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Introduction

There is still a lot of uncertainty around the effects of monetary policy, despite fifty years

of empirical research, and many methodological advances.1 The dynamic responses of

macroeconomic variables that are reported in the literature are often controversial and,

under close scrutiny, lack robustness (see Ramey, 2016). Not just the magnitude and

the significance, but even the sign of the responses of crucial variables such as output

and prices depend on the identification strategy, the sample period, the information set

considered, and the details of the model specification.

Studying the effects of monetary policy is a difficult endeavour. Most of the variation

in monetary aggregates is accounted for by the way in which policy itself responds to

the state of the economy, and not by random disturbances to the central bank’s reaction

function. Hence, to be able to trace causal effects of monetary policy it is necessary (i)

to isolate unexpected exogenous shifts to monetary policy tools that are not due to the

systematic response of policy to either current or forecast economic conditions (Sims,

1992, 1998), and (ii) to generate responses of macroeconomic and financial variables over

time using an econometric model that is effectively capable of summarising the dynamic

interaction among such variables. The empirical practice has typically relied on several

identification schemes all justified by models of full-information rational expectations,

in conjunction with linear econometric specifications, such as vector autoregressions

(VARs) and local projections (LPs, Jordà, 2005). However, as carefully documented in

Coibion (2012) and in Ramey (2016), the lack of robustness of the responses to monetary

policy shocks ranges through both identification schemes, and empirical specifications.

Moving from these considerations, we reassess the empirical evidence on the effects

of monetary policy shocks by adopting an identification strategy that is robust to the

presence of informational frictions, in conjunction with a novel econometric method

that is robust to model misspecifications of different nature. Our strategy is in two

steps. First, we design an instrument for monetary policy shocks that accounts for

1Amongst many others, Friedman and Meiselman (1963), Sims (1972, 1980), Bernanke and Blinder
(1992), Leeper et al. (1996), Christiano et al. (1999), Romer and Romer (2004), Uhlig (2005), Gertler
and Karadi (2015). Comprehensive literature reviews are in Christiano et al. (1999) and in Ramey
(2016).
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the monetary authority and private agents potentially having non-nested information

sets, and hence entertaining different beliefs about the economy.2 Second, we introduce

Bayesian Local Projections (BLP) as a flexible and robust method that spans the space

between VARs and LPs and, in doing so, it imposes minimum restrictions on the shape

of the estimated impulse response functions (IRFs). We show that most of the lack of

stability reported in previous studies can be explained by the compounded effects of

the unrealistic assumptions of full information that are often made when identifying the

shocks, and the use of severely misspecified models for the estimation of the dynamic

responses. We then set to study how monetary policy shocks transmit to the economy,

how they affect financial conditions, and how do agents’ expectations react to them. We

document that responses obtained with our proposed methodology are consistent with

standard macroeconomic theory, are stable over time, and seldom display puzzles.3

Identification. As observed in Blinder et al. (2008), imperfect and asymmetric

information between the public and the central bank are the norm, not the exception,

in monetary policy. However, while this observation has informed many theoretical at-

tempts to include informational imperfections in the modelling of monetary policy, it has

been largely disregarded in the empirical identification of the shocks.4 Indeed, popular

instruments for monetary policy shocks that are constructed in leading identification

schemes can be thought of as assuming that either the central bank (e.g. Romer and

Romer, 2004) or market participants (e.g. Gertler and Karadi, 2015) enjoy perfect in-

formation. Under these assumptions, controlling for the information set of the perfectly

informed agent is sufficient to identify the shock. If all agents in the economy enjoyed

full information, different instruments would deliver identical results. On the contrary,

2Our methodology builds on the insights provided by models of imperfect – noisy and sticky –
information and asymmetric information (e.g. Woodford, 2001; Mankiw and Reis, 2002; Sims, 2003;
Mackowiak and Wiederholt, 2009) and, empirically, combines insights from Romer and Romer (2004)’s
narrative identification identification and the high-frequency identification (HFI) of Gertler and Karadi
(2015).

3While not ruling out the possibility of time-variation in the transmission coefficients of monetary
policy (see Primiceri, 2005), our results show that the effects of monetary policy are more stable than
was previously reported. Our results are robust to a variety of severe tests, amongst others on the
sample used, the chosen lag length, the composition of the vector of endogenous variables considered,
and the BLP prior specification.

4Reviews on models of imperfect information and learning in monetary policy are in Mankiw and
Reis (2010), Sims (2010), and Gaspar, Smets and Vestin (2010).
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responses may instead diverge with dispersed information.

This paper reviews and expands the evidence on the presence of informational fric-

tions that are relevant for monetary policy. We formally test and reject the null of full

information for all the instruments for monetary policy shocks used in leading identi-

fication schemes. First, high-frequency instruments are predictable (see also Miranda-

Agrippino, 2016) and autocorrelated (see also Ramey, 2016). We interpret this as an

indication of the sluggish adjustment of expectations, in line with what documented for

different types of economic agents using survey data. This is the emerging feature of

models of imperfect information.5 Second, market-based revisions of expectations that

follow policy announcements correlate with central banks’ private macroeconomic fore-

casts (see also Barakchian and Crowe, 2013; Gertler and Karadi, 2015; Ramey, 2016;

Miranda-Agrippino, 2016). We think of this as evidence of the ‘signalling channel’ dis-

cussed in Melosi (2013) – i.e. the transfer of central banks’ private information implicitly

disclosed through policy actions, and due to the information asymmetry between private

agents and the central bank (Romer and Romer, 2000). Finally, we show that narrative

surprises, obtained with respect to the central bank’s information set only (Romer and

Romer, 2004), are equally affected by informational frictions. Specifically, they are auto-

correlated, predictable by past information, and may contain anticipated policy shifts –

e.g. forwards guidance announcements.

Taking stock of this evidence, we define monetary policy shocks as exogenous shifts

in the policy instrument that surprise market participants, are unforecastable, and are

not due to the central bank’s systematic response to its own assessment of the mac-

roeconomic outlook. Hence, we construct an instrument for monetary policy shocks by

projecting market-based monetary surprises on their own lags, and on the central bank’s

information set, as summarised by Greenbook forecasts.6 We use this informationally-

5See, for example, Mankiw et al. (2004), Coibion and Gorodnichenko (2012), Coibion and Gorod-
nichenko (2015), and Andrade and Le Bihan (2013).

6Market-based monetary surprises are the high-frequency price revisions in traded interest rates
futures that are triggered by a policy announcement. In using financial markets instruments to meas-
ure the unexpected component of monetary policy we connect to a large literature pioneered by Rude-
busch (1998) and Kuttner (2001) and whose notable contributions include, among others, Bernanke and
Kuttner (2005); Gürkaynak (2005); Gürkaynak, Sack and Swanson (2005); Campbell, Fisher, Justiniano
and Melosi (2016); Caldara and Herbst (2016); Gilchrist, López-Salido and Zakraǰsek (2015). Barak-
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robust instrument to identify the shocks from the stochastic component of an autore-

gressive model (Stock and Watson, 2012; Mertens and Ravn, 2013).

Transmission. From a classical point of view, choosing between iterated (VAR) and

direct (LP) impulse responses involves a trade-off between bias and estimation variance:

the iterated method produces more efficient parameters estimates than the direct one,

but it is more prone to bias if the model is misspecified. Because it is implausible that

generally low-order autoregressive models are correctly specified, the robustness of LP

to model misspecification makes them a theoretically preferable procedure. Common

misspecifications can in fact easily arise in relation to the chosen lag order, insufficient

information set considered, unmodelled moving average components, and non-linearities

(Braun and Mittnik, 1993; Schorfheide, 2005). Yet, empirical studies indicate that due

to high estimation uncertainty, and over parametrisation, the theoretical gains from

direct methods are rarely realised in practice (see Marcellino, Stock and Watson, 2006;

Kilian and Kim, 2011).

We think of this as a standard trade-off in Bayesian estimation, and design Bayesian

Local Projection (BLP) to effectively bridge between the two specifications.7 BLP re-

sponses are estimated using conjugate priors centred around an iterated VAR estimated

on a pre-sample. Intuitively, the prior gives weight to the belief that economic time

series processes can be described in first approximation by linear models such as VARs.

Extending the argument in Giannone, Lenza and Primiceri (2015), we treat the overall

informativeness of the priors as an additional model parameter for which we specify a

prior distribution, and choose it as the maximiser of the posterior likelihood. As a res-

ult, the posterior mean of BLP IRFs is an optimally weighted combination of VAR and

LP-based IRFs. We find that the data tend to deviate from the VAR prior the farther

away the horizon, resulting in an optimal level of prior shrinkage that is a monotonic

chian and Crowe (2013) and Miranda-Agrippino (2016) have proposed identifications based on monet-
ary surprises that control for the central bank’s internal forecasts. Differently from these papers, our
methodology incorporates intuition stemming from models of imperfect information.

7Our approach has an alternative classical interpretation provided by the theory of ‘regularisation’
of statistical regressions (see, for example, Chiuso, 2015). Another approach to LP regularisation has
been proposed more recently in Barnichon and Brownlees (2016). A different Bayesian approach to
inference on structural IRFs has been proposed by Plagborg-Moller (2015). Barnichon and Matthes
(2014) have propounded a method to estimate IRFs using Gaussian basis functions.
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non-decreasing function of the forecast horizon, or projection lag.

Empirical Findings. Using our methodology, we study the transmission of mon-

etary policy shocks on a large and heterogenous set of both macroeconomic and fin-

ancial variables, as well as on private sector expectations, and medium and long-term

interest rates. We find that a monetary contraction is unequivocally and significantly

recessionary. Output and prices contract and there is no evidence of puzzles. We docu-

ment evidence compatible with many of the standard channels of monetary transmission

(Mishkin, 1996). We analyse in detail the response of interest rates at short, medium,

and very long maturities and find important but very short-lived effects of policy on the

yield curve (Romer and Romer, 2000; Ellingsen and Soderstrom, 2001). Also, we find

evidence of a powerful credit channel that magnifies the size of the economic contrac-

tion through the responses of both credit and financial markets (Bernanke and Gertler,

1995; Gertler and Karadi, 2015; Caldara and Herbst, 2016). Moreover, we document

a deterioration of the external position sustained by a significant appreciation of the

domestic currency. Finally, the expectational channel is activated: agents revise their

macroeconomic forecasts in line with the deteriorating fundamentals. Finally, we doc-

ument that BLP responses optimally deviate from the VAR responses as the horizon

grows. As a result of this BLP IRFs revert to trend much faster than VAR IRFs do.

This has potentially important implications for the policy debate, and particularly in

relation to the length of the policy horizons, the duration of which is typically calibrated

on VAR evidence.

1 Identification

The empirical identification of monetary policy shocks relies on specific assumptions on

how information is acquired, processed, and dispersed in the economy by the central

bank and economic agents. Typically, even when not explicitly stated, the maintained

assumption is that of full information rational expectation. In such a world, information

is seamlessly processed, agents’ expectations reflect the structure of the economy, are

perfectly aligned to those of the central bank at all times, and any systematic pattern
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in the way policy is enacted is correctly inferred by the agents. Hence, expectation

(forecast) errors and expectation revisions are orthogonal to past information, and re-

flect structural shocks. The econometric problem is thus reduced to the often stated

principle of aligning the information set of the econometrician to that of the (represent-

ative, and fully informed) agents. The two leading identification strategies for monetary

policy shocks – Romer and Romer (2004)’s narrative instrument, and Gertler and Karadi

(2015)’s high frequency identification – assume different types of agents as the perfectly

informed ones. In fact, while the narrative identification focuses solely on the poli-

cymaker’s information set, the high-frequency identification exploits uniquely market

participants’ information.

Romer and Romer (2004) measure monetary policy shocks as the changes in the

policy rate that are not taken in response to either current or forecast macroeconomic

conditions. This is achieved by projecting a series of intended federal funds rates changes

on Greenbook forecasts that summarise the inputs of the Fed’s reaction function.8 The

monetary policy shock is therefore thought of as a deviation from the policy rule, given

the central bank’s internal forecasts of relevant macroeconomic aggregates. This ap-

proach implicitly assumes that the Fed possesses complete information, and that there-

fore it is sufficient to control for the Fed’s information set to achieve identification.

