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ble a continuous version of the Prisoners’ Dilemma, we characterize e¢ cient
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.cient levd: the irreversibility induces a steady-state as well as a dynamic
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(though never attain) the e¢ cient levd. We also show that a rdated modd
in which an irreversibility arises through players choosing an incremental vari-
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1. Introduction

We consider a modd in which in every period, there is a Prisoner’s Dilemma structure
agents have some mutual interest in cooperating, despite the fact that it is not in any
agent’s individual interest to cooperate. We suppose that this situation is repeated over
time, and, crucially, subject to irreversibility, in the sensethat an agent cannot reduce her
levdl of cooperation onceincreased. In this setting, irreversibility has two opposing exects.
First, it aids cooperation, through making deviations in the form of reduced cooperation
impossible. Second, it limits the ability of agents to punish a deviator. We consider the
complex interplay of these two forces.

T hekey role of irreversibility in axtecting cooperation can be explained more precisdy
as follows. In the above modd, suppose that every player has a (continuous) scalar action
variable which we interpret as a levd of cooperation. We say that partial cooperation
occurs in some time period if some player chooses a levd of this action variable higher
than the stage-game Nash equilibrium levd, wherethe latter is the smallest feasible value
of the action variable Full cooperation is a levd of this action variable that maximizes
the joint payox of the players’. In general, partial cooperation in any time-period can
only be achieved if deviation by any agent can be punished by the other agents in some
way.

Now the above modd without reversibility is just a repeated Prisoner’s Dilemma,
and in that case, it is wdl-known that the most exective (and credible) punishments
take the form of “sticks”, i.e, threats to reduce cooperation back to the stage-game
Nash equilibrium. With irreversibility, such punishments are no longer feasible instead,
deviators can only be punished by withdrawal of “carrots”, that is, threats takethe form of
withdrawal of promised higher levels of cooperation in future It follows immediatdy from
this that irreversibility causes gradualism, i.e., any (subgame-perfect) sequence of actions
involving partial cooperation cannot involve an immediate move to full cooperation?.

2The modd is symmetric, i.e.,, players have identical per-period payors given a permutation of their
actions. So, the full cooperation levd is the same for each player.

3T his observation is not entirdy new; for example, Schelling (1960, p45) makes a similar point. Admati
and Perry (1991) and Marx and Matthews (1998) present equilibria of a dynamic voluntary contribution
game which exhibit gradualism. However, to the best of our knowledge, our paper provides the ..rst
general characterization of gradualism in cooperation due to irreversibility.



Our .rst contribution is to re.ne and extend this basic insight. First, we show
that any (subgame-perfect) equilibrium sequence of actions involving cooperation must
have the levd of cooperation rising in every period, but that full cooperation is never
reached in ..nite time So, as the levd of cooperation in any period is bounded above
by the full cooperation levd, all equilibrium sequences will converge. We focus on the
(symmetric) ed¢ cient equilibrium sequencei.e the one that maximises the present value
of payoxs of ether player. A key question then is: to what value does this eg¢ cient
equilibrium sequence converge? |t turns out that if payors are smooth (dixerentiable)
functions of actions, convergence will be to a levd strictly below the full cooperation
levd, no matter how patient agents are. For the case where payoxs are linear up to some
joint cooperation levd, and constant or decreasing thereafter (the linear kinked case), the
results are dixerent — above some critical discount factor equilibrium cooperation can
converge asymptotically to the fully e¢ cient levd. Bdow this critical discount factor, no
cooperation at all is possible

T he reason for the asymptotic ine¢ ciency in the smooth payox case is that close to
full cooperation, returns from additional mutual cooperation are second-order, whereas
thebene. tsto deviation (not increasing cooperation when the equilibrium path calls for it)
remain ..rst-order. The future gains from sticking to an increasing mutually cooperative
path will be insu¢ cient to oxset the temptation to deviate It follows that it will be
impossible to sustain equilibrium paths dose to full cooperation.

Despite this result, ine¢ ciency disappears in the limit as players become patient in
the sense that the limit value of the sequence, and player payoxs, both converge to fully
e¢ dent leves as discounting goes to zero. However, the asymptotically e¢ cient path of
actions in our modd is quite dixerent that in the standard “folk theorem” for repeated
games: that in thelatter case (without irreversibility) above some critical discount factor
the e¢ cient cooperation levd can be attained exactly and immediatdy.

Later sections of the paper then extend the basic modd in several directions. First,
we recognize that our basic modd is very stylized. In many economic applications, irre-
versibility arises more naturally when the levd of “cooperation” is a stock variable which
may bene. t both players, and it is increamental investment in cooperation that is costly
and non-negative, implying the stock variable is irreversible. T herefore, in Section 4, we



present an “adjustment cost” modd with these features, and show that it can be refor-
mulated so that it is a special case of our base modd. We then apply the adjustment
cost modd to study sequential public good contribution games (Admati and Perry (1991),
Marx and Matthews (1998)) and capacity reduction in a declining industry (Ghemawat
and Nalebux(1990)). These applications illustrate the extent to which our results are
applicable to variety of disparate areas of economics.

A second key extension is to allow a small amount of irreversibility, so that any
player can reduce his cooperation levd by some (small) ..xed percentage This has two
countervailing exects. The. rst is to make deviation more pro..table; the deviator at t can
lower his cooperation levd bdow last period’s, rather than just keeping it constant. The
second exect is to make punishment more severe, the worst possible perfect equilibrium
punishment of the deviator is for the other player to reduce his cooperation over time
rather than just not increase it. A priori, it is not dear which exect will dominate
Neverthdess, we are able to show that for a small amount of reversibility the second
extect dominates, and in thelinear kinked case it dominates for any degree of reversibility.
In our modd, then, reversibility is desirable in that it allows more cooperative equilibria
to be sustained.

T he base modd also assumes that (two) players move simultaneously, and that they
both choose the samet path of actions (the symmetric path). In Section 6 weallow players
to choose dixerent action paths, and in this Section, we obtain a (partial) characterization
of the Pareto-frontier of the set of equilibrium payoxs, and how it changes with the
discount factor. In Section 7, we allow payers to move sequentially. We show that the
equilibrium payoxs in this game are a subset of those in the simultaneous move game, but
that as discounting goes to zero, the e¢ dient symmetric payox in the symmetric move
game can be arbitrarily dosdy approximated by equilibrium payoxs in the sequential
game, so that asymptotically, the order of moves has little exect on achievable payoxs.

There is a small literature on games with the features we consider here. Admati
and Pery (1991) and Marx and Matthews (1998) in particular have considered sequential
public good contribution games in a formally similar context. Cooperation in such modes

4As the modd is symmetric, i.e. players have identical per-period payoxrs given a permutation of their
actions, this is a natural base case.



is the sum of an individual’s contributions, and thisisirreversible Gale (1997) has con-
sidered a class of sequential move games which he dubs monotone games. For games with
“positive spillovers”, which include the class of games considered here, he characterizes
long-run e¢ cient outcomes when there is no discounting. In particular, his results imply
that in a sequential-move version of our modd without discounting, ..rst-best outcomes
are attainable.

Of these papers, possibly the closest is Marx and Matthews (1998). T he rdationship
between thetwo papersis as follows. First, thetwo papers consider quite dixerent modes,
although thereis some overlap. Marx and Matthews(1998) consider a number of dixerent
voluntary contribution games, where a number of players simultaneously make contribu-
tions to a public project over T periods, and where T may be ..nite or in..nite. Each
player gets a payox that is linear in the sum of cumulative contributions, plus possibly a
“bonus” when the project is completed. One case of thaeir modd (T in..nite two players,
no bonus) can be reformulated as an “adjustment cost” variant of our modd with linear
kinked payoxs (as argued in detail in Section 4.1).

In this version of ther modd, Marx and Matthews (1998) construct a subgame-
perfect equilibrium which is approximatdy e¢ cient when discountingis negligible®, whereas
we are able to characterise e¢ cient subgame-perfect equilibria for any ..xed value of the
discount factor. Spedi..cally, our results show’ that in their modd, the equilibrium with
completion which they construct is in fact e¢ cient for any discount factor above a critical
value, and conversdy when the discount factor is below the critical value there are no
contributions made in the e¢ cient equilibrium (see Section 4.1 for more details).

We see our modd as being applicable to a wide variety of situations in addition
to those already mentioned above Nudear disarmament between two countries is one
example— here cooperation would be measured by the extent of disarmament. While it

5T he games considered in this literature allow for the possibility that a player’s payox may be increas-
ing in his or her own cooperation leve (on completion of the project in the public good modd). The lack
of this feature here allows us to obtain results without neading to impose linearity or no discounting.

6Corollary 3(ii), Marx and Matthews(1998). Note that their results are stated for n > 2 players also.

"We are also able to characterise equilibrium in the case of linear kinked payoxs (which includes the
in..nite-horizon contribution game without a bonus as a special case) when the two players contribute
asymmetrically, whereas Marx and Matthews study only the symmetric equilibrium in this version of
their modd (although in their paper, they study other versions of their modd where players behave
asymmetrically).



may be desirable to move immediatdy to total disarmament, this is not an equilibrium
because either country would prefer to have the other destroy its stodkpile while retaining
its own. Disarmament must proceed gradually, and our results give conditions under
which the limit of the process is complete or only partial disarmament.

