟) ∈ U , j ∈ [p].

The following result establishes a uniform Bahadur representation for the final estimators.

Theorem 3 (Uniform Bahadur representation forW-Conditional Independence QGM). Under Condition

CI, the estimator (β̌uj)u∈U ,j∈[p] satisfies

σ−1
uj

√
n(β̌uj − βuj) = Un(u, j) +OP (δn) in ℓ

∞(U × [p]),

where σ2
uj = τ(1 − τ)Ē[K̟(W )v2uj ] and

Un(u, j) :=
σ−1
uj√
n

n∑

i=1

(τ − 1{Ui(a,̟) 6 τ})K̟(Wi)vi,uj

where U1(a,̟), . . . , Un(a,̟) are i.i.d. uniform (0, 1) random variables, independently distributed of

v1,uj , . . . , vn,uj.

Theorem 3 plays a key role. However, it is important to note that the marginal distribution of Un(u, j)

is pivotal. Nonetheless, there is a non-trivial correlation structure between U(a,̟) and U(ã, ˜̟ ). In

order to construct confidence regions with non-conservative guarantees, we rely on a multiplier bootstrap

method. We will approximate the process N = (Nuj)u∈U ,j∈[p] by the Gaussian multiplier bootstrap

based on estimates ψ̂uj := σ̂−1
uj (τ − 1{Xa 6 Zaβ̂u})K̟(Wi)v̂i,u of ψ̄uj(U,W ) = σ−1

uj (τ − 1{U(a,̟) 6

τ})K̟(W )vuj , namely

Ĝ = (Ĝuj)u∈U ,j∈[p] =

{
1√
n

n∑

i=1

giψ̂uj(Xi,Wi)

}

u∈U ,j∈[p]
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where (gi)
n
i=1 are independent standard normal random variables which are independent from the data

(Wi)
n
i=1. Based on Theorem 5.2 of [24], the following result shows that the multiplier bootstrap provides

a valid approximation to the large sample probability law of
√
n(β̌uj − βuj)u∈U ,j∈[p] that is suitable for

the construction of uniform confidence bands over the set of indices associated with Ia(b) for all a, b ∈ V .

Corollary 1 (Gaussian Multiplier Bootstrap forW-Conditional Independence Quantile Graphical Model).

Under Condition CI with δn = o({(1 + dW ) log(p|V |n)}−1/2), and (1 + dW ) log(np|V |) = o({(n/L2
n)

1/7 ∧
(n1−2/q/L2

n)
1/3}), we have that

sup
P∈Pn

sup
t,t′∈R,u∈U ,b∈V

∣∣∣∣PP
(

max
j∈Ia(b)

|β̌uj − βuj |
n−1/2σuj

∈ [t, t′]

)
− PP

(
max
j∈Ia(b)

|Ĝuj | ∈ [t, t′] | (Xi,Wi)
n
i=1

)∣∣∣∣ = o(1)

4.2. W-Conditional Predictive Quantile Graph Model. In this section we derive theoretical guar-

antees for the W-condition predictive quantile estimators uniformly over u = (a, τ,̟) ∈ U . For each

u ∈ U the estimand of interest is βu ∈ Rp that correspond to the best linear predictor under asymmetric

loss function, namely

βu ∈ argmin
β

E[ρτ (Xa −X ′
−aβ) | ̟] (4.23)

where the event ̟ ∈ W is used to further conditioning. In the analysis below the conditioning is

implemented through the function K̟(W ) = 1{W ∈ ̟}.

In the analysis of this case, the main issue is to handle the inherent misspecification of the linear form

X ′
−aβu with respect to the true conditional quantile. The first consequence is to handle the identification

condition. Given X−a and ̟ ∈ W we let fu := fXa|X−a,̟(X
′
−aβu | X−a, ̟) denote the value of the

conditional density function evaluated at X ′
−aβu. In our analysis we will consider for u ∈ U

f
u
= inf

‖δ‖=1

E[fu{X−aδ}2 | ̟]

E[(X−aδ)2 | ̟]
and fU = min

u∈U
f
u
. (4.24)

We remark that f
u
defined in (4.24) differs from (4.21) which is the standard conditional density at

the true quantile value. It turns out that Knight’s identity can be used by exploiting the first order

condition associated with the optimization problem (4.23) which yields zero mean condition similar to

the conditional quantile condition. A second consequence of the misspecification is the lack of pivotality

of the score. Such pivotal property was convenient in the previous section to define penalty parameters

and also to conduct inference. We will exploit bounds on the VC-dimension of the relevant classes of sets

formally stated below.

Condition P. (i) Let U = V × T × W and (Xi,Wi)
n
i=1 denote a sequence independent and iden-

tically distributed random vectors generated accordingly to models (4.23) for u ∈ U . Suppose that

supu∈U ‖βu‖ 6 C and T is a fixed compact set. The conditional distribution function of Xa given

XV \a and ̟ is absolutely continuous with continuously differentiable density fXa|XV \a,̟(t | XV \a, ̟)

such that its values are bounded by f̄ and its derivative is bounded by f̄ ′ uniformly over u ∈ U . Fur-

ther, |fu − fu′ | 6 Lf‖u − u′‖ and ‖βu − βu′‖ 6 Lβ‖u − u′‖κ and κ ∈ [1/2, 1]. The VC dimension

dW of the set W is fixed, and {1{Xa 6 X ′
−aβu} : (τ,̟) ∈ W × T } is a VC-class with VC-dimension

1 + dW for every a ∈ V , and µW = inf̟∈W P(̟), and E[|K̟(W ) − K̟′(W )|] 6 L̄‖̟ − ̟′‖. There

exists s = sn and vector such that supu∈U ‖β̄u‖0 6 s, supu∈U ‖β̄u − βu‖ + s−1/2‖β̄u − βu‖1 6
√
s/n.
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(ii) The following moment conditions hold uniformly over u ∈ U : maxa∈V sup‖δ‖=1 E[{X ′
−aδ}4 | ̟] 6

C, c 6 κ := mina∈V inf‖δ‖=1 E[{X ′
−aδ}2 | ̟]. (iii) For some fixed q > 4, the sequences Mn >

{E[maxi6n ‖Xi‖q∞]}1/q, q > 1 + dW , diam(W) 6 n1/2q, and the triple (s, |V |, n) obey Mns
√
log(n|V |) 6

δn
√
nµW , s3 log3(n|V |) 6 δnnf

2

Uµ
2
W , {Lf + L̄}2M2

n log
2(p|V |n)/{µWf

2

U}
3 6 δnn, M

2
ns log

3/2(n|V |) 6

δnfU(nµW )1/2 and M4
n log(n|V |) logn 6 δnnµW .

For a slack parameter c > 1 and confidence level 1− ξ, the theoretical recommendation is

λ0 = cn−1/22(1 + 1/16)
√
2 log(8|V |2{ne/dW}2dW /ξ)

Next we derive our main results regarding the proposed estimator for the best linear predictor. These

results are also new ℓ1-penalized quantile regression methods as it holds under possible misspecification

of the conditional quantile function and hold uniformly over the indices u ∈ U . The following theorem

summarizes the result.

Theorem 4 (Uniform Rates of Convergence for W-Conditional Penalized Quantile Regression under

Misspecification). Under Condition P, we have that with probability at least 1 − o(1), uniformly over

u = (a, τ,̟) ∈ U

‖β̂u − βu‖ .

√
s(1 + dW ) log(|V |n)

nf
u
P(̟)

The data-driven choice of penalty parameter helps diminish the regularization bias and also allow

(through thresholding) to obtain sparse estimators with provably rates of convergence. Moreover, the u

specific penalty parameter combined with the new analysis yields an adaptive rate of convergence to each

u ∈ U unlike previous works.

Comment 4.1 (Simultaneous Confidence Bands for Coefficients in PQGMs). We note that in some

applications we might be interested on constructing (simultaneous) confidence bands for the coefficients

in PQGMs. In particular, this would include the cases practitioners are using a misspecified linear

specification in a quantile regression model. Provided the conditional density function at X−aβu can be

estimated, a version of Algorithm 3.3 using the penalty parameters in Algorithm 3.4 for the initial step

can deliver such confidence regions via a Multiplier bootstrap.

5. Simulations of Predictive Quantile Graph Models

In this section we perform numerical simulations to illustrate the performance of the estimators for

PQGMs. We will consider several different designs. In order to compare with other proposals we will

consider Gaussian and non-Gaussian examples.

5.1. Isotropic Non-Gaussian Example. The equivalence between a zero in the inverse covariance

matrix and a pair of conditional independent variables break down for non-gaussian distribution. The

nonparanormal extends Gaussian graphical models to semiparametric Gaussian copula models by trans-

forming the variables by smooth functions. We illustrate the applicability of QGM in representing the

independence structure of a set of variables when the random variables are not jointly (nonpara)normal.
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Consider i.i.d. copies of an d-dimensional random vector W = (W1, . . . ,Wd) from the following

multivariate normal distribution,W ∼ N(0, Id×d), where Id×d is the identity matrix. Further, we generate

Y = −
√

2
3π−2 +

√
π

3π−2W
2
d−1|Wd|. (5.25)

It follows that E[Y ] =
√

π
3π−2 (E[|Wd|] −

√
2/π) = 0 and V ar(Y ) = π

3π−2 (E[W 2
d ·W 4

d−1] − 2
π ) = 1. In

addition, equation (5.25) is a location-scale-shift model in which the conditional median of the response

is zero while quantile functions other than the median are nonzero. We define the vector XV as

XV = (W1, ...,Wd−1, Y )′.

In this new set of variables, only Xd−1 and Xd (i.e. Wd−1 and Y ) are not (conditionally) independent.

Nonetheless, the new covariance matrix of XV is still Id×d.

Next we consider an i.i.d. sample with a sample size of n = 300 and d = 15. We show graphs of

independence structure estimated by using both the GGM and QGM(s) in this the non-Gaussian setting,

Gaussian is estimated by using graphical lasso without any transformation of XV , and the final graph

is chosen by Extended Bayesian information criterion (ebic), see [38]. Nonparanormal is estimated by

using graphical lasso with nonparanormal transformation of XV , see [50], and the final graph is chosen

by ebic. Both graphs are estimated by using R-package huge.

We also compare our estimation results using QGM with neighborhood selection methods, e.g. TIGER

of [51] in R-package flare, the left graph is when choosing the turning parameter to be
√

log d
n while the

right graph is when choosing the tuning parameter to be 2
√

log d
n . Throughout, we use Tiger2 (or

TIGER2) represent TIGER with penalty level 2
√

log d
n .
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As expected, GGM cannot detect the correct dependence structure when the joint distribution is

non-Gaussian while QGM can still represent the right independence structure.

5.2. Gaussian Examples. In this section we compare the numerical performance of QGM and other

methods, e.g. TIGER of [51] and graphical lasso algorithm (Glasso) of [39], in recovering Gaussian

Markov random field using simulated datasets. We mainly consider the Hub graph, as mentioned in [51],

which also corresponds to the star network mentioned in [2, 3].

In line with [51], we generate a d-dimensional sparse graph G = (V,E) represents the conditional inde-

pendence structure between the variables. Let V = {1, ..., d} correspond to variables X = (X1, ..., Xd). In

our simulations, we consider 12 settings to compare these methods: (I-i) n = 200, d = 10; (I-ii) n = 200,

d = 20; (I-iii) n = 200, d = 40; (I-iv) n = 400, d = 10; (I-v) n = 400, d = 20; (I-vi) n = 400, d = 40;

(II-i) n = 200, d = 100; (II-ii) n = 200, d = 200; (II-iii) n = 200, d = 400; (II-iv) n = 400, d = 100;

(II-v) n = 400, d = 200; (II-vi) n = 400, d = 400. We adopt the following model for generating undirected

graphs and precision matrices.

Hub graph. The d nodes are evenly partitioned into d/20 (or d/10 when d < 20) disjoint groups

with each group contains 20 (or10 ) nodes. Within each group, one node is selected as the hub and we

add edges between the hub and the other 19 (or 9) nodes in that group. For example, the resulting graph

has 190 edges when d = 200 and 380 edges when d = 400. Once the graph is obtained, we generate an

adjacency matrix A by setting the nonzero off-diagonal elements to be 0.3 and the diagonal elements to

be 0. We calculate its smallest eigenvalue Λmin(A). The precision matrix is constructed as

Θ = D[A+ (|Λmin(A)| + 0.2) · Id]D (5.26)

where D ∈ Rd×d is a diagonal matrix with Djj = 1 for j = 1, ..., d/2 and Djj = 1.5 for j = d/2+ 1, ..., d.

The covariance matrix Σ := Θ−1is then computed to generate the multivariate normal data: x1, ....,xn ∼
Nd(0,Σ).

Below we provide simulation results using different estimators: QGM, TIGER and Glasso. For QGM,

we use λI as in (3.13), and choose c = 1.1, α = 0.1, tthred = λ/n.
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n = 200, d = 10 n = 200, d = 20 n = 200, d = 40
QR−Union TIGER

Glasso True

QR−Union TIGER

Glasso True

QR−Union TIGER

Glasso True

n = 400, d = 10 n = 400, d = 20 n = 400, d = 40
QR−Union TIGER

Glasso True

QR−Union TIGER

Glasso True

QR−Union TIGER

Glasso True

n = 200, d = 100 n = 200, d = 200 n = 200, d = 400
QR−Union TIGER

Glasso True

QR−Union TIGER

Glasso True

QR−Union TIGER

Glasso True
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n = 400, d = 100 n = 400, d = 200 n = 400, d = 400
QR−Union TIGER

Glasso True

QR−Union TIGER

Glasso True

QR−Union TIGER

Glasso True

5.2.1. Quantitative Comparison. To quantify the properties of graph recovery in finite sample, we use

false positive (FP) and false negative (FN) rates. For a d-dimensional graph G = (V,E) with |E| = ks

edges, let Ĝλ(T ) = (V, Êλ(T )) be the estimated graph using the regularization parameter λ, the number

of false positives is defined as

FP (λ) ≡ number of edges in Êλ not in E,

and the number of false negatives is defined as

FN(λ) ≡ number of edges in E not in Êλ.

We repeat the experiments 100 times and report the average FP and FN values with the corresponding

standard deviations. We use the theoretical choice λI as in equation (3.13). Table 5.2.1 and 5.2.1 provide

numerical comparisons of QGMs, Glasso and TIGER (with two different tuning parameters).

Table 1: Quantitative Comparison

QGM Glasso Tiger1 Tiger2

n d FP FN FP FN FP FN FP FN

200 10 2.96 0.12 29.04 0 13.34 0 1.8 0.02

2.11 0.47 8.29 0 4.38 0 1.76 0.2

20 4 0.52 42.27 1.08 42.78 0 2.28 0.04

2.96 1.00 17.38 6.17 8.28 0 2.43 0.28

40 7.68 12.52 0 76 126.14 0.02 3.62 4.04

3.88 4.84 0 0 15.58 0.2 3.00 3.33

400 10 2.86 0 32.2 0 13.2 0 1.96 0

2.24 0 6.89 0 4.64 0 2.01 0

20 3.84 0 63.17 0 42.66 0 2.82 0

2.70 0 15.37 0 9.10 0 2.56 0

40 6.86 0.1 66 0 125.22 0 3.72 0

3.36 0.43 23.28 0 13.87 0 2.54 0
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Table 2: Quantitative Comparison

QGM Glasso Tiger1 Tiger 2

n d FP FN FP FN FP FN FP FN

200 100 8.54 49.02 0 198 451.7 0.14 2.74 26.84

4.72 9.58 0 0 27.65 0.51 2.34 8.47

200 11.48 135.54 0 398 1106.98 0.3 2.2 92.2

4.76 14.39 0 0 332.15 0.72 2.21 16.07

400 8 341.6 0 797.88 3201 0.9 1.96 272.32

5.16 28.89 0 0.48 82.48 1.31 2.03 28.79

400 100 7.92 1.02 0 197.9 460.3 0 3.2 0.04

3.92 1.46 0 0.44 32.72 0 2.81 0.28

200 8.8 4.22 0 397.74 1237.46 0 3.18 0.3

4.64 3.05 0 0.68 50.57 0 2.53 0.77

400 5.8 17 0 797.8 3334.38 0 3.5 2.18

4.05 7.01 0 0.603 86.17 0 2.55 2.38

It is clear from the tables that, in most simulation cases, QGM achieves significantly smaller errors

than Glasso even if the true distribution of the data is exactly multivariate Gaussian. QGM also achieves

performance comparable to TIGER, though the relative performance depends on the choosing of the

tuning parameter of TIGER and tradeoff between the number of FPs and FNs. Note here all the edges

are counted twice as a directed graph. So when FP=8, the actual extra linkages would be just 4.

In simulation, Tiger2 is not stable – in some simulation experiments, due to the very high penalty

level, Tiger2 would not produce a graph at all.

Though in reporting the tables we choose c = 1.1, cthred = 1, α = 0.1 for both n = 200 and n = 400,

in practice, when n = 400, choosing cλ = 1.2, α = 0.05 will have better graph recovery results. The

intuition is, when n = 200, quantile regression need less penalty due to the less observations/information.

All the results clearly show the performance of both QGM and TIGER improves with sample size, while

the performance of Glasso is not good in general.

6. Empirical Applications of QGM

6.1. Financial Contagion. In this section we apply QGM for the study of international financial conta-

gion. We focus on examining financial contagion through the volatility spillover perspective. [36] reported

that international stock markets are related through their volatilities instead of returns. [31] studied the

return and volatility spillovers of 19 countries and found differences in return and volatility spillovers.

For a survey of financial contagion see [28]. We also illustrate how QGM can highlight asymmetric

dependence between the random variables.

We use daily equity index returns, September 2009 to September 2013 (1044 observations), from

Morgan Stanley Capital International (MSCI). The returns are all translated into dollar-equivalents as

of September 6th 2013. We use absolute returns as a proxy for volatility. We have a total of 45 countries
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in our sample, there are 21 developed markets (Australia, Austria, Belgium, Canada, Denmark, France,

Germany, Hong Kong, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore,

Spain, Sweden, Switzerland, the United Kingdom, the United States), 21 emerging markets (Brazil,

Chile, Mexico, Greece, Israel, China, Colombia, Czech Republic, Egypt, Hungary, India, Indonesia,

Korea, Malaysia, Peru, Philippines, Poland, Russia, Taiwan, Thailand, Turkey), and 3 frontier markets

(Argentina, Morocco, Jordan).

Below we provide a full-sample analysis of global volatility spillovers at different tails. We denote 20%

quantile as Low Tail, 50% quantile as Median, 80% quantile as Up Tail. Both QGMs and GGM are

estimated. Our purpose is to show the usefulness of QGM in representing nonlinear tail interdependence

allowing for heteroscedasticity and to show that QGM measures correlation asymmetry by looking at

behavior in the tails of the distribution (not specific to any model).

There are significant differences in the network structure in terms of volatility spillovers when using

QGM and Gaussian graph. QGM permits conditional asymmetries in correlation dynamics, suited to

investigate the presence of asymmetric responses. We find significant increase at the up tail interde-

pendence between the volatility series, i.e. we find downside correlation (high volatility) are much larger

than upside correlation (low volatility). This confirms findings in finance literature that financial markets

become more interdependent during high volatility periods.

We also find if two countries are located in the same geographic region, with many similarities in

terms of market structure and history, they tend to be closely connected (the homophily effect as in

network terminology); while two economies located in separate geographic regions are less likely directly

connected. We find among European Union member countries, Germany appears to play a major role

in the transmission of shocks to others. While in Asia, Hong Kong, Thailand, and Singapore appears to

play a major role. Among all the north and south American countries, Canada and US play a major role

in risk transmission.

We also report net -∆CoV aR to measure spillover accounting for the network (see Appendix B) for

the volatility series through QGM at up tail in Figure 6.1.

Figure 6.1 shows that, globally, total volatility spillovers from Germany, France, US and Hong Kong

to the others are much larger than total volatility spillovers from the others to them; while the opposite

happens to Greece and Spain. Both Greece and Spain receive larger volatility spillovers from others

than contribute to the others. The estimated network structure is important here as it demonstrates

that shocks originating in some stock markets, e.g. Germany and Hong Kong, may be amplified in

their transmission throughout the system, posing greater risks to the whole market than other shock’s

origination.

6.2. Stock Returns Conditional on Market Downside Movement. Stock markets are in general

non-Gaussian. [6] find correlation asymmetries in the data and reject the null hypothesis of multivari-

ate normal distributions at daily, weekly, and monthly frequencies, conditional on market “downside”

movements. See also [53, 57] among other studies in the empirical finance literature for the non-Gaussian
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Figure 1. International Financial Contagion. Notes: We show the volatility transmis-

sion channel is asymmetric at different tails.
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Figure 2. Net -∆CoV aR of Each Country

feature of financial markets. Hence, generally in the financial market context, conditional correlation only

conveys partial and often misleading information on the actual underlying conditional dependencies.

We contribute to the literature by showing the union of a set of QGMs can be used to obtain a

conditional independence graph when the main interest lies in estimating the conditional independence

structure of stocks under a market downturn. While the joint distribution of stocks considered is generally

non-Gaussian, since QGM does not impose any parametric assumption on the joint distribution of stocks,

the union of QGMs allows for both Gaussian and non-Gaussian joint distributions in estimating the

conditional independence structure.

This will be modelled with a conditional quantile graph models. We consider the conditioning events

to be Z = {Market return 6 mu} for we set mu = u-th quantile of the market index return to capture

downside movement of the market (note that u = 1 corresponds to regular market). We obtain daily

stock returns from CRSP. The full sample consists of 2769 observations of daily stock returns for 86
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stocks in the S&P 500 from Jan 2, 2003 to December 31, 2013. The total number of stocks is 86 due

to data availability at CRSP. We define market downside as when the market index returns are below a

pre-specified level and we use S&P 500 as market index. In this case, the conditioning on a particular Z

corresponds simply to consider the subsample based on whether the corresponding date’s market return

is less equal to the u-th quantile of the market index returns. We reported the number of edges, there is

no linkage between two stocks if there are conditional independent, at different subsamples in Table 6.2

below,

Table 1

Edges of Produced by Different Graph Estimators

Quantile of market index (u) PQGM Glasso(eBIC) TGalasso TIGER

0.15 406 1752 1804 3372

0.5 744 2152 2278 5734

0.75 842 2380 2478 6180

0.9 978 2461 2564 6344

1 1062 2518 2660 6290

For estimators based on QGM and GGM, the number of edges increases with the quantile index.

However, potentially due to asymmetry in relations, there are significant differences between the results

of QGMs and GGM. There are significantly higher interdependence in GGM. Nonetheless, increase in

conditional correlation could be a result of assuming conditional normality for the return distribution –

estimation bias in correlation conditional on market upside or downside moves will cause false correlation.

These empirical findings support evidence from the empirical finance literature.
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Appendix A. Implementation of Algorithms

Regarding the Lasso estimator, the choice of penalty level λ := 1.1n−1/22Φ−1(1 − ξ/Nn) and penalty

loading Γ̂τ = diag[Γ̂τkk, k ∈ [p]\{j}] is a diagonal matrix defined by the following procedure: (1) Compute

the Post Lasso estimator γ̃jaτ based on λ and initial values Γ̂τkk = max
i6n

‖fiaτZai ‖∞{En[|fiaτZak |2]}1/2. (2)
Compute the residuals v̂i = fiaτ (Z

a
ij − Zai,−j γ̃

j
aτ ) and update the loadings

Γ̂τkk =
√
En[f2

aτ |Zak v̂|2], k ∈ [p] \ {j} (A.27)

and used them to recompute the post-Lasso estimator γ̃jaτ . Finally, Step 3 uses Aaτj = {α ∈ R :

|α − β̃aτj | 6 10σ̂aj/ logn}. In the case of Algorithm 3.1 we can take Nn = |V |p3n3, in the case of

Algorithm 3.3 we take Nn = |V |p2{pn3}1+dW .