Conversely, Gertler and Karadi (2015) use the average monthly surprise in federal funds

futures to identify monetary policy shocks. Under the assumption of a constant risk

premium, the changes in the prices of federal funds futures occurring during a narrow

window around FOMC announcements provide a measure of the component of monetary

policy that is unexpected by market participants. In this case, market participants are

implicitly assumed to have a complete information set, and therefore their revision of

expectations following a policy announcement is sufficient to identify monetary policy

shocks.

If both the central bank and private agents indeed enjoyed full information, using

either of the two measures as an instrument for monetary policy shocks should produce

8Because intended rate changes are reconstructed using historical accounts, this approach is referred
to as ‘narrative’. Greenbook forecasts are produced by Federal Reserve staff, are updated ahead of each
scheduled FOMC meeting, and concur to form the basis on which the FOMC make their decisions.
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identical results. However, as discussed in Coibion (2012) and in Ramey (2016), de-

pending on the chosen modelling framework, the sample, and the set of variables used,

narrative-based measures and high-frequency instruments deliver responses to monet-

ary disturbances that are quite diverse, and often times puzzling. Furthermore, recent

studies have shown that high-frequency market surprises can be autocorrelated and pre-

dictable by both central bank’s forecasts and lagged information. In this section, we

significantly expand on this evidence, and show that lagged information is also signi-

ficantly predictive of narrative shock measures, and that they too display a non-zero

degree of autocorrelation.

We read these facts through the lenses of models of imperfect and asymmetric in-

formation (e.g. Woodford, 2001; Sims, 2003; Mackowiak and Wiederholt, 2009), and

interpret the predictability of these instruments as a rejection of the full information

paradigm.9 More generally, we connect these findings to the growing corpus of evid-

ence collected from survey data that shows that economic agents – consumers, central

bankers, firms and professional forecasters alike –, are all subject to important informa-

tional limitations. These range from information being only slowly processed over time

(see, e.g. Coibion and Gorodnichenko, 2012, 2015; Andrade and Le Bihan, 2013), to it

being unevenly distributed across agents’ types. The asymmetry of information sets

across agents is an important dimension along which the divergence of beliefs about the

state of the economy develops (see, e.g. Carroll, 2003; Andrade et al., 2014; Romer and

Romer, 2000).10

Specifically, we observe that three emerging features of models of imperfect inform-

ation have particularly important implications for the identification of monetary policy

9Two general classes of models incorporating deviations from full information have been proposed:
the delayed-information models as in Mankiw and Reis (2002), and the noisy-information models such
as in Woodford (2001), Sims (2003), and Mackowiak and Wiederholt (2009). Theories incorporating
deviations from perfect information have provided frameworks to understand empirical regularities, in
monetary economics and beyond, that are challenging for the perfect information framework as, for
example, the sluggishness of price adjustments (Mankiw and Reis, 2002; Mackowiak and Wiederholt,
2009) and their discreteness at a micro level (Matejka and Sims, 2011). Other contributions to the
theoretical literature on monetary policy are in Reis (2006b,a); Orphanides (2003); Aoki (2003); Nimark
(2008b,a). Despite the theoretical modelling efforts, with few exceptions, the empirical literature has
seldom departed from the assumption of perfect information.

10As discussed in Blanchard et al. (2013) and Ricco (2015), the presence of a complex informational
structure and of information frictions can crucially modifies the econometric identification problem.
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shocks. First, average expectation revisions (and thus high-frequency surprises) – a dir-

ect measure of the shocks under full information –, are not orthogonal to either their

past or past available information due to the slow absorption of new information over

time. Second, narrative measures based on central bank’s expectations à la Romer and

Romer (2004) may underestimate the extent to which market participants are able to

forecast movements in the policy rate, or to incorporate news about anticipated policy

actions.11 Third, observable policy actions can transfer information from the policy

maker to market participants. For instance, interest rate decisions can ‘signal’ inform-

ation about the central bank’s assessment of the economic outlook (see Melosi, 2013;

Hubert and Maule, 2016). This implicit disclosure of information can strongly influ-

ence the transmission of monetary impulses, and the central bank’s ability to stabilise

the economy. Empirically, if not accounted for, it can lead to both price and output

puzzles. In fact, a policy rate hike can be interpreted by informationally constrained

agents either as a deviation of the central bank from its monetary policy rule – i.e. a

contractionary monetary shock –, or as an endogenous response to inflationary pressures

expected to hit the economy in the near future. Despite both resulting in a visible rate

increase, these two scenarios imply profoundly different evolutions for macroeconomic

aggregates, and related agents’ expectations (see e.g. Campbell et al., 2012, and Sec-

tion 4). We empirically document the testable implications of these three predictions

of models of imperfect information in Section 1.2, and in doing so we also rationalise

evidence reported in previous studies (e.g. Barakchian and Crowe, 2013; Gertler and

Karadi, 2015; Ramey, 2016; Miranda-Agrippino, 2016) .

In the reminder of this section we show how signal extraction, the autocorrelation of

expectation revisions, and central bank’s signalling all affect the identification of mon-

etary policy shocks in a simple noisy information model. We then formally test for the

presence of informational frictions in the most commonly used measures for monetary

policy shocks. Lastly, we construct a measure for monetary policy shocks that explicitly

takes into account agents’ and central bank’s informational constraints.

11Also, they potentially overlook information related to developments in financial markets altogether.
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Figure 1: The Information Flow
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¯
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¯
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noisy signals si,t about the economy xt, and update their forecasts Fi,
¯
txt based on their information

set Ii,t. At t̄ the central bank announces the policy rate it based on its forecast Fcb,
¯
txt. Agents observe

it, infer Fcb,
¯
txt, and form Fi,t̄xt. Trade is a function of the aggregate expectation revision between

¯
t

and t̄.

1.1 A Simple Noisy Information Model

In standard full-information rational expectation models, expectation revisions are or-

thogonal to past information. Unlike this case, as observed in Coibion and Gorod-

nichenko (2015), a common prediction of models of imperfect information is that average

expectations respond more gradually to shocks to fundamentals than do the variables

being forecasted. Hence, revisions of expectations (and subsequent movements in market

prices) can be correlated over time, and are likely to be a combination of both current

and past structural shocks. Moreover, agents can extract information about the funda-

mentals from observable policy actions. In this section we introduce a simple model of

noisy and asymmetric information that can account for all these features. Derivations

of the main formulas are in Appendix A.

Let us consider an economy whose k-dimensional vector of macroeconomic funda-

mentals evolves following an autoregressive process

xt = ρxt−1 + ξt ξt ∼ N (0,Σξ) . (1)
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ξt is the vector of structural shocks. Any period t is divided into two stages. An

opening stage
¯
t, and a closing stage t̄. At

¯
t, shocks are realised. Agents and central

banks do not observe xt directly, rather, they use a Kalman filter to form expectations

about xt based on the private signals that they receive. At t̄, the central bank sets and

announces the interest rate for the current period it. Agents can trade securities (e.g.

futures contracts) based on it+h, the realisation of the policy rate at time t+ h. Having

observed the current policy rate, agents update their forecasts, and trade. The price

revision in the traded futures contracts that occurs after the rate announcement is a

function of both the revision in the aggregate expectation about the fundamentals xt,

and of the policy shift ut.

At
¯
t, agents receive a signal si,

¯
t about xt. Based on si,

¯
t, they update their forecasts

as follows

Fi,
¯
txt = K1si,

¯
t + (1−K1)Fi,t−1xt , (2)

Fi,
¯
txt+h = ρhFi,

¯
txt ∀h > 0 , (3)

where

si,
¯
t = xt + νi,

¯
t , νi,

¯
t ∼ N (0, σν) , (4)

is the private signal, Fi,
¯
txt denotes the forecast conditional on the information set at

¯
t,

and K1 is the agents’ Kalman gain. Agents price futures contracts on it+h as a function

of their aggregate expectation about xt as follows

p
¯
t(it+h) = F

¯
txt+h + µt, (5)

where µt is a stochastic component unaffected by the monetary policy shock, such as the

risk premium in Gürkaynak et al. (2005), or a stochastic process related to the supply

of assets (see Hellwig, 1980; Admati, 1985). At stage
¯
t, the central bank too observes a

signal about the current state of the economy

scb,
¯
t = xt + νcb,

¯
t , νcb,

¯
t ∼ N (0, σcb,ν) , (6)
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and updates its forecasts accordingly

Fcb,
¯
txt = Kcbscb,

¯
t + (1−Kcb)Fcb,t−1xt , (7)

Fcb,
¯
txt+h = ρhFcb,

¯
txt ∀h > 0 . (8)

Kcb is the bank’s Kalman gain.

At t̄, conditional on its own forecast, the central bank sets the interest rate using a

Taylor rule

it = φ0 + φ′xFcb,
¯
txt + ut , (9)

where ut denotes the monetary policy shock. Given the structure of the central banks’

expectation formation process, Eq. (9) can be equivalently rewritten as

it = [1− (1−Kcb)ρ]φ0 + (1−Kcb)ρit−1 +Kcbφ
′
xscb,

¯
t − (1−Kcb)ρut−1 + ut . (10)

Interestingly, the interest rate smoothing in the monetary policy rule in Eq. (14) arises

naturally from the signal extraction problem faced by the central bank. Moreover, the

policy rate at any time t is a function of current and past signals, and of current and past

monetary policy shocks. Private agents observe the interest rate once it is announced

at t̄. In fact, conditional on it−1, this is equivalent to observing a public signal (i.e. with

common noise) released by the central bank of the form

s̃cb,t̄ = xt + νcb,
¯
t + (Kcbφ

′
x)
−1 [ut − (1−Kcb)ρut−1] . (11)

Based on the common signal s̃cb,t̄, agents update their forecasts at t̄ using Eq. (2). We

denote the gain of this second-stage forecast update by K2.

Because of this forecast update, the price at which futures contracts were traded

before the announcement is also revised, and by an amount proportional to the average

(in population) revision of expectations, that is

pt̄(it+1)− p
¯
t(it+1) ∝ (Ft̄xt+1 − F

¯
txt+1) , (12)

12



where Ft̄xt+1 and F
¯
txt+1 are the average forecast updates following si,

¯
t and s̃cb,t̄ respect-

ively. Simple algebraic manipulations allow us to write average expectation revisions

as

Ft̄xt − F
¯
txt =(1−K2)(1−K1)

[
Ft−1xt − Ft−1xt

]
+K2(1−K1)ξt +H

[
νcb,

¯
t − (1−K1)ρνcb,t−1

]
+K2(Kcbφ

′
x)
−1
[
ut − ρ(K1 −Kcb)ut−1 + (1−K1)(1−Kcb)ρ

2ut−2

]
. (13)

Hence, in a noisy information environment, expectation revisions are a function of several

components. The first term on the right hand side is the autocorrelation of expectation

revisions – the trademark of models of imperfect information. The second term is the

update of expectations due to the revisions of beliefs about the state of the economy and

the structural shocks ξt – ‘the signalling channel’. The third term is the aggregate noise

contained in the policy announcement, and is due to the central bank’s noisy observation

of the state of the economy. This too can be thought of as another exogenous policy shift

(see Orphanides, 2003). The last term contains a combination of monetary policy shocks

at different lags. As a result, the presence of informational imperfections can severely

affect the high-frequency identification of monetary policy shocks à la Gertler and Karadi

(2015). In fact, only a fraction of the variation in the forecasts for the interest rate can

be uniquely attributable to momentary policy ‘innovations’. Eq. (13) also provides us

with testable predictions about price movements around policy announcements: in the

presence of imperfect information they are (i) serially correlated; (ii) predictable using

other macroeconomic variables; (iii) correlated with the central bank’s projections of

relevant macroeconomic variables. We formally test for these predictions in Section 1.2.