Another example would be in trade negotiations. For example, GATT negotiations
are known for thar gradualism, although there has been little theoretical work on this
(see Bagwd| and Staiger, 1997). If concessions are irreversible, or if irreversibilities arise
in investment such that shifting capital away from import competing technologies cannot
easily be reversed, then a similar story to the one we give can be told to explain gradu-
alism. A formal treatment of a rdated idea in the negotiation context is in Comte and
J ehid (1998) who consider the impact of outside options in a negotiation modd where
concessions by one party increase the payox the other party gets in a dispute resolution
phase.

A further fruitful application is to environmental problems. For example, environ-
mental cooperation may take the form of installation of costly abatement technology.
Once installed, this technology may be very expensive to replace with a “dirtier” tech-
nology, eg., conversion of automobiles to unleaded petrol would be expensive to reverse
Consequently it will again be di¢ cult to punish deviants by reversing the investment.?
Similarly, destruction of capital which leads to over-exploitation of a common property
resource (eg., ..shing boats) will also ..t into the general framework of the paper if it is
di¢ cult to reverse

2. The M odel and Preliminary Results

There are two playas’ i = 1;2: In each period, t = 1;2;:::; each player i simultaneously
chooses an action variable g 2 <, measuring i% levd of cooperation'®. The per-period
payox to player 1is Y4c; ) with that of player 2 beng “4c; ¢1): So, payoxs of the two
players are identical following a permutation of the pair of actions. Also, we assume that
Yais continuous, strictly decreasing in ¢ and strictly increasing in ¢,. Payoxs over the

8We are grateful to Anthony Heyes for suggesting this application.
20ur main results generalise straightforwardly to more than two players.
10T he action spaces can also be bounded, i.e, G 2 [0;T], aslongasT, .
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in..nite horizon are discounted by common discount factor 0 < < 1:

In this setting, we shall initially be restricting attention to symmetric equilibria.
So, we can de..ne the ..rst-best e¢ cient leve(s) of cooperation as the valug(s) of ¢, that
maximise w(c) := Y¢; ¢): We assume the following weak property of w(c) :

Al. Theeexistsa ¢ > 0 such that w(c) is strictly increasingincforall 0 c< ¢,
and w(c) - w(c) forall c2 <.

Thisissatis..ed if w(c) is concave with a ..nite maximum or even single-peaked: Note
that ¢ is the smallest . .rst-best e¢ cient levd of cooperation: We assume that the choice
of action is irreversible in every period, i.e,

Gt, GtinLi=L2t=0L2::; (2.1)
where G« isi ‘s action in period t; and, without loss of generality, we set ¢;.0 = G0 = 0.

A game history at timet is de..ned in the usual way asf(cy;; & )db . Both players
can observe game histories. A pure strategy for player i = 1; 2 is de..ned in the usual way
as a sequence of mappings from game histories in periods t = 1; 2::: to values of G+ in <,
and whereevery pair (G 1; G:t) satis..es (2.1). An outcome path of the gameis a sequence
of actions fcyt; &gl that is generated by a pair of pure strategies. We are interested
in characterizing subgame perfect Nash equilibrium outcome paths. For the moment, we
restrict our attention to symmetric equilibrium'! outcome paths where ¢ir = G = G,
t =1;2:::; and we denote such paths by the sequence fc.gi_;.

We now derive necessary and su¢ cient conditions for some . .xed symmetric outcome
path fcgl.; to be an equilibrium. Note that the worst punishment that j could impose
on i for deviating at date t from such a path is for j to set G as low as possible. So, if
| deviates at t, the worst punishment is for j to set G,; = G, all ¢ > t: Also whatever
action is chosen by j, it is always a best response for i to set G as low as possible It
follows that this punishment is credible, and, given the punishment, i% optimal deviation
at t from the symmetric path fcgl.; istoset g; = ;1 forall ¢ , t. Consequently, for
a non-decreasing sequence f c.g_; to be an equilibrium outcome path it is necessary and

1n the sequd, it is understood that “equilibrium” refers to subgame-perfect Nash equilibrium.



su¢ cient that fc.gl; satis..es, for all t | 1; the inequalities

AGi 1
A3 e ) + Maman) 1o 22)
So, as G , G; 1 fromtheirreversibility constraint (2.1), the interpretation of (2.2) is that

in the event of defection, both players stop increasing ther levds of cooperation.

Let Cse bethe set of non-decreasing paths f c.gl_; that satisfy (2.2), and we refer to
any path in Csg as a (symmetric) equilibrium path. We now note two basic properties of
sequences in Csg:

Lemma 2.1. If fcgl; is an equilibrium path, then (i) ¢ < ¢, forall t , 1; and (ii) if
G > G 1 for somet >0, thenforall ¢, O, thereexistsa ¢’ > ¢ such that ¢o > ¢ (i.e,
the sequence never attains its limit):

Proof. (i) Supposeto the contrary that ¢ , ¢ for somet > O; with ¢; ; < & Fromthe
de .nition of &, and A1, we must have

4G, @) , AGe1,G41); &, 1

Consequently,

1/ ’
Y4G; @) + 2AGy1;Ga1) +100 < iclt Ci):

Then, by (2.2), we have
4G 1, G) < 4G, G)
li = li =
But as G < G, and Yadecreasing in its ..rst argument, 4G, 1; G) > 4G; G), a contra-
diction.

(ii) If thisis not the case then g > G; 1 for somet > 0, and thereexistsa T | t
withg =eforallé , Tandg <eforé <T. Player 1, by deviating at T, would receive

Y4Cri 1€ - Yhe o)
l1i + 1i

where the inequality follows from Yadecreasing in its ..rst argument: T hus the deviation
is pro..table contradicting the equilibrium assumption. x



Say that the path flhgl; 2 Cse is e¢ cient®? (i.e, among symmetric equilibrium
paths) if there does not exist another sequence ffgl.; 2 Cse such that

. o
£ AG Q) > £ h):

t=1 t=1

We now have:

Lemma 2.2. An et dient sequence fhigl_; exists, and this sequence satis. .€s inequalities
(2.2) with equality, i.e, forall t | 1,
Ak 1, 1)

li +

= Y4b; k) + #Abs ) o (2.3)

Proof. As all the inequalities in (2.2) are weak, existence follows from standard argu-
ments. We refer to (2.2) holding at t the t-constraint. To show that all theti constraints
hold with equality, suppose to the contrary that for somet,

M < ;) + £Ab b)) +

| =+

the ti constraint. Moreover, the t + 1-constraint is redaxed by an increase in b, hold-
ing bey1;042;::: .xed, as Yais decreasing in its ..rst argument.  Finally, we can hold

foréi <tm

It now follows quite straightforwardly from Lemmas 1 and 2 that the e¢ cient path
must satisfy a second-order dixerence equation. First note that the e¢ cient path must
solve the sequence of equations (2.3). Let thesequencef c(c; Hg; solvethesecond-order
dixerence equation

Yie ) = 3 PG 16) | e @]+ G @); t> 1 24

with initial conditions ¢ = 0, , 0: It is easily checked!® that any solution to this
dixerence equation is non-decreasing, so the sequence f c.(cy; g, has a limit ¢ (c; 9
which is ..niteor +1 . Then we have

12\\/e use the term *..rst-best’ to refer to unconstrained e¢ cient outcomes.
13T his fact follows directly from the proof of Lemma 2.3 below.
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Lemma 2.3. Any sequence fc.gl_; solves (2.3) if and only if it solves (2.4) with initial
conditionsg =0, , O, and ¢ :=1limy 1 ¢ <+1:

Proof. Necessity. From the irreversibility constraint, fc.gl, is a non-decreasing se-
quence, so it converges to some ..nite limit ¢ or diverges to +1 . Since (2.3) implies
(2.2), fagl, is an equilibrium sequence and by Lemma 2.1, fagl.; must converge to
G - . Now, (2.3) can be written

G 1, G)

li =

=S

where we again write S; 1= Y4G; G) + 24G41; G+1) +::: . Advanding by one period, we
get

V4G Gey1) —s
1i = t+l
Also,
St = %4G; G) + 5¢41:
So,
AGiua) ., . HAG; Gr1) |
1 & CAGG (2

Rearrangement of (2.5) gives (2.4).

Sud¢ ciency. As just shown above, (2.4) is equivalent to (2.5). By successive substi-
tution using (2.5), we get

£1/‘(Ct+ni 1r Ct+n)
1i =

AGi 1, G)
li £

=Y4G;G) + 114 2 G 1Gani 1) + (2.6)

Now, as fcgl_; converges by assumption, we must have

L YG+ni 1) Gn)
1i =

=0

lim
1

n!

So, taking the limit in (2.6), we recover (2.3). x

We now know that the e¢ cient path solves the dixerence equation (2.4) with initial
conditions ¢y = 0and ¢ yet tobedetermined. T hefollowing lemma allows us to determine
¢ and hencetheed cient path itsdf. T hislemma shows that thee¢ cient path is the upper
envdope of all equilibrium paths (and henceit is unique). It then follows from Lemma 2.5
(ii) bdow that ¢ is simply the highest value consistent with convergence of the solution
to the dixerence equation.