Detailed version of Algorithm 3.1 (Conditional Independence Quantile Graphical Model)

For each a ∈ V , and j ∈ [p], and τ ∈ T , perform the following:

(1) Run Post-ℓ1-quantile regression of Xa on Za; keep fitted value Za−j β̃aτ , where σ̂
2
j = En[(Z

a
j )

2]

β̂aτ ∈ argminβ En[ρτ (Xa − Zaβ)] + λV T
√
τ(1 − τ)

∑p
j=1 σ̂j |β|

β̃aτ ∈ argminβ En[ρτ (Xa − Zaβ)] : βj = 0 if |β̂aτj|σ̂j 6 λV T
√
τ(1 − τ).

(2) Run Post-Lasso of faτZ
a
j on faτZ

a
−j; keep the residual ṽi := fiaτ{Zaij − Zai,−j γ̃

j
aτ},

γ̂jaτ ∈ argminγ En[f
2
aτ (Z

a
j − Za−jγ)

2] + λ‖Γ̂τγ‖1
γ̃jaτ ∈ argminγ En[f

2
aτ (Z

a
j − Za−jγ)

2] : support(γ) ⊆ support(γ̂jaτ ).

(3) Run Instrumental Quantile Regression of Xa − Za−jβ̃aτ on Zaj using ṽ as the instrument for Zaj ,

β̌aτ,j ∈ arg min
α∈Aτ

{En[(1{Xa 6 Zaj α+ Za−jβ̃aτ,−j} − τ)ṽ]}2

En[(1{Xa 6 Zaj α+ Za−jβ̃aτ,−j} − τ)ṽ2]
.

Appendix B. Incorporating network structure: CoVaR, network spillover effects, and

systemic risk

Traditional risk measures, such as Value of Risk (VaR), focus on the loss of an individual institution

only. CoVaR proposed by [4] measures the VaR of the whole financial system or a particular financial

institution by conditioning on another institution being in distress. Thus, it relates systemic risk to tail

spillover effects from individual institutions to the whole system. [4] define firm b’s CoVaR at level τ

conditional on a particular outcome from firm a, as the value of CoV aR
b|a
τ that solves

Pr(Xb 6 CoV aRb|aτ |C(Xa)) = τ,
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Detailed version of Algorithm 3.2 (Predictive Quantile Graph Model)

For each a ∈ V , and τ ∈ T , perform the following:

(1) Run ℓ1-quantile regression of Xa on X−a with penalty λ0

β̂aτ ∈ argminβ En[ρτ (Xa −X ′
−aβ)] + λ0

∑
j∈[d]\{a} σ̂j |βj |

where σ̂j = {En[X2
j ]}1/2.

(2) Set ε̂iaτ = 1{Xia 6 X ′
i,−aβ̂aτ} − τ for i ∈ [n], a ∈ V and τ ∈ T . Compute the penalty level λV T

as the (1− ξ)-quantile conditional on the data of the random variable

Λ := 1.1max
a∈V

sup
τ∈T

max
j∈[d]\{a}

|En[gε̂aτXj ]|
{En[ε2aτX2

j }1/2

where {gi : i = 1, . . . , n} is a sequence of i.i.d. standard Gaussian random variables.

(3) Run ℓ1-quantile regression of Xa on X−a with penalty λV T

β̌a(τ) ∈ argminβ En[ρτ (Xa −X ′
−aβ)] + λV T

∑
j∈[d]\{a} |βj |{En[ε2aτX2

j }1/2

Detailed version of Algorithm 3.3 (W-Conditional Independence Quantile Graphical

Model)

For each u = (a, τ,̟) ∈ U = V × T ×W , and j ∈ [p], perform the following:

(1) Run Post-ℓ1-quantile regression of Xa on Za; keep fitted value Za−j β̃u,−j,

β̂u ∈ argminβ En[K̟(W )ρτ (Xa − Zaβ)] + λu‖β‖1,̟
β̃u ∈ argminβ En[K̟(W )ρτ (Xa − Zaβ)] : βj = 0 if |β̂u,j |En[K̟(W )(Zaj )

2]1/2 6 λu.

(2) Run Post-Lasso of fuZ
a
j on fuZ

a
−j; keep the residual ṽ := fu(Z

a
j − Za−j γ̃

j
u),

γ̂ju ∈ argminθ En[K̟(W )f2
u(Z

a
j − Za−jγ)

2] + λ‖Γ̂uγ‖1
γ̃ju ∈ argminγ En[K̟(W )f2

u(Z
a
j − Za−jγ)

2] : support(γ) ⊆ support(γ̂ju).

(3) Run Instrumental Quantile Regression of Xa − Za−jβ̃u,−j on Zaj using ṽ as the instrument,

β̌u,j ∈ arg min
α∈Auj

{En[K̟(W )(1{Xa 6 Zaj α+ Za−jβ̃u,−j} − τ)ṽ]}2

En[K̟(W )(1{Xa 6 Zaj α+ Za−j β̃u,−j} − τ)2ṽ2]

where Auj := {α ∈ R : |α− β̃uj | 6 10{En[K̟(W )(Zaj )
2]}−1/2/ logn}.

A particular case is C(Xa) = {Xa = V aRaτ} for a low quantile index τ , which is interpreted as with

probability τ institution b is in trouble given that institution a is in trouble. They also define institution

a’s contribution to b as

∆CoV aRb|aτ = CoV aR
b|Xa=V aR

a
τ

τ − CoV aRb|Xa=Mediana
τ .

They mainly use quantile regression to estimate the CoV aR measure. More precisely, the predicted

value from the quantile regression of Xb on Xa gives the value at risk of institution b conditional on

institution a since V aRbτ given Xa is just the conditional quantile, i.e. conditional VaR
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Detailed version of Algorithm 3.4 (W-Conditional Predictive Quantile Graph Model)

For each u = (a, τ,̟) ∈ U = V × T ×W perform the following:

(1) Run ℓ1-quantile regression of Xa on X−a with penalty λ0W

β̂u ∈ argminβ En[K̟(W )ρτ (Xa −X ′
−aβ)] + λ0W‖β‖1,̟

β̃u ∈ argminβ En[K̟(W )ρτ (Xa −X ′
−aβ)] : βj = 0 if |β̂u,j |En[K̟(W )X2

j ]
1/2 6 λ0W

(2) Set ε̂iu = 1{Xia 6 X ′
i,−aβ̃u} − τ for i ∈ [n], a ∈ V and τ ∈ T , ̟ ∈ W . Compute the penalty

level λU as the (1− ξ)-quantile conditional on the data of the random variable

Λ := 1.1max
a∈V

sup
u∈U

max
j∈[d]

|En[gK̟(W )ε̂uXj]|√
En[K̟(W )ε̂2uX

2
j ]

where {gi : i = 1, . . . , n} is a sequence of i.i.d. standard Gaussian random variables.

(3) Run ℓ1-quantile regression of Xa on X−a with penalty λU and modified penalty loadings

β̌u ∈ argminβ En[K̟(W )ρτ (Xa −X ′
−aβ)] + λU‖β‖1,u

where ‖β‖1,u :=
∑

j∈[d] |βj |{En[K̟(W )ε̂2uX
2
j ]}1/2.

V aRbτ |Xa = αb(τ) + βb(τ)Xa,

Replacing variable Xa by its unconditional quantile, i.e. V aRaτ , yields

CoV aRb|Xa
τ = αb(τ) + βb(τ)V aRaτ and ∆CoV aRb|aτ = βb(τ)(V aRaτ − V aRa50%)

We incorporate network spillover effects into risk measuring. We show that with QGM, individual

institution’s contribution to systemic risk can incorporate tail risk interconnections between institutions

in the whole financial system (in the network, each node represents a financial institution now). The

identified risk connections between all financial institutions constitute a systemic risk network. Note,

institution a’s overall systemic risk contribution, ∆CoV aRsys|a measures the contribution of institution

a to overall systemic risk
∑
a∆CoV aR

sys|a.

We define

Pr(Xb 6 CoV aRb|a,V \{a,b}
τ |C(Xa, XV \{a,b})) = τ

then

CoV aR
b|Xa=V aR

a
τ ,XV \{a,b}=V aR

V \{a,b}
q

τ = βb0(τ) + βba(τ)V aR
a
τ + βbV \{a,b}(τ)V aR

V \{a,b}
τ

∆CoV aRb|a,V \{a,b}
τ = βba(τ)(V aR

a
τ − V aRa50%)

where βb(τ) = {βb0(τ), βbV \{b}(τ)} is estimated via ℓ1-penalized quantile regression.
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We stack ∆CoV aR
b|a,V \{a,b}
τ as the (a, b)-th element of an d×d matrix Eβ(τ) representing a weighted

directed network of institutions. Here d is the number of total financial institutions considered. Following

[5], the systemic risk contribution of firm a, ∆CoV aRsys|a, is the network to-degree of institution a

which is defined as δtoa = ∆CoV aRsys|a =
∑

k∆CoV aR
k|a,V \{a,k}. To-degrees measure contributions of

individual institutions to the overall risk of systemic network events.

Similarly, from-degree of node a is defined as δfroma = ∆CoV aRa|sys =
∑
b∆CoV aR

a|b,V \{a,b}
τ . From-

degrees measure exposure of individual institutions to systemic shocks from the network. The total degree

δ, i.e.
∑

a∆CoV aR
sys|a, aggregates institution-specific systemic risk across institutions hence provides

a measure of total systemic risk in the whole financial system.

Finally , we define the net contribution as net -∆CoV aRa = δtoa − δfroma . For more about network

theory, see [44].

Appendix C. Example of Simple Specifications

Next we discuss the specification and propose an estimator for CIQGMs. Although in general it is

potentially hard to correctly specify coherent models, the following are examples.

Example 3 (Gaussian Case). Consider the Gaussian case, XV ∼ N(µ,Σ) and V = [d]. It follows that

for a ∈ V , the conditional distribution Xa | XV \{a} satisfies

Xa | XV \{a} ∼ N


µa −

∑

j∈V \{a}

(Σ−1)aj
(Σ−1)aa

(Xj − µj),
1

(Σ−1)aa


 .

Therefore the conditional quantile function of Xa is linear in XV \{a} and is given by

QXa(τ |XV \{a}) =
Φ−1(τ)

(Σ−1)
1/2
aa

+ µa −
∑

j∈V \{a}

(Σ−1)aj
(Σ−1)aa

(Xj − µj).

Example 4 (Mixture of Gaussians). Similar to the prior example, consider the caseXV | ̟ ∼ N(µ̟,Σ̟)

for each ̟ ∈ W . It follows that for a ∈ V , the conditional distribution satisfies

Xa | XV \{a}, ̟ ∼ N


µ̟a −

∑

j∈V \{a}

(Σ−1)̟aj
(Σ−1)̟aa

(Xj − µ̟j),
1

(Σ−1)̟aa


 .

Again the conditional quantile function of Xa is linear in XV \{a} and is given by

QXa(τ |XV \{a}, ̟) =
Φ−1(τ)

(Σ−1)
1/2
̟aa

+ µ̟a −
∑

j∈V \{a}

(Σ−1)̟aj
(Σ−1)̟aa

(Xj − µ̟j).

Example 5 (Monotone Transformations). Consider the Gaussian case, Xj = hj(Yj) where YV ∼
N(µ,Σ), j ∈ V = [d]. It follows that for a ∈ V , the conditional quantile function satisfies

QXa(τ |XV \{a}) = ha


 Φ−1(τ)

(Σ−1)
1/2
aa

+ µa −
∑

j∈V \{a}

(Σ−1)aj
(Σ−1)aa

(h−1
j (Xj)− µj)


 .

In particular if (hj : j ∈ V ) are monotone polynomials, the expression above is a sum of monomials with

fractional and integer exponents.
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Example 6 (Multiplicative Error Model). Consider d = 2 so that V = {1, 2}. Assume that X2 and ε

are independent positive random variables. Assume further that they relate to X1 as

X1 = α+ εX2.

In this case we have that the conditional quantile functions are linear and given by

QX1
(τ |X2) = α+ F−1

ε (τ)X2 and QX2
(τ |X1) = (X1 − α)/F−1

ε (1− τ).

�

Example 7 (Additive Error Model). Consider d = 2 so that V = {1, 2}. LetX2 ∼ U(0, 1) and ǫ ∼ U(0, 1)

be independent random variables. Also define the random variable X1 is defined as

X1 = α+ βX2 + ε.

It follows that QX1
(τ |X2) = α + βX2 + τ . However, if β = 0, we have QX2

(τ |X1) = τ , and for β > 0,

direct calculations yield that

QX2
(τ |X1) =

{
τ
β (X1 − α), if X1 6 α+ β

τ + (1 − τ)(X1 − α− β), if X1 > α+ β

where we note that X1 ∈ [α, 1 + α+ β]. �

Although a linear specification is correct for Examples 3 and 6, Example 7 above illustrates that we need

to consider more general transformation of the basic covariatesXV in the specification for each conditional

quantile function. Nonetheless, specifications with additional non-linear terms can approximate non-

drastic departures from normality.

Appendix D. Proofs of Section 4

Proof of Theorem 1. By Lemma 6, under Condition CI, for any θ such that ‖θ‖0 6 Csℓn, ℓn → ∞ slowly,

we have that

‖
√
fuZ

aθ‖n,̟/{E[K̟(W )fu(Z
aθ)2]}1/2 = 1 + oP (1).

Moreover, E[K̟(W )fu(Z
aθ)2] > f

u
E[K̟(W )(Zaθ)2], E[K̟(W )(Zaθ)2] = E[(Zaθ)2 | ̟]P(̟), and

E[(Zaθ)2 | ̟] > c‖θ‖2 by Condition CI. Lemma 6 further imply that the ratio of the minimal and

maximal eigenvalues of order sℓn are bounded away from zero and from above uniformly over ̟ ∈ W
and a ∈ V with probability 1− o(1). Therefore, since c{P(̟)}1/2‖δ‖1 6 ‖δ‖1,̟ 6 C{P(̟)}1/2‖δ‖1, we
have κu,2c > c uniformly over u ∈ U with the same probability.

Consider the events Ω1,Ω2, and Ω3 as defined in (E.33), (E.34) and (E.35). By the choice of λu

we have P(Ω1) > 1 − o(1), and P(Ω2) > 1 − o(1) by Condition CI with Ruγ 6 Cs log(p|V |n)/n by

Lemma 2, and P(Ω3) > 1− ξ by Lemma 3 with t3 6 Cn−1/2
√
(1 + dW ) log(p|V |nLf/ξ). Finally, we have

qAu > c{√smaxi6n ‖Zai ‖∞}−1 > c′{√sMn}−1 since we can assume ‖√fuZaδu‖n,̟ > c
√
s log(p|V |n)/n.

Therefore, setting ξ = 1/ logn, by Lemma 1 we have uniformly over u ∈ U

‖√fuZa(β̂u − βu)‖n,̟ .
√
(1 + (t3/λu)Ruγ + (λu + t3)

√
s .

√
s(1+dW ) log(p|V |n)

nτ(1−τ)

‖β̂u − βu‖1,̟ . s
√

(1+dW ) log(p|V |n)
n

(D.28)
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where we used that λu 6 C
√

(1+dW ) log(p|V |n)
n by Lemma 15 to bound Λa(1− γ/{|V |n1+2dW } | X−a,W )

under M2
n log(p|V |n/{τ(1− τ)}) = o(nτ(1 − τ)µW ) for all τ ∈ T .

Let δu = β̂u − βu. By triangle inequality it follows that

{E[K̟(W )fu(Z
aδu)

2]}1/2 6 ‖
√
fuZ

aδu‖n,̟ + ‖δu‖1,̟{|(En − E)[K̟(W )fu(Z
aδu)

2/‖δu‖21,̟]}1/2
(D.29)

and the last term can be bounded by

sup
‖δ‖1,̟61

|(En − E)[K̟(W )fu(Z
aδ)2/‖δ‖21,̟]| 6 |(En − E)[K̟(W )fu{Zak/σ̟̂k}{Zaj /σ̟̂j}]|

. 1
P(̟)

√
(1+dW ) log(p|V |n)

n .

Combining the relations above with (D.29), under (1 + dW )s2 log(p|V |n) = o(n) we have uniformly

over u ∈ U
‖δu‖ . {E[(Zaδu)2 | ̟]}1/2 . {P(̟)}−1/2{E[K̟(W )(Zaδu)

2]}1/2
. {P(̟)f

u
}−1/2{E[K̟(W )fu(Z

aδu)
2]}1/2

6 {P(̟)f
u
}−1/2‖√fuZaδu‖n,̟ + {P(̟)f

u
}−1/2 4

√
(1+dW ) log(p|V |n)

n ‖δu‖1,̟
6 C

√
s(1+dW ) log(p|V |n)

nf
u
P(̟) .

Finally, let β̂λ̄u be obtained by thresholding the estimator β̂u with λ̄ :=
√
(1 + dW ) log(p|V |n)/n (note

that each component is weighted by En[K̟(W )(Zaj )
2]1/2). By Lemma 16, we have

‖Za(β̂λ̄u − βu)‖n,̟ .
√
s(1 + dW ) log(p|V |n)/n

‖β̂λ̄u − βu‖1,̟ . s
√
(1 + dW ) log(p|V |n)/n

|support(β̂λ̄u)| . s

by the choice of λ̄ and the rates in (D.28)

�

Proof of Theorem 2. We verify Assumption 4 and Condition WL for the weighted Lasso model with index

set U×[p] where Yu = K̟(W )Zaj , Xu = K̟(W )Za−j , θu = γ̄ju, au = (fu, r̄uj), r̄uj = K̟(W )Za−j(γ
j
u−γ̄ju),

Suj = K̟(W )f2
u(Z

a
j − Za−jγ

j
u)Z

a
−j = K̟(W )fuvujZ

a
−j , and wu = K̟(W )f2

u. We will take Nn =

|V |p2{pn3}1+dW in the definition of λ.

We first verify Condition WL. We have E[S2
ujk] 6 f̄2E[|vujZa−jk|2] 6 E[|vuj |4 + |Za−jk|4] 6 C by the

bounded fourth moment condition. We have that

E[|Sujk|3]1/3
E[|Sujk|2]1/2

=
E[|Sujk|3 | ̟]1/3

E[|Sujk|2 | ̟]1/2
{P(̟)}−1/6 =

E[|fuvujZa−jk|3 | ̟]1/3

E[|fuvujZa−jk|2 | ̟]1/2
{P(̟)}−1/6 =:Muk

By the choice Nn and since Φ−1(1 − t) 6 C
√
log(1/t), we have MukΦ

−1(1 − γ/2pNn) 6 MukC(1 +

dW ) log1/2(pn|V |) 6 Cδnn
1/6 where the last inequality holds by Condition CI so Condition WL(i) holds.

To verify Condition WL(ii) we will establish the validity of the choice of Nn and use that

Sujk − Su′jk = {K̟(W )f2
u −K̟′(W )f2

u′}{Zaj − Za−jγ
j
u}Zak +K̟′(W )f2

u′{Za−j(γju − γju)}Zak .
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We have that |K̟(W )f2
u −K̟′(W )f2

u′ | 6 K̟(W )K̟′(W )|f2
u − f2

u′ | + (fu + fu′)2|K̟(W ) −K̟′(W )|.
We will consider u = (a, τ,̟) and u′ = (a, τ ′, ̟′). By Condition CI we have that for some L̄ such that

L̄ . log(p|V |n)

|fu − fu′ | 6 L̄‖u− u′‖ and E[|K̟(W )−K̟′(W )|] 6 L̄‖̟ −̟′‖. (D.30)

Further, by Lemma 5 we have

‖γju − γju′‖ 6 Lγ{‖u− u′‖+ ‖̟ −̟′‖1/2} (D.31)

for some Lγ satisfying log(Lγ) 6 C log(|V |pn). It follows that since fu + fu′ 6 2fu + L‖u− u′‖

|En[Sujk − Su′jk]| 6 En[|Sujk − Su′jk|]
6 En[K̟(W )K̟′(W )|fu − fu′ |] maxi6n(2fui + L̄‖u− u′‖)|Zaij − Zai,−jγ

j
u| ‖Zai ‖∞

+En[|K̟(W )−K̟′(W )|] maxi6n(2fui + L‖u− u′‖)|Zaij − Zai,−jγ
j
u| ‖Zai ‖∞

+f̄2√pmaxi6n ‖Zai ‖2∞‖γju − γju′‖
6 L̄‖u− u′‖maxi6n |vuji| ‖Za‖∞ + L̄2‖u− u′‖2√p‖γju‖maxi6n ‖Zai ‖2∞
+En[|K̟(W )−K̟′(W )|] maxi6n |2vuji| ‖Zai ‖∞ + L̄‖u− u′‖√p‖γju‖maxi6n ‖Zai ‖2∞
+Lγ{‖u− u′‖+ ‖̟ −̟′‖1/2}f̄2√pmaxi6n ‖Zai ‖2∞

.

Note that maxi6n |vuji| ‖Za‖∞ + maxi6n ‖Za‖2∞ .P n2/qMn. For dU = ‖ · ‖, an uniform ǫ-cover of U
satisfies (6diam(U)/ǫ)1+dW > N(ǫ,U , ‖ · ‖). Taking 1/ǫ = {L̄ + L2

γ}pn2M2
n log

2(p|V |n)/{µWf
2

U} 6 pn3

we have with probability 1− o(1) that

|En[Sujk − Su′jk]| . L̄2ǫ2
√
pn2/qMn logn+ L̄ǫ

√
pn2/qM2

n logn+ ǫ1/2Lγ
√
pn2/qM2

n logn

+En[|K̟(W )−K̟′(W )|]n2/qMn logn

. δnn
−1/2{µWf

2

U}
1/2 + En[|K̟(W )−K̟′(W )|]n2/qMn logn

since supu∈U ,j∈[p] ‖γju‖ 6 C and f̄ 6 C. Next note that with probability 1− o(1)

En[|K̟(W )−K̟′(W )|] 6 |(En − E)[|K̟(W )−K̟′(W )|]|+ E[|K̟(W )−K̟′(W )|]
6 sup

̟,̟′∈W,‖̟−̟′‖6ǫ
|(En − E)[|K̟(W )−K̟′(W )|]|+ L̄ǫ

.

√
dW log(n/ǫ)

n ǫ1/2 + dW log(n/ǫ)
n + L̄ǫ

which yields uniformly over u ∈ U and j ∈ [p]

|En[Sujk − Su′jk]| . δnn
−1/2µ

1/2
W fU

under
√
ǫdW log(n/ǫ)n2/qMn logn = o(µ

1/2
W fU ) and dW log(n/ǫ)n2/qMn logn = o(n1/2µ

1/2
W fU). This

implies

sup
|u−u′|6ǫ

max
j∈[p],k∈[p−1]

|En[Sujk − Su′jk]|
E[S2

ujk]
1/2

6 δnn
−1/2

since E[S2
ujk] > cµWf

2

U . The same choice of ǫ also implies

sup
|u−u′|6ǫ

max
j,k∈[p]

|E[S2
ujk − S2

u′jk]|
E[S2

ujk]
6 δn
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To establish the last requirement of Condition WL(ii), we will apply Lemma 2 with the vector {(X̄)uj =

Suj , u ∈ Uǫ, j ∈ [p]}, Û := Uǫ × [p], and since

K2 = E[max
i6n

sup
u∈U

max
j∈[p],k∈[p−1]

S2
ujk] 6 E[max

i6n
sup

u∈U ,j∈[p]

|vi,uj |2‖fuiZai ‖2∞] 6 f̄2n4/qM2
nL

2
n

we have

sup
u∈U

max
j∈[p],k∈[p−1]

|(En − E)[S2
ujk]| 6 sup

u∈Uǫ

max
j∈[p],k∈[p−1]

|(En − E)[S2
ujk]|+∆n

6 Cn−1/2n2/qMnLn log
1/2(p|V |n) 6 CδnµWfU +∆n

under n4/qM2
nL

2
n log(p|V |n) 6 δnnµ

2
Wf

2

U where

∆n := sup
u,u′∈U ,‖u−u′‖6ǫ

max
j∈[p],k∈[p−1]

|(En − E)[S2
ujk]− (En − E)[S2

u′jk]|.