Let us go back to the central bank’s problem and consider the following specification

for the Taylor rule in Eq. (9)

it = φ0 + φπ0Fcb,
¯
tπt + φπ1Fcb,

¯
tπt+1 + φy0Fcb,

¯
tyt + φy1Fcb,

¯
tyt+1 + vt . (14)

In Eq. (14), the central bank sets the nominal policy rate conditional on its forecasts for

13



current and future inflation and output. The narrative identification proposed in Romer

and Romer (2004) amounts to running the regression specified by Eq. (14), and using

the residuals as a measure of the shock ut. Suppose, however, that the deviation from

the rule vt is autocorrelated, and that it includes policy deviations uat|t−1 announced at

t−1 and implemented at t, as would e.g. be the case for forward guidance. In this case,

we have

vt = αvt−1 + uat|t−1 + ut . (15)

If vt behaves as in Eq. (15), the residual of the projection of the policy rate onto central

bank’s forecasts is not the structural shock ut. Moreover, given the predictability of the

process, agents can try to forecast vt using past information, even when informationally

constrained. Finally, the projection residuals will also be contaminated by expected

policy changes. While the presence of autocorrelation can be tested directly, one can

only hope to test for the presence of announced policy shifts indirectly, e.g. by using

factors extracted from a panel of macroeconomic and financial variables that may react

to announced policy changes.12

1.2 Testing for Imperfect Information

The extant literature has unveiled a series of facts that are compatible with the predic-

tions of models of imperfect information. Ramey (2016) notes that Gertler and Karadi

(2015)’s high-frequency instruments are predictable by Greenbook forecasts, and that

they display a non-negligible degree of autocorrelation. Gertler and Karadi (2015) con-

struct a measure of the Fed’s private information as the difference between Greenbook

forecasts and Blue Chip forecasts. They find that both level nowcasts for inflation and

output growth, as well as nowcast revisions between consecutive meetings are signific-

antly predictive of monetary surprises. Miranda-Agrippino (2016) extends the results in

Ramey (2016) to include a larger selection of monetary surprises extracted from differ-

ent financial contracts, and for both the US and the UK. Central banks’ forecasts and

12Also, if the central bank sets the policy rate conditioning on other indicators such as financial and
fiscal variables (see e.g. Croushore and van Norden, 2017), the projection residuals of Eq. (14) will also
be endogenous to these variables. This may show up as predictability with factors.
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forecast revisions between consecutive meetings for output, unemployment and inflation,

proxied by Inflation Report projections in the case of the UK, are significantly predictive

of monetary surprises. Furthermore, Miranda-Agrippino (2016) shows that monetary

surprises are significantly predictable also by lagged factors intended to summarise the

pre-existing economic and financial conditions in the economy. Again, the predictability

holds across financial instruments and countries, and survives a variety of robustness

tests.

We expand and systematise these findings and test for the predictions proposed

above. Tables 1 to 3 report the tests for (i) correlation with Fed’s internal forecasts,

(ii) serial correlation, and (iii) predictability, for three commonly used monetary policy

instruments. These are the monthly market surprises extracted form the fourth federal

funds futures (FF4t), and constructed as the sum of daily series in Gürkaynak et al.

(2005); the average monthly market surprise in Gertler and Karadi (2015), FF4GKt ;

and the Romer and Romer (2004)’s narrative shock series, MPNt.
13 All regressions

displayed are estimated at monthly frequency on all available observations over the

sample 1990:01 - 2009:12. We exclude the September 2001 observation from regressions

involving financial markets surprises to address the concerns in Campbell et al. (2012).

Also, for these series we note that results are not driven by the observations dating

earlier than 1994 (see Appendix C).

Table 1 reports F statistics and relative significance levels for the projection of mon-

etary surprises onto own lags and central bank’s forecast and revisions to forecasts for

output, inflation and unemployment. The narrative instrument is orthogonal to these

variables by construction. The null is strongly rejected for both the forecasts themselves

and their revision, and for both types of monthly market surprises. We note, however,

that the bulk of predictability resides in the forecast revisions between consecutive meet-

ings. This is consistent with the characteristics of the signalling channel, as discussed in

Melosi (2013) and Hubert and Maule (2016). In the first row of the table we note that

all three series seem to be autocorrelated.

13We use an extension of this series up to the end of 2007 constructed in Miranda-Agrippino and
Rey (2015).
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Table 1: Central Bank Signalling and Slow Absorption of Information

FF4t FF4GK
t MPNt

AR(4) 2.219
[0.068]*

10.480
[0.000]***

16.989
[0.000]***

Greenbook
Forecast

2.287
[0.011]**

3.377
[0.000]***

–

Greenbook
Revision

2.702
[0.007]***

3.719
[0.000]***

–

R2 0.021 0.080 0.068 0.142 0.129 0.100 0.237 – –

N 230 238 238 230 238 238 207 – –

Note: Regressions on Greenbook forecasts and forecast revisions include a constant and 1 lag of the
dependent variable. From left to right, the monthly surprise in the fourth federal funds future (FF4t),
the instrument in Gertler and Karadi (2015) (FF4GK

t ), the narrative series of Romer and Romer (2004)
(MPNt). 1990:2009. t-statistics are reported in square brackets, * p < 0.1, ** p < 0.05, *** p < 0.01,
robust SE.

We explore the extent of the autocorrelation for these commonly used instruments

for monetary policy shocks in Table 2. The numbers confirm the presence of time

dependence in all of the three instruments, including the narrative series. Extending

the number of lags to 12 does not alter the evidence. Also, we note that while the

weighting scheme adopted in Gertler and Karadi (2015) enhances the autocorrelation

in the average monthly surprises, the null of no time dependence is rejected also for the

unweighted monthly surprises.14

In Table 3 we project a set of different measures of monetary policy shocks on a

set of lagged macro-financial dynamic factors extracted from the collection of monthly

variables assembled in McCracken and Ng (2015). To the narrative and market-based

instruments already defined, we add a measure that we specifically construct to be ro-

bust to the presence of informational constraints in the economy (MPIt). A detailed

discussion on the construction of our instrument is in Section 1.3. The dataset that we

14The irregular pattern of autocorrelation can be due to the uneven scheduling of FOMC meetings
in any given year, the only partial overlap of the horizon of the fourth federal funds futures traded in
any given month, and the jagged edge of the real time data released every month by the statistical
office. Additionally, as pointed out in Coibion and Gorodnichenko (2012), the OLS coefficients can be
biased as a consequence of the presence of noisy signals. The bias in our case is likely to be negative,
as shown in the Appendix (Eq. A.17).
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Table 2: Autoregressive Component in Instruments for Monetary
Policy Shocks

FF4t FF4GK
t MPNt

lag 1 0.058 [0.89] 0.356 [5.47]*** -0.048 [-0.63]

lag 2 -0.013 [-0.20] -0.199 [-2.86]*** 0.207 [2.93]***

lag 3 0.090 [1.38] 0.232 [3.34]*** 0.507 [7.15]***

lag 4 0.150 [2.26]** 0.021 [0.29] 0.090 [1.12]

constant -0.010 [-2.30]** -0.008 [-2.43]** -0.006 [-0.54]

R2 0.021 0.142 0.237

F 2.219 10.480 16.989

p 0.068 0.000 0.000

N 230 230 207

Note: Regressions are estimated over the sample 1990:2009. From left to right, the monthly surprise
in the fourth federal funds future (FF4t), the instrument in Gertler and Karadi (2015) (FF4GK

t ),
the narrative series of Romer and Romer (2004) (MPNt), and the informationally robust instrument
constructed in Section 1.3 (MPIt). t-statistics are reported in square brackets, * p < 0.1, ** p < 0.05,
*** p < 0.01

use for the factors extraction counts over 130 monthly series that cover all the main

macroeconomic aggregates, and a number of financial indicators. The factors enter

the regressions with a month’s lag. Results in Table 3 confirm the predictability of

market-based monetary surprises using past information. They also show that narrat-

ive accounts of ‘unanticipated’ interest rate changes are similarly predictable by state

variables which are a function of past structural shocks.15

1.3 An Informationally-robust Instrument

Taking stock of the evidence discussed, we propose to identify monetary policy shocks

as the component of market surprises triggered by policy announcements that are or-

thogonal to both central bank’s economic projections, and to past market surprises.

Hence, we capture the effects of shifts to the policy rate that are both unforeseen by

market participants, and are not due to central bank’s concerns about either current or

15Factors are estimated using last vintage data which are likely to incorporate revisions to early
estimates variables. While this may not be information readily available to agents, it is worth to
observe that in a perfect information world markets aggregate information efficiently, and there is no
role for data revisions and national accounting offices.
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Table 3: Informational Frictions in Measures for Monetary Policy
Shocks

FF4t FF4GK
t MPNt MPIt

f1,t−1 -0.012 [-1.97]* -0.011 [-2.74]*** -0.103 [-4.13]*** 0.006 [0.98]

f2,t−1 0.001 [0.38] 0.004 [1.79]* -0.005 [-0.45] 0.005 [1.56]

f3,t−1 0.002 [0.41] -0.001 [-0.23] -0.035 [-2.21]** 0.001 [0.29]

f4,t−1 0.015 [2.09]** 0.008 [1.92]* 0.068 [2.71]*** 0.005 [0.70]

f5,t−1 0.002 [0.26] 0.001 [0.12] 0.017 [0.61] 0.008 [1.18]

f6,t−1 -0.011 [-2.19]** -0.007 [-2.58]** 0.008 [0.57] -0.008 [-1.63]

f7,t−1 -0.010 [-1.69]* -0.006 [-1.40] -0.053 [-2.85]*** -0.004 [-0.54]

f8,t−1 -0.001 [-0.35] 0.001 [0.32] -0.042 [-2.38]** -0.001 [-0.15]

f9,t−1 -0.002 [-0.59] -0.002 [-0.53] -0.037 [-1.65] 0.000 [0.07]

f10,t−1 0.004 [0.75] 0.000 [-0.03] -0.030 [-2.54]** -0.003 [-0.70]

R2 0.073 0.140 0.202 0.033

F 2.230 3.572 3.372 2.225

p 0.014 0.000 0.000 0.014

N 236 236 213 224

Note: Regressions include a constant and 1 lag of the dependent variable. 1990:2009. From left to right,
the monthly surprise in the fourth federal funds future (FF4t), the instrument in Gertler and Karadi
(2015) (FF4GK

t ), the narrative series of Romer and Romer (2004) (MPNt), and the informationally
robust instrument constructed in Section 1.3 (MPIt). The ten dynamic factors are extracted from the
set of monthly variables in McCracken and Ng (2015). t-statistics are reported in square brackets, *
p < 0.1, ** p < 0.05, *** p < 0.01, robust standard errors.

anticipated changes in the economic outlook.

Operationally, we proceed in three steps. First, we build monthly surprises (FF4t

discussed above) as the sum of the daily series in Gürkaynak, Sack and Swanson (2005).

These are the price revisions in interest rates futures that are registered following FOMC

announcements. The daily series used to construct the monthly monetary policy sur-

prises (mpst) are the intraday movements in the fourth federal funds futures contracts

that are registered within a 30-minute window surrounding the time of the FOMC an-

nouncements. These contracts have an average maturity of about three months. Federal

funds futures settle based on the average effective federal funds rate prevailing on the

expiry month, their price can therefore be thought of as embedding markets’ forecasts

about future policy rates. Under the assumption of a constant risk premium, a price

revision that follows a monetary policy announcement is a measure of the component
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of policy that is unexpected by market participants, given their pre-announcement in-

formation set. This is the assumption made in e.g. Gürkaynak et al. (2005). We think

of these series of monthly surprises as a proxy for the revisions in expectations in the

aggregate economy that are triggered by central bank’s policy decisions. Second, we

regress these monthly surprises onto (i) their lags, to mod out the autocorrelation due

to the slow absorption of information; and (ii) following Romer and Romer (2004), onto

Greenbook forecasts and forecast revisions for real output growth, inflation and the

unemployment rate, to control for the central bank’s private information.

Specifically, we recover an instrument for monetary policy shocks using the residuals

of the following regression:

mpst = α0 +

p∑
i=1

αimpst−i +

+
3∑

j=−1

θjF
cb
t xq+j +

2∑
j=−1

ϑj
[
F cb
t xq+j − F cb

t−1xq+j
]

+ zt. (16)

mpst denotes the monetary surprise that follows the FOMC announcements in month t.

F cb
t xq+j denotes Greenbook forecasts for quarter q + j made at time t, where q denotes

the current quarter.
[
F cb
t xq+j − F cb

t−1xq+j
]

is the revised forecast for xq+j between two

consecutive meetings. For each surprise, the latest available forecast is used. xq includes

output, inflation, and unemployment.16

In Figure 2 we plot the original monetary surprise mpst (FF4t, orange line) and

our instrument for the monetary policy shock zt (MPIt, blue line). Despite the many,

obvious similarities between the two series, the chart shows that significant discrepancies

arise particularly during times of economic distress (see Figure C.1 in Appendix C).

Most importantly, however, the difference between these two series is in the numbers in

Table 3, where the rightmost columns report the results of the test for the presence of

informational frictions in zt (MPIt). Consistent with our prior, we do not find evidence

of predictability for our instrument given past information.