Lemma 2.4. Theet cient pathfhgl., isthe upper envelope of all equilibrium sequences,
i.e, there does not exist a f gl ; 2 Csg with @ > b, for somet:

Proof. See Appendix. x

As before, let the sequence fa(c; Hgl; solve the dixerence equation (2.4), and
consider the set of initial conditions ¢ such that fc(c; Hgl.; converges to a ..nite limit,
e,

Ci(d =faja (cbH <+1 g:

Then we have our ..nal result of this section:

Lemma 2.5. (i) If, for any ¢ , O fa(c; gl is a convergent sequence, then it is
also an equilibrium sequence (ii) The e¢ cient path satis..es fagl.; = fa(b; Do,
whereb, = maxCy(#), and c(by; 3 , c(q;#;al Q2 Cy(; all t, 0.

Proof. (i) Inview of thefact that (2.3) guarantess the sequenceis equilibrium, su¢ ciency
implies (i) of Lemma 2.3.

(ii) From Lemma 2.2 and Lemma 2.3, the ed cient path exists, solves (2.4) with initial
conditions ¢ = 0;c; , 0.and must also converge Consequently, fhgl.; = fa (b Hgl,
for some by 2 C1(#): Now suppose that there exists another @@ 2 Cy(3# with ct(ci; H >
G(b;;H at somet > 0. In this case fct(c(i; HgL, is an equilibrium (by part (i)) with
ct(ci;i) > G(by; 3 at some t, which contradicts Lemma 2.4. In particular this implies
that ¢ 2 C1(# and ¢ > by is not possible. =

3. Main Results

We know that the e¢ cient path is the equilibrium path that is not crossed by any other,
and which is the highest (at each point) of all convergent sequences that satisfy the
dixerence equation (2.4). We now proceed to get an exact characterization of the limit
by . To do this, we consider two particular cases.

The Dixerentiable Case.

10



Yais twice continuoudly dixerentiable, with ¥4 < 0;%% > 0; Y41, Ve, < 0; Y4 - O

The Linear Kinked Case.
s

1= V4G + Y60 ifg+co: 2&

2% (Vi Y4)q ifg+o>2
where V4 < 0; Y4 > 0 are constants®* with ¥4 + Y, > 0.

Note that both these cases satisfy our assumption A1 above on the shape of w(c): In the
dixerentiable case, w(c) is strictly concave, as W@ = Y4y + Ya, + 2Y4, < 0, with a unique
maximum at . Inthelinear kinked case, w(c) is linear and increasing in c until ¢ reaches
the e¢ cient levd ¢*, and after that, higher cooperation yieds negative bene. .t.

Consider the dixerentiable case . rst. De..ne the function

i Ya(c0)

G O

°(0) :=
Note from the assumed properties of ¥4 we have
Y0 = L~ Dy + Yoo + Oz + Yi)] > O

and also that ¢ solves °(c*) = 1. Consequently, provided °(0) - # thereis a unique
solution b(#) to the equation
°(b) == (31)

and moreover, K(:) isstrictly increasingin £ 1f °(0) > z wesat b(#) = 0: Clearly b(8 < &,
+< 1, with lims 1 b(# = & We can now state our ..rst main result:

Proposition 3.1. Assumethedixerentiablecase Then thelimit of theed dcient symmet-
ric path, by ; is equal to b(#). Consequently, for all £< 1, the e¢ cient path is uniformly
bounded bdow the . .rst-best e¢ cient levd of cooperation; i.e, b <b(#) < for all t.

14An interpretation is that payoxs depend positively on (c; + ) up to 2¢ with a coeg cient of ¥, but
thereis a marginal utility cost of (Y21 Y4) toincreasing on€'sown G: For ¢ + ¢ > 2¢7, thereis no more
bene .t from joint contributions, only the cost remains, so that joint payoxs are declining in (¢ + G&):
For ¢ + ¢ > 2c%; all that is neaded for the results is that joint payoxs are nonincreasing in (¢ + &) and
also own payors are declining in own G:

11



Proof. (a) By the Mean Value T heorem,

Y4Gi 1,G) 1 YAGi 1,Gi1) = YalGi ) e ik 2 (GGl
4Gi 2;Gi1) | AGi1Gi1) = 1 Yalli 3G 1)¢Gi 1 i1 2 [Gi 25 Gi 1)

wheed G :=Gi G 1: S0, substituting in (2.4) and rearranging , we get

alGi G G 1t

¢ G

(b) Supposethat by > b(#). There must, by “4¢ ¢ beng twice continuously dixer-
entiableand a(by ;b0 ) =°(by )==>1 exista T such that for t > T, a(G; 1;G) > 1. But
then from (3.2), forallt > T, ¢ G > ¢ G; 1 whenever ¢ G; ;1 > 0 and by Lemma 2.1 (ii),
¢ G 1>0forsometi 1>T; socG cannot converge, contrary to hypothesis. We conclude
b - b

(c) Supposethat 0 < by < b(#): We show that this is impossible. Find a neighbor-
hood around by ; (by i ";bp +"), suchthat a(cd <k < 1forallc P2 (b i ";b +"):
De.neA := (1i k)", and consider T such that cr(b;; 8 > by i A (this must exist by
de..nition of by ). Now, sincecr(by; 3 < Gri1(by; 3 < by ; by & (cy; 3 being continuous in
c; wecan .nd & > by such that ¢ (Q) and ¢r41() 2 (by i A;by ), and moreover, since
O0<crab; i or(b;# <A, & canalsobechosen sothat 0 < cryi(q; Hi or(q; ) <A.
Hencefor all t > T; ¢ ¢ < k¢ G 1 by (3.2), and consequently f c.(c}; HgL; must converge
tosomeq (&) <by +% (=b +"): Sincefc(q; HG-, isa convergent path it is also
an equilibrium path (Lemma 2.5(i)) and ¢ > by; which contradicts the envelope property
of the e¢ dient equilibrium (Lemma 2.4). Finally, a minor modi..cation to this argument
establishes that by = 0 is impossible whenever b(4) > 0 x

Next, consider the linear kinked case. Here, we have the following striking result.

Proposition 3.2. Assumethelinear kinked case If thereis su¢ dently little discounting
(£> i Y4=/s), then the limit of the e¢ cient symmetric sequence by ; equals &, i.e, ..rst-
best e¢ cient cooperation can be asymptotically obtained. Otherwise no cooperation can
ever beobtained, i.e, b =0, all t:

12



Proof. From Lemma 2.1, we can restrict attention to those paths with ¢ < ¢, all t,
as no other path can be an equilibrium one. Writing out (2.4) for this case, using the
de. .nition of Yafor the kinked linear case, we get:

1 ) .
YaG + Y3Gy1 = ;_[1/4Cti 1+ %G1 YaGi YaG]+ YaG + YG;

which rearranges to

; ¢G=a¢ G, (3.3
where a:= i ﬁ‘; 1 ¢G=Gi Gi1. Thus, ¢ =a"l¢gwhaedg=qi ¢=aq,
and ¢; can be chosen fredy. So, we have

Xt .
= ¢¢g=(l+a+:a"Yq: (3.4)
é=1

First supposethat a , L. If g > 0, then from (34), ¢! 1 ast! 1 ; contradicting
the assumption that ¢ < ¢, all t: So, we must have g = 0, in which case g =0, all t.
Thusifa, 1() =x- (i Ya=/A); no cooperation is possible as daimed. Now suppose
that a < 1: Then the series in (3.4) converges, so we get

1 1

R T
So by appropriate choice of ¢, we can choose a path that converges to ¢*; and this must

be the e¢ cient path by virtue of Lemma 2.4. x

Notethat in both cases, wehaveshownthat as ! 1, thelimitingleve of cooperation
on the e¢ cient equilibrium path, ¢ , tends to the ..rst-best e¢ cient levd, . It turns
out that this fact implies that payoxs also converge to thar e¢ cient levdsas ! 1; i.e,
thereis no limiting ine¢ ciency in this modd.

Corollary 3.3. In d@ther the dixerentiable or linear kinkng cases, as ! 1, the normal-
ized discounted payox fromthe e¢ dient path, | = (1i ¥ [, # %h;hk); converges to

the ..rst-best payox “4cC; C):

P roof. Consider, for some . .xed % rewriting the equilibrium condition (2.2) as, for each
t
. )4 J 1 t
WUaina): (i 83 £'%G;¢): (3.5

i=t
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Now, if fcgl.; isan equilibrium sequence at + then fa.gl_; is also an equilibrium at any
> +since, as ¥%G; G) is a non-decreasing sequence, the R.H.S. of (3.5) is non-decreasing
in % and the L.H.S. is constant.

Now for the dixerentiable case, de..neb(#) asin (3.1), and in the linear kinked case

de..ne 1/2(:)[x e vy
== =

oH= o " Gherwise
So, for any " > 0; ..nd a *such that %b(#; b(8) > %) i " (where in the dixeren-
tiable case we use the continuity of “4¢ @; and, as already remarked, lims 1 (8 = ).
From Propositions 3.1 and 3.2, at £ b ! b(#; so holding flagl.; .xed, limy 1(1i
&) P L 4 lh:h) ! Y4(#;b(3); and hence there exists a £ > #such that for *satis-
fying £ <+<1; (1i 3 P & 14h; k) > %c5 ) i " Sincefhdl; is an equilibrium
sequence for such # the e¢ cient path at such =must also give a payox greater than
;)i " As" is arbitrary, this completes the proof. x

An alternative way of viewing this result is to notethat if we shrink the period length,
holding payoxs per unit of time constant, then ine¢ ciency disappears as period length
goes to zero. '

4. A Model with Adjustment Costs

The modd studied above is very stylized. In many economic applications, irreversibility
arises more naturally when there is a stock variable which bene. .ts both players, and a
fow or incremental variable which is costly to increase and is nonnegative. T his non-
negativity constraint implies that the value of the stock variable can never fall i.e the
stock variableis irreversible Here, we present a modd with these features, and show that
it can be reformulated so that it is a special case of our base modd.