Note that

|(En − E)[S2
ujk]− (En − E)[S2

u′jk]| 6 |En[S2
ujk − S2

u′jk]|+ |E[S2
ujk − S2

u′jk]|
6 En[|Sujk − Su′jk|] supu∈U maxi6n |2Su′jk,i|+ |E[S2

ujk − S2
u′jk]|

. δnn
−1/2{µ1/2

W fU}f̄ supu∈U maxi6n |vuji|‖Za‖∞ + δnµWf2U
. δnn

−1/2{µ1/2
W fU}n

2/qMnLn logn+ δnµWf2

U

with probability 1− o(1) where we used the previous two results. Therefore ∆n . δnµWf2U as required.

To verify Assumption 4(a), note that [∂θMu(Yu, X, θu)−∂θMu(Yu, X, θu, au)]
′δ = −f2

uK̟(W )r̄ujZ
a
−jδ,

so that by Cauchy-Schwartz, we have

En[∂θMu(Yu, X, θu)− ∂θMu(Yu, X, θu, au)]
′δ 6 ‖fur̄uj‖̟,2‖fuZa−jδ‖̟,2 6 Cun‖fuZa−jδ‖̟,2

where we choose Cun so that {Cun > maxj∈[p] ‖fur̄uj‖̟,2 : u ∈ U} with probability 1− o(1). By Lemma

4, uniformly over u ∈ U , j ∈ [p̃] we have

‖fur̄uj‖̟,2 = ‖fuZa−j(γju − γ̄ju)‖̟,2 . f
u
{P(̟)}1/2{n−1s log(p|V |n)}1/2

so that Cun = f
u
{P(̟)}1/2{n−1s log(p|V |n)}1/2.

Next we show that Assumption 4(b) holds. First note the uniform convergence of the loadings

sup
u∈U ,j∈[p],k∈[p]

|En[S2
ujk]− E[S2

ujk]|+ |(En − E)[K̟(W )f2
u|Zaj Za−jk|2]| 6 δnµWf2

U

so that En[S
2
ujk]/E[S

2
ujk] = 1+oP (1). It follows that c̃ is bounded above by a constant for n large enough.

Indeed, uniformly over u ∈ U , j ∈ [p], since cf
u
6 E[|fuvujZak |2 | ̟]1/2 6 Cf

u
, with probability 1− o(1)

we have cf
u
P(̟)1/2 6 Ψ̂u0jj 6 Cf

u
P(̟)1/2 so that c/C 6 ‖Ψ̂u0‖∞‖Ψ̂−1

u0 ‖∞ 6 C/c.

Assumption 4(c) follows directly from the choice of Mu(Yu, Xu, θ) = K̟(W )f2
u(Z

a
j − Za−jθ)

2 with

q̄Au = ∞.

The result for the rate of convergence then follows from Lemma 21, namely

‖fuX ′
u(γ̂

j
u − γju)‖n,̟ .

‖Ψ̂u0‖∞
κ̄u,2c

√
s log(p|V |n)

n
+ Cun .

f
u
P(̟)1/2

κ̄u,2c

√
s log(p|V |n)

n
(D.32)
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By Lemma 6 we have that for sparse vectors, ‖θ‖0 6 ℓns satisfies

‖fuZa−jθ‖2n,̟/E[K̟(W )f2
u{Za−jθ}2] = 1 + oP (1)

so that φmax(ℓns, uj) 6 Cf2

u
P(̟) and ŝuj 6 minm∈Mu φmax(m,uj)L

2
u 6 Cs provided L2

u . s{f2
u
P(̟)}−1.

Indeed, with probability 1−o(1), we have ‖Ψ̂−1
u0 ‖∞ 6 Cf−1

u
{P(̟)}−1/2, so that Lu . f−1

u
P(̟)−1/2 n

λ{Cun+
Lun}. Moreover, we can take Cun . f

u
{P(̟)n−1s log(p|V |n)}1/2, and Lun . {n−1s log(p|V |n)}1/2 in

Assumption C4 because

|{En[∂γMu(Yu, Xu, γ̂
j
u)− ∂γMu(Yu, Xu, γ

j
u)]}′δ|

= 2|{En[K̟(W )f2
u{X ′

u(γ̂
j
u − γju)}X ′

uδ|
6 2‖fuX ′

u(γ̂
j
u − γju)‖n,̟‖fuX ′

uδ‖n,̟ =: Lun‖fuX ′
uδ‖n,̟,

where the last inequality hold by (D.32) since κ̄u,2c > cf
u
{P(̟)}1/2. The latter holds since for any

‖δ‖ = 1, we have

cf
u
P(̟) 6 E[K̟(W )fu(Z

aδ)2]

6 {E[K̟(W )f2
u(Z

aδ)2]}1/2{E[K̟(W )(Zaδ)2]}1/2
6 {E[K̟(W )f2

u(Z
aδ)2]}1/2C{P(̟)}1/2

where the first inequality follows from the definition of f
u
, ‖δ‖ = 1, and Condition CI, so that we have

{E[K̟(W )f2
u(Z

aδ)2]}1/2 > c′f
u
{P(̟)}1/2.

The sparsity result follows from Lemma 20. The result for Post Lasso follows from Lemma 19 under

the growth requirements in Condition CI.

�

Proof of Theorem 3. We will verify Assumptions 1 and 2, and the result follows from Theorem 5. The

estimate of the nuisance parameter is constructed from the estimators in Steps 1 and 2 of the Algorithm.

For each u = (a, τ,̟) ∈ U and j ∈ [p], let Wuj = (W,Xa, Z
a, vuj , ru), where vuj = fu(Z

a
j − Za−jγ

j
u)

and let θuj ∈ Θuj = {θ ∈ R : |θ − βuj | 6 c/ logn} (Assumption 1(i) holds). The score function as

ψuj(Wuj , θ, ηuj) = K̟(W ){τ − 1{Xa 6 Zaj θ + Za−jβu,−j + ru}}f2
u(Z

a
j − Za−jγ

j
u)

where the nuisance parameter is ηuj = (βju, γ
j
u, ru) where the last component is a function ru = ru(X).

Recall that K̟(W ) ∈ {0, 1}. For an = max(n, p, |V |) let Huj = {η = (η(1), η(2), η(3)) : ‖η − ηuj‖e 6 τn

where ‖η − ηuj‖e = ‖(δ(1)η , δ
(2)
η , δ

(3)
η )‖e = max{‖δ(1)η ‖, ‖δ(2)η ‖,E[|δ(3)η |2]1/2}, and

τn := C sup
u∈U

1

1 ∧ fU

√
s log an
nµW

The differentiability of the mapping (θ, η) ∈ Θuj × Huj 7→ Eψuj(Wuj , θ, η) follows from the differen-

tiability of the conditional probability distribution of Xa given XV \a and ̟. Let η = (η(1), η(2), η(3)),

δη = (δ
(1)
η , δ

(2)
η , δ

(3)
η ), and θr̄ = θ + r̄δθ, ηr̄ = η + r̄δη.
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To verify Assumption 1(v)(a) with α = 1, for any (θ, η), (θ̄, η̄) ∈ Θuj ×Huj note that since fXa|X−a,̟

is uniformly bounded from above by f̄ , therefore

E[{ψuj(Wuj , θ, η)− ψuj(Wuj , θ̄, η̄)}2]1/2
6 E[|Za−j(η(2) − η̄(2))|2]1/2 + E[(Zaj − Za−j η̄

(2))2f̄{|η(3) − η̄(3)|+ |Za−j(η(1) − η̄(1))|+ |Zaj (θ − θ̄)|}]1/2
6 C‖η(2) − η̄(2)‖+ f̄1/2E[(Zaj − Za−j η̄

(2))4]1/4{E[|η(3) − η̄(3)|2]1/4 + C‖η(1) − η̄(1)‖+ |θ − θ̄|}1/2
6 C′|θ − θ̄|1/2 ∨ ‖η − η̄‖1/2e

for some constance C′ < ∞ since by Condition CI we have E[|Zaξ|4]1/4 6 C‖ξ‖ for all vectors ξ, and

the conditions supu∈U ,j∈[p] ‖γju‖ 6 C, supθ∈Θuj
|θ| 6 C, and

√
s log(an) 6 δn

√
n. This implies that

‖η(2) − η̄(2)‖ 6 ‖η(2) − η
(2)
uj ‖+ ‖η(2)uj − η̄(2)‖ 6 1 so that ‖η(2) − η̄(2)‖ 6 ‖η(2) − η̄(2)‖1/2.

To verify Assumption 1(v)(b), let tr̄ = Zaj θr̄ + Za−jη
(1)
r̄ + η

(3)
r̄ . We have

∂rE(ψuj(Wuj , θ + rδθ, η + rδη))|r=r̄ =
−E[K̟(W )fXa|X−a,̟(tr̄)(Z

a
j − Za−jη

(2)
r̄ ){Zaj δθ + Za−jδ

(1)
η + δ

(3)
η }]

−E[K̟(W ){u− FXa|X−a,̟(tr̄)}Za−jδ
(2)
η ]

Applying Cauchy-Schwartz we have that

∣∣∂rE(ψuj(Wuj , θ + rδθ, η + rδη))|r=r̄
∣∣

6 f̄E[(Zaj − Za−jη
(2)
r̄ )2]1/2{E[(Zaj )2]1/2|δθ|+ E[(Za−jδ

(1)
η )2]1/2 + E[|δ(3)η |2]1/2}+ E[(Za−jδ

(2)
η )2]1/2

6 B̄1n(|δθ| ∨ ‖η − ηuj‖e)

where B̄1n 6 C by the same arguments of bounded (second) moments of linear combinations.

Assumption 1(v)(c) follows similarly as

∂2rE(ψuj(Wuj , θ + rδθ, η + rδη))
∣∣
r=r̄

=

−E[K̟(W )f ′
Xa|X−a,̟

(tr̄)(Z
a
j − Za−jη

(2)
r̄ ){Zaj δθ + Za−jδ

(1)
η + δ

(3)
η }2]

+2E[K̟(W )fXa|X−a,̟(tr̄)(Z
a
−jδ

(2)
η ){Zaj δθ + Za−jδ

(1)
η + δ

(3)
η }]

and under |f ′
Xa|X−a,̟

| 6 f̄ ′
n, from Cauchy-Schwartz inequality we have

∣∣∂2rE(ψuj(Wuj , θ + rδθ, η + rδη))
∣∣
r=r̄

∣∣
6 |f̄ ′

nE[(Z
a
j − Za−jη

(2)
r̄ )2]1/2{E[(Zaj )4]|δθ|2 + E[(Za−jδ

(1)
η )4]1/2}+ CE[{δ(3)η }2]

+2f̄E[(Za−jδ
(2)
η )2]1/2{E[(Zaj )2]1/2|δθ|+ E[(Za−jδ

(1)
η )2]1/2 + E[{δ(3)η }2]1/2}

6 B̄2n(δ
2
θ ∨ ‖η − ηuj‖2e)

where B̄2n 6 C(1 + f̄ ′
n) by the same arguments of bounded (fourth) moments as before and using that

|E[(Zaj − Za−jη
(2)
r̄ ){δ(3)η }2]| 6 {E[(Zaj − Za−jη

(2)
r̄ )2{δ(3)η }2}1/2E[{δ(3)η }2]1/2 6 CE[{δ(3)η }2].

To verify the near orthogonality condition, note that for all u ∈ U and j ∈ [p], since by definition

fu = fXa|X−a,̟(Z
aβu + ru) we have

|Du,j,0[η̃uj − ηuj ]| = | − E[K̟(W )fu{Za−j(η̃(2) − η
(2)
uj ) + ru}vuj ]| 6 δnn

−1/2

by the relations E[K̟(W )(τ − FXa|X−a,̟(Z
aβu + ru))Z

a
−j ] = 0 and E[K̟(W )fuZ

a
−jvuj ] = 0 implied by

the model, and |E[K̟(W )furuvuj ]| 6 δnn
−1/2 by Condition CI. Thus, condition (H.58) holds.
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Furthermore, since Θuj ⊂ θuj ± C/ logn, for Juj = ∂θE[ψuj(Wuj , θuj , ηuj)] = E[K̟(W )fuZ
a
j vuj ] =

E[K̟(W )v2uj ] = E[v2uj | ̟]P(̟) as E[K̟(W )fuZ
a
−jvuj ] = 0, we have that for all θ ∈ Θuj

E[ψuj(Wuj , θ, ηuj)] = Juj(θ − θuj) +
1

2
∂2θE[ψuj(Wuj , θ̄, ηuj)](θ − θuj)

2

where |∂2θE[ψuj(Wuj , θ̄, ηuj)]| 6 f̄ ′
nE[|Zaj |2|vuj | | ̟]P (̟) 6 f̄ ′E[|Zaj |4 | ̟]1/2E[|vuj |2 | ̟]1/2P (̟) 6

Cf̄ ′P (̟) so that for all θ ∈ Θuj

|E[ψuj(Wuj , θ, ηuj)]| > {|E[v2uj | ̟]| − {C2f̄ ′}/ logn}P(̟)|θ − θuj |

and we can take jn > c inf̟∈W P(̟) = cµW .

Next we verify Assumption 2 with Hujn = {η = (0, β, γ) : ‖β‖0 6 Cs, ‖γ‖0 6 Cs, ‖β − βu,−j‖ 6

Cτn, ‖γ − γju‖ 6 Cτn, ‖γ − γju‖1 6 C
√
sτn}. We will show that η̂uj = (β̃u,−j , γ̃ju, 0) ∈ Hujn with

probability 1− o(1), uniformly over u ∈ U and j ∈ [p].

Under Condition CI and the choice of penalty parameters, by Theorems 1 and 2, with probability

1− o(1), uniformly over u ∈ U we have

‖β̃u − βu‖ 6 Cτn, max
j∈[p]

sup
u∈U

‖γ̃ju − γju‖ 6 Cτn, and max
j∈[p]

sup
u∈U

‖γ̃ju‖0 6 C̄s,

further by thresholding we can achieve supu∈U ‖β̃u‖0 6 C̄s using Lemma 16.

Next we establish the entropy bounds. For η ∈ Hujn we have that

ψuj(Wuj , θ, η) = K̟(W )(τ − 1{Xa 6 Zaj θ + Za−jβ−j}){Zaj − Za−jγ}

It follows that F1 ⊂ WG1G2 ∪ F̄0 where F̄0 = {ψuj(Wuj , θ, ηuj) : u ∈ U , j ∈ [p], θ ∈ Θuj}, G1 =

{τ − 1{Xa 6 Zaβ} : ‖β‖0 6 Cs, τ ∈ T , a ∈ V }, G2 = {Za → Za(1,−γ), ‖γ‖0 6 Cs, ‖γ‖ 6 C, a ∈ V }.
By Assumption W is a VC class of sets with VC index dW (fixed). It follows that G2 and G3 are p

choose O(s) VC-subgraph classes with VC indices at most O(s). Therefore, ent(G1)∨ ent(G2)∨ ent(W) 6

Cs log(an/ε)+CdW log(e/ε) by Theorem 2.6.7 in [61] and by standard arguments. Moreover, an envelope

FG for F1 satisfies

E[F qG] = E[supu∈U ,j∈[p],‖γ−γj
u‖16C

√
sτn

|vuj − Za−j(γ − γju)|q]
6 2q−1E[supu∈U ,j∈[p] |vuj |q] + 2q−1E[maxa∈V ‖Za‖q∞]{C√sτn}q
6 2q−1Lqn + 2q−1{MnC

√
sτn}q 6 2qLqn

since MnC
√
sτn 6 δnLn and δn 6 1 for n large.

Next we bound the entropy in F̄0. Note that for any ψuj(Wuj , θ, ηuj) ∈ F̄0, there is some δ ∈ [−C,C]
such that

ψuj(Wuj , θ, ηuj) = K̟(W ){τ − 1{Xa 6 Zaj δ +QXa(τ | X−a, ̟)}}vuj
and therefore F̄0 ⊂ W{T − φ(V)}L where φ(t) = 1{t 6 0}, V = ∪a∈V,j∈[p]Vaj with

Vaj := {Xa − Zaj δ −QXa(τ | X−a, ̟) : τ ∈ T , ̟ ∈ W , |δ| 6 C},

and L = ∪a∈V,j∈[p](Laj + {vūj}) where Laj = {(X,W ) 7→ vuj − vūj = Za−j(γ
j
u − γjū) : u ∈ U}. Note that

each Vaj is a VC subgraph class of functions with index 1+CdW as {QXa(τ | X−a, ̟) : (τ,̟) ∈ W×T }
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is a VC-subgraph with VC-dimension CdW for every a ∈ V . Since φ is monotone, φ(V) is also the union

of VC-dimension of order 1 + CdW .

Letting F1 = 1 as an envelope for W and T − φ(V). By Lemma 5, it follows that ‖γju − γju′‖ 6

Lγ{‖u−u′‖+‖̟−̟′‖1/2} for some Lγ satisfying log(Lγ) 6 C log(p|V |n) under Condition CI. Therefore,

|vuj − vūj | = |Za−j(γju − γjū)| 6 ‖Za‖∞√
p‖γju − γjū‖. For a choice of envelope Fa = M−1

n ‖Za‖∞ +

2 supu∈U |vuj | which satisfies ‖Fa‖P,q . Ln, we have

logN(ǫ‖Fa‖Q,2,Laj , ‖ · ‖Q,2) 6 logN( ǫ
Mn

‖ ‖Za‖∞‖Q,2,Laj , ‖ · ‖Q,2)
6 logN(ǫ/{Mn

√
pLγ},U , | · |) 6 Cdu log(MnpLγ/ǫ)

Since L = ∪a∈V,j∈[p](Lj + {vūj}), taking FL = maxa∈V Fa, we have that

logN(ǫ‖FLF1‖Q,2,F0, ‖ · ‖Q,2) 6 logN( ǫ4‖F1‖Q,2,W , ‖ · ‖Q,2) + logN( ǫ4‖F1‖Q,2, T − φ(V), ‖ · ‖Q,2)
+ log

∑
a∈V,j∈[p]N( ǫ2‖Fa‖Q,2,Laj , ‖ · ‖Q,2)

6 log(p|V |) + 1 + C′{dW + du} log(4eMn|V |pLγ/ǫ)

where the last line follows from the previous bounds.

Next we verify the growth conditions in Assumption 2 with the proposed F1 and Kn . CLn. We

take sn(U ,p) = (1 + dW )s and an = max{n, p, |V |}. Recall that B̄1n 6 C, B̄2n 6 C, jn > cµW .

Thus, we have
√
n(τn/jn)

2 .
√
n s log(p|V |n)
n(1∧f2

U
)µ3

W
6 δn under s2 log2(p|V |n) 6 n(1 ∧ f4

U)µ
6
W . Moreover,

(τn/jn)
α/2
√
sn(U ,p) log(an) . 4

√
(1+dW )3s3 log3(p|V |n)

n(1∧f2

U
)µ3

W
. δn under dW fixed and s3 log3(p|V |n) 6 δ4nn(1 ∧

f2

U)µ
3
W and sn(U ,p)n

1
q− 1

2Kn log(an) logn . (1+dW )sn
1
q− 1

2Mn log(p|V |n) log n 6 δn under our conditions.

Finally, the conditions of Corollary 4 hold with ρn = (1 + dW ) since the score is the product of VC-

subgraph classes of function with VC index bounded by C(1 + dW ). �

Proof of Theorem 4. We will invoke Lemma 7 with β̄u as the estimand and rui = X−a(βu− β̄u), therefore
E[(τ − 1{Xa 6 X−aβ̄+ ru})X−a] = 0. To invoke the lemma we verify that the events Ω1, Ω2, Ω3 and Ω4

hold with probability 1− o(1)

Ω1 := {λu > c|Suj |/{En[Kw(W )X2
j ]}1/2, for all u ∈ U , j ∈ V },

Ω2 := {R̂u(β̄u) 6 R̄uγ : u ∈ U}
Ω3 :=

{
supu∈U ,1/√n6‖δ‖1,̟6

√
n |En[gu(δ,X,W )− E[gu(δ,X,W ) | X−a,W ]]|/‖δ‖1,̟ 6 t3

}

Ω4 := {Ku{En[Kw(W )X2
j ]}1/2 > |En[huj(X−a,W )]|, for all u ∈ U , j ∈ V \ {a}}

where huj(X−a,W ) := E[K̟(W ){τ − FXa|X−a,W (X−aβ̄u + ru)}Xj | X−a,W ].

By Lemma 8 with ξ = 1/n, by setting λu = cλ0 = c2(1 + 1/16)n−1/2
√
2 log(8|V |2{ne/dW}2dWn), we

have P(Ω1) = 1−o(1). By Lemma 2, setting Ruγ = Cs(1+dW ) log(|V |n)/n we have P(Ω2) = 1−o(1) for
some γ = o(1). By Lemma 10 we have P(Ω3) = 1 − o(1) by setting t3 := C

√
(1 + dW ) log (|V |nMn/γ).

Finally, by Lemma 11 with Ku = C
√

(1+dW ) log(|V |n)
n we have P(Ω4) = 1− o(1)
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It follows that with probability 1−o(1) that ‖βu‖1,̟ 6 ‖βu‖ 6
√
sC 1

λu(1−1/c) R̄uγ 6
√
n for all u ∈ U ,

and (F.44) holds for all δ ∈ Au := ∆̟,2c ∪ {v : ‖v‖1,̟ 6 2cR̄uγ/λu}, qAu/4 > (
√
f̄ + 1)‖ru‖n,̟ +

[λu + t3 +Ku]
3c

√
s

κu,2c
and qAu > {2c

(
1 + t3+Ku

λu

)
R̄uγ}1/2. Then

By Lemma 7, we have uniformly over all u = (a, τ,̟) ∈ U := V × T ×W

‖
√
fuX−a(β̂u − βu)‖n,̟ 6 C

√
(1 + dW ) log(n|V |)

n

√
s

κu,2c
and ‖β̂u − βu‖1,̟ 6 C

√
(1 + dW ) log(n|V |)

n

s

κu,2c

where κu,2c is bounded away from zero with probability 1 − o(1) for n sufficiently large. Consider the

thresholded estimators β̂µu for µ = {(1 + dW ) log(n|V |)/n}1/2. By Lemma 16 we have ‖β̂µu‖0 6 Cs and

the same rates of convergence as β̂u. Therefore, by refitting over the support of β̂µu we have by Lemma

14, the estimator β̃u has the same rate of convergence where we have that Q̂u . Cs(1+dW ) log(|V |n)/n.

Next we will invoke Lemma 7 for the new penalty choice and penalty loadings. (We note that minor

modifications cover the new penalty loadings.)

Ω1 := {λu > c|Suj |/{En[Kw(W )ǫ2uX
2
j ]}1/2, for all u ∈ U , j ∈ V },

Ω2 := {R̂u(β̄u) 6 R̄uγ : u ∈ U}
Ω3 :=

{
supu∈U ,1/√n6‖δ‖1,̟6

√
n |En[gu(δ,X,W )− E[gu(δ,X,W ) | X−a,W ]]|/{θu‖δ‖1,̟} 6 t3

}

Ω4 := {Kuθu{En[Kw(W )X2
j ]}1/2 > |En[huj(X−a,W )]|, for all u ∈ U , j ∈ V \ {a}}

Ω5 := {θu > maxj∈V {En[K̟(W )X2
j ]/En[K̟(W )ǫ2uX

2
j ]}1/2}

where event Ω5 simply makes the relevant norms equivalent, ‖ · ‖1,u 6 ‖ · ‖1,̟ 6 θu‖ · ‖1,u. Note that we

can always take θu 6 1/{τ(1− τ)} 6 C since T is a fixed compact set.