16Following Romer and Romer (2004) we only include the nowcast for the level of the unemployment
rate to mitigate the effects of the high correlation between output and unemployment.
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Figure 2: Informationally-robust instrument for monetary policy
shocks
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Note: market-based surprises conditional on private agents’ information set FF4t (orange line), residual
to Eq. (16) MPIt (blue, solid). Shaded areas denote NBER recessions.

2 Transmission

Correct inference of the dynamic effects of monetary policy shocks hinges on the in-

teraction between the identification strategy and the modelling choice. Modern mac-

roeconomics thinks of the residuals of autoregressive models as structural stochastic

innovations – combinations of economically meaningful shocks –, and identifies the ones

of interest using theory-based assumptions, and often external instruments. Once struc-

tural shocks are meaningfully identified, the autoregressive coefficients of the model are

employed to study the transmission of the exogenous disturbances over time. Modelling

choices are therefore of great importance. First, in separating the stochastic component

of the economic processes as distinct from the autoregressive and deterministic ones.

Second, in providing a reduced-form description of the propagation of identified shocks

over time.

Time series econometrics has provided applied researchers with results that prove

the consistency of estimates under the quite restrictive assumption that the model cor-

rectly captures the data generating process (DGP). However, it is well understood that

when the empirical model – typically a VAR – is misspecified, estimates of the para-
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meters – transmission coefficients and covariance matrix alike – are inconsistent (Braun

and Mittnik, 1993). This affects the identification of the disturbances, the variance-

covariance decomposition, and the derived impulse response functions (IRFs). These

concerns have motivated the adoption of more flexible, ‘non-parametric’ empirical spe-

cifications, such as Jordà (2005)’s local projections (LP).

VARs produce IRFs by iterating up to the relevant horizon the coefficients of a

one-step-ahead model. Hence, if the one-step-ahead VAR is misspecified, the resulting

errors are compounded at each horizon in the estimated IRFs. Conversely, the local

projection method estimates impulse response functions from the coefficients of direct

projections of variables onto their lags at the relevant horizon. This makes LP more

robust to a number of model misspecifications, and thus a theoretically preferable choice.

In practice, however, the theoretical appeal of LPs has to be balanced against the

large estimation uncertainty that surrounds the coefficients’ estimates. From a classical

perspective, one faces a sharp bias-variance trade-off when selecting between VARs and

LPs.

In what follows, we review the two methods, and propose a Bayesian approach to

Local Projections (BLPs) as an efficient way to bridge between the two, by mean of

informative priors. Intuitively, we propose a regularisation for LP-based IRFs which

builds on the prior that a VAR can provide, in first approximation, a decent description

of the behaviour of most macroeconomic and financial variables. As the horizon grows,

however, BLP are allowed to optimally deviate from the restrictive shape of VAR-based

IRFs, whenever these are poorly supported by the data. This while the discipline

imposed by our prior allows to retain reasonable estimation uncertainty at all horizons.

2.1 Recursive VARs and Direct LPs

The standard practice in empirical macroeconomics is to fit a linear vector autoregression

to a limited set of variables. This in order to retrieve their moving average representa-

tion, from which it is possible to obtain dynamic responses to the identified shocks. A

21



VAR can be written in structural form as

A0yt+1 = K + A1yt + . . .+ Apyt−(p−1) + ut+1 , (17)

ut ∼ N (0,Σu) ,

where t = p + 1, . . . , T , yt = (y1
t , . . . , y

n
t )′ is a (n× 1) random vector of macroeconomic

variables, Ai, i = 0, . . . , p, are (n×n) coefficient matrices (the ‘transmission coefficients’),

and ut = (u1
t , . . . , u

n
t )′ is an n-dimensional vector of structural shocks. It is generally

assumed that Σu = In. VARs are estimated in reduced form, i.e.

yt+1 = C +B1yt + ...+Bpyt−(p−1) + εt+1 , (18)

εt ∼ N (0,Σε) ,

where εt = A−1
0 ut, E[εtε

′
t] = A−1

0 (A−1
0 )′ = Σε, and Bi = A−1

0 Ai. C = A−1
0 K.

Given A0, the IRFs to the identified structural shocks can be recursively computed

for any horizon h as

IRFVAR
h =

h∑
j=1

IRFVAR
h−j Bj , (19)

where IRFVAR
0 = A−1

0 and Bj = 0 for j > p. IRFVAR
h is an (n×n) matrix whose element

(i, j) represents the response of variable i to the structural shock j, h periods into the

future.

Despite being a workhorse of empirical macroeconomics, VARs are likely to be mis-

specified along several dimensions. First, the information set incorporated in a small-size

VAR can fail to capture all of the dynamic interactions that are relevant to the propaga-

tion of the shock of interest. For example, Caldara and Herbst (2016) argue that the

failure to account for the endogenous reaction of monetary policy to credit spreads in-

duces a bias in the shape of the response of all variables to monetary shocks. More

generally, there is evidence that policy makers and private agents are likely to assess

a large number of indicators when forming expectations and taking decisions (see, for

example, the discussion in Faust and Leeper, 2015). Second, the autoregressive lag order
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of the underlying process may potentially be underestimated. Also, if the disturbances

of the underlying DGP are a moving average process, fitting a low-order, or indeed any

finite-order VAR may be inadequate.17 Finally, several possible non-linearities of differ-

ent nature may be empirically significant – such as time-variation or state-dependency

of some of the parameters, and non-negligible higher order terms. In this perspect-

ive, to empirically pin down all of the different sources of misspecification in order to

parametrise them in a model is almost a self defeating effort.

As an alternative to the recursive VAR impulse response functions, the local projec-

tions (LP) à la Jordà (2005) estimate the IRFs directly from the linear regression

yt+h = C(h) +B
(h)
1 yt + ...+B

(h)
p̃ yt−(p̃+1) + ε

(h)
t+h , (20)

ε
(h)
t+h ∼ N (0,Σ(h)

ε ) ∀ h = 1, . . . , H ,

where the lag order p̃ may depend on h. The residuals ε
(h)
t+h, being a combination of

one-step-ahead forecast errors, are serially correlated and heteroskedastic. Given A0,

the structural impulse responses are

IRFLP
h = B

(h)
1 A−1

0 . (21)

In the forecasting literature, the distinction between VAR-based recursive IRFs and LP-

based direct IRFs corresponds to the difference between direct and iterated forecasts (see

Marcellino, Stock and Watson, 2006; Pesaran, Pick and Timmermann, 2011; Chevillon,

2007, amongst others). An implicit assumption of both the approaches is that macroeco-

nomic and financial time series possess either approximately linear, or only moderately

nonlinear behaviour that can be captured by a linear model, in first approximation.

This assumption is supported by a wealth of empirical evidence, amongst all the well

established fact that factor models are able to summarise and produce decent forecasts

of large panels of macroeconomic variables, due to their underlying approximated factor

structure.

17If the process is stationary, there exists an infinite moving average representation of it (the Wold
representation). Hence, the question is whether a finite VAR representation of the process exists.
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If a VAR correctly captures the DGP, its recursively generated IRFs are both optimal

in mean square sense, and consistent. Because it is implausible that typically low-order

autoregressive models be correctly specified, the robustness of LP responses to model

misspecification makes them a more attractive procedure compared to the bias-prone

VAR.18 However, due to the moving average structure of the residuals, and the risk of

over parametrisation, local projections are likely to be less efficient, and hence subject

to volatile and imprecise estimates (see, for example, the discussion in Ramey, 2013).

In fact, empirical studies indicate that the potential gains from direct methods are

not always realised in practice. Comparing direct and iterated forecasts for a large

collection of US variables of given sample length, Marcellino, Stock and Watson (2006)

note that iterated forecasts tend to have, for many economic variables, lower sample

MSFEs than direct forecasts. Also, direct forecasts become increasingly less desirable

as the forecast horizon lengthens. Similarly, comparing the finite-sample performance

of impulse response confidence intervals based on local projections and VAR models in

linear stationary settings, Kilian and Kim (2011) find that asymptotic LP intervals are

often less accurate than the bias-adjusted VAR bootstrapped intervals, notwithstanding

their large average width. Hence, from a classical perspective, choosing between iterated

and direct methods involves a sharp trade-off between bias and estimation variance: the

iterated method produces more efficient parameters estimates than the direct method,

but it is prone to bias if the one-step-ahead model is misspecified.

2.2 Bayesian Local Projections

From a Bayesian perspective, the trade-off between bias and variance involved in the

choice between iterated VAR-IRFs and direct LPs-IRFs is a natural one. This is also true

for classical ‘regularised’ regressions, providing an alternative frequentist interpretation

of Bayesian techniques (see, for example, Chiuso, 2015). Moving from this observation,

we design a new flexible linear method that bridges between iterated VAR responses

18In a simulated environment, and with regard to multi-step forecasts, Schorfheide (2005) shows that
as the degree of model misspecification increases, and for a given lag length, direct estimators yield a
lower prediction risk than iterated ones.
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and direct local projections. We refer to this new method as Bayesian Local Projection

(BLP). Alternatively, we could speak of ‘regularised Local Projections’.

The mapping between VAR coefficients and LP coefficients provides a natural way to

inform Bayesian priors about the latter (or to regularise the regression), hence essentially

spanning the space between iterated and direct response functions. To provide the gist

of our approach, let us consider the AR(1) specification of (19) and (20) – i.e. their

companion form. For h = 1, both models reduce to a standard VAR(1)

yt+1 = C +Byt + εt+1 . (22)

Iterating the VAR forward up to horizon h, we obtain

yt+h = (I −B)−1(I −Bh)C +Bhyt +
h∑
j=1

Bh−jεt+j (23)

= C(VAR,h) +B(VAR,h)yt + ε
(VAR,h)
t+h . (24)

Coefficients and residuals can now be readily mapped into those of a LP regression in

companion form

yt+h = C(h) +B(h)yt + ε
(h)
t+h , (25)

obtaining

C(h) ←→ C(VAR,h) = (I −B)−1(I −Bh)C , (26)

B(h) ←→ B(VAR,h) = Bh , (27)

ε
(h)
t+h ←→ ε

(VAR,h)
t+h =

h∑
j=1

Bh−jεt+h . (28)

The impulse response functions are given by Eq. (27), up to the identification matrix

A0 (and a selection matrix for the companion form):

IRFVAR
h = BhA−1

0 , (29)

IRFLP
h = B(h)A−1

0 . (30)
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Three observations are in order. First, conditional on the underlying data generating

process being the linear model in Eq. (22), and abstracting from estimation uncertainty,

the IRFs computed with the two different methods should coincide. Second, as shown

by Eq. (28), conditional on the linear model being correctly specified, LPs are bound

to have higher estimation variance due to (strongly) autocorrelated residuals.19 Third,

given that for h = 1 VARs and LPs coincide, the identification problem is identical

for the two methods. In other words, given an external instrument or a set of theory-

based assumptions, the way in which the A0 matrix is derived from either VARs or LPs

coincides.

The map in Eq. (26-28) provides a natural bridge between the two empirical spe-

cifications that can be used to inform priors for the LP coefficients used to estimate

the IRFs at each horizon. Clearly, if we believed the VAR(p) to be the correct specific-

ation, then LP regressions would have to be specified as ARMA(p, h − 1) regressions.

Their coefficients could be then estimated by combining informative priors with a fully

specified likelihood (see Chan et al., 2016). If, however, the VAR(p) were to effectively

capture the DGP, it would be wise to discard direct methods altogether. More gener-

ally, if we were to know the exact source of misspecification of any given VAR(p), we

could draw inference from a fully parametrised, correctly specified model. However, this

is not possible in practice. An alternative, robust approach to the strong parametric

assumptions that are typical of Bayesian VAR inference is the adoption of a misspecified

likelihood function to conduct inference about the pseudo-true parameters of interest,

as proposed in Müller (2013).

2.3 Informative Priors for LPs

For the coefficients of Eq. (20) at each horizon h, and leaving temporarily aside concerns

about the structure of the projection residuals, we specify standard conjugate Normal-

19Most macroeconomic variables are close to I(1) and even I(2) processes. Hence LP residuals are
likely to be strongly autocorrelated.
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inverse Wishart informative priors of the form

Σ(h)
ε | γ ∼ IW

(
Ψ

(h)
0 , d

(h)
0

)
,

β(h) | Σ(h)
ε , γ ∼ N

(
β

(h)
0 ,Σ(h)

ε ⊗ Ω
(h)
0 (γ)

)
, (31)

where β(h) ≡ vec(b(h)) = vec

([
C(h), B

(h)
1 , . . . , B

(h)
p̃

]′)
is the vector containing all the

local projection coefficients at horizon h. We use β
(h)
0 to denote the prior mean, and γ

for the generic vector collecting all the priors’ hyperparameters.