Player i% payox at timet is

U(G;t;Ge) i ®Git i Giti 1); (4.1)

15If Y4is discontinuous but otherwise satis..es our assumptions then asymptotic e¢ ciency can fail.
Consider an example in which player i bene.ts only from j’s G; with an upwards jump in payox at
completion (G = ¢¥), and suxers continuous (increasing) costs from ¢: Lemma 2.1 still applies, so
G.t <% al t; and the payox jump is never realised no matter how patient the players.
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with u increasing in both arguments, and with ®> 0 being the cost of adjustment: Here,
G isto beinterpreted as i% cumulative investment in, or the stodk levd of, the coopera-
tive activity. We assume that the investment fow is nonnegative, which implies that the
stock levd of cooperation isirreversible, i.e, Gt , Giti1, 1 =1L 2

We now proceed as follows. T he present value payox for i in this modd is

bi = uGuGa)i ®Ga1i Go)+Hu(GG2)i ®RGai Ga)l+:::
).
= F Mu(Gugo) | ®Li Hae]+ &

t=1
As initial levds of cooperation ¢i.0; &0 are .. xed, we can think of this modd as a special
case of the modd of the previous section (i.e without adjustment costs) where per-period
payoxs are

ucd =ucdi &li Hc (4.2)

Of course, we require that ¥de..ned in (4.2) satis..es the conditions imposed in Section 2,
and also satis. .es the rdevant conditions of either the dixerentiable or linear kinked case.
If this is the case, then Propositions 3.1 and 3.2 apply directly.

We now study two important economic applications using this extension of our basic
modd. These are not the only topics that can be studied in this way, but they are chosen
to illustrate the power and texibility of our approach.

4.1. Dynamic Voluntary Contribution Games

Thereis now a small literature (Admati and Perry (1991), Fershtman and Nitzan (1991),
Marx and Matthews (1998)), on dynamic games where players can simultaneously or se-
quentially make contributions towards the cost of a public project. The paper in this
literature (Marx and Matthews (1998)) that is closest to our work is one where contribu-
tions are made simultaneously, and where the bene. ts from the project are proportional
to the amount contributed (up to a maximum, at which point the project is completed).
We will show that a special case of Marx and Matthews’ modd can be written as an
adjustment cost game as above, and that Proposition 3.2 above can be applied to extend
some of thair results.
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Marx and Matthews (1998) consider a modd in which N individuals simultaneously
make nonnegative private contributions, in each of a ..nite orin..nite number of periods,
to a public project. We assumethat N = 2, and let G+ be the cumulative contribution
of a numeraire private good by i towards the public project. Individuals obtain a $ow of
utility u = (1i Hv(9 from the aggregate cumulative contribution ¢t + G, where v(q is

piecewise linear:
Y
P (a+q) ifa+c<2¢=C"

v(c; Q) = C*+b ifa+c, C*

where we follow as dosdy as possible the notation of Marx and Matthews. Thus agents
gt bene t | from each unit of cumulative contribution, and an additional bene t b, 0
when the project is "completed”, i.e, when the sum of cumulative contributions reaches
C*. Also, thecost toi of anincrement G.+i G.; 1 in the cumulative contribution is simply
Gt Gi 1. We consider the case where b= 0 and the time horizon is in. nite (theb= 0
case unravds otherwise). Alsoit isassumed that 0:5 < | < 1, sothat it issocially e¢ cient
to complete the project (immediatdy, in fact), but not privatdy e¢ cient to contribute
anything.

Then, from (4.2), per period payoxs in the equivalent repeated game are

Aqiq) = (1i Hv(a;q)i (1i 3Ha
(Li B[(,i VDag+,¢] fag+g<2c=C"
(Li 1,C%i (1i Hg ifag+cg, C*
So, Y4 =(1i H(,i 1) <0 Y =(1i B, > 0. Thus, all the conditions of the linear
kinked case are satis..ed, and so Proposition 3.2 applies directly to this version of the
Marx-Matthews modd.

First, we can de..ne the critical value of xin Proposition 3.2 as

i Vs (i)
Yy - :

A
+=

Two results then follow directly from our Proposition 3.2 and its proof:

1. If £> % thereis a dass of equilibria, indexed by the initial condition ¢; where each

player's cumulative contribution ¢ converges to ¢, or indeed to any value less than or
(1i ,)

T..

equal to . Along the equilibrium path, incremental contributions fall at rate
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The e¢ cient symmetric equilibrium has initial contribution ¢; = ¢(1i -)); and each

+

player’'s cumulative contribution ¢ converges to ¢
2. If + % then no contributions are made in any equilibrium.

Result 1 sharpens Proposition 3 and Corollary 3(ii) of Marx and Matthews, who show
that for +> % thereis an equilibriumwith ¢ ! ¢ and that for +' 1, this equilibriumis
approximatdy eg¢ cient. In the special case of n = 2 and b= 0; we not only con..rm ther
results, but also show that the equilibrium they construct is the e¢ cient equilibrium for
any > % Also, Result 2is a complete converse result to their Proposition 3.

4.2. Capacity Reduction in a Declining Industry

There is now a literature on the equilibrium evolution of capacity in an industry where
demand is declining over time (See Ghemawat and Nalebux (1990) and the references
therein). For tractability, this literature assumes that product demand dedines asymp-
totically to zero; a backward induction argument can then be used to establish the equi-
librium pattern of capacity reduction by ..rms. Our framework allows us to deal with the
more general case where demand does not decline to zero.

The modd is a modi..cation of that of Ghemawat and Nalebux (1990). Thereis a
duopoly whereeach .rmi = 1; 2; hasinitial capacity at timezero of ky. Inany period, the
output of ..rmi must be no greater than capacity, i.e, X+ + k. Demands and costs are
asfollows. At timet, each . rmfacesthelinear inversedemand schedulep, = aci X1ei Xot.
There is no short-run cost of production, but there is a per-period cost of maintaining
capacity A > 0, and a cost ¥> 0 of scrapping capacity, with the fow cost of scrapping
less than maintenance, i.e, %41i # < A. It is assumed that capacity, once withdrawn,
cannot be rentroduced (for example, the capital stodk may consist of specialized capital
goods which are no longer manufactured).

Within a period, the production decision is deegated to myopic managers who engage
in Cournot competition, so output conditional on capacity is

Xi:t = minfk;.; a=3g; (4.3)
where a:=3 is unconstrained Cournot output at time t: We assume that at the beginning

17



of period 1, a; falls permanently from ag to ay, i.e, the size of the market declines once
and for all.*® We suppose that initial capital stodks have been set so as to force managers
to produce at joint pro..t-maximizing outputs, taking into account the cost of capital, and
adjustment costs, at theinitial levd of demand, i.e,
(@i A+3#41li B)
7 :
A story consistent with this is that in the (distant) past, this industry has already been
hit by a negative demand shock, and has adjusted to the old long-run equilibrium.*’ Note

ko = (4.4)

that cutting capacity can act as a way of committing to a lower levd of output than
the Cournot solution. The question is, if demand falls, can the ..rms cut their capacities
su¢ ciently so as to reach the joint pro..t maximising levd?

It is convenient to assume that the dedine in the market is not too large, i.e,

3%
4

In this case, managers will always be constrained by capacity.'® So, if (4.5) holds, pro..t

di. (45)

in period t can be written

Var = ankizi kixi kikjti Aki;ti Yikiti 11 Kit)
’ 1%ki;t; kj;t) [ 3/“(i;ti 1 i ki;t):

P .
So, thefully e cient capital stock at thenew level of demand, k¥ maximizes |, &' (Y4 +
Yay), i€ 3
_ari A+#10 9
= 2 :
and adjustment should be immediate. Note that k™ < k.

kn

Now de..ne the levd of cooperation of ..rm i to be the amount of capital scrapped,
Gt :=koi kit, 0Go=0 & =kpi k" So, from (4.2) we can write pro..t as a function
of cooperation levds:

G Gi) = Akoi Gukoi Gi)i ALi HaGy (4.6)

16T his is in contrast to Ghemawat and Nalebux who make the assumption of a constantly declining
market, an assumption which implies a backwards unraveling result and a unique equilibrium. By
contrast here there will be many equilibria.

17 Although, as we shall see, this statement is only approximatdy correct if +is near 1:

18To see this, note that (4.5) implies kit © ko = w - % asA>3%1li # by assumption.
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As Y4Gt; G.t) is non-linear, the rdevant case is the dixerentiable case. To apply Proposi-
tion 3.1, we nead to verify the assumptions of the direrentiable case. By direct calculation,
we have

Ve = iar+A+2k +ki ALi B;
Yo = ki;t;
Yo, = 12 Y=0Yeo=il

So, all the dixerentiable case conditions are satis..ed if ¥4 < 0; which in turn is satis..ed
if (4.5) holds and capacity (net of scrapping) costs are small®.