Next we show that the bootstrap approximation of the score provides a valid choice of penalty param-

eter. Let ǫ̂u := 1{Xa 6 X−aβ̃u} − τ . For notational convenience for u ∈ U , j ∈ V \ {a} define

ψ̂uj,i :=
K̟(Wi)ǫ̂uiXij

En[K̟(W )ǫ̂2aτ̟X
2
j ]

1/2
, ψ̄uj,i =

K̟(Wi)ǫuiXij

E[K̟(W )ǫ2aτ̟X
2
j ]

1/2
, ψuj,i =

K̟(Wi)ǫuiXij

En[K̟(W )ǫ2aτ̟X
2
j ]

1/2

We will consider the following processes:

Ĝuj =
1√
n

n∑

i=1

ξiψ̂uj,i Guj =
1√
n

n∑

i=1

ξiψ̄uj,i S̄uj =
1√
n

n∑

i=1

ψ̄uj,i Suj =
1√
n

n∑

i=1

ψuj,i

and N is a tight zero-mean Gaussian process with covariance operator given by E[ψ̄ujψ̄u′j′ ]. Their supre-

mum are denoted by ZS := supu∈U ,j∈V \{a} |Suj |, Z̄S := supu∈U ,j∈V \{a} |S̄uj |, Z̄∗
G := supu∈U ,j∈V \{a} |Guj |,

Ẑ∗
G := supu∈U ,j∈V \{a} |Ĝuj |, and ZN := supu∈U ,j∈V \{a} |Nuj |.

The penalty choice should majorate ZS and we simulate via Ẑ∗
G. We have that

|P (ZS 6 t)− P (Ẑ∗
G 6 t)| 6 |P (ZS 6 t)− P (Z̄S 6 t)|+ |P (Z̄S 6 t)− P (ZN 6 t)|

+|P (ZN 6 t)− P (Z̄∗
G 6 t)|+ |P (Z̄∗

G 6 t)− P (Ẑ∗
G 6 t)|

We proceed to bound each term. We have that

|ZS − Z̄S | 6 Z̄S sup
u∈U ,j∈V \{a}

∣∣∣∣∣
E[K̟(W )ε2uX

2
j ]

1/2

En[K̟(W )ε2uX
2
j ]

1/2
− 1

∣∣∣∣∣

6 Z̄S sup
u∈U ,j∈V \{a}

∣∣∣∣∣
(En − E)[K̟(W )ε2uX

2
j ]

En[K̟(W )ε2uX
2
j ]

1/2{En[K̟(W )ε2uX
2
j ]

1/2 + E[K̟(W )ε2uX
2
j ]

1/2}

∣∣∣∣∣
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Therefore, since {1{Xa 6 X−aβu} : u ∈ U} is a VC-subgraph of VC dimension 1 + dW , and W is a VC

class of sets of dimension dW , we apply Lemma 18 with envelope F = ‖X‖2∞ and σ2 6 maxj∈V E[X4
j ] 6 C

to obtain with probability 1− o(1)

sup
u∈U ,j∈V \{a}

|(En − E)[K̟(W )ε2uX
2
j ]| . δ1n :=

√
(1 + dW ) log(|V |n)

n
+
M2
n(1 + dW ) log(|V |n)

n

where δ1n = o(µ2
W) under Condition P. Note that this implies that the denominator above is bounded

away from zero by cµW . Therefore,

|ZS − Z̄S | .P Z̄Sδ1n/µW .

By Theorem 2.1 in [27], since E[ψ̄4
uj] 6 C, there is a version of ZN such that

|Z̄S − ZN | .P δ2n :=

(
Mn(1 + dW ) log(n|V |)

n1/2
+
M

1/3
n ((1 + dW ) log(n|V |))2/3

n1/4

)

and there is also a version of

|ZN − Z̄∗
G| .P

(
Mn(1 + dW ) log(n|V |)

n1/2
+
M

1/3
n ((1 + dW ) log(n|V |))2/3

n1/4

)

Finally, we have that

|Z̄∗
G − Ẑ∗

G| 6 sup
u∈U ,j

∣∣∣∣∣
1√
n

n∑

i=1

ξi(ψ̂uj,i − ψ̄uj,i)

∣∣∣∣∣

where conditional on (Xi,Wi), i = 1, . . . , n, 1√
n

∑n
i=1 ξi(ψ̂uj,i − ψ̄uj,i) is a zero-mean Gaussian with

variance En[(ψ̂uj,i − ψ̄uj,i)
2] 6 δ̄n. Note that ǫ̂u = 1{Xa 6 X−aβ̃u} − τ where ‖β̃u‖0 6 Cs. Therefore,

we have {1{Xa 6 X−aβ̃u} : u ∈ U} ⊂ {1{Xa 6 X−aβ} : ‖β‖0 6 Cs} which is the union of
(|V |
Cs

)
VC

subgraph classes of functions with VC dimension C′s. Therefore,

sup
u∈U ,j∈V \{a}

∣∣∣∣∣
1√
n

n∑

i=1

ξi(ψ̂uj,i − ψ̄uj,i)

∣∣∣∣∣ .P δ̄n
√
s(1 + dW ) log(|V |n)

.P δ3n := {s log(|V |n)/n}1/4
√
s(1 + dW ) log(|V |n)

where δ̄n . {s log(|V |n)/n}1/4 by En[(ψ̂uj,i − ψ̄uj,i)
2]1/2 6 |En[(ψ̂uj,i − ψ̄uj,i)

2 − E[(ψ̂uj,i − ψ̄uj,i)
2]]1/2 +

E[(ψ̂uj,i − ψ̄uj,i)
2]1/2 . {s log(|V |n)/n}1/4. The rest of the proof follows similarly to Corollary 2.2

in [12] since under Condition P that rn := δ1n + δ2n + δ3n = o({E[ZN ]}−1)) where E[ZN ] . {(1 +

dW ) log(|V |n)}−1/2). Then we have supt |P(ZS 6 t)− P(Ẑ∗
G 6 t)| = oP (1) which in turn implies that

P(Ω1) = P(ZS 6 ĉ∗G(α))

> P(Ẑ∗
G 6 ĉ∗G(α))− |P(ZS 6 ĉ∗G(α)) − P(Ẑ∗

G 6 ĉ∗G(α))|
> 1− α+ oP (1)

Note that the occurrence of the events Ω2, Ω3 and Ω4 follows by similar arguments. The result follows

by Lemma 7, thresholding and applying Lemma 16 and Lemma 14 similarly to before.

�
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Appendix E. Technical Lemmas for Conditional Independence Quantile Graph Model

Let u = (a, τ,̟) ∈ U := V × T ×W , and Tu = support(βu) where |Tu| 6 s for all u ∈ U .

Define the pseudo-norms

‖v‖2n,̟ :=
1

n

n∑

i=1

K̟(Wi)(vi)
2, ‖δ‖2,̟ :=





p∑

j=1

σ̂2
a̟j |δj |2





1/2

, and ‖δ‖1,̟ :=

p∑

j=1

σ̂a̟j |δj |,

where σ̂2
a̟j = En[{K̟(W )Zaj }2]. These pseudo-norms induce the following restricted eigenvalue as

κu,c = min
‖δTc

u
‖1,̟6c‖δTu‖1,̟

‖√fuZaδ‖n,̟
‖δ‖1,̟/

√
s
.

The restricted eigenvalue κu,c is an counterpart of the restricted eigenvalue proposed in [22] for our

setting. We note that κu,c typically will vary with the events ̟ ∈ W .

Let u = (a, τ,̟) ∈ V × T ×W =: U . We will consider three key events in our analysis. Let

Ω1 := {λu > c|Suj |/σ̂uj , for all u ∈ U , j ∈ [p]} (E.33)

which occurs with probability at least 1 − γ by the choice the choice of λu. (In the case of conditional

independence we have Su := En[K̟(W )(τ − 1{Xa 6 Zaβu + ru})Zaj ], σ̂2
uj = En[K̟(W )(Zaj )

2] and

λu = λV T W
√
τ(1 − τ). In the case of predictive we have Su := En[K̟(W )(τ − 1{Xa 6 X ′

−aβu})X−a],

σ̂2
uj = En[K̟(W )X2

j ] and λu = λ0.)

To define the next event consider

R̂u(β) = En[K̟(W ){ρu(Xa−Zaβ)−ρu(Xa−Zaβu−ru)− (τ −1{Xa 6 Zaβu+ru})(Zaβ−Zaβu−ru)}]

in the case of the conditional independence. (In the case of predictive quantile graph models we replace

Za with X−a.) By convexity we have R̂u(β) > 0. The event

Ω2 := {R̂u(βu) 6 R̄uγ : u ∈ U} (E.34)

where R̄uγ are chosen so that Ω2 occurs with probability at least 1 − γ. Note that by Lemma 2, we

have EnE[R̂u(βu) | X−a,W ] 6 f̄‖ru‖2n,̟/2 and with probability at least 1 − γ, R̂u(βu) 6 R̄uγ :=

4max{f̄‖ru‖2n,̟, ‖ru‖n,̟C
√
log(n1+dW p/γ)/n} 6 C′s log(n1+dW p/γ)/n.

Define gu(δ,X,W ) = K̟(W ){ρτ (Xa − Za(βu + δ))− ρτ (Xa − Zaβu)} so that event Ω3 is defined as

Ω3 :=

{
sup

u∈U ,1/√n6‖δ‖1,̟6
√
n

|En[gu(δ,X,W )− E[gu(δ,X,W ) | X−a,W ]]|
‖δ‖1,̟

6 t3

}
(E.35)

where t3 is given in Lemma 3 so that Ω3 holds with probability at least 1− γ.

Lemma 1. Suppose that Ω1, Ω2 and Ω3 holds. Further assume 2 1+1/c
1−1/c‖βu‖1,̟ + 1

λu(1−1/c)R̄uγ 6
√
n

for all u ∈ U , and (F.44) holds for all δ ∈ Au := ∆̟,2c ∪ {v : ‖v‖1,̟ 6 2cR̄uγ/λu}, qAu/4 > (
√
f̄ +



44 BELLONI, CHEN, AND CHERNOZHUKOV

1)‖ru‖n,̟ + [λu + t3]
3c

√
s

κu,2c
and qAu > {2c

(
1 + t3

λu

)
R̄uγ}1/2. Then uniformly over all u = (a, τ,̟) ∈

U := V × T ×W we have

‖√fuZa(β̂u − βu)‖n,̟ 6

√
8c
(
1 + t3

λu

)
R̄uγ + (f̄1/2 + 1)‖ru‖n,̟ + 3cλu

√
s

κu,2c
+ t3

(1+c)
√

s
κu,2c

‖β̂u − βu‖1,̟ 6 (1 + 2c)
√
s‖√fuZaδu‖n,̟/κu,2c + 2c

λu
R̄uγ

Proof of Lemma 1. Let u = (a, τ,̟), δu = β̂u − βu. By convexity we have R̂u(β) > 0, and by definition

of β̂u we have

R̂u(β̂u)− R̂u(βu) + S′
uδu

= En[K̟(W )ρu(Xa − Zaβ̂u)]− En[K̟(W )ρu(Xa − Zaβu)]

6 λu‖βu‖1,̟ − λu‖β̂u‖1,̟
(E.36)

where Su is defined as in (E.33) so that under Ω1 we have λu > c|Suj |/σ̂uj .

Under Ω1 ∩ Ω2, and since R̂u(β) > 0, we have

−R̂u(βu)− λu

c ‖δu‖1,̟ 6 R̂u(βu + δu)− R̂u(βu) + En[K̟(W )(τ − 1{Xa 6 Zaβu + ru})Zaδu]
= En[K̟(W )ρu(Xa − Za(δu + βu))]− En[K̟(W )ρu(Xa − Zaβu)]

6 λu‖βu‖1,̟ − λu‖δu + βu‖1,̟
(E.37)

so that for c = (c+ 1)/(c− 1)

‖δT c
u
‖1,̟ 6 c‖δTu‖1,̟ +

c

λu(c− 1)
R̂u(βu).

To establish that δu ∈ Au := ∆̟,2c ∪ {v : ‖v‖1,̟ 6 2cR̄uγ/λu} we consider two cases. If ‖δu,T c
u
‖1,̟ >

2c‖δu,Tu‖1,̟ we have

1

2
‖δu,T c

u
‖1,̟ 6

c

λu(c− 1)
R̂u(βu)

and consequentially

‖δu‖1,̟ 6 {1 + 1/(2c)}‖δu,T c
u
‖1,̟ 6

2c

λu
R̂u(βu).

Otherwise ‖δu,T c
u
‖1,̟ 6 2c‖δu,Tu‖1,̟, and we have

‖δu‖1,̟ 6 (1 + 2c)‖δu,Tu‖1,̟ 6 (1 + 2c)
√
s‖
√
fuZ

aδu‖n,̟/κu,2c.

Thus we have δu ∈ Au under Ω1 ∩ Ω2.

Furthermore, (E.37) also implies that

‖δu + βu‖1,̟ 6 ‖βu‖1,̟ + 1
c‖δu‖1,̟ + R̂u(βu)/λu

6 (1 + 1/c)‖βu‖1,̟ + (1/c)‖δu + βu‖1,̟ + R̂u(βu)/λu.

which in turn establishes

‖δu‖1,̟ 6 2
1 + 1/c

1− 1/c
‖βu‖1,̟ +

1

λu(1− 1/c)
R̂u(βu) 6 2

1 + 1/c

1− 1/c
‖βu‖1,̟ +

1

λu(1− 1/c)
R̄uγ

where the last inequality holds under Ω2. Thus, ‖δu‖1,̟ 6
√
n under our condition. In turn, δu is

considered in Ω3.



QUANTILE GRAPHICAL MODELS 45

Under Ω1 ∩ Ω2 ∩ Ω3 we have

EnE[K̟(W ){ρu(Xa − Za(βu + δu))− ρu(Xa − Zaβu)} | X−a,W ]

6 En[K̟(W ){ρu(Xa − Za(βu + δu))− ρu(Xa − Zaβu)}] + ‖δu‖1,̟t3
6 λu‖δu‖1,̟ + ‖δu‖1,̟t3
6 2c

(
1 + 1

λu
t3
)
R̄uγ + ‖√fuZaδu‖n,̟ [λu + t3]

3c
√

s
κu,2c

(E.38)

where we used the bound ‖δu‖1,̟ 6 (1 + 2c)
√
s‖√fuZaδu‖n,̟/κu,2c + 2c

λu
R̄uγ under Ω1 ∩ Ω2.

Using Lemma 12, since (F.44) holds, we have for each u ∈ U

EnE[K̟(W ){ρu(Xa − Za(βu + δu))− ρu(Xa − Zaβu)} | X−a,W ]

> −(
√
f̄ + 1)‖ru‖n,̟‖

√
fuZ

aδ‖n,̟ −maxj∈[p] |En[E[Suj | X−a,W ]/σ̂uj ]| ‖δu‖1,̟
+

‖√fuZaδu‖2
n,̟

4 ∧ q̄Au‖
√
fuZ

aδu‖n,̟
where we have E[Si,uj | Xi,−a,Wi] = 0 since τ = P(Xa 6 Zaβu + ru | X−a,W ) by definition of the

conditional quantile.

Note that for positive numbers (t2/4) ∧ qt 6 A + Bt implies t2/4 6 A + Bt provided q/2 > B

and 2q2 > A. (Indeed, otherwise (t2/4) > qt so that t > 4q which in turn implies that 2q2 + qt/2 6

(t2/4)∧qt 6 A+Bt.) Since qAu/4 > (
√
f̄+1)‖ru‖n,̟+

[
{λu + t3} 3c

√
s

κu,2c

]
and qAu > {2c

(
1 + t3

λu

)
R̄uγ}1/2,

the minimum on the right hand side is achieved by the quadratic part for all u ∈ U . Therefore we have

uniformly over u ∈ U
‖√fuZaδu‖2n,̟

4
6 2c

(
1 +

t3
λu

)
R̄uγ + ‖

√
fuZ

aδu‖n,̟

[
(

√
f̄ + 1)‖ru‖n,̟ + {λu + t3}3c

√
s

κu,2c

]

which implies that

‖√fuZaδu‖n,̟ 6

√
8c
(
1 + t3

λu

)
R̄uγ +

[
(
√
f̄ + 1)‖ru‖n,̟ + {λu + t3} 3c

√
s

κu,2c

]
.

�

Lemma 2 (CIQGM, Event Ω2). Under Condition CI we have En[E[R̂u(βu) | X−a, ̟]] 6 f̄‖rui‖2n,̟/2,
R̂u(βu) > 0 and

P(sup
u∈U

R̂u(βu) > C{1 + f̄}{n−1s(1 + dW ) log(p|V |n)}) = 1− o(1).

Proof of Lemma 2. We have that R̂u(βu) > 0 by convexity of ρτ . Let ǫui = Xai − Zai βu − rui where

‖βu‖0 6 s and rui = QXa(τ | X−a, ̟)− Zaβu.

By Knight’s identity (F.45), R̂u(βu) = −En[K̟(W )ru
∫ 1

0
1{ǫu 6 −tru} − 1{ǫu 6 0} dt] > 0.

EnE[R̂u(βu) | X−a, ̟] = En[K̟(W )ru
∫ 1

0
FXa|X−a,̟(Z

aβu + (1 − t)ru)− FXa|X−a,̟(Z
aβu + ru) dt]

6 En[K̟(W )ru
∫ 1

0 f̄ trudt] 6 f̄‖ru‖2n,̟/2. 6 Cf̄s/n.

Since Condition CI assumes E[‖ru‖2n,̟] 6 P(̟)s/n, by Markov’s inequality we have P (R̂u(β̄u) 6

Cf̄s/n) > 1/2.

Define zui := −
∫ 1

0 1{ǫui 6 −trui} − 1{ǫui 6 0} dt, so that R̂u(βu) = En[K̟(W )ruzu] where |zui| 6 1.

We have P (En[K̟(W )ruzu] 6 2Cf̄s/n) > 1/2 so that by Lemma 2.3.7 in [62] (note that the Lemma
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does not require zero mean stochastic processes), for t > 2Cf̄s/n we have

1

2
P(sup

u∈U
|En[K̟(W )ruzu]| > t) 6 2P(sup

u∈U
|En[K̟(W )ruzuǫ]| > t/4)

Consider the class of functions F = {−K̟(W )ru(1{ǫui 6 −Birui} − 1{ǫui 6 0}) : u ∈ U} where

Bi ∼ Uniform(0, 1) independent of (Xi,Wi)
n
i=1. It follows that K̟(W )ruzu = E[−K̟(W )ru(1{ǫui 6

−Birui} − 1{ǫui 6 0}) | Xi,Wi] where the expectation is taken over Bi only. Thus we will bound the

entropy of F = {E[f | X,W ] : f ∈ F} via Lemma 24. Note that R := {ru = QXa(τ | X−a, ̟) − Zaβu :

u ∈ U} where G := {Zaβu : u ∈ U} is contained in the union of at most |V |
(
p
s

)
VC-classes of dimension

Cs and H := {QXa(τ | X−a, ̟) : u ∈ U}} is the union of |V | VC-class of functions of dimension (1+dW )

by Condition CI. Finally note that E := {ǫui : u ∈ U} ⊂ {Xai : a ∈ V } − G −R.

Therefore, we have

supQ logN(ǫ‖F̄‖Q,2,F , ‖ · ‖Q,2) 6 supQ logN((ǫ/4)2‖F‖Q,2,F , ‖ · ‖Q,2)
6 supQ logN(18 (ǫ

2/16),W , ‖ · ‖Q,2)
+ supQ logN(18 (ǫ

2/16)‖F‖Q,2,R, ‖ · ‖Q,2)
+ supQ logN(18 (ǫ

2/16), 1{E + {B}R 6 0} − 1{E 6 0}, ‖ · ‖Q,2)

We will apply Lemma 18 with envelope F̄ = supu∈U |K̟(W )ru|, so that E[maxi6n F̄
2
i ] 6 C, and

supu∈U E[K̟(W )r2u] 6 Cs/n =: σ2 by Condition CI. Thus, we have that with probability 1− o(1)

sup
u∈U

|En[K̟(W )ruzuǫ]| .
√
s(1 + dW ) log(p|V |n)

n

√
s

n
+
s(1 + dW ) log(p|V |n)

n
.
s(1 + dW ) log(p|V |n)

n

under Mn

√
s2/n 6 C. �

Lemma 3 (CIQGM, Event Ω3). For u = (a, τ,̟) ∈ U := V ×T ×W, define the function gu(δ,X,W ) =

K̟(W ){ρτ (Xa − Za(βu + δ))− ρτ (Xa − Zaβu)}, and the event

Ω3 :=

{
sup

u∈U ,1/√n6‖δ‖1,̟6
√
n

|En[gu(δ,X,W )− E[gu(δ,X,W ) | X−a,W ]]|
‖δ‖1,̟

< t3

}
.

Then, under Condition CI we have P (Ω3) > 1− γ for any

t3
√
n > 12 + 16

√
2 log(64|V |p2n3+2dW log(n)L1+dW

WT max
a∈V,j∈[p]

E[|Zaj |1+dW /ρ]/γ)

Proof. We have that Ωc3 := {maxa∈V Aa > t3
√
n} for

Aa := sup
(τ,̟)∈T ×W,N6‖δ‖1,̟6N̄

√
n

∣∣∣∣
En[gu(δ,X,W )− E[gu(δ,X,W ) | X−a,W ]]

‖δ‖1,̟

∣∣∣∣ .
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Therefore, for N = 1/
√
n and N̄ =

√
n we have by Lemma 13

P (Ωc3) = P (maxa∈V Aa > t3
√
n)

6 |V |maxa∈V P (Aa > t3
√
n)

= |V |maxa∈V EX−a,W {P (Aa > t3
√
n | X−a,W )}

6 |V |maxa∈V EX−a,W

{
8p|N̂ | · |Ŵ| · |T̂ | exp(−(t3

√
n/4− 3)2/32)

}

6 exp(−(t3
√
n/4− 3)2/32)|V |64pn1+dW log(n)LfEX−a

{
maxi6n ‖Za

i ‖
1+dW /ρ
∞

N1+dW

}

6 γ

by the choice of t3. �

Lemma 4 (CIQGM, Uniform Control of Approximation Error in Auxiliary Equation). Under Condition

CI, with probability 1− o(1) uniformly over u ∈ U and j ∈ [p] we have

En[K̟(W )f2
u{Za−j(γju − γ̄ju)}2] . f2

u
P(̟) s log(p|V |n)

n

Proof. Define the class of functions G = ∪a∈V,j∈[p]Gaj with Gaj := {Za−j(γju− γ̄ju) : τ ∈ T , ̟ ∈ W}. Under
Condition CI we have supu∈U ‖γ̄ju‖0 6 Cs, supu∈U ,j∈[p] ‖γ̄ju − γju‖ ∨ ‖γ̄j

u−γj
u‖1√
s

6 {n−1s log(p|V |n)}1/2.
Without loss of generality we can take ‖γ̄ju − γ̄ju′‖ 6 ‖γju − γju′‖. By Lemma 5, we have ‖γju − γju′‖ 6

Lγ(‖u− u′‖+ ‖u− u′‖1/2) for each a ∈ V , j ∈ [p]. Therefore,

‖{Za−j(γ̄ju − γju)}2 − {Za−j(γ̄ju′ − γju′)}2‖Q,2 6 ‖Za−j(γ̄ju − γ̄ju′ + γju′ − γju)Z
a
−j(γ̄

j
u − γju + γ̄ju′ − γju′)‖Q,2

6 ‖‖Za−j‖2∞‖Q,2‖γ̄ju − γ̄ju′ + γju′ − γju‖1‖γ̄ju − γju + γ̄ju′ − γju′‖1
6 4‖‖Za−j‖2∞‖Q,2 supu∈U ‖γ̄ju − γju‖1

√
2p‖γju − γju′‖

6 ‖‖Za−j‖2∞‖Q,2L′
γ(‖u− u′‖+ ‖u− u′‖1/2).

where L′
γ = 4{n−1s2 log(p|V |n)}1/2√2pLγ . Thus, for the envelopeG = maxa∈V ‖Za‖2∞ supu∈U ‖γ̄ju−γju‖21

that

logN(ǫ‖G‖Q,2,G, ‖ · ‖Q,2) 6 log(|V |p) + logN(ǫ
supu∈U ‖γ̄j

u−γj
u‖2

1

L′
γ

,U , dU ) 6 C(1 + dW )2 log(L′
γn/ǫ).