As in Kadiyala and Karlsson (1997), we set the degrees of freedom of the inverse-

Wishart distribution to d
(h)
0 = n+2, the minimum value that guarantees the existence of

the prior mean for Σ
(h)
ε , equal to Ψ

(h)
0 /(d

(h)
0 −n−1). As is standard in the macroeconomic

literature, we use sample information to fix some some of the hyperparameters of the

prior beliefs. In particular, at each horizon we set the prior scale Ψ
(h)
0 to be equal to

Ψ
(h)
0 = diag

([
(σ

(h)
1 )2, . . . , (σ(h)

n )2
])

,

where (σ
(h)
i )2 are the HAC-corrected variances of the autocorrelated univariate local

projection residuals. Similarly, we set Ω
(h)
0 as

Ω
(h)
0 (γ)

(np̃+1×np̃+1)

=

 ε−1 0

0 Ip̃ ⊗ (λ(h))2diag
([

(σ
(h)
1 )2, . . . , (σ

(h)
n )2

])−1

 ,

where we take ε to be a very small number, thus imposing a very diffuse prior on the

intercepts. One single hyperparameter, λ(h), controls the overall tightness of the priors

at each horizon h, i.e. γ ≡ λ(h).

Analogous to the case of standard macroeconomic priors (Litterman, 1986), this
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specification implies the following first and second moments for the IRF coefficients

E
[
B

(h)
ij | Σ(h)

ε

]
= B

(h)
0,ij, (32)

Var
[
B

(h)
ij | Σ(h)

ε

]
= (λ(h))2 (σ

(h)
i )2

(σ
(h)
j )2

, (33)

where B
(h)
ij denotes the response of variable i to shock j at horizon h, and B

(h)
0 is such

that β
(h)
0 = vec(B

(h)
0 ).

There are many possible ways to inform the prior mean β
(h)
0 . Our preferred one is to

set it to be equal to the posterior mean of the coefficients of a VAR(p) iterated at horizon

h. The VAR used to inform the BLP prior is estimated with standard macroeconomic

priors over a pre-sample T0, that is then discarded.20 In the notation of model (22) this

translates into

β
(h)
0 = vec(Bh

T0
), (34)

where Bh
T0

is the h-th power of the autoregressive coefficients estimated over the pre-

sample. Intuitively, the prior gives weight to the belief that a VAR can describe the

behaviour of economic time series, at least first approximation.

Having not explicitly modelled the autocorrelation of the residuals has two important

implications. First, the priors are conjugate, hence the posterior distribution is of the

same Normal inverse-Wishart family as the prior probability distribution. Second, the

Kronecker structure of the standard macroeconomic priors is preserved. These two

important properties make the estimation analytically and computationally tractable.

Conditional on the observed data, the posterior distribution takes the following form

Σ(h)
ε | γ(h), y ∼ IW

(
Ψ(h), d

)
β(h) | Σ(h)

ε , γ(h), y ∼ N
(
β̃(h),Σ(h)

ε ⊗ Ω(h)
)
, (35)

20An obvious alternative is the generalisation of the standard macroeconomic priors proposed in
Litterman (1986), centred around the assumption that each variable follows a random walk process,
possibly with drift. Results using this alternative prior are discussed in Section 3. Also, one could
specify a hyperprior distribution for the first autocorrelation coefficients, as a generalisation of Litterman
(1986), and conduct inference following the approach in Giannone et al. (2015).
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where d = d
(h)
0 + T , and T is the sample size.

Because of the structure of the residuals, however, this parametrisation is misspe-

cified. The shape of the true likelihood is asymptotically Gaussian and centred at the

Maximum Likelihood Estimator (MLE), but has a different (larger) variance than the

asymptotically normal sampling distribution of the MLE in Eq. (35). This implies

that if one were to draw inference about β(h) – i.e. the horizon-h responses –, from the

misspecified likelihood in Eq. (35), one would be underestimating the variance albeit

correctly capturing the mean of the distribution of the regression coefficients. Müller

(2013) shows that posterior beliefs constructed from a misspecified likelihood such as

the one discussed here are ‘unreasonable’, in the sense that they lead to inadmissible

decisions about the pseudo-true values, and proposes a superior mode of inference –

i.e. of asymptotically uniformly lower risk –, based on artificial ‘sandwich’ posteriors.21

Hence, in line with the classical practice, we conduct inference about β(h) by replacing

the original posterior with an artificial Gaussian posterior centred at the MLE but with

a HAC-corrected covariance matrix. This allows us to remain agnostic about the source

of model misspecification as in Jordà (2005). Specifically, following Müller (2013), we

replace Eq. (35) with an artificial likelihood defined as

Σ
(h)
ε,HAC | γ

(h), y ∼ IW
(

Ψ
(h)
HAC, d

)
,

β(h) | Σ
(h)
ε,HAC, γ

(h), y ∼ N
(
β̃(h),Σ

(h)
ε,HAC ⊗ Ω(h)

)
. (36)

Lastly, it is worth noting that by specifying β
(h)
0 as in Eq. (34), BLP IRFs effectively

span the space between VARs and local projections. To see this, note that given the

prior in (31), the posterior mean of BLP responses takes the form

B
(h)
BLP ∝

(
X ′X +

(
Ω

(h)
0 (γ)

)−1
)−1(

X ′Y (h) +
(

Ω
(h)
0 (γ)

)−1

Bh
VAR

)
, (37)

where B
(h)
BLP is such that β̃(h) = vec(B

(h)
BLP). (X ′X)−1(X ′Y (h)) = B

(h)
LP , where Y (h) ≡

21For the purpose of this work, the ‘decisions’ concern the description of uncertainty around β(h)

obtained via two-sided equal-tailed posterior probability intervals.
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(yp+1+h, . . . , yT )′, X ≡ (xp+1+h, . . . , xT )′, and xt ≡ (1, y′t−h, . . . , y
′
t−(p+h))

′. At each hori-

zon h, the optimal combination between VAR and LP responses is regulated by Ω
(h)
0 (γ)

and is a function of the overall level of informativeness of the prior λ(h). When λ(h) → 0,

BLP IRFs collapse into VAR IRFs (estimated over T0). Conversely, if λ(h) → ∞ BLP

IRFs coincide with those implied by standard LP.

2.4 Optimal Priors

In our model, the informativeness of the priors is controlled by the hyperparameter λ(h)

that regulates the covariance matrix of all the entries in β(h) at horizon h. We treat λ(h)

as an additional model parameter, for which we specify a prior distribution, or hyperprior

p(λ(h)), and estimate it at each h in the spirit of hierarchical modelling. As observed

in Giannone et al. (2015), the choice of the informativeness of the prior distribution is

conceptually identical to conducting inference on any other unknown parameter of the

model. As such, the hyperparameters can be estimated by evaluating their posterior

distribution, conditional on the data

p(λ(h)|y(h)) = p(y(h)|λ(h)) · p(λ(h)) , (38)

where p(y(h)|λ(h)) is the marginal density of the data as a function of the hyperparamet-

ers, and y(h) = vec(Y (h)). Under a flat hyperprior, the procedure corresponds to max-

imising the marginal data density (or marginal likelihood, ML), which can be thought

of as a measure of the forecasting performance of a model.22

Extending the argument in Giannone et al. (2015) we write the ML as

p(y(h)|λ(h)) ∝
∣∣∣(V posterior

ε(h)

)−1
V prior

ε(h)

∣∣∣ T−(p̃+h)+d
2

︸ ︷︷ ︸
Fit

T−h∏
t=p̃+1

∣∣Vt+h|t∣∣− 1
2

︸ ︷︷ ︸
Penalty

∀h , (39)

where V posterior

ε(h)
and V prior

ε(h)
are the posterior and prior mean of Σ

(h)
ε , and Vt+h|t =

22As discussed in Giannone et al. (2015), estimating the hyperparameters by maximising the ML –
i.e. their posterior under a flat hyperprior – is an Empirical Bayes method, which has a clear frequentist
interpretation.
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E
Σ

(h)
ε

[
Var(yt+h|yt,Σ(h)

ε )
]

is the variance (conditional on Σ
(h)
ε ) of the h-step-ahead fore-

cast of y, averaged across all possible a priori realisations of Σ
(h)
ε .23 The first term in Eq.

(39) relates to the model’s in-sample fit, and it increases when the posterior residual

variance falls relative to the prior variance. The second term is related to the model’s

(pseudo) out-of-sample forecasting performance, and it increases in the risk of overfit-

ting (i.e. with either large uncertainty around parameters’ estimates, or large a-priori

residual variance). Thus, everything else equal, the ML criterion favours hyperparamet-

ers values that generate both smaller forecast errors, and low forecast error variance,

therefore essentially balancing the trade-off between model fit and variance.

Empirically, the optimal level of informativeness of BLP priors may depend, amongst

other characteristics of the data, on the size of the time series, the level of noise, and the

degree of misspecification of the VAR. However, it is natural to expect that deviations

from the VAR will be smaller for smaller h, where the compounded effect of the potential

misspecifications is relatively milder. Consistent with this intuition, to set λ(h) we

choose from a family of Gamma distributions and let the hyperprior be more diffuse

the higher the forecast horizon (or projection lag). In particular, we fix the scale and

shape parameters such that the mode of the Gamma distribution is equal to 0.4, and

the standard deviation is a logistic function of the horizon that reaches its maximum

after h = 36. Figures B.1a and B.1b in the Appendix provide details.

3 VAR, LP, and BLP

We start our empirical exploration by comparing the IRFs estimated using the three

methods discussed in the previous section – VAR, LP, and BLP (Figure 3). The matrix

of contemporaneous transmission coefficients A0 is the same in the three cases (recall

that for h = 1 BLP and the VAR coincide. See Section 2.2.) and is estimated using our

informationally robust series MPIt as an external instrument.24 The contractionary

23The derivation of this formula follows as in the online Appendix of Giannone et al. (2015).
24Specifically, if ut and ξt denote, respectively, the monetary policy shock and the vector of all other

shocks, the identifying assumptions are

E[ utz
′
t ] = φ, E[ ξtz

′
t ] = 0,
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monetary policy shock raises the policy rate by 1% on impact. In the top row, we

compare BLP and VAR responses. The bottom row compares BLP and LP. The vector of

endogenous variables, yt, includes an index of industrial production, the unemployment

rate, the consumer price index, a commodity price index, and the policy rate.25 The

composition of yt is a fairly standard one in empirical macro, and matches those used

in both Coibion (2012) and Ramey (2016) for ease of comparability with these studies.

It should be stressed that the information set considered is likely to be misspecified

due to the small number of variables considered. We choose the 1-year nominal rate

as our policy variable as in Gertler and Karadi (2015). Unless otherwise stated, we set

p = p̃ = 12 and use the observations between 1969:01 and 1979:01 as a pre-sample to

centre the prior for the BLP coefficients. All variables are at monthly frequency from

1979:01 to 2014:12. The resilience of BLP responses to the chosen lag length is plotted

in Figure C.2 in Appendix C.

A few features emerging from this comparison are worth noticing. Overall, over this

sample, results are qualitatively consistent across methods: the policy rate returns to

equilibrium level within the first two quarters after the shock, and real activity and

prices contract under the three modelling alternatives. The length of the sample used,

combined with the small size of yt, also limits the erratic nature of LPs. Because many

sample observations are available at each horizon, the estimates of projection coefficients

are relatively well behaved in this instance. However, notwithstanding the relatively long

sample available for the analysis, LP responses quickly become non-significant after the

first few horizons. The width of 90% LP confidence bands dwarfs those of BLP responses,

which are instead comparable to those of the VAR (BLP responses are the same in the

top and bottom row of the figure). In this case the shape of LP and VAR responses

displayed in Figure 3 is qualitative similar. This is not necessarily the case, as results

in Sections 4 and 5 show.

VAR responses are, by construction, the smoothest. Based on the same one-step-

where φ is non singular and zt is the chosen external instrument – i.e. one of either FF4GK
t , MPNt, or

MPIt (see Stock and Watson, 2012; Mertens and Ravn, 2013, for details). An alternative would be to
add the instruments to yt in a ‘hybrid’ VAR (see e.g. Ramey, 2016). Results would coincide, provided
that no autocorrelation is present in the instrument, and that the same time span is adopted.