Our results for the dixerentiable case then apply directly. In particular, on the
e¢ dent symmetric path G rises asymptotically to b where b is de..ned in (3.1) above
We can express this in terms of the capital stock: ki dedines asymptotically to K, where

K sol
VS D4 (K; K)
4 (K; K)

=%
Or, using (4.6), we get:
ai Ai 2Ki K+3%41i 3
K

oo A A+3%1i B
- 3++

= &

Solving, we get

> k™

So, for < 1; the duopolists cannot credibly reduce capacity to the new joint pro. .t-
maximizing levd k*, even asymptotically. All they can manage is to force down capital
stocks to K; so there will be excess capacity and output in the industry (relative to joint
pro..t maximization), even in thelong-run. As £! 1, the amount of excess capacity goes
to zero.

5. Reversible Cooperation

So far, we have assumed that cooperation is completdy irreversible. This is dearly a
strong assumption. In this section, we examine to what extent our results are robust to

19T 0 see this note that ¥4 < 0if ki < (2ai A+%1i 9) . gyt if capacity (net of scrapping) costs are small
3

(A' 3/£1| i)):kit' ko:M:/“'ﬁ)' aJ41<a?1' aliA+¢asrmuirw.
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a rdaxation of this assumption. Suppose that we modify the irreversibility constraint to
Git . 1/ﬁi;ti 10 Y2 1

where the degree of irreversibility is parameterized by ¥4 complete irreversibility is ¥= 1,
and a standard repeated game is ¥2= 0. The ..rst—and important—point is that the
exect of lowering Y2from 1 on the e¢ cient symmetric path is not clear without further
analysis, because of two exects that work in opposite directions.

The ..rst exect of a smaller 2is to make deviation more pro. table; the deviator at
t can lower his cooperation levd at t to % 1 < G; 1, rather than keep it at G; ;. The
second exect is to make punishment more severe, the worst possible perfect equilibrium
punishment of the deviator is for the other player to reduce his cooperation as fast as
possible over time, rather than just not increaseit. A priori, it is not dear which exect will
dominate. Neverthdess, we are able to show that for a small amount of reversibility the
second extect dominates, and in the linear case it dominates for any degree of reversibility.

Speci..cally, we show that lowering Y2slightly from Y%= 1 rdlaxes the incentive con-
straints; that is, any path that is an equilibrium when Y= 1 is also an equilibrium path
when Vs slightly lower than one, and moreover because the incentive constraints become
slack, an improved path can be found, so that payoxs increase.

Consider a deviation by i from some symmetric path f c.gl_; at t. Theworst subgame-
pefect punishment that j can impose on i is to reduce cooperation by the maximum
amount in every period followingt, i.e, toset G.t+1 = %) G.t+2 = ¥4G, etc. Consequently,
the most pro. table deviation i can make is to lower his cooperation by the maximum
feasibleamount at t, i.e, s&t G+ = Y& 1. SO, the maximal payox to deviation at t is

¢ (G 1;G) = Y4k 1, G) + 4G 1 ) + PG 13 AG) + i
Then, fcgl.; is an equilibrium path if and only if it satis.esforall t | 1:

¢ (4G 1;G) © V4G G) + PAG1; Gr1) + PG 2 Yoero) + i (5.1)

An e¢ cient (symmetric) equilibrium path is de..ned now as the path that maximizes
the utility of @ther agent subject to the sequence of constraints (5.1).
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In order to characterize e¢ cient payoxs, the rdevant results extending Lemmas 1-4
are collected beow:

Lemma 5.1. With reversibility, there exists an e¢ cient symmetric equilibrium sequence
fhg, suchthat (i) ;- b - G foralt, 1 (ii) if b < ¢ then (5.1) holds with
equality, (iii) flrg is the upper envdope of all equilibrium sequences which never excesd
c

Proof. See Appendix. =

If ¢ is the unique maximizer of “c; c);then the sequence fhigl_; characterized in the
lemma is the unique e¢ cient symmetric equilibrium outcome path; otherwise there may
be multiple e¢ cient paths dixering only in the interchange of e¢ cient levds of ¢; but they
do not dixer before such levds are attained. In what follows, the ‘e¢ cient equilibrium
path’ is understood to refer to the one which does not exceed C*:

Using Lemma 5.1, we now turn to discuss theimpact of a small amount of irreversibil-
ity, and we begin with the dixerentiable case Let fh(%gl, be the e¢ cient equilibrium
path in the ¥ reversible game, let by (Y4 beits limit (which exists by Lemma 5.1), and
let 2

(=10 9 £ eke)

t=1
be the payox from this e¢ cient path, all for some . xed discount factor =< 1. Then we

have the following:

Proposition 5.2. In the dizerentiable case provided by (1) > O; there exists %1 > ¥>>
0; such that if 1 > %2> ¥ then (i) if fo(Ag is the et cient equilibrium path in the
irreversible case, it is also an equilibrium path in the % reversible case (ii) by (YA > by (1)
(" b (i) (> (D)

Proof. See Appendix. x

T he reasoning behind this result is that a small amount of irreversibility rdaxes the
incentive constraints in every time period, allowing every components of the e¢ cient path
to be raised dlightly as Y2decreases slightly from 1. This in turn implies that the limit
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value of the e¢ cient path is higher, as wel as the present discounted payox from the
e¢ dent path.

We now turn to thelinear kinked case. Weshall ..rst characterizethe sequencef g,
described in Lemma 5.1. From (ii) of the lemma, if ¢ < ¢ and G41 < ¢ then (5.1) holds
with equality at both dates, and substituting out the continuation equilibrium payoxs
after t + 1 yidds

A !

x , N x , N

LYYt 1+ o) =Yaa + Ve + = 2 (Yala + YW Tan)

i=1 j=1

or

Va1 + G y VaYe: + YaGa1
1 vE O GGt T

which can be simpli..ed to

1

. . Y .
Ge1i Y& =i gi(ct i Y 1):

Giventhat ;i Y% = ¢; this can be solved for
G=(Wl+W2a+W32: . +% 24+ Y (5.2)

wherea = i ﬁ‘; as before and note that for Y= 1 (irreversibility), (5.2) reduces to (3.4).

(If ¥& a then the solution can be written ¢ = G- ;)

We can now prove

Proposition 5.3. In thelinear kinked case, (i) if a(=i %‘;) < 1 (so0 a non-trivial equi-
librium exists with irreversibility) then payoxs in e¢ cient symmetric equilibrium are a
strictly decreasing function of Yawhenever they are bdow the . rst-best levd (which they
are at 2= 1). Moreover if %2< 1 the project is completed in ..nitetime (i.e, ¢ = &
forsomet <1 ): (ii) Ifa> 1 then g = 0 for all t; for all Y22 (0; 1] in any symmetric
equilibrium. (iii) If a = 1; then the project is completed asymptotically for ¥22 (0; 1):

P roof. See Appendix. =

Recall that if %= 1; no non-trivial equilibriumexistsifa , 1; whileif ¥2= 0 (repeated
game) it can be checked that the..rst best is attainable (immediatdy) if a1, otherwise
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thereis no non-trivial equilibrium. T he path used in the proof of part (i), which satis..es
(5.2) up to its maximum value, is not the e cient path unless this maximum occurs at
t = 1, since each incentive constraint up to t* is slack, violating Lemma 5.1(ii). So the
e¢ dent path also satis..es (5.2) solongas ¢ < ¢ but ¢ is higher than in the construction
of the proof (otherwise Lemma 5.1(iii) is violated).

6. Asymmetric Cooperation

So far, we have only considered symmetric paths, i.e, where ¢+ = G+ = G: A natural
question is whether the agents could achieve higher (expected) equilibrium payoxs by
playing asymmetrically. A further rdated question concerns the characteristics of e cient
equilibria in a modd where agents are constrained to move sequentially; as we shall see,
this is a dosdy rdated issue and will be considered bdow.

We shall consider these questions for the linear kinked case only. Let fcyt; gl
be an arbitrary (possibly asymmetric) path. Then, by a similar argument to that given
in Section 2, such a path is an equilibrium path if and only if fori; j =1 2 i & j;
t=12:::;

Y4G.ti 1+ V4G

li =
Let Ce bethe set of equilibrium paths (i.e. sequences that satisfy (2.1) and (6.1)). Also,
let | (fcue; &tgie;) bethe normalized (multiplied through by (1i ) present discounted

' 1/iici;t + 1/2q;t + i_(l/‘lci;t+1 + 1/2Cj ;t+1) + : (61)

values of payox to i associated with a path, and let | ¢ be the image of Cg in the space
of normalized present discounted values of payoxs,, i.e,

e =f( ! )i =1 i(fau @igy); fau Gig; 2 Ce, i =129

Our focusin on theshapeof thee¢ cient frontier of | ¢ : Asfar as symmetric equilibria
go, we know from Proposition 3.2 if + %= i Y=; no cooperation is possible, whereas
if +> % completion equilibria exist. From the symmetry assumption on payoss, | ¢
is symmetric about the 45° line One issue concerns the possibility that | ¢ may be a
non-convex set, in which case it may be optimal for the players to randomize between
two pure-strategy equilibria rather than play the e¢ cient symmetric equilibrium. The
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following result, which characterizes | ¢ when + > % establishes that this is not the
case, and moreover shows that the ed cient frontier of | ¢ is linear with slope -1 near the
45°ling, so in terms of joint payoxs, a degree of asymmetry does not matter. T his part of
the frontier consists of payors from sequences which satisfy the incentive constraints with
equality (this is no longer true for e¢ dient paths with su¢ ciently asymmetric payoxs).