Next define the functions W0 = {K̟(W )f2
u : u ∈ U}, W1 = {P(̟)−1 : ̟ ∈ W} and W2 = {K̟(W ) :

̟ ∈ W}. We have that W2 is VC class with VC index CdW and W1 is bounded by µ−1
W and covering

number bounded by (CdW /{µWǫ})1+dW . Finally, since |K̟(W )f2
u−K̟′(W )f2

u′ | 6 K̟(W )K̟′(W )|f2
u−

f2
u′ |+ f̄2|K̟(W ) −K̟′(W )| 6 2f̄Lf‖u − u′‖ + f̄2|K̟(W ) −K̟′(W )|, we have N(ǫ,U , | · |) 6 (C(1 +

dW )/ǫ)1+dW . Therefore, using standard bounds we have

logN(ǫ‖µ−1
W Gf̄‖Q,2,W0W1W2G, ‖ · ‖Q,2) . (1 + dW )2 log(L′

γLfn/ǫ)

By Theorem 5.1 in [25] we have

supu∈U ,j∈[p] |(En − E)[f2
u{Za−j(γju − γ̄ju)}2/P(̟)]|

.

√
(1+dW )2 log(p|V |n) supu∈U E[K̟(W )f4

u{Za
−j(γ

j
u−γ̄j

u)}4]/P(̟)2

n +
(1+dW )2M2

nµ
−1

W supu∈U ‖γ̄j
u−γj

u‖2
1 log(p|V |n)

n

.
√

(1+dW )2 log(p|V |n)
µWn

s log(p|V |n)
n +

(1+dW )2δ2nf
2

U
µWs log(p|V |n)
n
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where we used that E[f4
u{Zaξ}4 | ̟] 6 f̄4E[{Zaξ}4 | ̟] 6 C‖ξ‖4, ‖γ̄ju − γju‖ + s−1/2‖γ̄ju − γju‖1 6

{n−1s log(p|V |n)}1/2, (1 + dW ) log(p|V |n) 6 δnnf
4

Uµ
3
W and Mns log

1/2(p|V |n) 6 δnn
1/2µWfU by Con-

dition CI. Furthermore, by Condition CI, the result follows from E[f2
u{Za−j(γ̄ju − γju)}2 | ̟] 6 Cf2

u
‖γ̄ju −

γju‖2 6 Cf2

u
n−1s log(p|V |n). �

Lemma 5. Under Condition CI, for u = (a, τ,̟) ∈ U and u′ = (a, τ ′, ̟′) ∈ U we have that

‖γju − γju′‖ 6
C′

f2
u′P(̟

′)
{E[{K̟′(W )−K̟(W )}2]1/2 + E[K̟(W )K̟′(W ){f2

u′ − f2
u}2]1/2}.

In particular, we have ‖γju − γju′‖ 6 Lγ{‖̟ −̟′‖1/2 + ‖u − u′‖} for Lγ = C′{L′ + L}/{f2UµW} under

E[|K̟(W )−K̟′(W )|] 6 L‖̟−̟′‖, K̟(W )K̟′(W )|fu′ − fu| 6 L′‖u′ − u‖, and fu 6 f̄ .

Proof. Let u = (a, τ,̟) and u′ = (a, τ ′, ̟′). By Condition CI we have

‖γju − γju′‖2 6 CE[{Za−j(γju − γju′)}2 | ̟] 6 {C/P(̟)}E[K̟′(W ){Za−j(γju − γju′)}2]

To bound the last term of the right hand side above, by definition of f
u′ and using Cauchy-Schwarz’s

inequality we have

f
u′E[K̟′(W ){Za−j(γju − γju′)}2] 6 E[K̟′(W )fu′{Za−j(γju − γju′)}2]

6 {E[K̟′(W )f2
u′{Za−j(γju − γju′)}2] E[K̟′(W ){Za−j(γju − γju′)}2]}1/2

so that E[K̟′(W ){Za−j(γju − γju′)}2]1/2 6 {E[K̟′(W )f2
u′{Za−j(γju − γju′)}2]}1/2/fu′ . Therefore

‖γju − γju′‖2 6 {1/f
u′}2{C/P(̟)}E[K̟′(W )f2

u′{Za−j(γju − γju′)}2]. (E.39)

We proceed to bound the last term. The optimality of γju and γju′ yields

E[K̟(W )f2
uZ

a
−j(Z

a
j − Za−jγ

j
u)] = 0 and E[K̟′(W )f2

u′Za−j(Z
a
j − Za−jγ

j
u′)] = 0

Therefore, we have

E[K̟′(W )f2
u′{Za−j(γju − γju′)}Za−j] = −E[K̟′(W )f2

u′{Zaj − Za−jγ
j
u}Za−j]

= −E[{K̟′(W )f2
u′ −K̟(W )f2

u}{Zaj − Za−jγ
j
u}Za−j ]

(E.40)

Multiplying by (γju − γju′) both sides of (E.40), we have

E[K̟′(W )f2
u′{Za−j(γju − γju′)}2]

6 E[{K̟′(W )f2
u′ −K̟(W )f2

u}2]1/2{E[{Zaj − Za−jγ
j
u}2{Za−j(γju − γju′)}2]}1/2

6 E[{K̟′(W )f2
u′ −K̟(W )f2

u}2]1/2C‖γju − γju′‖

by the fourth moment assumption in Condition CI. By Condition CI, fu, fu′ 6 f̄ , and it follows that

|K̟(W )f2
u −K̟′(W )f2

u′ | 6 K̟(W )K̟′(W )|f2
u − f2

u′ |+ f̄2|K̟(W )−K̟′(W )| (E.41)

From (E.39) we obtain

‖γju − γju′‖ 6
C′

f2
u′
P(̟′)

{E[{K̟′(W )−K̟(W )}2]1/2 + E[K̟(W )K̟′(W ){f2
u′ − f2

u}2]1/2}.

�
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Lemma 6. Let U = V × T × W. Under Condition CI, and K̟(W )K̟′ |fu − fu′ | 6 Lf‖u − u′‖, for
m = 1, 2, we have

E

[
sup

u∈U ,‖θ‖06k,‖θ‖=1

|(En − E)[K̟(W )fmu (Zaθ)2]|
]
. Cδn sup

u∈U ,‖θ‖06k,‖θ‖=1

{E[K̟(W )fmu (Zaθ)2]}1/2

where δn = Mn

√
k
√
{1 + dW }C log(np|V |) log(1 + k)

√
logn/

√
n. Moreover, under Condition CI, δn =

o(µW ).

Proof. By symmetrization we have

E[ sup
u∈U ,‖θ‖06k,‖θ‖=1

|(En − E)[K̟(W )fmu (Zaθ)2]|] 6 2E[ sup
u∈U ,‖θ‖06k,‖θ‖=1

|En[ǫK̟(W )fmu (Zaθ)2]|]

where ǫi are i.i.d. Radamacher random variables. Further, conditional on {(Wi, Xi), i = 1, . . . , n},
{K̟(Wi) : i = 1, . . . , n,̟ ∈ W} induces at most ndW different sequences by Corollary 2.6.3 in [61].

Moreover, |K̟f
m
u −K̟′fmu′ | 6 K̟K̟′ |fu−fu′ |{1+2f̄}+f̄m|K̟−K̟′| form = 1, 2 where u and u′ have

the same a ∈ V . We can take a cover Û of V ×T ×W such that ‖u−u′‖ 6 {Lf(1+2f̄)nmaxi6n ‖Zai ‖2∞k}−1

so that∣∣∣supu∈U ,‖θ‖06k,‖θ‖=1 |En[ǫK̟(W )fmu (Zaθ)2]| − supu∈Û,‖θ‖06k,‖θ‖=1 |En[ǫK̟(W )fmu (Zaθ)2]|
∣∣∣

6 En[K̟(W )K̟′(W )n−1]

so that

E

[
sup

u∈U ,‖θ‖06k,‖θ‖=1

|En[ǫK̟(W )fmu (Zaθ)2]|
]
6 EW,XEǫ

[
sup

u∈Û ,‖θ‖06k,‖θ‖=1

|En[ǫK̟(W )fmu (Zaθ)2]|
]
+

1

n

and |Û | 6 |V |ndW {Lf (1 + 2f̄)nkmaxi6n ‖Zai ‖2∞}(1+dW ).

By Lemma 17 with K = K(W,X) = (1 + f̄2) supa∈V maxi6n ‖Za‖∞ and

δn(W,X) := C̄K(W,X)
√
k

(√
log |Û |+√

1 + log p+ log k
√
log(p ∨ n)√logn

)
/
√
n

. K(W,X)
√
k
√
{1 + dW }C log(np|V |K(W,X)) log(1 + k)

√
logn/

√
n

so that conditional on (W,X) we have

Eǫ

[
sup

u∈Û,‖θ‖06k,‖θ‖=1

|En[ǫK̟(W )fmu (Zaθ)2]|
]
. δn(W,X) sup

u∈Û,‖θ‖06k,‖θ‖=1

√
En[K̟(W )fmu (Zaθ)2]

Therefore,

E

[
sup

u∈U ,‖θ‖06k,‖θ‖=1

|En[ǫK̟(W )fmu (Zaθ)2]|
]

6 EW,X

[
δn(W,X) sup

u∈Û,‖θ‖06k,‖θ‖=1

√
En[K̟(W )fmu (Zaθ)2]

]

6 EW,X [δ2n(W,X)] + EW,X [δ2n(W,X)]1/2 sup
u∈Û ,‖θ‖06k,‖θ‖=1

E[K̟(W )fmu (Zaθ)2]1/2

Note that for a random variable A > 1, we have that E[A2
√
log(CA)] 6 E[A2]

√
log(C)+E[A2

√
log(A)] 6

E[A2]
√
log(C) + E[A2+1/4]. Therefore, under Condition CI, since q > 2 + 1/4, we have

EW,X [δ2n(W,X)]1/2 .Mn

√
k
√
{1 + dW }C log(np|V |) log(1 + k)

√
logn/

√
n
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�

E.1. Results for Predictive Quantile Graph Models. In the analysis of the PQGM we also use the

following event for some sequence (Ku)u∈U

Ω4 = {Ku{En[Kw(W )X2
j ]}1/2 > En[E[K̟(W )(τ − 1{Xa 6 X−aβu + ru})X−a | Xj,W ]],

for all u ∈ U , j ∈ V \ {a}}.
(E.42)

Lemma 7 (Rate for PQGM). Suppose that Ω1, Ω2, Ω3 and Ω4 hold. Further assume 2 1+1/c
1−1/c‖βu‖1,̟ +

1
λu(1−1/c)R̄uγ 6

√
n for all u ∈ U , and (F.44) holds for all δ ∈ Au := ∆̟,2c ∪ {v : ‖v‖1,̟ 6 2cR̄uγ/λu},

qAu/4 > (
√
f̄ + 1)‖ru‖n,̟ + [λu + t3 +Ku]

3c
√
s

κu,2c
and qAu > {2c

(
1 + t3+Ku

λu

)
R̄uγ}1/2. Then uniformly

over all u = (a, τ,̟) ∈ U := V × T ×W the ‖ · ‖1,̟-penalized estimator β̂u satisfies

‖√fuX−a(β̂u − βu)‖n,̟ 6

√
8c
(
1 + t3

λu

)
R̄uγ + (f̄1/2 + 1)‖ru‖n,̟ + [λu + t3 +Ku]

3c
√

s
κu,2c

‖β̂u − βu‖1,̟ 6 (1 + 2c)
√
s‖√fuX−aδu‖n,̟/κu,2c +

2c
λu
R̄uγ

Proof of Lemma 7. The proof proceeds similarly to the proof of Lemma 1 by defining

R̂u(β) = En[K̟(W ){ρu(Xa−X−aβ)−ρu(Xa−X−aβu−ru)−(τ−1{Xa 6 X−aβu+ru})(X−aβ−X−aβu−ru)}].

The same argument yields δu = β̂u − βu ∈ Au := ∆̟,2c ∪ {v : ‖v‖1,̟ 6 2cR̄uγ/λu} under Ω1 ∩ Ω2.

(Similarly we also have ‖δu‖1,̟ 6
√
n.) Furthermore, under Ω1 ∩ Ω2 ∩ Ω3 we also have (E.38), in

particular

EnE[K̟(W ){ρu(Xa −X−a(βu + δu))− ρu(Xa −X−aβu)} | X−a,W ] 6 λu‖δu‖1,̟ + t3‖δu‖1,̟

Since the conditions of Lemma 12 hold we have

EnE[K̟(W ){ρτ (Xa −X−a(βu + δu))− ρτ (Xa −X−aβu)} | X−a,W ]

> −(
√
f̄ + 1)‖ru‖n,̟‖

√
fuX−aδ‖n,̟ −Ku‖δu‖1,̟

+
‖√fuX−aδu‖2

n,̟

4 ∧ q̄Au‖
√
fuX−aδu‖n,̟

where Ku is given in Ω4 which accounts for the misspecification the conditional quantile condition.

Therefore, we have

‖√fuX−aδu‖2
n,̟

4 ∧ q̄Au‖
√
fuX−aδu‖n,̟ 6 (f̄1/2 + 1)‖ru‖n,̟‖

√
fuX−aδ‖n,̟ + {λu + t3 +Ku}‖δu‖1,̟

6 {(f̄1/2 + 1)‖ru‖n,̟ + 3c
√
s

κu,2c
(Ku + t3 + λu)}‖

√
fuX−aδu‖n,̟

+{λu + t3 +Ku} 2c
λu
R̄uγ

The result then follows with the same argument under the current assumptions that account for Ku. �

Lemma 8 (PQGM, Event Ω1). Under Condition P, we have

P

(
sup

u∈U ,j∈V

|En[K̟(W )(τ − 1{Xa 6 X ′
−aβu + ru})Xj]|

{En[K̟(W )X2
j ]}1/2

> t

)
6 2{ne/dW}2dW exp(−{t/[4(1 + δn)]}2)

where t > 4 supu∈U{Ē[K̟(W )(τ − 1{Xa 6 X ′
−aβu})2X2

j ]}1/2 and δn = o(1). In particular, the RHS is

less than ξ if t > 2(1 + 1/16)
√
2 log(8|V |2{ne/dW}2dW /ξ).
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Proof. We have that

P(λ0 6 sup
u∈U ,j∈V \{a}

|En[K̟(W )(τ − 1{Xa 6 X ′
−aβu})Xj]|/En[K̟(Wi)X

2
j ]

1/2)

6 P(λ0 6 (1 + δ) sup
u∈U ,j∈V \{a}

|En[K̟(W )(τ − 1{Xa 6 X ′
−aβu})Xj]|/E[K̟(W )X2

j ]
1/2)

+P( sup
u∈U ,j∈V

E[K̟(W )X2
j ]

1/2/En[K̟(W )X2
j ]

1/2 > (1 + δ))

Under Condition P, cµW 6 E[K̟(W )X2
j ] 6 C and W is a VC class of set with VC dimension dW .

Therefore, by Lemma 18 we have that with probability 1− o(1)

sup
u∈U ,j∈V

(En − E)[K̟(W )X2
j ] .

√
(1 + dW ) log(|V |Mn/σ)

n
+

(1 + dW )M2
n log(|V |Mn/σ)

n

for σ2 = maxj∈V,̟∈W E[K̟(W )X2
j ] 6 maxj∈V E[X2

j ] 6 C and envelope F = ‖X‖2∞ so that ‖F‖P,2 6

‖maxi6n Fi‖P,2 6M2
n. Thus for δn → 0, provided M2

n log(n|V |) = o(n1/2) and (1 + dW ) = o(nδ2nµ
2
W),

P

(
1

1 + δn
6

E[K̟(W )X2
j ]

1/2

En[K̟(W )X2
j ]

1/2
6 (1 + δn), for all u ∈ U , j ∈ V

)
= 1− o(1). (E.43)

Set σuj := E[K̟(W )X2
j ]

1/2 and let σ2 = supu∈U ,j∈V var(K̟(W )(τ − 1{Xa 6 X ′
−aβu})Xj/σuj) 6 1.

By symmetrization (adapting Lemma 2.3.7 to replace the “arbitrary” factor 2 with 1 + δn), for δ :=

1/2{1 + nσ2/t} < 1/2 we have

(∗) := P(supu∈U ,j∈V \{a} |
∑n

i=1K̟(Wi)(τ − 1{Xia 6 X ′
i,−aβu})Xij/σuj | > t)

6 2P(supu∈U ,j∈V \{a} |
∑n

i=1 ǫiK̟(Wi)(τ − 1{Xia 6 X ′
i,−aβu})Xij/σuj | > tδ)

6 2P

(
sup

u∈U ,j∈V \{a}

|∑n
i=1

ǫiK̟(Wi)(τ−1{Xia6X
′
i,−aβu})Xij |

En[K̟(W )X2
j ]

1/2 > tδ/(1 + δn)

)
+ o(1)

where the last inequality follows from (E.43).

Therefore, by the union bound and symmetry, and iterated expectations we have

(∗) 6 4|V |max
j∈V ]

EW,X [P

(
sup
u∈U

∑n
i=1 ǫiK̟(Wi)(τ − 1{Xia 6 X ′

i,−aβu})Xij

En[K̟(W )X2
j ]

1/2
> tδ/(1 + δn) |W,X

)
]

Next we use that {̟ ∈ W} is a VC class of sets with VC dimension bounded by dW and {1{Xa 6

X ′
−aβu} : (τ,̟) ∈ T ×W} is a VC class of sets with VC dimension bounded by 1+dW . By Corollary 2.6.3

in [61], we have that conditionally on (Wi, Xi)
n
i=1, the set of (binary) sequences {(K̟(Wi))i=1,...,n : ̟ ∈

W} has at most
∑dW−1

j=0

(
n
j

)
different values. Similarly, {(1{Xia 6 X ′

i,−aβu})i=1,...,n : u ∈ U} assumes at

most
∑dW
j=0

(
n
j

)
different values. Assuming that n > dW , we have

∑dW−1
j=0

(
n
j

)
6 {ne/(dW − 1)}dW−1 and

Pε

(
supu∈U

∑n
i=1

ǫiK̟(Wi)(τ−1{Xia6X
′
i,−aβu})Xij

En[K̟(W )X2
j ]

1/2 > tδ/(1 + δn) |W,X
)

6 |V |{ ne
dW−1}dW−1{ nedW }dW supu∈U Pε

(
supτ̃∈T

∑n
i=1

ǫiK̟(Wi)(τ̃−1{Xia6X
′
i,−aβu})Xij

En[K̟(W )X2
j ]

1/2 > tδ/(1 + δn) |W,X
)

6 2|V |{ne/dW}2dW supu∈U ,τ̃∈{τ,τ̄} Pε
(∑n

i=1
ǫiK̟(Wi)(τ̃−1{Xia6X

′
i,−aβu})Xij

En[K̟(W )X2
j ]

1/2 > tδ/(1 + δn) |W,X
)

6 2|V |{ne/dW}2dW exp(−{tδ/[1 + δn]}2)
where we used that the expression is linear in τ and so it is maximized at the extremes. Therefore, setting

λ0 = ct/n where t > 4
√
nσ and t > 2(1 + 1/16)

√
2 log(8p|V |{ne/dW}2dW /ξ). �
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Lemma 9 (PQGM, Event Ω2). Under Condition P we have En[E[R̂u(β̄u)]] 6 f̄‖rui‖2n,̟/2, R̂u(β̄u) > 0

and

P(sup
u∈U

R̂u(β̄u) > C{1 + f̄}{n−1s(1 + dW ) log(p|V |n)}) = 1− o(1).

Proof of Lemma 9. We have that R̂u(β̄u) > 0 by convexity of ρτ . Let ǫui = Xai −X−aiβ̄u − rui where

‖β̄u‖0 6 s and rui = X−a(βu − β̄u). By Knight’s identity (F.45), R̂u(β̄u) = −En[K̟(W )ru
∫ 1

0
1{ǫu 6

−tru} − 1{ǫu 6 0} dt] > 0.

EnE[R̂u(β̄u)] = En[K̟(W )ru
∫ 1

0 FXa|X−a,̟(X−aβ̄u + (1 − t)ru)− FXa|X−a,̟(X−aβ̄u + ru) dt]

6 EnE[K̟(W )ru
∫ 1

0
f̄ trudt] 6 f̄E[‖ru‖2n,̟]/2 6 Cf̄s/n.

Thus, by Markov’s inequality we have P (R̂u(β̄u) 6 Cf̄s/n) > 1/2.

Define zui := −
∫ 1

0
1{ǫui 6 −trui} − 1{ǫui 6 0} dt, so that R̂u(β̄u) = En[K̟(W )ruzu] where |zui| 6 1.

We have P (En[K̟(W )ruzu] 6 2Cf̄s/n) > 1/2 so that by Lemma 2.3.7 in [62] (note that the Lemma

does not require zero mean stochastic processes), for t > 2Cf̄s/n we have

1

2
P (sup

u∈U
|En[K̟(W )ruzu]| > t) 6 2P (sup

u∈U
|En[K̟(W )ruzuǫ]| > t/4)

Consider the class of functions F = {−K̟(W )ru(1{ǫui 6 −Birui} − 1{ǫui 6 0}) : u ∈ U} where

Bi ∼ Uniform(0, 1) independent of (Xi,Wi)
n
i=1. It follows that K̟(W )ruzu = E[−K̟(W )ru(1{ǫui 6

−Birui} − 1{ǫui 6 0}) | Xi,Wi] where the expectation is taken over Bi only. Thus we will bound the

entropy of F = {E[f | X,W ] : f ∈ F} via Lemma 24. Note that R := {ru = X−aβu −X−aβ̄u : u ∈ U}
where G := {X−aβ̄u : u ∈ U} is contained in the union of at most |V |

(
p
s

)
VC-classes of dimension Cs and

H := {X−aβu : u ∈ U}} is a VC-class of functions of dimension (1 + dW ) by Condition P. Finally note

that E := {ǫui : u ∈ U} ⊂ {Xai : a ∈ V } − G −R.

Therefore, we have

supQ logN(ǫ‖F̄‖Q,2,F , ‖ · ‖Q,2) 6 supQ logN((ǫ/4)2‖F‖Q,2,F , ‖ · ‖Q,2)
6 supQ logN(18 (ǫ

2/16),W , ‖ · ‖Q,2)
+ supQ logN(18 (ǫ

2/16)‖F‖Q,2,R, ‖ · ‖Q,2)
+ supQ logN(18 (ǫ

2/16), 1{E + {B}R 6 0} − 1{E 6 0}, ‖ · ‖Q,2)

By Lemma 18 with envelope F̄ = ‖X‖∞ supu∈U ‖βu − β̄u‖1, and σ2 = supu∈U E[K̟(W )r2ui] . s/n by

Condition P, we have that with probability 1− o(1)

sup
u∈U

|En[K̟(W )ruzuǫ]| .
√
s(1 + dW ) log(p|V |n)

n

√
s

n
+
Mn

√
s2/n log(p|V |n)

n
.
s(1 + dW ) log(p|V |n)

n

under Mn

√
s2/n 6 C. �

Lemma 10 (PQGM, Event Ω3). Under Condition P, for u = (a, τ,̟) ∈ V ×T ×W, define gu(δ,X,W ) =

K̟(W ){ρτ (Xa −X−a(βu + δ))− ρτ (Xa −X−aβu)}, and

Ω3 :=

{
sup

u∈U ,1/√n6‖δ‖1,̟6
√
n

|En[gu(δ,X,W )− E[gu(δ,X,W ) | X−a]]|
‖δ‖1,̟

< t3

}
.
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Then, under Condition CI we have P (Ω3) > 1− γ for any

t3
√
n > 12 + 16

√
2 log

(
64|V |p2n1+dW log(n)L1+dW

WT M
1+dW /ρ
n /γ

)

Proof. We have that Ωc3 := {maxa∈V Aa > t3
√
n} for

Aa := sup
(τ,̟)∈T ×W,N6‖δ‖1,̟6N̄

√
n

∣∣∣∣
En[gu(δ,X,W )− E[gu(δ,X,W ) | X−a,W ]]

‖δ‖1,̟

∣∣∣∣ .