25See Table C.2 in Appendix C for details on series included.
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Figure 3: var, lp and blp responses
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top row: VAR (teal, dashed) and BLP (blue, solid) impulse responses. bottom row: LP (orange,
dash-dotted) and BLP (blue, solid) impulse responses. Shaded areas are 90% posterior coverage bands.

ahead model iterated forward, VAR responses naturally also have tighter bands than

LP do (Eq. 28). This feature, however, also results in VARs implying stronger and

more persistent effects than BLPs (and LPs) do. Conditional on a very similar path for

the policy rate response, BLP-IRFs tend to revert to equilibrium faster than VAR-IRFs

do, and tend to imply richer adjustment dynamics. This may indicate that some of

the characteristics of the responses of the VAR may depend on the dynamic restrictions

imposed by the recursive structure, rather then being genuine features of the data. The

blue bars in Figure 4 display the optimal prior shrinkage hyperparameters that maximise

p(λ(h)|y(h)) for h = 2, . . . , 24 in the BLP responses in Figure 3. The VAR prior is

optimally loosened as the horizon increases, suggesting that VAR responses tend to be

progressively rejected by the data. In particular, we observe that BLP peak responses

are registered significantly earlier than VAR peaks, and are often realised within the first

year after the shock. This again holding an equivalent shape for the policy rate response

across the two methods. The discussion in the next section explores the deviation from

the VAR prior further, and shows that, again holding everything else fixed, the iterative
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Figure 4: optimal prior tightness
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Note: The orange bar is the optimal shrinkage of the Litterman (1986) prior for the VAR coefficients
at h = 1. Blue bars are for the optimal tightness of the VAR prior for BLP coefficients for h > 1.

nature of VAR responses can at times contribute to the emergence of puzzles which are

absent in BLP responses.

Finally, we explore the role of our choice for the prior mean in Figure 5. Here, the

dashed lines are BLP responses obtained by replacing at each horizon h the VAR(12)

prior with a simpler univariate autoregressive (AR) prior in the spirit of Litterman

(1986). BLP responses with our preferred VAR prior are the solid blue lines, and are

the same as in Figure 3. We note that BLP responses are robust to the choice of the

prior for the LP coefficients. However, the AR prior potentially discards important

information in the off-diagonal entries of the matrices of autoregressive coefficients that

are relevant for the dynamic responses of correlated variables to the shock.

34



Figure 5: blp responses: VAR vs RW prior
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Note: BLP(12) with RW prior (teal, dashed), and BLP(12) with VAR(12) prior (blue, solid). 1979:2014.
Pre-Sample 1969:1979.

4 On the Emergence of Puzzles

In this section we document how much of the lack of stability reported in previous

studies can be explained by the compounded effects of the assumptions of full inform-

ation that are commonly made when identifying monetary policy shocks, and the use

of severely misspecified models for the estimation of the dynamic responses. To disen-

tangle the contributions, we compare responses to shocks obtained either by using the

same empirical specification and changing the external instrument, or using the same

(informationally-robust) instrument and changing the empirical specification. All other

features are kept fixed and in line with the ones adopted in the previous section.

4.1 The Role of Different Identifying Assumptions

The IRFs in Figure 6 depict responses obtained using different identifications and the

same empirical specification (BLP). The contractionary monetary policy shock is norm-

alised in all cases to induce a 1% increase in the policy rate on impact, and the sample

used for the estimation is 1979:1 to 2014:12. The difference among the IRFs reported

in the charts lies in the informational assumptions made in order to identify the shock.

The dashed teal lines report the responses to a monetary policy shock identified using

the average market surprises surrounding the policy announcements as in Gertler and

35



Figure 6: blp responses to monetary policy shock under different
identifications
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Note: Shock identified with Gertler and Karadi (2015)’s average monthly market surprise (teal, dashed),
extended narrative measure of Romer and Romer (2004) (orange, dash-dotted), informationally robust
MPIt series (dark blue lines). The shock is normalised to induce a 100 basis point increase in the
1-year rate. Sample 1979:1 - 2014:12. BLP (6) with VAR(12) prior over 1969:01 - 1979:01. Shaded
areas are 90% posterior coverage bands.

Table 4: Reliability of alternative instruments

MPIt FF4GK
t MPNt

F statistic 9.571 [5.581 11.256] 13.147 [5.354 18.954] 61.167 [49.090 68.549]

reliability 0.074 [0.056 0.081] 0.070 [0.038 0.094] 0.267 [0.223 0.294]

Note: top row: F statistics of the stage-1 regression of the reduced-form innovations on the instrument.
bottom row: reliability of the instrument. 90% confidence intervals in square brackets.

Karadi (2015) – FF4GKt . The orange (dash-dotted) lines, on the other hand, are re-

sponses to shocks identified using the narrative instrument of Romer and Romer (2004)

– MPNt. Lastly, the blue solid lines indicate the effects of a monetary disturbance

identified using the informationally robust instrument proposed in Section 1.3, MPIt.

In each case, we use these series as external instruments for the identification.26

A few features are noteworthy. First, both the narrative and Gertler and Karadi

(2015)’s high-frequency instruments imply a much more persistent response for the

policy rate compared to our new measure. The response of the policy rate is still

26In each case, we use the common sample between the VAR innovations and the external instrument
to estimate the relevant entries of A0.
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significant 20 months after the shock, and is nearly identical in the two cases. Second,

and quite crucially, both instruments induce significant and long lived real activity

puzzles. Third, while the average market surprise elicits an immediate contraction in

prices, the narrative series triggers a sustained price puzzle. Similar evidence is doc-

umented in Ramey (2016) and Miranda-Agrippino (2016). Consistent with standard

macroeconomic theory, on the other hand, our instrument identifies a contractionary

monetary policy shock that induces a contraction in output, a rise in unemployment,

and a reduction in prices. As noted, in a full-information rational expectation setting,

the use of either instrument should deliver identical results. Conversely, and holding

fixed the specification of the VAR/BLP, the heterogeneity of the responses in Figure

6 can be thought of as an indirect indication of the different informational content of

the three instruments. In particular, responses seem to confirm that both the narrative

and high-frequency instruments are autocorrelated and not orthogonal to the state of

the economy (see Section 1.2). As discussed, the signalling channel of monetary policy

– i.e. the information transferred by the central bank to private agents via policy ac-

tions – can contaminate high-frequency instruments thereby inducing empirical puzzles.

Finally, it is worth mentioning that the heterogeneity of the responses, and relative puzz-

ling outcomes, are a strong indication of the contamination of the high-frequency and

the narrative instrument by other macroeconomic shocks. While this casts a shade on

the exogeneity of the instruments, it can explain the statistical results on their relevance

(Table 4).

4.2 The Role of Different Modelling Choices

Figure 7 compares the responses obtained using VAR, LP and BLP over a set of 24-year

subsamples from 1981 to 2014, using our novel instrument. The information set used in

this exercise is reduced by choice to the core of the macroeconomic variables virtually

employed in all the empirical applications in the literature. As such, it discards many

variables potentially important in the transmission of monetary policy shocks in the
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Figure 7: var, blp and lp responses across subsamples
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Note: top row: VAR(12) (blue, solid), and BLP(12) (grey, area) responses. bottom row: LP(12)
(orange, solid), and BLP(12) (grey, area) responses. Subsamples 1981:2005, 1982:2006, ..., 1990:2014.

economy, hence amplifying the information set misspecification of the system.27 This

specification is helpful to assess how different methods cope with potentially severely

misspecified models and short samples. Indeed, it can be thought of as a severe test on

the robustness of BLP with respect to model bias. In all cases A0 is estimated using

the MPI series as an external instrument. The blue lines in the top row of the figure

are the VAR responses for each of the subsamples. Similarly, the orange lines in the

bottom row are LP responses in each of the subsamples. Conversely, the grey areas in

both rows cover all the space occupied by the BLP responses in those same sub-periods.

We abstract from estimation uncertainty.

Again, a few elements are worth attention. First, the responses of the policy variable

27With respect to the previous specification, here we drop the commodity price index that has large
instabilities over the subsamples considered, and could appear as a confounding factor in the analysis.
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Figure 8: var, blp and lp responses across subsamples
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Note: BLP (12) with VAR(12) prior (blue, solid), VAR(12) (teal, dotted) and LP (12) (orange, dash-
dotted) responses to a contractionary monetary policy shock. top row: estimation sample 1990:01 -
2012:12, pre-sample 1969:01 - 1979:12. bottom row: estimation sample 1983:01 - 2007:12, pre-sample
1969:01 - 1982:12.

are markedly more persistent when estimated with a VAR. In a number of occasions,

moreover, the policy rate stays above the 1% impact increase for over a year. Second,

the reaction of real variables to a monetary contraction is decisively recessionary for

BLP. The same does not hold for VAR responses which, in some cases, lead to puzzling

expansionary effects, with production increasing and unemployment decreasing after

the shock. Additionally, even when of the ‘correct’ sign, some of the VAR responses for

these two variables seem to imply equally puzzling exploding behaviours. Lastly, we note

that BLP responses for prices display a less clear-cut interpretation over longer horizons.

Conversely, VAR responses in equivalent subsamples imply strong price puzzles. Turning

the attention to the bottom row of the figure, we see how the erratic nature of LP

responses is exacerbated by the small samples used. In particular, we note that LP too

can lead to puzzling responses for both production and unemployment in some instances.

In a further robustness check, we test the behaviour of BLP focusing on two subsamples
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which have been recognised as being particularly problematic because of either output or

price puzzles (see e.g. Ramey, 2016). In the top row of Figure 8, IRFs are estimated over

the period 1990:01 - 2012:12, while those in the bottom row refer to the years 1983:01 -

2007:12. In both cases BLP responses register a contraction of output and prices, and a

muted response of unemployment. Importantly, the same does not hold for both VAR

and LP IRFs. Our experiments confirm that BLP can sensibly reduce the impact of

compounded biases over the horizons, effectively dealing with model misspecifications.

5 The Transmission of Monetary Disturbances

Monetary policy decisions are thought to affect economic activity and inflation through

several channels, collectively known as the transmission mechanism of monetary policy.

In this section we report our empirical results on the effects of monetary policy shocks

on a large number of variables, and provide evidence compatible with the activation

of several of the potential channels that have been discussed in the literature (see e.g.

Mishkin, 1996; Bernanke and Gertler, 1995, for a review).28 As before, monetary policy

shocks are identified by using the instrument defined in Section 1.3. Results, in the form

of dynamic responses and obtained using the BLP approach, are presented in Figures 9

to 11. Unless otherwise specified, responses are from a BLP (6) estimated from 1979:01

to 2014:12. As in the previous section, prior beliefs for the local projections are obtained

from a VAR(12) estimated over the pre-sample 1969:01 - 1979:01. A0 is estimated over

the sample common to the external instrument (MPIt) and the VAR innovations. The

shock is normalised to raise the 1-year rate (policy variable) by 1%. Shaded areas are

90% posterior coverage bands.29

In line with results shown in previous sections, a contractionary monetary policy

28Increasing the conditioning set of variables is likely to reduce the model misspecifications by
including variables relevant to the transmission of disturbances. Also, it allows for a landscape view of
the effects of monetary shocks.

29We set p̃ = 6 to reduce the number of parameters to be estimated in this large specification, hence
controlling for the risk of over parametrisation in LP. As previously discussed, results are robust to the
lag length. VAR and LP responses are displayed in Appendix C. Variables used are listed in Table C.2.
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shock is unequivocally and significantly recessionary also in a larger model (Figure 9).

Tight monetary policy depresses real activity and reduces prices. Production, capacity

utilisation, and inventories all contract, with peak effects often realised within the first

year following the shock. The labour market is also significantly and negatively affected,

but with delay. Both the unemployment rate and total hours worked display muted

responses on impact, with peak effects realised after two quarters. This is suggestive

of the presence of frictions in the labour market, such as contractual obligations, which

delay the adjustments. Wages too take about a quarter before they start shrinking.

Conversely, the contraction in prices, whether measured using the CPI index or the

personal consumption deflator, is typically more sudden, with non persistent effects. In

line with models of imperfect information and model in which a number of both real

and nominal frictions are at play (e.g. Smets and Wouters, 2007), the prices do not fully

adjust on impact but keep sliding over a few months to reach a negative peak of about

half a percentage point within the first six months after the shock.