Proposition 6.1. Assumethat > F=i Y=s: Then, ! ¢ isconvex. Moreover, theet -
cient frontier of ! ¢ has the following form. There exist pointsA = (! ¢! ©®, B =(! @1 0.
on the e¢ cient frontier of ! ¢ with ! 9> ! ®> 0 such that between A and B, ! ; and ! >
sumto a constant § (i.e, thefrontier of | ¢ islinear between A and B with slope-1): For
any point on the frontier bedow A or above B, the sum of utilities is strictly less than § :

Proof. See Appendix. x

The Proposition is illustrated in Figure 1 below,
Figure 1in here

which shows the general shape of the frontier (although we have no results about the
shape of the frontier to the left of B or bdow A, except that it must be described by a
concave function). We can also say something about how the frontier shifts as +changes:

Proposition 6.2. The segment of the e¢ cient frontier between A and B is increasing in
+ in the sense that both | & ®and § areincreasing in % and converges to the . .rst-best
frontier as £! 1(i.e, ! @201 Oand§ ! 2(V4 + Y)): As +! %= Y=, from
above A! Band§! O

Proof. See Appendix. x

Proposition 4 is illustrated in Figure 2 bdow, where the solid line represents the
frontier at a lower and the dotted line the frontier at a higher value of +

Figure 2 in here
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Note that as £! 1, the e¢ cient frontier becomes linear everywhere with slope equal
to minus one -1, i.e, it converges to the ..rst-best e¢ cient frontier. So, Proposition 6.2
generalizes Corollary 3.3 to the case of asymmetric paths, at least in the linear kinked
case

7. Sequential M oves

So far, we have assumed that players can move simultaneously. However, it may be that
players can only move sequentially, eg., Admati-Perry (1991), Gale (1997). In cetain
public good contribution games, the assumption made can axect the conclusions substan-
tially. In the Admati-Perry modd, where players move sequentially, a no contribution
result holds when no player individually would want to complete the project, even though
it might bejointly optimal to do so, but this result may disappear if the players can move
simultaneously (see Marx and Matthews (1997) for a full discussion of this issue). By
contrast, we shall ..nd that in our modd, equilibria in the two cases are dosdy rdated;
indeed, the e¢ dent symmetric equilibrium can “approximatdy” be implemented in the
sequential move game.

Suppose w.l.0.g. that player 1 can move at even periods and player 2 at odd periods.
T hen, this move structure imposes the constraint that

Gt = Qi1 t=135:: (7.1)

Qt = GQt1, t=2406::

Let the set of all paths that satisfy (7.1) be C5%%: To be an equilibrium in the sequential
game, any path fcyt; G.rg must satisfy the following incentive constraints. When player
1 moves at t = 2;4;:::; he prefers to raise his levd of cooperation from G; > to G only if

VACLti 2, it 1)

1i + VhCLt Qi 1) + 2ACu Quean) + 0 t=2,46u (7.2)

Similarly, when player 2 moves at t = 3;5::;; he prefers to raise his levd of cooperation
from Gy 2 to G only if

Y4Couti 2; Cuti 1)
1i =+

- WG Quti 1) + PG Ges1) i =357 (7.3)
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When player 2 moves at period 1, (7.3) is modi..ed by thefact that 2 can revert to g =0,
rather than ¢ 1, but otherwise the incentive constraint is the same i.e,

40; 0)
1i +

Let the set of paths in C® that satisfy (7.2),(7.3) and (7.4) be CZ* ¥4 Csea:;

w - Y4G1; 0) + 2AG; o) + : (7.4)

However, note that a path isin CZ* if and only if it is an (asymmetric) equilibrium
path satisfying (7.1) in the simultaneous move game studied above. This is because in
the simultaneous move game, the incentive constraints in the periods where agents do not
have to move are automatically satis..ed, as no agent likes to choose a higher G.. than
necessary (from Yadecreasing in its ..kst argument). So, C2is simply that subset of Ce
alsoin C*%9, j.e,

CeM=Cg\ C*%
So, the set of feasible present-value payors | £ is theimage of C2* in <? under the payox
function , and consequently

seq .
A VI

To say more than this, we shall go to the linear kinked case, in which case we have
the following. De.neA :=(} ¢! 9 asin Proposition 6.1 above and let I” be the present
value payox from the e¢ cient symmetric path in the simultaneous move game, so that
S := (") is the equal utility point on the Pareto-frontier for that game

Proposition 7.1. | £ is convex. Also, A isin | ™ and for any .xed " > O, there is
a#") <1 andapoint B = (359 2 | M guch that 3 > i ;i = 1,2 for
+, #"): Consequently, as =! 1, the Pareto frontier of | £ is asymptotically linear

between S and A.

Proof. See Appendix. =

This Proposition is illustrated in Figure 3 bdow. It shows that in the sequential
move game, for low discounting, we can approximate “half” the linear part of the Pareto-
frontier of the simultaneous move game, so sequential moves need not be a barrier to
e diency.

Figure 3in here
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8. Conclusions

This paper has studied a simple dynamic game where the levd of cooperation chosen
by each player in any period is irreversible We have shown that irreversibility causes
gradualism, i.e., any (subgame-perfect) sequence of actions involving partial cooperation
cannot involve an immediate move to full cooperation, and we have re..ned and extended
this basic insight in various ways. First, we showed that if payoxs are dixerentiable in
actions, then (for a . xed discount factor), the levd of cooperation asymptotes to a limit
strictly bedow full cooperation, and this limit value is easily characterized. For the case
where payoxs are linear up to some joint cooperation levd, and constant or decreasing
thereafter, the results are dinerent — above some critical discount factor equilibrium
cooperation can converge asymptotically to the fully e¢ cient levd. Bdow this critical
discount factor, no cooperation is possible

Later sections of the paper then extend the basic modd in several directions. First,
we studied an “adjustment cost” modd which is applicable to a variety of economic
situations, and showed that it can be reformulated so that it is a special case of our
base modd. We then applied the adjustment cost modd to study sequential public good
contribution games and capacity reduction in a dedining industry.

Other extensions were to allow for irreversibility, asymmetry, and sequential moves.
However, in all these variants of the base case, we have continued to assume that the
underlying modd is symmetric, i.e, both players have the same payoxss, given a permu-
tation of their action variables. This is somewhat restrictive in many situations where
irreversibility arises naturally, eg. Coasian bargaining without enforceable contracts but
whereactions areirreversible, payoxs will be asymmetric. Another limitation of the modd
is that players only have a scalar action variable in many applications, players have sev-
eral action variables, as in, for example, capacity reduction games, where ..rms control
both capacity and output. Extending the modd in these directions is a project for the
future
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A. Appendix

Proof of Lemma 4. Suppose to the contrary there exists a f gl in Csg with @ > b
for somet. De.neforall t, O & = maxfk;dg: It is dear from Assumption Al and
Lemma 2.1 (i) that

ke &) , Y&k h), all t; (A.1)

with at least one strict inequality, so that fe&gl; gives both agents a higher payox than
fhig,. So, if we can show that fe&gl.; is an equilibrium sequence, this will contradict
the assumed e¢ dency of fhgl_; and the result is then proved.

Say the sequences fagl_;; gl ; havea crossingpointat ¢ if @, ;- b1 @, b
with at least one strict inequality, or &, ; , ki1, @ + b with at least one strict
inequality. Also, de.neS; = 4G; ) + 2A4G41; G+1) +:::; sothat St | Q;Sf by (A.1).

T here are then two possibilities at any time é: The ..rst is that there is no cross-
ing point at ¢. Then, dther (& 1;&) = (i ub) or (& &) = (& 1;4). Without
loss of generality, assume the former. As flagl.; is an equilibrium sequence, we have
Yibi 1b)=<1i # - 9; sothat (& &) = (biub) and S, 9. together imply
Y& 1 &)X1li 8- 5;;i.e, theli constraint is satis..ed for fegl. ;.

Now assume that fgl_; and f fgl_; have a crossing point at ¢; and assume w.l.o.g.

that
C?il' of 1:C?J b: (A.2)
Then as f g, is an equilibrium sequence, 49, ; )=1i #H - SP. Also, 3; , S? and
from (A.2), & = . Consequently,
QG 1 &) .

Finally, again from (A.2), &, ; * ki1 = &; 1: Using this fact, plus Yadecreasing in its
.Ist argument, we have Y4&; 1; &) - YCQ, 1;&); so from (A.3) the ¢i constraint holds
for fegl,. Consequently all ¢i constraints hold for the sequence fegl_;, so it is an
equilibrium sequence, as required.