Therefore, for N = 1/
√
n and N̄ =

√
n we have by Lemma 13

P (Ωc3) = P (maxa∈V Aa > t3
√
n)

6 |V |maxa∈V P (Aa > t3
√
n)

= |V |maxa∈V EX−a,W {P (Aa > t3
√
n | X−a,W )}

6 |V |maxa∈V EX−a,W

{
8p|N̂ | · |Ŵ| · |T̂ | exp(−(t3

√
n/4− 3)2/32)

}

6 exp(−(t3
√
n/4− 3)2/32)|V |64pn1+dW log(n)LfEX−a

{
maxi6n ‖X−ai‖1+dW

∞

N1+dW /ρ

}

6 γ

by the choice of t3. �

Lemma 11 (PQGM, Event Ω4). Under Condition P, and setting Ku = C
√

(1+dW ) log(p|V |n)
n , we have

that P(Ω4) = 1− o(1).

Proof. First note that by Lemma 18 we have that with probability 1− o(1)

sup
u∈U ,j∈V

(En − E)[K̟(W )X2
j ] .

√
(1 + dW ) log(|V |Mn/σ)

n
+

(1 + dW )M2
n log(|V |Mn/σ)

n

and E[K̟(W )X2
j ] > cP(̟). Under (1 + dW ) log(|V |Mn/σ) 6 δ2nµ

2
W and (1 + dW )M2

n log(|V |Mn/σ) 6

δnnµW , we have that |(En − E)[K̟(W )X2
j ]| = o(E[K̟(W )X2

j ]) for all u ∈ U . Therefore, we have

P(supu∈U |En[huj(X−a,W )]|/{KuEn[K̟(W )X2
j ]

1/2} > 1)

6 o(1) + P(supu∈U |En[huj(X−a,W )]|/{KuE[K̟(W )X2
j ]

1/2} > 1 +O(δn))

Applying Lemma 18 to F = {huj(X−a,W )/E[K̟(W )X2
j ]

1/2 : u ∈ U}. For convenience define H̄j =

{huj(X−a,W ) : u ∈ U} and K̄j := {E[K̟(W )X2
j ] : ̟ ∈ W}. Note that K̄j has covering numbers

bounded by the covering number of Kj := {K̟(W )X2
j : ̟ ∈ W} as follows supQ logN(ǫ‖K̄j‖Q,2, K̄j , ‖ ·

‖Q,2) 6 log supQ̃N((ǫ/4)2‖F‖Q̃,2,Kj , ‖·‖Q̃,2) by Lemma 24. Similarly, Lemma 24 also allows us to bound

covering numbers of H̄j via covering numbers of Hj = {K̟(W )(τ − 1{Xa 6 X−aβu})Xj : u ∈ U}.

supQ logN(ǫ‖F‖Q,2,F , ‖ · ‖Q,2) 6 pmaxj∈[p] supQ logN(ǫ‖Fj‖Q,2,Fj , ‖ · ‖Q,2)
6 pmaxj∈[p] supQ{logN((1/2)ǫ‖H̄j‖Q,2, H̄j , ‖ · ‖Q,2) + supQ logN((1/2)ǫcµ

1/2
W , 1/K̄1/2

j , ‖ · ‖Q,2)}
6 pmaxj∈[p] supQ{logN((1/2)ǫ‖H̄j‖Q,2, H̄j , ‖ · ‖Q,2) + supQ logN((1/2)ǫcµ

3/2
W , K̄1/2

j , ‖ · ‖Q,2)}
6 pmaxj∈[p] supQ{logN((1/2)ǫ‖H̄j‖Q,2, H̄j , ‖ · ‖Q,2) + supQ logN(C(1/2)ǫcµ

3/2
W , K̄j , ‖ · ‖Q,2)}

6 pmaxj∈[p] supQ{logN((1/2)ǫ‖H̄j‖Q,2, H̄j , ‖ · ‖Q,2) + supQ logN((1/{2C})ǫcµ3/2
W , K̄j , ‖ · ‖Q,2)}

6 pmaxj∈[p] supQ̃ logN((1/4)ǫ2‖Hj‖Q,2,Hj , ‖ · ‖Q,2)
+pmaxj∈[p] supQ̃ logN((1/{4C2})ǫ2c2µ3

W ,Kj , ‖ · ‖Q̃,2)
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where Fj = c‖X‖∞/µ1/2
W , Hj = ‖X‖∞. Since Kj is the product of a VC subgraph of dimension dW with

a single function, and Hj is the product of two VC subgraph of dimension 1 + dW and a single function,

by Lemma 18 with σ2 = 1, we have with probability 1− o(1)

sup
u∈U

∣∣∣∣∣
(En − E)[huj(X−a,W )]

E[K̟(W )X2
j ]

1/2

∣∣∣∣∣ 6 C

√
(1 + dW ) log(p|V |n)

n
+ C

Mn(1 + dW ) log(p|V |n)
nµ

1/2
W

.

Thus, under Mn(1 + dW ) log(p|V |n) 6 n1/2µ
1/2
W we have that we can take Ku = C

√
(1+dW ) log(p|V |n)

n . �

Appendix F. Technical Results for High-Dimensional Quantile Regression

In this section we provide technical results for high-dimensional quantile regression. It is based on a

sample (ỹi, x̃i,Wi)
n
i=1, independent across i, ρτ (t) = (τ − 1{t 6 0})t, τ ∈ T ⊂ (0, 1) a compact interval,

and a family of indicator functions Kw(W ) = 1 if W ∈ Ω̟, where Ω̟ ∈ W . For convenience we index

the sets Ω̟ by ̟ ∈ BW ⊂ RdW where we normalize the diameter of BW to be less or equal than 1/6.

Let fỹ|x̃,ru,̟(·) denote the conditional probability density function, fu := fỹ|x̃,ru,̟(x̃
′ηu), fỹ|x̃,ru,̟(·) 6 f̄

and |f ′
ỹ|x̃,ru,̟(·)| 6 f̄ ′. Moreover, we assume that ‖ηu − ηũ‖1 6 Lf{|τ − τ̃ |+ ‖̟ − ˜̟ ‖ρ}.

Although the results can be applied more generally, these results will be used for (ηu, ru), u = (ỹ, τ,̟) ∈
{ỹ} × T ×W ∈ U satisfying

E[K̟(W )(τ − 1{ỹ 6 x̃′ηu + ru})x̃] = 0.

Note that this generality is flexible enough to allow us to cover the case that the τ -conditional quantile

function Qỹ(τ | x̃i, ̟) = x̃′iη̃u+ r̃u by setting ηu = η̃u and ru = r̃u in which case E[(τ−1{ỹ 6 x̃′βu+ru}) |
x̃, ̟] = 0. It also covers the case that

η̃u ∈ argmin
β

E[K̟(W )ρτ (ỹ − x̃′β)]

so that E[K̟(W )(τ − 1{ỹ 6 x̃′η̃u})x̃] = 0 holds by the first order condition by setting ηu = η̃u and

ru = 0. Moreover, it also covers the case that we work with a sparse approximation η̄u of η̃u by setting

ηu = η̄u and ru = x̃′(η̃u − η̄u).

Lemma 12 (Identification Lemma). For u = (a, τ,̟) ∈ U , and a subset Au ⊂ R
p let

q̄Au = (1/2) · (1/f̄ ′) · inf
δ∈Au

En

[
K̟(W )fu|x̃′δ|2

]3/2
/En

[
K̟(W )|x̃′δ|3

]

and assume that for all δ ∈ Au

En

[
K̟(W )|ru| · |x̃′δ|2

]
+ En

[
K̟(W )r2u · |x̃′δ|2

]
6 (1/[4f̄ ′])En[K̟(W )fu|x̃′δ|2]. (F.44)

Then we have

EnE[K̟(W )ρτ (ỹ − x̃′(ηu + δ)) | x̃, ru,W ]− EnE[K̟(W )ρτ (ỹ − x̃′ηu) | x̃, ru,W ]

>
‖√fux̃′δ‖2

n,̟

4 ∧
{
q̄A‖

√
fux̃

′δ‖n,̟
}
−Kn2‖

√
fux̃

′δ‖n,̟ −Kn1‖δ‖1,̟.

where Kn2 := (f̄1/2 + 1)‖ru‖n,̟ and Kn1 := supu∈U ,j∈[p]
|EnE[K̟(W )(τ−1{ỹ6x̃′ηu+ru})x̃j|x̃,W ]|

{En[K̟(W )x̃2
j ]}1/2 .



QUANTILE GRAPHICAL MODELS 55

Proof of Lemma 12. Let Tu = support(ηu), and Qu(η) := Ē[K̟(W )ρτ (ỹ − x̃′η) | x̃, ru,W ]. The proof

proceeds in steps.

Step 1. (Minoration). Define the maximal radius over which the criterion function can be minorated

by a quadratic function

rAu = sup
r

{
r : Qu(ηu + δ)−Qu(ηu) +Kn2‖

√
fux̃

′δ‖n,̟ +Kn1‖δ‖1,̟ > 1
4‖

√
fux̃

′δ‖2n,̟,
∀δ ∈ Au, ‖

√
fux̃

′δ‖n,̟ 6 r

}
.

Step 2 below shows that rAu > q̄Au . By construction of rAu and the convexity of Qu(·), ‖ · ‖1,̟ and

‖ · ‖n,̟,

Qu(ηu + δ)−Qu(ηu) +Kn2‖
√
fux̃

′δ‖n,̟ +Kn1‖δ‖1,̟ >

>
‖√fux̃′δ‖2

n,̟

4 ∧
{

‖√fux̃′δ‖n,̟

rA
· inf Qu(ηu + δ̃)−Qu(ηu) +Kn2‖

√
fux̃

′δ̃‖n,̟ +Kn1‖δ̃‖1,̟
δ̃ ∈ Au, ‖

√
fux̃

′δ̃‖u > rAu

}

>
‖√fux̃′δ‖2

n,̟

4 ∧
{

‖√fux̃′δ‖n,̟

rAu

r2Au

4

}

>
‖√fux̃′δ‖2

n,̟

4 ∧
{
q̄Au‖

√
fux̃

′δ‖n,̟
}
.

Step 2. (rAu > q̄Au) Let Fỹ|x̃ denote the conditional distribution of ỹ given x̃. From [41], for any two

scalars w and v the Knight’s identity is

ρτ (w − v)− ρτ (w) = −v(τ − 1{w 6 0}) +
∫ v

0

(1{w 6 z} − 1{w 6 0})dz. (F.45)

Using (F.45) with w = ỹi − x̃′iηu and v = x̃′iδ and taking expectations with respect to ỹ, we have

Qu(ηu + δ)−Qu(ηu) = −EnE [K̟(W )(τ − 1{ỹ 6 x̃′ηu})x̃′iδ | x̃, ru,W ]

+En

[∫K̟(W )x̃′δ

0
Fỹ|x̃,ru,̟(x̃

′ηu + t)− Fỹ|x̃,ru,̟(x̃
′ηu)dt

]
.

Using the law of iterated expectations and mean value expansion, the relation

|EnE [K̟(W )(τ − 1{ỹ 6 x̃′ηu})x̃′δ | x̃, ru,W ] |
= |En

[
K̟(W ){Fỹ|x̃,ru,̟(x̃′ηu + ru)− Fỹ|x̃,ru,̟(x̃

′ηu)}x̃′δ
]

+En

[
K̟(W ){τ − Fỹ|x̃,ru,̟(x̃

′ηu + ru)}x̃′δ | x̃, ru,W
]
|

6 En[K̟(W )fu|ru| |x̃′δ|] + f̄ ′En[K̟(W )|ru|2|x̃′δ|] +Kn1‖δ‖1,̟
6 ‖√furu‖n,̟‖

√
fux̃

′δ‖n,̟ + f̄ ′‖ru‖n,̟‖rux̃′δ‖n,̟ +Kn1‖δ‖1,̟
6 (f̄1/2 + 1)‖ru‖n,̟‖

√
fux̃

′δ‖n,̟ +Kn1‖δ‖1,̟

where we used our assumption on the approximation error and we have Kn2 = (f̄1/2 + 1)‖ru‖n,̟. With

that and similar arguments we obtain for t̃x̃i,t ∈ [0, t]

Qu(ηu + δ)−Qu(ηu) +Kn2‖
√
fux̃

′δ‖n,̟ +Kn1‖δ‖1,̟ >

Qu(ηu + δ)−Qu(ηu) + EnE [K̟(W )(τ − 1{ỹ 6 x̃′ηu})x̃′δ | x̃, ru,W ] =

= En

[∫K̟(W )x̃′δ

0
Fỹ|x̃,ru,̟(x̃

′ηu + t)− Fỹ|x̃,ru,̟(x̃
′ηu)dt

]

= En

[∫K̟(W )x̃′δ

0 tfỹ|x̃,ru,̟(x̃
′ηu) + t2

2 f
′
ỹ|x̃,ru,̟(x̃

′ηu + t̃x̃,t)dt
]

> 1
2‖

√
fux̃

′δ‖2n,̟ − 1
6 f̄

′En[K̟(W )|x̃′δ|3]− Ē
[∫K̟(W )x̃′

iδ

0
t[fỹ|x̃,ru,̟(x̃

′ηu)− fỹ|x̃,ru,̟(x̃
′ηu + ru)]dt

]

> 1
4‖

√
fux̃

′δ‖2n,̟ + 1
4‖

√
fux̃

′δ‖2n,̟ − 1
6 f̄

′En[K̟(W )|x̃′δ|3]− (f̄ ′/2)En
[
K̟(W )|r̃u| · |x̃′δ|2

]
.

(F.46)
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Moreover, by assumption we have

En

[
K̟(W )|ru| · |x̃′δ|2

]
6 1

4f̄ ′En[K̟(W )fu|x̃′δ|2] (F.47)

Note that for any δ such that ‖√fux̃′δ‖n,̟ 6 q̄A we have

‖
√
fux̃

′δ‖n,̟ 6 q̄uA 6 (1/2) · (1/f̄ ′) · En
[
K̟(W )fu|x̃′δ|2

]3/2
/En

[
K̟(W )|x̃′δ|3

]
.

It follows that (1/6)f̄ ′En[K̟(W )|x̃′δ|3] 6 (1/8)En[K̟(W )fu|x̃′δ|2]. Combining this with (F.47) we have

1

4
En[K̟(W )fu|x̃′δ|2]−

f̄ ′

6
En[K̟(W )|x̃′δ|3]− f̄ ′

2
En

[
K̟(W )|ru| · |x̃′δ|2

]
> 0. (F.48)

Combining (F.46) and (F.48) we have rAu > q̄Au . �

Lemma 13. Let W be a VC-class of sets with VC-index dW . Conditional on {(Wi, x̃i), i = 1, . . . , n} we
have

Pỹ




sup

τ ∈ T , ̟ ∈ W,

N 6 ‖δ‖1,̟ 6 N̄

∣∣∣∣∣Gn

(
K̟(W )

ρτ (ỹ − x̃′(ηu + δ)) − ρτ (ỹ − x̃′ηu)

‖δ‖1,̟

)∣∣∣∣∣ > M | (Wi, x̃i)
n
i=1




6 Sn exp(−(M/4 − 3)
2
/32)

where Sn 6 8p|N̂ | · |Ŵ| · |T̂ |, with

|N̂ | 6 1+
⌊
3
√
n log(N̄/N)

⌋
, |T̂ | 6 2

√
n
maxi6n ‖x̃i‖∞

N
Lf , |Ŵ| 6 ndW +

{
2
√
n
maxi6n ‖x̃i‖∞

N
Lf

}dW /ρ

.

Proof of Lemma 13. Let gτ̟,i(b) = K̟(Wi){ρτ (ỹi − x̃′iητ̟ + b) − ρτ (ỹi − x̃′iητ̟)} 6 K̟(Wi)|b| since
K̟(Wi) ∈ {0, 1}. Note that |gτ̟,i(b) − gτ̟,i(a)| 6 K̟(Wi)|b − a|. To easy the notation we omit the

conditioning on (x̃i,Wi) from the probabilities.

For any δ ∈ Rp, since ρτ is 1-Lipschitz, we have

var
(
Gn

(
gτ̟(x̃′δ)
‖δ‖1,̟

))
6

En[{gτ̟(x̃′δ)}2]
‖x̃′δ‖2

n,̟
6

En[|K̟(Wi)x̃
′δ|2]

‖x̃′δ‖2
n,̟

= 1

since by definition ‖δ‖1,̟ =
∑

j ‖δj‖1,̟ =
∑

j ‖x̃′δj‖n,̟ > ‖x̃′δ‖n,̟.

Since we are conditioning on (Wi, x̃i)
n
i=1 the processes are independent across i. Then, by Lemma

2.3.7 in [61] (Symmetrization for Probabilities) we have for any M > 1

P

(
sup

τ∈T ,̟∈W,N6‖δ‖1,̟6N̄

∣∣∣∣Gn

(
gτ̟(x̃′δ)

‖δ‖1,̟

)∣∣∣∣ >M

)

6
2

1−M−2
P

(
sup

τ∈T ,̟∈W,N6‖δ‖1,̟6N̄

∣∣∣∣G
o
n

(
κaτ̟,cgτ̟(x̃′δ)

‖δ‖1,̟

)∣∣∣∣ >M/4

)

where Gon is the symmetrized process.

Consider Ft,τ,̟ = {δ : ‖δ‖1,̟ = t}. We will consider the families of Ft,τ,̟ for t ∈ [N, N̄ ], τ ∈ T and

̟ ∈ W .

We will construct a finite net T̂ × Ŵ × N̂ of T ×W × [N, N̄ ] such that

sup
τ∈T ,̟∈W,t∈[N,N̄],δ∈Ft,τ,̟

∣∣∣∣Gon
(
gτ̟(x̃

′δ)
‖δ‖1,̟

)∣∣∣∣ 6 3 + sup
τ∈T̂ ,̟∈Ŵ,t∈N̂

sup
δ∈Ft,τ,̟

∣∣∣∣Gon
(
gτ̟(x̃

′δ)
t

)∣∣∣∣ =: 3 +Ao.
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By triangle inequality we have

∣∣∣Gon
(
gτ̟(x̃′δ)

t − gτ̃ ˜̟ (x̃′
iδ̃)

t̃

)∣∣∣ 6
∣∣∣Gon

(
gτ̟,i(x̃

′
iδ)

t − gτ̟̃(x̃′δ)
t

)∣∣∣+
∣∣∣Gon

(
gτ̟̃(x̃′δ)

t − gτ̃ ˜̟ (x̃′δ)
t

)∣∣∣
+
∣∣∣Gon

(
wτ̃ ˜̟ (x̃′δ)

t − gτ̃ ˜̟ (x̃′δ̃)

t̃

)∣∣∣
(F.49)

The first term in (F.49) is such that

∣∣∣Gon
(
gτ̟(x̃′δ)

t − gτ̟̃(x̃′δ)
t

)∣∣∣ 6
2
√
n
t En[K̟(W )|x̃′(ητ̟ − ητ̟̃)|]

6 2
√
n

N maxi6n ‖x̃i‖∞En[K̟(W )]‖ητ̟ − ητ̟̃‖1
6 2

√
n

N maxi6n ‖x̃i‖∞En[K̟(W )]Lf |τ − τ ′|.
(F.50)

Define a net T̂ = {τ1, . . . , τT } such that

|τk+1 − τk| 6
{
2
√
n
maxi6n ‖x̃i‖∞

N
Lf

}−1

To bound the second term in (F.49), note that W is a VC-class. Therefore, by Corollary 2.6.3 in

[61] we have that conditionally on (Wi)
n
i=1, there are at most ndW different sets ̟ ∈ W that induce

a different sequence {K̟(W1), . . . ,K̟(Wn)}. We that a cover Ŵ that covers all different sequences.

Further, similarly to (F.51) we have ‖ητ̟̃ − ητ̃ ˜̟ ‖1 6 Lf‖̟ − ˜̟ ‖ρ and

∣∣∣Gon
(
gτ̟̃(x̃′δ)

t − gτ̃ ˜̟ (x̃′δ)
t

)∣∣∣ 6 2
√
n
t En[K̟(W )|x̃′(ητ̟̃ − ητ̃ ˜̟ )|] + 2

√
n
t En[|K̟(W )−K ˜̟ (W )||x̃′δ|]

6 2
√
n

N maxi6n ‖x̃i‖∞En[K̟(W )]‖ητ̟̃ − ητ̃ ˜̟ ‖1
6 2

√
n

N maxi6n ‖x̃i‖∞En[K̟(W )]Lf‖̟ − ˜̟ ‖ρ.
(F.51)

We define a net Ŵ such that |Ŵ| 6 ndW +
{
2
√
n

maxi6n ‖x̃i‖∞

N Lf

}dW /ρ

To bound the third term, for any δ ∈ Ft,τ,̟, t 6 t̃, we will choose δ̃ := δ(t̃/t) ∈ Ft̃,τ,̟
∣∣∣Gon

(
gτ̟(x̃′δ)

t − gτ̟(x̃′δ(t̃/t))

t̃

)∣∣∣ 6
∣∣∣Gon

(
gτ̟(x̃′δ)

t − gτ̟(x̃′δ(t̃/t))
t

)∣∣∣+
∣∣∣Gon

(
gτ̟(x̃′δ(t̃/t))

t − gτ̟(x̃′δ(t̃/t))

t̃

)∣∣∣
= 1

t

∣∣Gon
(
gτ̟(x̃

′δ)− gτ̟(x̃
′δ[t̃/t])

)∣∣+
∣∣Gon

(
gτ̟(x̃

′δ(t̃/t))
)∣∣ ·
∣∣1
t − 1

t̃

∣∣
6

√
nEn

(
|K̟(W )x̃′δ|

t

)
|t−t̃|
t +

√
nEn (|K̟(W )x̃′δ|) t̃t

∣∣1
t − 1

t̃

∣∣

= 2
√
nEn

(
|K̟(W )x̃′δ|

t

) ∣∣∣ t−t̃t
∣∣∣ 6 2

√
n
∣∣∣ t−t̃t

∣∣∣ .

Let N̂ be a ε-net {N =: t1, t2, . . . , tK := N̄} of [N, N̄ ] such that |tk − tk+1|/tk 6 1/[2
√
n]. Note that we

can achieve that with |N̂ | 6 1 +
⌊
3
√
n log(N̄/N)

⌋
.