Real income suffers a prolonged contraction that survives for over a year after the

shock. Consumption and investment spending both contract, dragging aggregate de-

mand down. Real durable consumption increases slightly on impact, to shrink by about

2% after the first quarter. The initial response of real durable consumption is likely

due to the stickiness of consumers’ plans on durable goods, combined with the drop in

prices. Nondurable consumption seems to be less affected by the shock.

The shock induces a significant impact rotation of the yield curve whereby for a

1% rise in the 1-year rate, we see up to a 50 basis point contraction in the term spread

(Figure 9). Both responses are sudden and temporary: the increase in the policy variable

dissipates completely within the first two quarters. We explore further the details of

the responses of interest rates at different maturities in Figure 10. Here each subplot

is horizon-specific, and maturities (in years) are reported on the horizontal axes. All

interest rates rise on impact with responses that are both smaller in magnitude and

quicker to revert to trend the higher the maturity. The long end of the yield curve

(20-year rate) does not move, in line with what expected for the effects of a temporary

monetary contraction (see also discussion in Romer and Romer, 2000; Ellingsen and
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Soderstrom, 2001). All the curve’s responses are not significant at the two-year horizon,

with a slightly negative median response. This could be taken as a weak indication of

the the endogenous reaction of the central bank to the swift weakening of the economic

outlook.

To better understand the strong real effects discussed above, particularly in light of

the relatively muted movements of the long end of the curve, we investigate the responses

of financial and credit variables. The effects reported in Figure 9 are consistent with

a deterioration of household wealth working through both a reduction of labor income,

and of financial wealth. The decline in financial wealth is likely the product of negative

valuation effects triggered by the contraction in asset prices. The reaction of asset prices

is spread across different asset classes. House prices fall and the stock market suffers

important losses. Housing investment collapse, with immediate falls well beyond the

10% mark. These effects have a detrimental impact on both equity and assets valuation,

making collaterals become more costly.

The strong effects on both real activity and output are likely magnified by the re-

action of credit and financial markets, consistently with the ‘financial accelerator’ hy-

pothesis and the existence of a credit channel for monetary policy (Bernanke et al.,

1999). Lending dips significantly, particularly so for businesses. This is consistent with

a number of possible mechanisms, all of which find some degree of support. On the

one hand, it is the supply of credit that shrinks. Bank lending can contract for several

reasons. First, contractionary monetary policy reduces cash flows and increases indirect

expenses, with direct effects on the amount of new loans granted. Second, through its

effect on asset prices, contractionary policy has a direct valuation effect on lenders’ bal-

ance sheets. Higher rates mean lower net margins, and thus lower profits going forward.

Also, the drop in asset prices can imply a reduction in bank capital which may in turn

induce deleveraging in the form of less credit supplied (see Boivin et al., 2010). On the

other hand, however, the demand for credit may slow down due to borrowers being less

willing to undertake new investment projects. One important reason why this may be

the case is that borrowing costs rise. Following the shock, corporate bond spreads and

premia both significantly rise on impact, and remain high for about half a year. This
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is consistent with a surge in the external finance premium, that is, the wedge between

external (e.g. equity/debt issuance) and internal (e.g. retained earnings) funding costs

(see Bernanke and Gertler, 1995; Gertler and Karadi, 2015). Opposite to what dis-

cussed above, this mechanism operates through the borrowers’ balance sheet: the lower

the borrower’s net worth, the higher the finance premium. Variations in the net worth

affect investment and spending decisions, with magnifying effects on borrowing costs,

real spending and real activity. The mechanism affects both businesses and households

alike. The fall in house prices, the contraction in housing investments, and the sharp

and sudden increase in mortgage spreads all concur to curtail lending to households as

well.30

After the shock, the dollar appreciates suddenly, and in real terms, against a basket

of foreign currencies. This appears to also activate an exchange rate channel. In fact,

exports become more costly due to the appreciation, and contract as a result. Notwith-

standing the stronger purchasing power sustained by the appreciation of the domestic

currency, the ensuing recession, accompanied by a contraction of internal demand, also

makes imports contract, and significantly so. Overall, the external position tends to

deteriorate slightly over the first year.

While the sign and magnitude of the effects discussed so far is largely consistent with

standard macroeconomic theory, the BLP approach allows us to uncover effects with an

average duration that is significantly shorter than what was previously reported. BLPs,

optimised at each horizon to better model variables’ responses, lack the persistence that

the recursive nature of the VAR approach forces on the estimated IRFs. Figure 9 shows

that, with the exception of very few cases, all variables are back to trend levels within

a year after the shock. This can have potentially important implications for the policy

debate, and in particular for what concerns the adequateness of the policy horizon, the

duration of which is typically calibrated based on VAR evidence.

As observed in Woodford (2011), modern monetary policy is not simply a matter of

controlling overnight interest rates, but rather one of shaping market expectations of the

30The response of mortgage spreads is calculated over a shorter sample (1990:01 - 2014:12) due to
data being available only since the late seventies. The observations from 1979:01 to 1989:12 inform the
BLP prior in this case.
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forward path of interest rates, inflation and income. To study how agents’ expectations

respond to policy changes, we augment a set of variables relevant for the analysis of the

standard interest rate channel with Consensus Economics forecast data.31 Each month,

experts from public and private economic institutions – mostly investment banks and

economic research institutes –, are surveyed about their projections for the main mac-

roeconomic and financial variables. Neither central banks nor governments participate

in the survey. Survey respondents contribute fixed-event forecasts relative to realisations

in the current and the following calendar year. To avoid issues relative to the forecast

horizon shrinking as the survey date approaches the end of each year, we approximate

median one-year-ahead forecasts as a weighted average of median fixed-event annual

forecasts.32

The responses to the identified monetary policy shock are collected in Figure 11.

Industrial production and CPI are converted to year-on-year growth rates for ease of

comparison, to match the forecasts units. Agents’ median expectations adjust in line

with the deteriorating fundamentals. It is important to stress here that this result fol-

lows only once the effects of signalling are appropriately accounted for. Conversely,

as documented in Campbell et al. (2012, 2016) and Nakamura and Steinsson (2013),

identifying disturbances using instruments that do not control for such a transfer of

information, makes expectations adjust in the ‘wrong’ direction, as agents interpret the

interest rate move as an endogenous policy reaction to stronger than expected economic

developments. Consistent with theory, we find instead that as a result of a contraction-

ary monetary policy shock agents expect both inflation and output to slow down over

time. In particular, forecasts for prices, production, consumption and investment are all

31Consensus Economics forecasts are only available since 1993. To address issues related to the
short sample, and hence the small number of observations that are available to consistently estimate
LP coefficients, we only calculate BLP IRFs over a 12-month horizon. Responses are estimated using
data from 1999:01 - 2014:12. The years from 1993 to 1999 inform the BLP prior.

32Specifically, the rolling twelve-month-ahead forecasts are computed as

Ftxt+12 =
h

12
Ftxt+h +

12− h
12

Ftxt+12+h,

where Ftxt+h is the h-month-ahead median forecast of variable xmade at time t. The forecasts produced
by the respondents are {Ftxt+h, Ftxt+12+h} with horizons h ∈ {1, 2, . . . , 12} and h + 12 months (see
Dovern et al., 2012).
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revised downward, while the opposite holds for unemployment forecasts. Interestingly,

consistent with the literature on the presence of informational frictions, we find that

while the direction of the revision of expectation is in line with a recessionary outlook,

forecasters revise their assessment in a sluggish fashion. Notably, while production falls

by 4% in annual terms, the movement in the forecasts is more gradual over the hori-

zons. Annual CPI inflation drops by 1%, while agents revise their forecasts gradually

downward. This type of behaviour is compatible with information being only partially

and slowly processed over time. Conversely, with full information forecasts should im-

mediately adjust to shocks, and by the same amount as the variable being forecasted

(see discussion in Coibion and Gorodnichenko, 2012).
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Figure 9: The Effects of MP Shocks
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Figure 10: Yield Curve Response to MP Shocks
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Figure 11: Response of Expectations to MP Shocks
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6 Conclusions

What are the effects of monetary policy? Despite being one of the central questions in

macroeconomics, and the numerous theoretical and methodological advances, the dis-

cussion on the effects of monetary policy appears to be still surrounded by a substantial

degree of uncertainty. In fact, not just the magnitude and the significance, but even

the sign of the responses of crucial variables – prices and output being a prime example

– depends on the chosen identification strategy, the sample period, the information set

considered, and the details of the model specification.

This paper helps rationalising unstable and puzzling previous results by using a

novel flexible econometric model that optimally bridges between standard VARs and the

Local Projection approach, and an identification strategy coherent with the intuitions

stemming from models of asymmetric and imperfect information.

Results proposed show that following a monetary tightening economic activity and

prices contract, lending to consumers and businesses cools down, and expectations move

in line with fundamentals. Moreover, the currency appreciates, and equity prices fall.

Finally, the slope of the yield curve flattens, borrowing costs rise and so do corporate

spreads. These effects are both sizeable and persistent, suggesting that monetary policy

is a powerful tool for both economic stabilisation and financial stability. These findings

are robust to a number of severe tests.
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A Derivations

A.1 Aggregate Expectation Revisions

Recall from Section 1 that at
¯
t both agents and the central bank receive signals about the

economy, and as a result of that, update their expectations. Specifically, at opening time
¯
t

each agent i observes a private noisy signal of the state of the economy xt

si,
¯
t = xt + νi,

¯
t , νi,

¯
t ∼ N (0, σn,ν) . (A.1)

Given the signals, agents update their expectations using

Fi,
¯
txt = K1si,

¯
t + (1−K1)Fi,t−1xt , (A.2)

Fi,
¯
txt+h = ρhFi,

¯
txt ∀h > 0 , (A.3)

where K1 is the Kalman gain which represents the relative weight placed on new information

relative to previous forecasts. When the signal is perfectly revealing K1 = 1, while in the

presence of noise K1 < 1. Thus (1 − K1) is the degree of information rigidity faced by the

agents. The central bank observes

scb,
¯
t = xt + νcb,

¯
t , νcb,

¯
t ∼ N (0, σcb,ν) . (A.4)

We can assume without loss of generality that the signal observed by the central bank is more

precise than the one observed by agents: σcb,ν < σn,ν . Given the signal, the central bank

updates its expectations via the Kalman filter

Fcb,
¯
txt = Kcbscb,

¯
t + (1−Kcb)Fcb,t−1xt , (A.5)

Fcb,
¯
txt+h = ρhFcb,

¯
txt ∀h > 0 , (A.6)

where Kcb is the bank’s Kalman gain.

At t̄ agents observe the policy rate (i.e. a common signal from the central bank) and
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update their forecasts using

Fi,t̄xt = K2s̃cb,t̄ + (1−K2)Fi,txt , (A.7)

Fi,t̄xt+h = ρhFi,t̄xt ∀h > 0 , (A.8)

where s̃cb,t̄ indicates the generic public signal that agents extract from the interest rate decision,

and K2 is the Kalman gain given the noise in the public signal ν̃cb,
¯
t.