Proof of Lemma 5.1. (i) Take an e¢ cient path fegl.;—such a sequence exists by a
similar argument to that of Lemma 2—and de.neé , 1to bethe..rst period such that
e > ¢ (if such a period does not exist, then (i) holds immediatdy): De. .nea new sequence
withh :=q;fort <¢;andb :=c*fort , ¢:fbgl;dearly yiddsas much utility asfegl,;
at every point, and it will be shown that it also satis..es (5.1) for all t: First, (5:1) holds
at ¢ since ¢ (Yif&i 1:€9) > ¢ (%fh; 1;g) askh <e whileky; ;1 =&; 1 (and using a
increasing in its second argument); moreover the RHS of (5.1) is no smaller. Likewise, for
t?> ¢; we have ¢ (%f Go 15 Gog) < ¢ (%fGi1:G9) Sincebo =by; and bo 1 > by 1; while
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continuation path payoxs (RHS of (5.1)) arethesame at ¢ and t% So (5.1) holds at t@ it
dearly holds at t < ¢ as the LHS is unchanged relative to the fe.gl_; sequence while the
RHS is no smaller. The proof of k; 1 - kb is straightforward but tedious and is omitted.
(ii) The argument is similar to the proof of Leamma 2.2. (iii) Assume the contrary, so
there is an equilibrium sequence f g, yidding a higher payox than flhgl_;; and both
sequences lie bdow or equal to ¢*: Hence the construction of Lemma 2.4 can be followed
to create a new sequence f e.gi_, which yields a higher overall payor. That it satis..es (5.1)
at each t follows from similar arguments. x

Proof of Proposition 5.2. (a) L& k(1) = b to ease notation. To prove part (i), it is
su¢ cient to show that we can ..nd &such that

¢ (%hi k) <¢(Thiyhg; t=12105 1>Y> & (A.4)
For then, for 1> %2> & fhg.; satis..es the incentive constraints (5.1).

(b) Fix t; then

¢e(i ¢ =i ¢AD" + %¢ A" +0("); (A.5)

where" := 1i “andtoeasenotation, weset ¢ (%4 := ¢ (%fh; 1;6g). Routinecalculation
gives:

D) = Au(1+2++3#+4F + ) (A.6)

¢ X1 = Au2++6£+ 12+ +:) + B (A.7)

where A; = Y4hy; 1 + 24k, and By is the sum of terms involving Y41; Ya,; V42, and where
it is understood that all derivatives of Vaare evaluated at (b 1;6). Also the series 1 +
2++ 3£ + 4 +::: and 2++ 6 + 12+ + ::::both converge (to s;; s, > 0 respectivay).
Useful properties of A¢; By; proved in (c) bdow, are At > 0, By <0, limy 1 At =0,
I|m| 1 Bt <O

Consequently, we can write

i A"+ %¢ R1)"2 = (vahri 1 + #ah)(i 51" + 0:55,"2) + 0:5"2By: (A.8)

Clearly there exists " such that for " satisfying0 <" < "¢, the RHS of (A.8) is negative
It follows from (A.5) that for " <", ¢ +(*A < ¢ +(1).

(c) (Propeties of A¢;B¢): First we show that Ay > 0: We havehh , b, so (as
Y > 0) we only nead show that

Ya(bi 1;0) + #a(b; ;0) >0 (A.9)
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Now, we know from Section 3 that provided the maximum attainable levd of cooperation
b>0; thenh <ball t; and thus °(k) * i Ya(k; b)=4(k; ) < % which implies

Va(b; k) + £4(k; k) > 0 (A.10)
Also, from the assumptions on Yathat %31 < 0; Y4, - 0; we have
Valli 1,B) , Yalbs k), Yalki k), Yallsb): (A.11)
Consequently, (A.9) follows from (A.10) and (A.11). Also note
limAc = Ya(by ;)b 1+ (ki 1;0)a

= [Ya(bb) + #4(bblo
=0

wherethetermin the square brackets is zero by de..nition of bx T he properties of B follow
from the fact that B is the sum of terms involving Ya1; Ya,; Y4, with coed cients bounded
(in t) above zero.

(d) We now show that the sequence f%gl, := f1i "igl.; can be chosen to be
bounded bdow 1; this would imply (A.4) with &= sup¥% < 1. If such a sequence does
not exist, then there must be a subsequence which w.l.0.g. we take to be f %gt_, itsdf,
convergingto 1; i.e, %! 1land

¢(hivh), ¢(Lhih);, alt (A.12)
Butnowast! 1; k! b sofrom(A.5), wehave
¢(2bb i ¢(Lbb ' limfi¢ a" + :—2L¢ d1)"%g
= tI!irp 0:5"?B; = 0:5"°B <O
So, for some ..xed pu> 0, there exists %z < 1 such that
¢ (%Bhb <¢(Lbbi 3y 1>V % (A.13)

Also,ast! 1; ! b and ¢ (¥} iscontinuousin %2and by 1; b, there exists a T, such
that forall t, Ty:

¢ (%hi ;b)) < ¢(%bb + 1> %> Y%

¢(Lbb < ¢(Lhivh)+u (A.14)
Combining (A.13) and (A.14), we get
¢ (%hi k) <¢(Lhiph)i wl1>Y>%t, T (A.15)
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But (A.12) and (A.15) arein contradiction.
(e) To prove part (ii) of the Proposition, let

72 b t<T,
= M
&= b+  t, T,

Also, choose * < c*i bsmall enough so that (by continuity)
¢ (Ve& &) < ¢ (Ve ) +p=2 1>Y> % b, Ty (A.16)

We show that fegl_; is an equilibrium symmetric path in the % reversible game, if
1> Y5> maxfsup%; ¥z9. To seethis, note..rst that & < c¥; so for any t the continuation
payox from fe&gl, is strictly greater than that from fhgl,: Hence, it sug¢ ces to show
that the deviation payox in the % reversible game from fe&gl.; is no higher than the
deviation payox from fligl_, in the irreversible case But from (A.15) and (A.16), we
have

¢ (& &) <¢(Lhiph)i p=2 1>%>"% t, T,
as required; provided ¥2> & sup% (A.4) ensures (from (a)-(d) above) that (5.1) holds
for t <Ty: Thus setting 2= maxf sup %z “zg implies that (5.1) holdsforall 1> > %t |
1: Then from Lemma 5.1 (iii), by (%4, b (1) +":

(f) To prove part (iii), it follows immediately from the construction of f &gl ; that

X ~
~i=(1i 9 £ Yese) > (1)
t=1
and as f &g, is an equilibrium (but not necessarily the e¢ dient) path in the % reversible
game (¥ . ™ and so the result is proved. x

P roof of Proposition 5.3. Let %= 1; and supposef ¢.gi_; isan et cient path; assuming
a < 1, this path is increasing by earlier arguments. The derivative of ¢ «(%fagl.;) ~

(Va¥li 1+Yc)<1i Y24 with respect to Vhasthesign of i ag; 1; which is positive for all
t, lasa<landg >¢;1, O:Henceforany b2 [0; 1), fcgl, remains an equilibrium
path as the deviation payox ¢ +(btf gl ;) is smaller than at Yo= 1, while the continuation
payox is unchanged. By Lemma 5.1(i) and (iii), there exists a non-decreasing eg¢ cient
path for b< 1; say fagl_;; which lies no lower than f ¢.gl_; and no higher than ¢ at each
point. Next, the above argument can be repeated for any 8 < b>< 1; so that at Y3 fgl.;
is an equilibrium path. Moreover, the incentive constraint at each t is strictly looser, so
that by Lemma 5.1(ii) if the..rst-best is not attainableat Y2i.e, if b < ¢ for somet, by is
not part of an e¢ cient equilibrium path for 2 The condlusion is then that at Y8 fogl
is equilibrium but not e¢ cient, i.e, thereis an equilibrium path yidding a higher payox
than flhgl.;: To prove that ¢ is attained in . nite time, consider the path generated by
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(5.2) for some choice of ¢;: Notethat (Y4 1+ W 2a+:::+va" 2+at 1) attains a maximum
at somet® | 1, and declines to zero. Choose ¢; = € so that = = ¢ If (5.2) is followed
for all t; the same argument as in Lemma 2.4 establishes that the incentive constraint
holdsfor all taslim, 1 & =0( <1 ): (It does not matter if this path violatese. , & 1
beyond t*:) Now change the path by setting @ = ¢ for t > t*: Continuation payoxs are
increased at each date Deviation payoxs are the same at each date up to t% and since
the incentive constraint is thus satis..ed at t* it must also be satis..ed at all t > t* Thus
this path satis..es all incentive constraints and ¢ is attained in ..nite time. By Lemma
5.1(iii) thereis an e¢ cient path that attains ¢ by t* or earlier. (ii) Ifa , 1; then consider
the incentive condition for a stationary path at c:
VaYe + YsC _ YaC+ YaC
li Y& 1i = °
Rearranging, this is equivalent toa -+ 1. Henceif a > 1; if ¢ is attained, the incentive
constraint is violated at ¢ (likewiseif a higher e¢ cient levd is attained, should one exist);
if ¢ < for all t, then the path must satisfy (5.2) for all t; implyingc ! 1 ifg >0
; a contradiction; henceg =0, sog = 0all t. If a = 1; (A.17) holds with equality; if
c’ is attainad at t; the incentive constraint at t is stricter than (A.17), and so is violated;
hence ¢ < ¢ all t; in which case (5.2) applies, and setting ¢ = (1i AC* implies that
limy 1 ¢ = & and because the limit is ..nite all incentive constraints are satis..ed (as
argued earlier).x

(A.17)

P roof of Proposition 6.1. First, weshowthat | ¢ isaconvexset. First; the constraints
in (6.1) are linear. Consequently, if f&.; Q..g, and fc®; .o, satisfy (6.1), a convex
combination of the two must also satisfy (6.1) and so Cg is a convex set. Also, adapting
Lemma 2.1, any sequencein Cg must have ¢t + Gy < 2¢7, all i;t, so payoxs arelinear in
any path in Cg : It follows immediatdy that | ¢ is a convex set also.