By Markov bound, we have

P (Ao > K) 6 minψ>0 exp(−ψK)E[exp(ψAo)]

6 8p|T̂ | · |Ŵ| · |N̂ |minψ>0 exp(−ψK) exp
(
8ψ2

)

6 8p|T̂ | · |Ŵ| · |N̂ | exp(−K2/32)
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where we set ψ = K/16 and bound E[exp(ψAo)] as follows

E [exp (ψAo)] 6(1) 2|T̂ | · |Ŵ| · |N̂ | sup
(τ,̟,t)∈T̂×Ŵ×N̂

E

[
exp

(
ψ sup

‖δ‖1,̟=t

G
o
n

(
gτ̟(x̃′δ)

t

))]

6(2) 2|T̂ | · |Ŵ| · |N̂ | sup
(τ,̟,t)∈T̂×Ŵ×N̂

E

[
exp

(
2ψ sup

‖δ‖1,̟=t

G
o
n

(
K̟(W )x̃′δ

t

))]

6(3) 2|T̂ | · |Ŵ| · |N̂ | sup
(τ,̟,t)∈T̂×Ŵ×N̂

E

[
exp

(
2ψ

[
sup

‖δ‖1,̟=t

‖δ‖1,̟
t

max
j6p

|Go
n(K̟(W )x̃j)|

{En[K̟(W )x̃2
j ]}1/2

])]

=(4) 2|T̂ | · |Ŵ| · |N̂ | sup
(τ,̟,t)∈T̂×Ŵ×N̂

E

[
exp

(
2ψ

[
max
j6p

|Go
n(K̟(W )x̃j)|

{En[K̟(W )x̃2
j ]}1/2

])]

6(5) 4p|T̂ | · |Ŵ| · |N̂ |max
j6p

sup
̟∈Ŵ

E

[
exp

(
4ψ

G
o
n(K̟(W )x̃j)

{En[K̟(W )x̃2
j ]}1/2

)]

6(6) 8p|T̂ | · |Ŵ| · |N̂ | exp
(
8ψ2

)

where (1) follows by exp(maxi∈I |zi|) 6 2|I|maxi∈I exp(zi), (2) by contraction principle (apply Theo-

rem 4.12 [46] with ti = K̟(Wi)x̃
′
iδ, and φi(ti) = ρτ (K̟(Wi)ỹi − K̟(Wi)x̃

′
iητ + ti) − ρτ (K̟(Wi)ỹi −

K̟(Wi)x̃
′
iητ ) so that |φi(s)− φi(t)| 6 |s− t| and φi(0) = 0 (3) follows by

|Gon(K̟(Wi)x̃
′
iδ)| 6 ‖δ‖1,̟max

j6p
|Gon(K̟(W )x̃j)/{En[K̟(W )x̃2j ]}1/2|,

(4) by definition of the suprema, (5) we again used exp(maxi∈I |zi|) 6 2|I|maxi∈I exp(zi), and (6)

exp(z) + exp(−z) 6 2 exp(z2/2).

�

Lemma 14 (Estimation Error of Refitted Quantile Regression). Consider an arbitrary vector η̂u and

suppose ‖ηu‖0 6 s. Let r̄u > ‖rui‖n,̟, ŝu > |support(η̂u)| and Q̂u > En[K̟(W ){ρτ (ỹi − x̃′iη̃u)− ρτ (ỹi −
x̃′iηu)}] for all u ∈ U hold. Furthermore, suppose that

sup
u=(τ,̟)∈U

∣∣∣∣En

(
K̟(W )

ρτ (ỹ − x̃′η̃u)− ρτ (ỹ − x̃′ηu)

‖η̃u − ηu‖1,̟
− E

[
K̟(W )

ρτ(ỹ − x̃′η̃u)− ρτ (ỹ − x̃′ηu)

‖η̃u − ηu‖1,̟
|W, x̃

])∣∣∣∣ 6
t3√
n
.

Then we have for n large enough,

‖
√
fux̃

′
i(η̃u − ηu)‖n,̟ . Ñ :=

√
(ŝu + s)

φmin(u, ŝu + s)
(Kn1 + t3/

√
n) +Kn2 + f̄ r̄u + Q̂1/2

u

where φmin(u, k) = inf‖δ‖0=k ‖
√
fux̃

′δ‖2n,̟/‖δ‖2, provided that

sup
u∈U ,‖δ̄‖06ŝu+s

En[|rui||x̃′iδ̄|2]
En[|x̃′iδ̄|2]

+ Ñ sup
‖δ̄‖06ŝu+s

En[|x̃′iδ̄|3]
En[|x̃′iδ̄|2]3/2

→ 0.

Proof of Lemma 14. Let δ̂u = η̂u − ηu which satisfies ‖δ̂u‖0 6 ŝu + s. By optimality of η̃u in the refitted

quantile regression we have with probability 1− γ

En[K̟(W )ρτ (ỹi − x̃′iη̃u)]− En[K̟(W )ρτ (ỹi − x̃′iηu)]

6 En[K̟(W )ρτ (ỹi − x̃′iη̂u)]− En[K̟(W )ρτ (ỹi − x̃′iηu)] 6 Q̂u
(F.52)

Uniformly over u ∈ U , we have conditional on (Wi, x̃i, rui)
n
i=1 that

∣∣∣∣∣Gn
(
K̟(W )

ρτ (ỹ − x̃′(ηu + δ̃u))− ρτ (ỹ − x̃′ηu)

‖δ̃u‖1,̟

)∣∣∣∣∣ 6 t3. (F.53)
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Thus combining relations (F.52) and (F.53), we have

EnE[K̟(W ){ρu(ỹi − x̃′i(ηu + δ̃u))− ρu(ỹi − x̃′iηu)} | x̃, r̃, ̟] 6 ‖δ̃u‖1,̟
t3√
n
+ Q̂u

Invoking the sparse identifiability relation of Lemma 12, since sup‖δ‖06ŝu+s
En[|rui| |x̃′

iθ|2]
En[|x̃′

iθ|2]
→ 0 by assump-

tion, for n large enough

‖√fux̃′δ̃u‖2n,̟
4

∧
{
q̄A‖

√
fux̃

′δ̃u‖n,̟
}

6 Kn2‖
√
fux̃

′δ̃u‖n,̟ + ‖δ̃u‖1,̟(K1n +
t3√
n
) + Q̂u.

where q̄A is defined with A := {δ : ‖δ‖0 6 ŝu+s} and ‖δ̃u‖1,̟ 6
√
(ŝu + s)/φmin(u, ŝu + su)‖

√
fux̃

′δ̃u‖n,̟.

Under the assumed growth condition, we have

q̄A < Q̂1/2
u +Kn2 + (Kn1 + t3/

√
n)
√
(ŝu + s)/φmin(u, ŝu + su)

and the minimum is achieved in the quadratic part. Therefore, for n sufficiently large, we have

‖
√
fux̃

′δ̃u‖n,̟ 6 Q̂1/2
u +Kn2 + (Kn1 + t3/

√
n)
√
(ŝu + s)/φmin(u, ŝu + su).

�

Under the condition maxi6n ‖x̃i‖2∞ log(n ∨ p) = o(nminτ∈T τ(1 − τ)), the next result provides new

bounds for the data driven penalty choice parameter when the quantile indices in T can approach the

extremes.

Lemma 15 (Pivotal Penalty Parameter Bound). Let τ = minτ∈T τ(1−τ) and Kn = maxi6n,j∈[p] |x̃ij/σ̂j|,
σ̂j = En[x̃

2
j ]

1/2. Under K2
n log(p/τ) = o(nτ ), for n large enough we have that for some constant C̄

Λ(1− α | x̃1, . . . , x̃n) 6
√
1 +

log(16/α)

log(d/τ )
C̄

√
log(d/τ )

n

where Λ(1−α | x̃1, . . . , x̃n) is the 1−α quantile of supτ∈T

∣∣∣∣
∑n

i=1
x̃j(τ−1{U6τ})
σ̂j

√
τ(1−τ)

∣∣∣∣ conditional on x̃1, . . . , x̃n,
and Ui are independent uniform(0, 1) random variables.

Proof. Conditional on x̃1, . . . , x̃n, letting σ̂
2
j = En[x

2
j ], we have that

nΛ = sup
τ∈T

∣∣∣∣∣

∑n
i=1 x̃j(τ − 1{U 6 τ})
σ̂j
√
τ(1 − τ)

∣∣∣∣∣ .

Step 1. (Entropy Calculation) Let F = {x̃ij(τ − 1{Ui 6 τ})/σ̂j : τ ∈ T , j ∈ [p]}, hτ =
√
τ(1 − τ), and

G = {fτ/hτ : τ ∈ T }. We have that

d(fτ/hτ , fτ̄/hτ̄ ) 6 d(fτ , fτ̄ )/hτ + d(fτ̄/hτ , fτ̄/hτ̄)

6 d(fτ , fτ̄ )/hτ + d(0, fτ̄/hτ̄ )|hτ − hτ̄ |/hτ
Therefore, since ‖F‖Q 6 ‖G‖Q by hτ 6 1, and d(0, fτ̄/hτ̄ ) 6 1/hτ̄ we have

N(ε‖G‖Q,G, Q) 6 N(ε‖F‖Q/{2min
τ∈T

hτ},F , Q)N(ε/{2min
τ∈T

h2τ}, T , | · |).
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Thus we have for some constants K and v that

N(ε‖G‖Q,G, Q) 6 d(K/{ǫmin
τ∈T

h2τ})v.

Step 2.(Symmetrization) Since we have E[g2] = 1 for all g ∈ G, by Lemma 2.3.7 in [61] we have

P (Λ > t
√
n) 6 4P (maxj6d supτ∈T |Gon(g)| > t/4)

where G
o
n : G → R is the symmetrized process generated by Rademacher variables. Conditional on

(x1, u1), . . . , (xn, un), we have that {Gon(g) : g ∈ G} is sub-Gaussian with respect to the L2(Pn)-norm by

the Hoeffding inequality. Thus, by Lemma 16 in [10], for δ2n = supg∈G En[g
2] and δ̄n = δn/‖G‖Pn , we

have

P (sup
g∈G

|Gon(g)| > CK̄δn
√
log(dK/τ ) | {x̃i, Ui}ni=1) 6

∫ δ̄n/2

0

ǫ−1{d(K/{ǫmin
τ∈T

h2τ})v}−C
2+1dε

for some universal constant K̄.

In order to control δn, note that δ2n = supg∈G
1√
n
Gn(g

2) + E[g2]. In turn, since supg∈G En[g
4] 6

δ2nmaxi6nG
2
i , we have

P (sup
g∈G

|Gon(g2)| > CK̄δnmax
i6n

Gi
√
log(dK/τ ) | {x̃i, Ui}ni=1) 6

∫ δ̄n/2

0

ǫ−1{d(K/{ǫτ})v}−C2+1dε

Thus with probability 1−
∫ 1/2

0 ǫ−1{d(K/ǫτ)v}−C2+1dε, since E[g2] = 1 and maxi6nGi 6 Kn/
√
τ , we

have

δn 6 1 +
C′Kn

√
log(dK/τ )√
n
√
τ

.

Therefore, under Kn

√
log(dK/τ) = o(

√
n
√
τ ), conditionally on {x̃i}ni=1 and n sufficiently large, with

probability 1− 2
∫ 1/2

0 ǫ−1{d(K/{ǫτ})v}−C2+1dε we have that

sup
g∈G

|Gon(g)| 6 2CK̄
√
log(dK/τ)

The stated bound follows since for C > 2

2

∫ 1/2

0

ǫ−1{d(K/{ǫτ})v}−C2+1dε 6 {d/τ}−C2+12

∫ 1/2

0

ǫ−2+C2

dε 6 {d/τ}−C2+1.

�

Appendix G. Inequalities

Lemma 16. Consider β̂u and βu where ‖βu‖0 6 s. Denote by β̂λ the vector with β̂λj = β̂j1{σ̂uj|β̂j | > λ}
where σ̂uj = {En[K̟(W )(Zaj )

2]}1/2. We have that

‖β̂λu − βu‖1,̟ 6 ‖β̂u − βu‖1,̟ + sλ

|support(β̂λu)| 6 s+ ‖β̂u − βu‖1,̟/λ
‖Za(β̂λu − βu)‖n,̟ 6 ‖Za(β̂u − βu)‖n,̟ +

√
φ̃max(s,̟){2√sλ+ ‖β̂u − βu‖1,̟/

√
s}
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where φ̃max(m,̟) = sup16‖θ‖06m ‖Z̃aθ‖n,̟/‖θ‖ where Z̃aij = Zaij/{En[K̟(W )(Zaj )
2]}1/2.

Proof. Let Tu = support(βu). The first relation follows from the triangle inequality

‖β̂λu − βu‖1,̟ = ‖(β̂λu − βu)Tu‖1,̟ + ‖(β̂λu)T c
u
‖1,̟

6 ‖(β̂λu − β̂u)Tu‖1,̟ + ‖(β̂u − βu)Tu‖1,̟ + ‖(β̂λu)T c
u
‖1,̟

6 λs+ ‖(β̂u − βu)Tu‖1,̟ + ‖(β̂u)T c
u
‖1,̟

= λs+ ‖β̂u − βu‖1,̟

To show the second result note that ‖β̂u − βu‖1,̟ > {|support(β̂λu )| − s}λ. Therefore,

|support(β̂λu)| 6 s+ ‖β̂u − βu‖1,̟/λ

which yields the result.

To show the third bound, we start using the triangle inequality

‖Za(β̂λu − βu)‖n,̟ 6 ‖Za(β̂λu − β̂u)‖n,̟ + ‖Za(β̂u − βu)‖n,̟.

Without loss of generality assume that order the components is so that |(β̂λu − β̂u)j |σ̂uj is decreasing. Let
T1 be the set of s indices corresponding to the largest values of |(β̂λu − β̂u)j |σ̂uj . Similarly define Tk as

the set of s indices corresponding to the largest values of |(β̂λu − β̂u)j |σ̂uj outside ∪k−1
m=1Tm. Therefore,

β̂λu − β̂u =
∑⌈p/s⌉

k=1 (β̂λu − β̂u)Tk
. Moreover, given the monotonicity of the components, ‖(β̂λu − β̂u)Tk

‖2,̟ 6

‖(β̂λu − β̂u)Tk−1
‖1/

√
s. Then, we have

‖Za(β̂λu − β̂u)‖n,̟ = ‖Za∑⌈p/s⌉
k=1 (β̂λu − β̂u)Tk

‖n,̟
6 ‖Za(β̂λu − β̂u)T1

‖n,̟ +
∑

k>2 ‖Za(β̂λu − β̂u)Tk
‖n,̟

6

√
φ̃max(s,̟)‖(β̂λu − β̂u)T1

‖2,̟ +
√
φ̃max(s,̟)

∑
k>2 ‖(β̂λu − β̂u)Tk

‖2,̟
6

√
φ̃max(s,̟)λ

√
s+

√
φ̃max(s,̟)

∑
k>1 ‖(β̂λu − β̂u)Tk

‖1,̟/
√
s

=

√
φ̃max(s,̟)λ

√
s+

√
φ̃max(s,̟)‖β̂λu − β̂u‖1,̟/

√
s

6

√
φ̃max(s,̟){2√sλ+ ‖β̂u − βu‖1,̟/

√
s}

where the last inequality follows from the first result and the triangle inequality.

�

Lemma 17 (Supremum of Sparse Vectors on Symmetrized Random Matrices). Let Û denote a finite set

and (Xui)u∈Û , i = 1, . . . , n, be fixed vectors such that Xui ∈ Rp and max16i6nmaxu∈Û ‖Xui‖∞ 6 K.

Furthermore define

δn := C̄K
√
k

(√
log |Û |+

√
1 + log p+ log k

√
log(p ∨ n)

√
log n

)
/
√
n,

where C̄ is a universal constant. Then,

E

[
sup

‖θ‖06k,‖θ‖=1

max
u∈Û

∣∣En
[
ǫ(θ′Xu)

2
]∣∣
]
6 δn sup

‖θ‖06k,‖θ‖=1,u∈Û

√
En[(θ′Xu)2].

Proof. See [12] for the proof. �
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Corollary 2 (Supremum of Sparse Vectors on Many Random Matrices). Let Û denote a finite set and

(Xui)u∈Û , i = 1, . . . , n, be independent (across i) random vectors such that Xui ∈ Rp and

√
E[ max

16i6n
max
u∈Û

‖Xui‖2∞] 6 K.

Furthermore define

δn := C̄K
√
k

(√
log |Û |+

√
1 + log p+ log k

√
log(p ∨ n)

√
log n

)
/
√
n,

where C̄ is a universal constant. Then,

E

[
sup

‖θ‖06k,‖θ‖=1

max
u∈Û

∣∣En
[
(θ′Xu)

2 − E[(θ′Xu)
2]
]∣∣
]
6 δ2n + δn sup

‖θ‖06k,‖θ‖=1,u∈Û

√
EnE[(θ′Xu)2].

We will also use the following result of [25].

Lemma 18 (Maximal Inequality). Work with the setup above. Suppose that F > supf∈F |f | is a mea-

surable envelope for F with ‖F‖P,q < ∞ for some q > 2. Let M = maxi6n F (Wi) and σ2 > 0 be any

positive constant such that supf∈F ‖f‖2P,2 6 σ2 6 ‖F‖2P,2. Suppose that there exist constants a > e and

v > 1 such that

log sup
Q
N(ǫ‖F‖Q,2,F , ‖ · ‖Q,2) 6 v log(a/ǫ), 0 < ǫ 6 1.

Then

EP [sup
f∈F

|Gn(f)|] 6 K

(√
vσ2 log

(
a‖F‖P,2

σ

)
+
v‖M‖P,2√

n
log

(
a‖F‖P,2

σ

))
,

where K is an absolute constant. Moreover, for every t > 1, with probability > 1− t−q/2,

sup
f∈F

|Gn(f)| 6 (1 + α)EP [sup
f∈F

|Gn(f)|] + K(q)
[
(σ + n−1/2‖M‖P,q)

√
t + α−1n−1/2‖M‖P,2t

]
,

∀α > 0 where K(q) > 0 is a constant depending only on q. In particular, setting a > n and t = logn,

with probability > 1− c(logn)−1,

sup
f∈F

|Gn(f)| 6 K(q, c)

(
σ

√
v log

(
a‖F‖P,2

σ

)
+
v‖M‖P,q√

n
log

(
a‖F‖P,2

σ

))
, (G.54)

where ‖M‖P,q 6 n1/q‖F‖P,q and K(q, c) > 0 is a constant depending only on q and c.

Appendix H. Confidence Regions for Function-Valued Parameters Based on Moment

Conditions

For completeness, in this section we collect (simple adaptation of) the results of [12] that are invoked

in our proofs. We are interested in function-valued target parameters indexed by u ∈ U ⊂ Rdu . The true

value of the target parameter is denoted by

θ0 = (θuj)u∈U ,j∈[p̃], where θuj ∈ Θuj for each u ∈ U and j ∈ [p̃].
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For each u ∈ U and j ∈ [p̃], the parameter θuj is characterized as the solution to the following moment

condition:

E[ψuj(Wuj , θuj , ηuj)] = 0, (H.55)

where Wuj is a random vector that takes values in a Borel set Wuj ⊂ Rdw , η0 = (ηuj)u∈U ,j∈[p̃] is a

nuisance parameter where ηuj ∈ Tuj a convex set, and the moment function

ψuj : Wuj ×Θuj × Tujn 7→ R, (w, θ, t) 7→ ψuj(w, θ, t) (H.56)

is a Borel measurable map.

We assume that the (continuum) nuisance parameter η0 can be modelled and estimated by η̂ =

(η̂uj)u∈U ,j∈[p̃]. We will discuss examples where the corresponding η0 can be estimated using modern

regularization and post-selection methods such as Lasso and Post-Lasso (although other procedures can

be applied). The estimator θ̌uj of θuj is constructed as any approximate ǫn-solution in Θuj to a sample

analog of the moment condition (H.55), i.e.,

max
j∈[p̃]

sup
u∈U

{
|En[ψuj(Wuj , θ̌uj , η̂uj)]| − inf

θj∈Θuj

|En[ψuj(Wuj , θ, η̂uj)]|
}

6 ǫn = oP (n
−1/2δn). (H.57)

As discussed before, we rely on an orthogonality condition for regular estimation of θuj that we state

next.

Definition 1 (Near Orthogonality condition). For each u ∈ U and j ∈ [p̃], we say that ψuj obeys a

general form of orthogonality with respect to Huj uniformly in u ∈ U , if the following conditions hold:

The Gateaux derivative map

Du,j,r̄[η̃uj − ηuj ] := ∂rE

(
ψuj

{
Wuj , θuj , ηuj + r

[
η̃uj − ηuj

]})∣∣∣∣∣
r=r̄

exists for all r ∈ [0, 1), η̃ ∈ Huj , j ∈ p̃, and u ∈ U and vanishes at r = 0, namely,

|Du,j,0[η̃uj − ηuj ]| 6 δnn
−1/2 for all η̃uj ∈ Huj . (H.58)

In what follows, we shall denote by c0, c, and C some positive constants.

Assumption C1 (Moment condition problem). Consider a random element W , taking values in a

measure space (W ,AW), with law determined by a probability measure P ∈ Pn. The observed data

((Wui)u∈U )ni=1 consist of n i.i.d. copies of a random element (Wu)u∈U which is generated as a suitably

measurable transformation with respect to W and u. Uniformly for all n > n0 and P ∈ Pn, the following

conditions hold: (i) The true parameter value θuj obeys (H.55) and is interior relative to Θuj, namely

there is a ball of radius Cn−1/2un log n centered at θuj contained in Θuj for all u ∈ U , j ∈ [p̃] where un :=

E[supu∈U ,j∈[p̃] |
√
nEn[ψuj(Wuj , θuj , ηuj)]|]. (ii) For each u ∈ U and j ∈ [p̃], the map (θ, η) ∈ Θuj×Huj 7→

E[ψuj(Wuj , θ, η)]| is twice continuously differentiable. (iii) For all u ∈ U and j ∈ [p̃], the moment function

ψuj obeys the orthogonality condition given in Definition 1 for the set Huj = Hujn specified in Assumption

2. (iv) The following identifiability condition holds: |E[ψuj(Wuj , θ, ηuj)]| > 1
2 |Juj(θ−θuj)|∧c0 for all θ ∈

Θuj , where Juj := ∂θE[ψuj(Wuj , θ, ηuj)]|θ=θuj
satisfies 0 < jn < |Juj | < C <∞ for all u ∈ U and j ∈ [p̃].

(v) The following smoothness conditions holds
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(a) supu∈U ,j∈[p̃],(θ,θ̄)∈Θ2
uj,(η,η̄)∈H2

ujn

E[{ψuj(Wuj ,θ,η)−ψuj(Wuj ,θ̄,η̄)}2]

{|θ−θ̄|∨‖η−η̄‖e}α 6 C,

(b) supu∈U ,(θ,η)∈Θuj×Hujn,r∈[0,1) |∂rE [ψuj(Wuj , θ, ηuj + r{η − ηuj})] |/‖η − ηuj‖e 6 B̄1n,

(c) supu∈U ,j∈[p̃],(θ,η)∈Θuj×Hujn,r∈[0,1)
|∂2

rE[ψuj(Wuj ,θuj+r{θ−θuj},ηuj+r{η−ηuj})]|
{|θ−θuj|2∨‖η−ηuj‖2

e} 6 B̄2n.

Next we state assumptions on the nuisance functions. In what follows, let ∆n ց 0, δn ց 0, and

τn ց 0 be sequences of constants approaching zero from above at a speed at most polynomial in n (for

example, δn > 1/nc for some c > 0).

Assumption C2 (Estimation of nuisance functions). The following conditions hold for each n > n0 and

all P ∈ Pn. The estimated functions η̂uj ∈ Hujn with probability at least 1 −∆n, where Hujn is the set

of measurable maps η̃uj such that

sup
u∈U

max
j∈[p̃]

‖η̃uj − ηuj‖e 6 τn,

where the e-norm is the same in Assumption 1, and whose complexity does not grow too quickly in the

sense that F1 = {ψuj(Wuj , θ, η) : j ∈ [p̃], u ∈ U , θ ∈ Θuj , η ∈ Hujn ∪ {ηuj}} is suitably measurable and its

uniform covering entropy obeys:

sup
Q

logN(ǫ‖F1‖Q,2,F1, ‖ · ‖Q,2) 6 sn(U ,p̃)(log(an/ǫ)) ∨ 0,

where F1(W ) is an envelope for F1 which is measurable with respect to W and satisfies F1(W ) >

supu∈U ,j∈[p̃],η∈Hujn,θ∈Θuj
|ψuj(Wuj , θ, η)| and ‖F1‖P,q 6 Kn for q > 2. The complexity characteristics

an > max(n,Kn, e) and sn(U ,p̃) > 1 obey the growth conditions:

n−1/2
√
sn(U ,p̃) log(an) + n−1sn(U ,p̃)n

1
qKn log(an) 6 τn

{(1 ∨ B̄1n)(τn/jn)}α/2
√
sn(U ,p̃) log(an) + sn(U ,p̃)n

1
q− 1

2Kn log(an) logn 6 δn,

and
√
nB̄2n(1 ∨ B̄1n)(τn/jn)

2 6 δn

where B̄1n, B̄2n, jn, q and α are defined in Assumption 1.