Combining Eq. (A.7) with Eq. (2), and using Eq. (1) and Eq. (A.8) we find

Fi,t̄xt − Fi,
¯
txt = K2

[
s̃cb,t̄ − Fi,txt

]
= K2(xt + ν̃cb,t̄)−K2

[
K1(xt + νi,t̄) + (1−K1)Fi,t−1xt

]
= K2(1−K1)xt +K2ν̃cb,t̄ −K2K1νi,t̄ −K2(1−K1)Fi,t−1xt

= K2(1−K1)ρ
[
xt−1 − Fi,t−1xt−1

]
+K2

[
(1−K1)ξt + ν̃cb,t̄ −K1νi,t̄

]
. (A.9)

To find an expression for the forecast error
(
xt−1 − Fi,t−1xt−1

)
in Eq. (A.9), first note that

Eq. (A.7) implies

xt − Fi,t̄xt = K−1
2 (1−K2)

(
Fi,t̄xt − Fi,

¯
txt
)
− ν̃cb,t. (A.10)

Then Eq. (A.10) one period earlier can be written as

xt−1 − Fi,t−1xt−1 = K−1
2 (1−K2)

[
Fi,t−1xt−1 − Fi,t−1xt−1

]
− ν̃cb,t−1

= K−1
2 (1−K2)ρ−1

[
Fi,t−1xt − Fi,t−1xt

]
− ν̃cb,t−1 . (A.11)

Substituting Eq. (A.11) into Eq. (A.9) yields

Fi,t̄xt − Fi,
¯
txt =(1−K2)(1−K1)

[
Fi,t−1xt − Fi,t−1xt

]
+K2

[
(1−K1)ξt +

(
ν̃cb,t̄ − (1−K1)ρν̃cb,t−1

)
−K1νi,t̄

]
. (A.12)

The characteristics of the common noise ν̃cb,t̄ are derived from the Taylor rule in Eq. (9), and
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the signal extraction problem of the central bank in Eq. (7). Specifically:

it = φ0 + φ′xFcb,
¯
txt + ut

= φ0 + φ′x

[
Kcbscb,

¯
t + (1−Kcb)Fcb,t−1xt

]
+ ut

= φ0 + φ′x

[
Kcbscb,

¯
t + (1−Kcb)ρFcb,t−1xt−1

]
+ ut

= φ0 +Kcbφ
′
xscb,

¯
t + (1−Kcb)ρ(it−1 − φ0 − ut−1) + ut

= [1− (1−Kcb)ρ]φ0 + (1−Kcb)ρit−1 +Kcbφ
′
xscb,

¯
t − (1−Kcb)ρut−1 + ut , (A.13)

with Fcb,t−1xt−1 = Fcb,t−1xt−1. Thus, conditional on it−1, at announcement agents observe

the common signal

s̃cb,t̄ = xt + νcb,
¯
t +
(
Kcbφ

′
x

)−1
[ut − (1−Kcb)ρut−1] , (A.14)

where

ν̃cb,
¯
t = νcb,

¯
t +
(
Kcbφ

′
x

)−1
[ut − (1−Kcb)ρut−1] . (A.15)

Plugging Eq. (A.15) into Eq. (A.12) yields

Fi,t̄xt − Fi,
¯
txt =(1−K2)(1−K1)

[
Fi,t−1xt − Fi,t−1xt

]
+K2(1−K1)ξt +K2

[(
νcb,t̄ − (1−K1)ρνcb,t−1

)
−K1νi,t̄

]
+K2

(
Kcbφ

′
x

)−1 [
ut − (K1 −Kcb)ρut−1 − ρ(1−K1)(1−Kcb)ρ

2ut−2

]
.

(A.16)

Eq. (13) follows by taking the average of Eq. (A.16) over the agents i.
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A.2 Bias in OLS Regression

Recall Eq. (13):

Ft̄xt − F
¯
txt =(1−K2)(1−K1)

[
Ft−1xt − Ft−1xt

]
+K2(1−K1)ξt +K2

[
νcb,

¯
t − (1−K1)ρνcb,t−1

]
+K2(Kcbφ

′
x)−1

[
ut − ρ(K1 −Kcb)ut−1 + (1−K1)(1−Kcb)ρ

2ut−2

]
.

For simplicity, let us consider the vector xt to be univariate. Suppose one runs a regression of

the form (e.g. Table 2)

Ft̄xt − F
¯
txt = β

[
Ft−1xt − Ft−1xt

]
+ errort .

Then, using E[Ft−1xtξt] = 0 and E[Ft−1xtut] = 0 we get

β̂OLS =
E
[
(Ft̄xt − F

¯
txt)(Ft−1xt − Ft−1xt)

]
E
[
(Ft−1xt − Ft−1xt)2

]
=(1−K2)(1−K1)−K2(1−K1)ρ

E
[
(Ft−1xt − Ft−1xt)νcb,t−1

]
E
[
(Ft−1xt − Ft−1xt)2

]
−K2(Kcbφ

′
x)−1(K1 −Kcb)ρ

E
[
(Ft−1xt − Ft−1xt)ut−1

]
E
[
(Ft−1xt − Ft−1xt)2

] +O(ρ3)

=(1−K2)(1−K1)−K2(1−K1)ρ
E
[
ρFt−1xt−1νcb,t−1

]
E
[
(Ft−1xt − Ft−1xt)2

]
−K2(Kcbφ

′
x)−1(K1 −Kcb)ρ

E
[
ρFt−1xt−1ut−1

]
E
[
(Ft−1xt − Ft−1xt)2

] +O(ρ3)

=(1−K2)(1−K1)−K2(1−K1)ρ2 Σνcb

E
[
(Ft−1xt − Ft−1xt)2

]
−K2(Kcbφ

′
x)−1(K1 −Kcb)ρ

2 Σu

E
[
(Ft−1xt − Ft−1xt)2

] +O(ρ3) . (A.17)

The size of the last term in Eq. (A.17) depends on the relative magnitude of K1 and Kcb. The

Kalman gain of the agents and the central bank are likely to be similar, due to similar degree

of precision of the signals. Hence, the third term is negligible, resulting in an overall negative

bias.
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B Optimal Prior Tightness

Following Giannone, Lenza and Primiceri (2015), we treat the overall tightness of the prior

λ(h) as an additional model parameter, and estimate it at each horizon h by treating the model

as a hierarchical one. This accounts to specifying a prior probability distribution for each λ(h),

and estimating them as the maximisers of their posterior distribution, conditional on the data.

Specifically, we maximise

p(λ(h)|y(h)) = p(y(h)|λ(h)) · p(λ(h)) , (B.1)

where p(y(h)|λ(h)) is the marginal density of the data as a function of the hyperparameters

p(y(h)|λ(h)) =

∫
p(y(h)|λ(h), θ)p(θ|λ(h))dθ ∀h , (B.2)

and p(θ|λ(h)) is the prior distribution of the remaining model’s parameters conditional on λ(h).

y(h) = vec(Y(h)) where Y (h) ≡ (yp+1+h, . . . , yT )′.

For the hyperpriors p(λ(h)), p = 1, . . . ,H, we choose from a family of Gamma distributions.

This choice allows to retain conjugacy and thus both analytical and computational tractability.

Consistent with the idea that, if present, VAR misspecifications compound as the horizon

grows, we specify the Gamma hyperprior to be more diffuse the larger h.

This is accomplished by choosing the scale and shape parameters of the Gamma in such a

way that the mode of the distribution is fixed at 0.4, and the standard deviation is a Logistic

function of h that reaches its maximum at horizons larger than h = 36. The Logistic function

is specified as follows

sd(λ(h)) = 0.1 + 0.4/[1 + exp(−0.3(h− 12))] ,

and plotted in Figure B.1a. Figure B.1b illustrates the evolution of the hyperprior for λ(h) as

a function of the horizon.
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Figure B.1: Hyperprior for BLP-IRF Coefficients
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(a) Standard deviation of the hyperprior as a Logistic function of h.
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(b) Hyperprior Gamma distributions for a selection of horizons.
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C Other Charts and Tables

Table C.1: Test for Information Frictions – 1994:2009

FF4t FF4GK
t MPNt

lag 1 0.009
[0.13]

0.419
[5.67]***

-0.059
[-0.67]

lag 2 -0.109
[-1.48]

-0.290
[-3.62]***

0.206
[2.61]**

lag 3 0.040
[0.55]

0.092
[1.14]

0.560
[7.08]***

lag 4 0.085
[1.16]

0.122
[1.47]

0.076
[0.83]

f1,t−1 -0.009
[-1.35]

-0.010
[-2.65]***

-0.146
[-4.58]***

f2,t−1 0.002
[0.75]

0.004
[1.71]*

-0.011
[-0.76]

f3,t−1 -0.003
[-0.77]

-0.005
[-1.38]

-0.041
[-1.87]*

f4,t−1 0.010
[1.30]

0.007
[1.67]*

0.079
[2.53]**

f5,t−1 0.005
[0.68]

0.000
[-0.04]

0.028
[0.83]

f6,t−1 -0.014
[-2.44]**

-0.007
[-2.75]***

0.018
[0.91]

f7,t−1 -0.014
[-1.89]*

-0.011
[-2.38]**

-0.061
[-2.44]**

f8,t−1 0.000
[-0.10]

-0.001
[-0.23]

-0.044
[-1.88]*

f9,t−1 -0.002
[-0.43]

-0.001
[-0.36]

-0.045
[-1.79]*

f10,t−1 0.004
[0.75]

0.001
[0.22]

-0.039
[-2.48]**

r2 0.002 0.132 0.168 0.210 0.282 0.269

F 1.083 1.957 10.205 3.339 16.531 3.532

p 0.366 0.035 0.000 0.000 0.000 0.000

N 183 189 183 189 159 165

Note: Regressions are estimated over the sample 1994:2009. From left to right, the monthly surprise
in the fourth federal funds future (FF4t), the instrument in Gertler and Karadi (2015) (FF4GK

t ), the
narrative series of Romer and Romer (2004) (MPNt). t-statistics are reported in square brackets, *
p < 0.1, ** p < 0.05, *** p < 0.01. Constant included. Regressions on factors include a lag of the
dependent variable. Robust SE.
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Table C.2: Variables Used

model

Code Variable Name Source log (1) (2) (3) (4)

INDPRO Industrial Production FRED • • • • •
CAPUTLB00004S Capacity Utilization FRED • • • • •
UNRATE Unemployment Rate FRED • • • •
AWHMAN Average Weekly Hours Mfg FRED • •
CES3000000008 Average Earnings Manufacturing FRED • •
CPIAUCSL CPI All Items FRED • • • • •
PCEPI PCE Deflator FRED • • •
HOUST Housing Starts FRED • •
PERMIT Building Permits FRED • •
BUSINVx Business Inventories FRED • •
M2SL M2 Money Stock FRED • •
BUSLOANS Business Loans FRED • • •
DTCTHFNM Consumer Loans FRED • • •
RPI Real Personal Income FRED • •
DDURRA3M086SBEA Real Consumption: Durable Goods FRED • •
DNDGRA3M086SBEA Real Consumption: Nondurable Goods FRED • •
S&P 500 S&P 500 FRED • • •
TB3MS 3M T-Bill FRED •
CRBPI Commodity Price Index CRB • • • •
EBP GZ Excess Bond Premium FRB • • • •
DGS1 1Y Treasury Rate FRED • • •
DGS2 2Y Treasury Rate FRED •
DGS5 5Y Treasury Rate FRED •
DGS10 10Y Treasury Rate FRED •
DGS20 20Y Treasury Rate FRED •
YCSLOPE Term (10Y-1Y Rate) Spread FRED •
OECDEXP Exports of Goods OECD • •
OECDIMP Imports of Goods OECD • •
BISREER Real Effective Exchange Rate BIS • •
BASPREAD BAA-AAA Spread FRED •
MTGSPREAD Mortgage Spread (10Y Treasury) GK •
CSHPI Case Shiller House Price Index DATASTREAM • •
CFGDP Expected Gross Domestic Product CE •
CFPCE Expected Personal Consumption CE •
CFINV Expected Business Investment CE •
CFPROD Expected Industrial Production CE •
CFCPI Expected Consumer Prices CE •
CFURATE Expected Unemployment Rate CE •
CF3MRATE Expected 3M Interest Rate CE •

Models: (1) Baseline set for tests in Sections 3 and 4; (2) Channels of monetary transmission in Figure
9; (3) Expectation channel in Figure 11; (4) Interest rate channel in Figure 10. Sources: Federal
Reserve Economic Data (FRED), Commodity Research Bureau (CRB), Federal Reserve Board (RFB),
Organisation for Economic Co-operation and Development (OECD), Bank for International Settlements
(BIS), Gertler and Karadi (2015) (GK), Thomson Reuters (DATASTREAM), Consensus Economics
(CE).
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Figure C.1: Informationally-robust instrument for monetary policy
shocks: Crisis Episodes
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Figure C.2: blp responses: Lag Length
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Figure C.3: IRFs to Monetary Policy Shock: all Variables, all
Methods
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Figure C.4: IRFs to Monetary Policy Shock: Interest Rates, all
Methods
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(b) Interest rates responses across maturities.

Note: BLP, VAR and LP responses to a contractionary monetary policy shock. Shock identified with
the MPIt series and normalised to induce a 100 basis point increase in the 1-year rate. Sample
1979:01 - 2014:12. BLP (6) with V AR(12) prior over 1969:01 - 1979:01. Shaded areas are 90%
posterior coverage bands. 66



Figure C.5: IRFs to Monetary Policy Shock: Private Expectations, all
Methods
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Note: BLP, VAR and LP responses to a contractionary monetary policy shock. Shock identified with
the MPIt series and normalised to induce a 100 basis point increase in the 1-year rate. Sample 1999:01 -
2014:12. BLP (6) with V AR(12) prior over 1993:01 - 1999:01. Shaded areas are 90% posterior coverage
bands.
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