Let Ceg 1 Ce bethe sat of all paths fcyt; G.rgl; which satisfy the incentive con-
straints (6.1) with equality at eecht ; 1;and | g 1 | ¢ the corresponding set of payoxs.
Straightforward manipulation implies that these paths can be written as a system of two
linked ..rst-order dixerence equations in dimerences ¢ G+ =Gt i Gitj 1;

¢Cit = a1 (A.18)
¢or = a¢Cyia (A.19)

where a = P4 as before. As > % it follows that a < 1: Also, note that the initial
conditions

¢G1=Ga1i Go=¢G,i=1L2
can be set fredy. Routine manipulation of the system (A.18), (A.19) gives the solutions

1/ .
- * i lca(li @) +aga (i & h)]; todd
=

16 (li a) +aga(li a));  teven & =LZ) &R (A0
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Taking limits in (A.20), we get two equations that give as a < 1; the limit values of
Cut; Gt as functions of theinitial values:

1
limcty = g1 = ——[cp1+ae1];
e 1;1 i a2[1,1 2,1]

1
Iime: = 1 =—=I[G1+aql:
01 2;t 2;1 1i a2 [ 2;1 1,1]
Inverting and solving, we get
C1=Cpn i a@1; Q1 =C1 i aqy : (A.21)

Note that we can think of ¢;.; and ¢1 as being determined by ¢.; and 6.1 where the
latter can be fredy chosen subject to the constraint that ¢ + 1+ 2¢ and that
G1, 0 i =12 Thelatter requires

o
2a1 QL1 L aGy (A.22)

Cee ischaracterized by sequences satisfying (A.20) and (A.22) since convergent sequences
satisfying (A.18) and (A.19) also satisfy (6.1) with equality asin Lemma 2.4.

Substituting (A.20) badk in the payoxs gives, after some rearrangement, for i;j =
L2 €&l

:i = (1| ﬁ £i1(1/‘]:(:i;t‘|'1/2Cj;t)
t=1
= 1i1a2 [Va (G +2aG;1) + Ya(g1 +aG;)]
(1i 9
(1i ad)(li a?#¥)

(1i 3 L E | ) =
+(1i a?)(li a?¥) 72 alaga +G;) + 87 (g1 +agy)

£ , ol
Y4 a(aGg.1+G.1) + 47 (G.1 +aG.1)

Now, from (A.21), we have
Gi1+agy=(1li adG;1: (A.23)

So, we g, after some manipulation,

(1i Ha+a?y”

T

(1/‘]:Ci;1 +1/2q;1 ), 1=12

and so
b1+ 2 =AY+ %) +¢1 ); (A.24)

|
. L1 2
where A(4 := 1i &5



Soaslongas i + 1 = 2¢, | 1+ 2 = A(H (Y + Y%)2c¢, no matter how the
sum .y + G isdistributed. This says that the frontier is linear between two endpoints
de..ned by the restrictions (A.22). Let A be one endpoint, de..ned by the condition that
CG1 = aG;1, and B the other endpoint, de.ned by ;1 = ac.; (B is symmetric to
A) Combining this with ¢;.; + &1 = 2¢ implies that A is generated by the path with
endpoints

2ac" 2
M T1ra P T1va
and therefore with payors (! ¢! ® where
20 . (1i Aa+ard’
1 0 — 1 1/,17-
! 1ra (L ap Rt
2 . (Li Ha+ay’
1 @ 1 1/,7-
! T+a ' 1 am  ATERl
So,
1 1
oy 0 Ja(H Y (A.25)

Ya+a(H%

Now, it is easily checked that ! ¢! ®> 0 and that the RHS of (A.25) is strictly greater
than1 so! 9>! ®> 0 as daimed.

To complete the proof, we need to show that points A and B lieon the frontier of | ¢;
the convexity of | ¢ then implies that the whole of line segment AB lies on this frontier.
First, note that the point S where the line segment AB crosses the 45°line is generated
by the symmetric path

G = 0:5¢t + 0:5¢.;

where fcy; 6, Gi; is the path supporting A; so every incentive constraint holds with
equality for fg'gl;. But then fc'gl.; is the symmetric e¢ cient path characterized in
Sections 2 and 3. So, S must be on the frontier since otherwise there is an asymmetric
path which Pareto-dominates S;and by symmetry another path with the player indices
switched which also Pareto dominates S; a convex combination of these two paths is a
symmetric path which Pareto dominates S; a contradiction of the de..nition of S:

Suppose ..nally that points A; B are not on the frontier of | ¢. Then, there must be
points C; D where C (resp. D) Pareto-dominates A (resp. B) which are on the frontier
of | : ButifS;C;D areall on thefrontier of | g, it must be non-convex, contrary to the
result already established. x

P roof of Proposition 6.2. From the proof of Proposition 6.1, we have

10 @ 1/‘la(ﬁ +1/2_

v Ya+a(hHY% ' (A.20)

35



As a is decreasing in % and the right-hand side of (A.26) is decreasing in a, ! & @is
increasing in = Moreover, as+! 1! & @1 g andas+! %,! % @1 1 asrequired.
Likewise from (A.24) in the proof of Proposition 6.1, on the line segment AB,

§ =11+ 2=AB+ %) .
|

. I , .
where A(4 = 1i %ﬁ’;—i’ . Rearrangement gives A( = 1i %‘% . It is then

dearthat A® = 0;A(1) = L, and AY® > 0; +2 (%£1); and s0§ has thedesired properties
on the line segment AB: x

P roof of Proposition 7.1. To prove convexity of | 3>, notethat since Cg ; C5* are both
convex, so C2* = Cg \ C5™is also convex. Consequently, | 2 is also convex, by linearity
of payoxs.

To prove A in | 9, we proceed as follows. Point A is generated by a path described
in (A.20) with c;;; = 0. All we have to do is show that this path is in C% as this path
is already in Cg by construction. Now setting ¢;.; = 0 in (A.20), we see that the path
generating A satis..es:

LY .
A = * L laca (1i & Y)]; todd
i 1, = [ (Li a)];  teven

A = = [ea(1i a*h)] todd
2t (@1 (li a)]; teven
So, by inspection, f}; &G, has the property that player 1 only changes her levd
of cooperation in even periods, and player 2 in odd periods.

Next, let fbgl_; bethe (unique) symmetric e¢ cient path in the simultaneous move
game: Now de. .ne the asymmetric path fbyt; begl.; in C as follows:

bt = biyri=h; t=0246:;
bt = by1=h; t=135:

This is simply the path where an agent whose turn it is to move at t chooses iy. Next, we
show that fby; g, is incentive-compatible, i.e, in C* in the sequential move game
Deneasbeoe ¢t :=hi biy; and recall ¢+ = a¢ 1 on the e¢ cient path. For the
player who moves at t ;| 2 and writing ¢ for ¢ ; 1. the constraints (7.2) and (7.3) can be
written as:
VaGi > +Ya(Gi 1 +
i at BG4 ae) + el +6) (A.27)
+ HYa(qi2+¢ +at) +%(ai1+¢ +ag +a’¢))

+ #(Ya(gi,+¢ +:::43%¢)+Y(ci1+¢ +ad +a%¢)) +:::
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or
Ya¢  (1+a)¥a¢ +(1li #£a2+ 8+ 18%)%0¢

li + (1i H(1i #a2) ’
which holds with equality as a = i ¥4=#4). Thus fby; bl ; satis..es equilibrium
conditions fromt = 2 onwards; at t = 1 the constraint would hold with equality if player
2's inherited cwas i ¢ 1=g; since it is higher, the constraint will be slack (as ¥4 < 0):

T he payoxs from the path fby.; bt g are

(S = (1) Hf[Yabi]+ AYaby + Yabi] + 2[Yaby + Yebs] + i
(S0 = (17 Bf[Yab]+ 4Yabr + Yeby] + 2Yabs + Yaby] + 1

Now since the payoxs from the e¢ cient symmetric path in the simultaneous move game
are
"= (1i Hf[Yab + Yab ]+ HYab, + Yool + #[Yabs + Yaby] + i3

we get

TP = (1 AfYb + b i b) + PYlbsi b) + Pl i by) + g

= (1i HbfYsab + £4ab + 4_21/9a2b1 + 4_31/4a3bl:::g
£ o
= (1i Db Ya(l+Fa?+£a*+ ) + av(l+ a2+ £at + 1)

= (1i by [Ys + 28Y4]

1i *#a2
, b1
< (i i)1i (Ya=/a)?

So, rearranging, | i (1i #Hu<!3¥, pu> 0. Consequently, forany " >0, I"i " < 3™
forall £, K")=1i " asrequired. (A similar argument appliesfor i = 2). x
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