Theorem 5 (Uniform Bahadur representation for a Continuum of Target Parameters). Under Assump-

tions 1 and 2, for an estimator (θ̌uj)u∈U ,j∈[p̃] that obeys equation (H.57),

√
nσ−1

uj (θ̌uj − θuj) = Gnψ̄uj +OP (δn) in ℓ
∞(U × [p̃]), uniformly in P ∈ Pn,

where ψ̄uj(W ) := −σ−1
uj J

−1
uj ψuj(Wuj , θuj , ηuj) and σ

2
uj = E[J−2

uj ψ
2
uj(Wuj , θuj , ηuj)].

The uniform Bahadur representation derived in Theorem 5 is useful in the construction of simul-

taneous confidence bands for (θuj)u∈U ,j∈[p̃]. This is achieved by new high-dimensional central limit

theorems that have been recently developed in [24] and [25]. We will make use of the following reg-

ularity condition. In what follows δ̄n and ∆n are fixed sequences going to zero, and we denote by

ψ̂uj(Wi) := −σ̂−1
uj Ĵ

−1
uj ψuj(Wuji, θ̌uj , η̂uj) estimators of ψ̄uj(W ), with Ĵuj and σ̂uj being suitable estima-

tors of Juj and σuj . In what follows, ‖·‖Pn,2 denotes the empirical L2(Pn)-norm where Pn is the empirical

measure of the data.
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Assumption C3 (Score Regularity). The following conditions hold for each n > n0 and all P ∈ Pn. (i)

The class of function induced by the score F0 = {ψ̄uj(W ) : j ∈ [p̃], u ∈ U} is suitably measurable and its

uniform covering entropy obeys:

sup
Q

logN(ǫ‖F0‖Q,2,F0, ‖ · ‖Q,2) 6 ̺n(log(An/ǫ)) ∨ 0,

where F0(W ) is an envelope for F0 which is measurable with respect to W and satisfies F0(W ) >

supu∈U ,j∈[p̃] |ψ̄uj(W )| and ‖F0‖P,q 6 Ln for q > 4. Furthermore, c 6 supu∈U ,j∈[p̃] E[|ψ̄uj(W )|k] 6 CLk−2
n

for k = 2, 3, 4. (ii) The set F̂0 = {ψ̄uj(W ) − ψ̂uj(W ) : j ∈ [p̃], u ∈ U} satisfies the conditions

logN(ǫ, F̂0, ‖ · ‖Pn,2) 6 ¯̺n(log(Ān/ǫ))∨0, and supu∈U ,j∈[p̃] En[{ψ̄uj(W )− ψ̂uj(W )}2] 6 δ̄n{ρnρ̄n log(An ∨
n) log(Ān ∨ n)}−1 with probability 1−∆n.

Assumption 3 imposes condition on the class of functions induces by ψ̄uj and on its estimators ψ̂uj .

Typically the bound Ln on the moment of the envelope is smaller than Kn, and in many settings ρ̄n =

ρn . dU the dimension of U .

Next let N denote a mean zero Gaussian process indexed by U × [p̃] with covariance operator given

by E[ψ̄uj(W )ψ̄u′j′(W )] for j, j′ ∈ [p̃] and u, u′ ∈ U . Because of the high-dimensionality, indeed p̃ can be

larger than the sample size n, the central limit theorem will be uniformly valid over “rectangles.” This

class of sets are rich enough to construct many confidence regions of interest in applications accounting

for multiple testing. Let R denote the set of rectangles R = {z ∈ R
p̃ : maxj∈A zj 6 t,maxj∈B(−zj) 6 t}

for all A,B ⊂ [p̃] and t ∈ R. The following result is a consequence of Theorem 3 above and Corollary 2.2

of [26].

Corollary 3. Under Assumptions 1 and 2 with δn = o({ρn log(An ∨ n)}−1/2), Assumption 3(i), and

ρn log(An ∨ n) = o({(n/L2
n)

1/7 ∧ (n1−2/q/L2
n)

1/3}), we have that

sup
P∈Pn

sup
R∈R

∣∣∣∣P
(
{sup
u∈U

n1/2σ−1
uj (θ̌uj − θuj)}p̃j=1 ∈ R

)
− P(N ∈ R)

∣∣∣∣ = o(1).

In order to derive a method to build confidence regions we approximate the process N by the Gaussian

multiplier bootstrap based on estimates ψ̂uj of ψ̄uj , namely

Ĝ = (Ĝuj)u∈U ,j∈[p̃] =

{
1√
n

n∑

i=1

ξiψ̂uj(Wi)

}

u∈U ,j∈[p̃]

where (ξi)
n
i=1 are independent standard normal random variables which are independent from the data

(Wi)
n
i=1. Based on Theorem 5.2 of [24], the following result shows that the multiplier bootstrap provides

a valid approximation to the large sample probability law of
√
n(θ̌uj − θuj)u∈U ,j∈[p̃] over rectangles.

Corollary 4 (Uniform Validity of Gaussian Multiplier Bootstrap). Under Assumptions 1 and 2

with δn = o({ρn log(An∨n)}−1/2), Assumption 3, and ρn log(An∨n) = o({(n/L2
n)

1/7∧(n1−2/q/L2
n)

1/3}),
we have that

sup
P∈Pn

sup
R∈R

∣∣∣∣P
(
{sup
u∈U

n1/2σ−1
uj (θ̌uj − θuj)}p̃j=1 ∈ R

)
− P(Ĝ ∈ R | (Wi)

n
i=1)

∣∣∣∣ = o(1)
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Appendix I. Continuum of ℓ1-Penalized M-Estimators

For the reader’s convenience, this section collects results on the estimation of a continuum of estimation

of high-dimensional models via ℓ1-penalized estimators.

Consider a data generating process with a response variable (Yu)u∈U and observable covariates (Xu)u∈U
satisfying for each u ∈ U ,

θu ∈ arg min
θ∈Rp

E[Mu(Yu, Xu, θ, au)], (I.59)

where θu is a p-dimensional vector, au is a nuisance function that capture the misspecification of the

model, Mu is a pre-specified function, and the (pu-dimensional, pu 6 p) covariate Xu could have been

constructed based on transformations of other variables. This implies that

∂θE[Mu(Yu, Xu, θu, au)] = 0 for all u ∈ U .

The solution θu is assumed to be sparse in the sense that for some process (θu)u∈U satisfies

‖θu‖0 6 s for all u ∈ U .

Because the nuisance function, such sparsity assumption is very mild and formulation (I.59) encompasses

several cases of interest including approximate sparse models. We focus on the estimation of (θu)u∈U and

we assume that an estimate âu of the nuisance function au is available and the criterionMu(Yu, Xu, θu) :=

Mu(Yu, Xu, θu, âu) is used as a proxy for Mu(Yu, X, θu, au).

In the case of linear regression we have Mu(y, x, θ) =
1
2 (y − x′θ)2. In the logistic regression case, we

haveMu(y, x, θ) = −{1(y = 1) logG(x′θ)+ 1(y = 0) log(1−G(x′θ))} where G is the logistic link function

G(t) = exp(t)/{1 + exp(t)}. Additional examples include quantile regression models where for u ∈ (0, 1)

we have .

Example 8 (Quantile Regression Model). Consider a data generating process Y = F−1
Y |X(U) = X ′θU +

rU (X), where U ∼ Unif(0, 1), and X is a p-dimensional vector of covariates. The criterion Mu(y, x, θ) =

(u− 1{y 6 x′θ})(y − x′θ) with the (trivial) estimate âu = 0 of the nuisance parameter au = ru.

Example 9 (Lasso with Estimated Weights). We consider a linear model defined as fuY = fuX
′θu +

r̄u + ζu, E[fuXζu] = 0, where X are p̄-dimensional covariates, θu is a s-sparse vector, and r̄u is an

approximation error satisfying supu∈U En[r̄
2
u] .P s log p̄/n. In this setting, (Y,X) are observed and only

an estimator f̂u of fu is available. This corresponds to a nuisance parameter au = (fu, r̄u) and âu = (f̂u, 0)

so that En[Mu(Y,X, θ, au)] = En[f
2
u(Y −X ′θ − r̄u)

2] and En[Mu(Y,X, θ)] = En[f̂
2
u(Y −X ′θ)2].

We assume that n i.i.d. observations from dgps where (I.59) holds, {(Yui, Xui)u∈U}ni=1, are available

to estimate (θu)u∈U . For each u ∈ U , a penalty level λ, and a diagonal matrix of penalty loadings Ψ̂u,

we define the ℓ1-penalized Mu-estimator (Lasso) as

θ̂u ∈ argmin
θ

En[Mu(Yu, Xu, θ)] +
λ

n
‖Ψ̂uθ‖1. (I.60)

Furthermore, for each u ∈ U , the post-penalized estimator (Post-Lasso) based on a set of covariates T̃u

is then defined as

θ̃u ∈ argmin
θ

En[Mu(Yu, Xu, θ)] : support(θ) ⊆ T̃u. (I.61)
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Potentially, the set T̃u contains support(θ̂u) and possibly additional variables deemed as important (al-

though in that case the total number of additional variables should also obey the same growth conditions

that s obeys). We will set T̃u = support(θ̂u) unless otherwise noted.

In order to handle the functional response data, the penalty level λ and penalty loading Ψ̂u =

diag({l̂uk, k = 1, . . . , p}) need to be set to control selection errors uniformly over u ∈ U . The choice of load-
ing matrix is problem specific and we suggest to mimic the following “ideal” choice Ψ̂u0 = diag({luk, k =

1, . . . , p}) where
luk = {En

[
{∂θkMu(Yu, Xu, θu, au)}2

]
}1/2 (I.62)

which is motivated by the use of self-normalized moderate deviation theory. In that case it is suitable to

set λ so that with high probability

λ

n
> c sup

u∈U

∥∥∥Ψ̂−1
u0 En [∂θMu(Yu, Xu, θu, au)]

∥∥∥
∞
, (I.63)

where c > 1 is a fixed constant. Indeed, in the case that U is a singleton the choice above is similar

to [22], [11], and [18]. This approach was first employed for a continuum of indices U in the context of

ℓ1-penalized quantile regression processes by [10].

To implement (I.63), we propose setting the penalty level as

λ = c
√
nΦ−1(1− γ/{2pNn}), (I.64)

where Nn is a measure of the class of functions indexed by U , 1− γ (with γ = o(1)) is a confidence level

associated with the probability of event (I.63), and c > 1 is a slack constant. In many settings we can

take Nn = ndU . If the set U is a singleton, Nn = 1 suffices which corresponds to that used in [15]. When

implementing the estimators, we set c = 1.1 and γ = .1/ log(n), though other choices are theoretically

valid.

I.1. Generic Finite Sample Bounds. In this section we derive finite sample bounds based on As-

sumption 4 below. This assumption provides sufficient conditions that are implied by a variety of settings

including generalized linear models.

Assumption C4 (M-Estimation Conditions). Let {(Yui, Xui, u ∈ U), i = 1, . . . , n} be n i.i.d. observa-

tions of the model (I.59) and let Tu = support(θu) where |Tu| 6 s, u ∈ U . With probability 1 − ∆n we

have that for all u ∈ U there are weights wu = wu(Yu, Xu) and Cun such that:

(a) |En[∂θMu(Yu, Xu, θu)− ∂θMu(Yu, Xu, θu, au)]
′δ| 6 Cun‖

√
wuX

′
uδ‖Pn,2

(b) ℓΨ̂u0 6 Ψ̂u 6 LΨ̂u0 for ℓ > 1/c, and let c̃ = Lc+1
ℓc−1 supu∈U ‖Ψ̂u0‖∞‖Ψ̂−1

u0 ‖∞;

(c) for all δ ∈ Au there is q̄Au > 0 such that

En[Mu(Yu, Xu, θu + δ)]− En[Mu(Yu, Xu, θu)]− En[∂θMu(Yu, Xu, θu)]
′δ + 2Cun‖

√
wuX

′
uδ‖Pn,2

>
{
‖√wuX ′

uδ‖2Pn,2

}
∧
{
q̄Au‖

√
wuX

′
uδ‖Pn,2

}
.

In many applications we take the weights to be wu = wu(Xu) = 1 but we allow for more general

weights. Assumption 4(a) bounds to the impact of estimating the nuisance functions uniformly over

u ∈ U . In the setting with s-sparse estimands, we typically Cun . {n−1s log(pn)}1/2. The loadings
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Ψ̂u are assumed larger (but not too much larger) than the ideal choice Ψ̂u0 defined in (I.62). This is

formalized in Assumption 4(b). Assumption 4(c) is an identification condition that will be imposed for

particular choices of Au and qAu . It relates to conditions in the literature derived for the case of a

singleton U and no nuisance functions, see the restricted strong convexity3 used in [55] and the non-linear

impact coefficients used in [10] and [17].

The following results establish rates of convergence for the ℓ1-penalized solution with estimated nui-

sance functions (I.60), sparsity bounds and rates of convergence for the post-selection refitted estimator

(I.61). They are based on restricted eigenvalue type conditions and sparse eigenvalue conditions. The

restricted set is defined as ∆2c,u = {δ : ‖δTu‖1 6 2c̃‖δTu‖1} and the restricted eigenvalue is defined as

κ̄u,2c = infδ∈∆2c,u ‖
√
wuX

′
uδ‖Pn,2/‖δTu‖ for u ∈ U . In the results for sparsity and post-selection refitted

models, the minimum and maximum sparse eigenvalues, respectively

φmin(m,u) = min
16‖δ‖06m

‖√wuX ′
uδ‖2Pn,2

‖δ‖2 and φmax(m,u) = max
16‖δ‖06m

‖√wuX ′
uδ‖2Pn,2

‖δ‖2 ,

are also relevant quantities to characterize the behavior of the estimators.

Lemma 19. Suppose that Assumption 4 holds with δ ∈ Au = {δ : ‖δTu‖1 6 2c̃‖δTu‖1} ∪ {δ : ‖δ‖1 6
6c‖Ψ̂−1

u0
‖∞

ℓc−1
n
λCun‖

√
wuX

′
uδ‖Pn,2} and q̄Au > 3

{
(L+ 1

c )‖Ψ̂u0‖∞
λ
√
s

nκ̄u,2c̃
+ 9c̃Cun

}
. Suppose that λ satisfies

condition (I.63) with probability 1−∆n. Then, with probability 1− 2∆n we have uniformly over u ∈ U

‖√wuX ′
u(θ̂u − θu)‖Pn,2 6 3

{
(L+ 1

c )‖Ψ̂u0‖∞
λ
√
s

nκ̄u,2c̃
+ 9c̃Cun

}

‖θ̂u − θu‖1 6 3
{

(1+2c̃)
√
s

κ̄u,2c̃
+

6c‖Ψ̂−1

u0
‖∞

ℓc−1
n
λCun

}
3
{
(L+ 1

c )‖Ψ̂u0‖∞
λ
√
s

nκ̄u,2c̃
+ 9c̃Cun

}

Lemma 20 (M-Estimation Sparsity). In addition to condition of Lemma 19, assume that with probability

1−∆n for all u ∈ U and δ ∈ Rp we have

|{En[∂θMu(Yu, Xu, θ̂u)− ∂θMu(Yu, Xu, θu)]}′δ| 6 Lun‖
√
wuX

′
uδ‖Pn,2.

Let Mu = {m ∈ N : m > 2φmax(m,u)L
2
u} where Lu =

c‖Ψ̂−1

u0
‖∞

cℓ−1
n
λ {Cun + Lun}. Then with probability

1− 3∆n we have that

ŝu 6 min
m∈Mu

φmax(m,u)L
2
u for all u ∈ U .

Lemma 21. Let T̃u, u ∈ U , be the support used for post penalized estimator (I.61) and s̃u = |T̃u|
its cardinality. In addition to condition of Lemma 19, suppose that Assumption 4(c) holds also for

Au = {δ : ‖δ‖0 6 s̃u + s} with probability 1 − ∆n with q̄Au > 2

{√
s̃u+su‖En[Su]‖∞√
φmin(s̃u+su,u)

+ 3Cun

}
and q̄Au >

2{En[Mu(Yu, Xu, θ̃u)]− En[Mu(Yu, Xu, θu)]}1/2+ . Then, we have uniformly over u ∈ U

‖√wuX ′
u(θ̃u − θu)‖Pn,2 6 {En[Mu(Yu, Xu, θ̃u)]− En[Mu(Yu, Xu, θu)]}1/2+ +

√
s̃u + su‖En[Su]‖∞√
φmin(s̃u + su, u)

+ 3Cun.

In Lemma 21, if T̃u = support(θ̂u), we have that

En[Mu(Yu, Xu, θ̃u)]− En[Mu(Yu, Xu, θu)] 6 En[Mu(Yu, Xu, θ̂u)]− En[Mu(Yu, Xu, θu)] 6 λC′‖θ̂u − θu‖1
and supu∈U ‖En[Su]‖∞ 6 C′λ with high probability where C′ 6 L supu∈U ‖Ψ̂u0‖∞.

3Assumption 4 (a) and (c) could have been stated with {Cun/
√
s}‖δ‖1 instead of Cun‖

√
wuX′

uδ‖Pn ,2.
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These results generalize important results of the ℓ1-penalized estimators to the case of functional

response data and estimated of nuisance functions.

A key assumption in Lemmas 19-21 is that the choice of λ satisfies (I.63). We provide next a set of

simple generic conditions that will imply the validity of the proposed choice. These generic conditions

can be verified in many applications of interest.

Condition WL. For each u ∈ U , let Su = ∂θMu(Yu, Xu, θu, au), and suppose that:

(i) sup
u∈U

max
k6p

{E[|Suk|3]}1/3/{E[|Suk|2]}1/2Φ−1(1 − γ/{2pNn}) 6 δnn
1/6, for all u ∈ U , k ∈ [p]; (ii) Nn >

N(ǫ,U , dU ), where ǫ is such that with probability 1−∆n:

sup
dU(u,u′)6ǫ

‖En[Su−Su′ ]‖∞

E[|Suk|2]1/2 6 δnn
− 1

2 , and sup
dU(u,u′)6ǫ

max
k6p

|E[S2
uk−S2

u′k
]|+|(En−E)[S2

uk]|
E[|Suk|2] 6 δn.

The following technical lemma justifies the choice of penalty level λ. It is based on self-normalized

moderate deviation theory.

Lemma 22 (Choice of λ). Suppose Condition WL holds, let c′ > c > 1 be constants, γ ∈ [1/n, 1/ logn],

and λ = c′
√
nΦ−1(1− γ/{2pNn}). Then for n > n0 large enough depending only on Condition WL,

P

(
λ/n > c sup

u∈U
‖Ψ̂−1

u0En[∂θMu(Yu, Xu, θu, au)]‖∞
)

> 1− γ − o(γ)−∆n.

We note that Condition WL(iii) contains high level conditions. See [] for examples that satisfy these

conditions. The following corollary summarizes these results for many applications of interest in well

behaved designs.

Corollary 5 (Rates under Simple Conditions). Suppose that with probability 1 − o(1) we have that

Cun ∨ Lun 6 C{n−1s log(pn)}1/2, (Lc + 1)/(ℓc − 1) 6 C, wu = 1, and Condition WL holds with

logNn 6 C log(pn). Further suppose that with probability 1 − o(1) the sparse minimal and maximal

eigenvalues are well behaved, c 6 φmin(sℓn, u) 6 φmax(sℓn, u) 6 C for some ℓn → ∞ uniformly over

u ∈ U . Then with probability 1− o(1) we have

sup
u∈U

‖X ′
u(θ̂u − θu)‖Pn,2 .

√
s log(pn)

n
, sup

u∈U
‖θ̂u − θu‖1 .

√
s2 log(pn)

n
, and sup

u∈U
‖θ̂u‖0 . s.

Moreover, if T̃u = support(θ̂u), we have that

sup
u∈U

‖X ′
u(θ̃u − θu)‖Pn,2 .

√
s log(pn)

n

Appendix J. Bounds on Covering entropy

Let (Wi)
n
i=1 be a sequence of independent copies of a random elementW taking values in a measurable

space (W ,AW ) according to a probability law P . Let F be a set of suitably measurable functions

f : W → R, equipped with a measurable envelope F : W → R.

Lemma 23 (Algebra for Covering Entropies). Work with the setup above.

(1) Let F be a VC subgraph class with a finite VC index k or any other class whose entropy is bounded
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above by that of such a VC subgraph class, then the uniform entropy numbers of F obey

sup
Q

logN(ǫ‖F‖Q,2,F , ‖ · ‖Q,2) . 1 + k log(1/ǫ) ∨ 0

(2) For any measurable classes of functions F and F ′ mapping W to R,

logN(ǫ‖F + F ′‖Q,2,F + F ′, ‖ · ‖Q,2) 6 logN
(
ǫ
2‖F‖Q,2,F , ‖ · ‖Q,2

)
+ logN

(
ǫ
2‖F ′‖Q,2,F ′, ‖ · ‖Q,2

)
,

logN(ǫ‖F · F ′‖Q,2,F · F ′, ‖ · ‖Q,2) 6 logN
(
ǫ
2‖F‖Q,2,F , ‖ · ‖Q,2

)
+ logN

(
ǫ
2‖F ′‖Q,2,F ′, ‖ · ‖Q,2

)
,

N(ǫ‖F ∨ F ′‖Q,2,F ∪ F ′, ‖ · ‖Q,2) 6 N (ǫ‖F‖Q,2,F , ‖ · ‖Q,2) +N (ǫ‖F ′‖Q,2,F ′, ‖ · ‖Q,2) .

(3) For any measurable class of functions F and a fixed function f mapping W to R,

log sup
Q
N(ǫ‖|f | · F‖Q,2, f · F , ‖ · ‖Q,2) 6 log sup

Q
N (ǫ/2‖F‖Q,2,F , ‖ · ‖Q,2)

(4) Given measurable classes Fj and envelopes Fj, j = 1, . . . , k, mapping W to R, a function φ : Rk → R

such that for fj , gj ∈ Fj, |φ(f1, . . . , fk) − φ(g1, . . . , gk)| 6
∑k
j=1 Lj(x)|fj(x) − gj(x)|, Lj(x) > 0, and

fixed functions f̄j ∈ Fj, the class of functions L = {φ(f1, . . . , fk) − φ(f̄1, . . . , f̄k) : fj ∈ Fj , j = 1, . . . , k}
satisfies

log sup
Q
N


ǫ
∥∥∥

k∑

j=1

LjFj

∥∥∥
Q,2

,L, ‖ · ‖Q,2


 6

k∑

j=1

log sup
Q
N
(
ǫ
k‖Fj‖Q,2,Fj , ‖ · ‖Q,2

)
.

Proof. See Lemma L.1 in [16]. �

Lemma 24 (Covering Entropy for Classes obtained as Conditional Expectations). Let F denote a class

of measurable functions f : W ×Y → R with a measurable envelope F . For a given f ∈ F , let f̄ : W → R

be the function f̄(w) :=
∫
f(w, y)dµw(y) where µw is a regular conditional probability distribution over

y ∈ Y conditional on w ∈ W. Set F̄ = {f̄ : f ∈ F} and let F̄ (w) :=
∫
F (w, y)dµw(y) be an envelope for

F̄ . Then, for r, s > 1,

log sup
Q
N(ǫ‖F̄‖Q,r, F̄ , ‖ · ‖Q,r) 6 log sup

Q̃

N((ǫ/4)r‖F‖Q̃,s,F , ‖ · ‖Q̃,s),

where Q belongs to the set of finitely-discrete probability measures over W such that 0 < ‖F̄‖Q,r < ∞,

and Q̃ belongs to the set of finitely-discrete probability measures over W ×Y such that 0 < ‖F‖Q̃,s <∞.

In particular, for every ǫ > 0 and any k > 1,

log sup
Q
N(ǫ, F̄ , ‖ · ‖Q,k) 6 log sup

Q̃

N(ǫ/2,F , ‖ · ‖Q̃,k).

Proof. See Lemma L.2 in [16]. �
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