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Abst r act : This paper considers a class of two-player dynamic games

in which each player controls a one-dimensional variable which we interpret

as a level of cooperation. In the basemodel, there is an irreversibility con-

straint stating that this variable can never be reduced, only increased. It

otherwise satis…es the usual discounted repeated game assumptions. Under

certain restrictionson thepayo¤ function, whichmakethestagegameresem-

ble a continuous version of the Prisoners’ Dilemma, we characterize e¢ cient

symmetricequilibria, andshowthat cooperation levelsexhibit gradualismand

converge, when payo¤s are smooth, to a level strictly below the one-shot ef-

…cient level: the irreversibility induces a steady-state as well as a dynamic

ine¢ ciency. As players become very patient, however, payo¤s converge to

(though never attain) the e¢cient level. We also show that a related model

inwhich an irreversibility arises throughplayerschoosingan incremental vari-

able, such as investment, can betransformed into thebasemodel with similar

results. Applications to a public goods sequential contribution model and a

model of capacity reduction in a declining industry arediscussed. Theanaly-

sis is extended to incorporatepartial reversibility, asymmetric equilibria, and

sequential moves.
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1. Introduction

Weconsider a model in which in every period, there is a Prisoner’s Dilemma structure;

agents have somemutual interest in cooperating, despite the fact that it is not in any

agent’s individual interest to cooperate. Wesuppose that this situation is repeated over

time, and, crucially, subject to irreversibility, in thesensethat anagent cannot reduceher

level of cooperationonceincreased. In thissetting, irreversibility hastwoopposinge¤ects.

First, it aids cooperation, throughmaking deviations in theformof reduced cooperation

impossible. Second, it limits theability of agents to punish a deviator. Weconsider the

complex interplay of thesetwo forces.

Thekey roleof irreversibility ina¤ectingcooperationcanbeexplainedmoreprecisely

as follows. In theabovemodel, supposethat every player hasa (continuous) scalar action

variable, which we interpret as a level of cooperation. We say that partial cooperation

occurs in some time period if some player chooses a level of this action variable higher

than thestage-gameNash equilibriumlevel, wherethelatter is thesmallest feasiblevalue

of the action variable. Full cooperation is a level of this action variable that maximizes

the joint payo¤ of the players2. In general, partial cooperation in any time-period can

only beachieved if deviation by any agent can bepunished by theother agents in some

way.

Now the abovemodel without reversibility is just a repeated Prisoner’s Dilemma,

and in that case, it is well-known that the most e¤ective (and credible) punishments

take the form of “sticks”, i.e., threats to reduce cooperation back to the stage-game

Nash equilibrium. With irreversibility, such punishments areno longer feasible; instead,

deviatorscanonlybepunishedbywithdrawal of “carrots”, that is, threatstaketheformof

withdrawal of promisedhigher levelsof cooperation in future. It followsimmediately from

this that irreversibility causesgradualism, i.e., any (subgame-perfect) sequenceof actions

involvingpartial cooperation cannot involvean immediatemoveto full cooperation3.

2Themodel is symmetric, i.e., players have identical per-period payo¤s given a permutation of their
actions. So, the full cooperation level is thesamefor each player.

3Thisobservation isnot entirely new; for example, Schelling(1960, p45) makesasimilar point. Admati
and Perry (1991) andMarx andMatthews (1998) present equilibria of a dynamic voluntary contribution
game which exhibit gradualism. However, to the best of our knowledge, our paper provides the …rst
general characterization of gradualism in cooperation due to irreversibility.
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Our …rst contribution is to re…ne and extend this basic insight. First, we show

that any (subgame-perfect) equilibrium sequence of actions involving cooperation must

have the level of cooperation rising in every period, but that full cooperation is never

reached in …nite time. So, as the level of cooperation in any period is bounded above

by the full cooperation level, all equilibrium sequences will converge. We focus on the

(symmetric) e¢ cient equilibriumsequence i.e. theonethat maximises thepresent value

of payo¤s of either player. A key question then is: to what value does this e¢ cient

equilibrium sequence converge? It turns out that if payo¤s are smooth (di¤erentiable)

functions of actions, convergence will be to a level strictly below the full cooperation

level, nomatter howpatient agentsare. For thecasewherepayo¤s arelinear up to some

joint cooperation level, and constant or decreasingthereafter (thelinear kinked case), the

results are di¤erent — above some critical discount factor equilibrium cooperation can

convergeasymptotically to the fully e¢ cient level. Below this critical discount factor, no

cooperation at all is possible.

Thereason for theasymptotic ine¢ ciency in thesmooth payo¤ case is that close to

full cooperation, returns from additional mutual cooperation are second-order, whereas

thebene…tstodeviation(not increasingcooperationwhentheequilibriumpathcallsfor it)

remain…rst-order. The futuregains fromsticking to an increasingmutually cooperative

path will be insu¢ cient to o¤set the temptation to deviate. It follows that it will be

impossible to sustain equilibriumpaths close to full cooperation.

Despite this result, ine¢ ciency disappears in the limit as players becomepatient in

thesensethat the limit valueof thesequence, and player payo¤s, both converge to fully

e¢ cient levels as discounting goes to zero. However, theasymptotically e¢ cient path of

actions in our model is quite di¤erent that in the standard “folk theorem” for repeated

games: that in thelatter case, (without irreversibility) abovesomecritical discount factor

thee¢ cient cooperation level can beattained exactly and immediately.

Later sections of thepaper then extend thebasic model in several directions. First,

we recognize that our basic model is very stylized. In many economic applications, irre-

versibility arisesmorenaturally when thelevel of “cooperation” isa stock variablewhich

may bene…t both players, and it is incremental investment in cooperation that is costly

and non-negative, implying thestock variable is irreversible. Therefore, in Section 4, we
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present an “adjustment cost” model with these features, and show that it can be refor-

mulated so that it is a special case of our basemodel. We then apply the adjustment

cost model tostudy sequential publicgoodcontributiongames(Admati andPerry (1991),

Marx and Matthews (1998)) and capacity reduction in a declining industry (Ghemawat

and Nalebu¤(1990)). These applications illustrate the extent to which our results are

applicable to variety of disparateareas of economics.

A second key extension is to allow a small amount of irreversibility, so that any

player can reduce his cooperation level by some (small) …xed percentage. This has two

countervailinge¤ects. The…rst is tomakedeviationmorepro…table; thedeviator at t can

lower his cooperation level below last period’s, rather than just keeping it constant. The

second e¤ect is to makepunishment more severe; theworst possible perfect equilibrium

punishment of the deviator is for the other player to reduce his cooperation over time,

rather than just not increase it. A priori, it is not clear which e¤ect will dominate.

Nevertheless, we are able to show that for a small amount of reversibility the second

e¤ect dominates, and in thelinear kinked caseit dominates for any degreeof reversibility.

In our model, then, reversibility is desirable in that it allowsmorecooperativeequilibria

to besustained.

Thebasemodel also assumes that (two) playersmovesimultaneously, and that they

bothchoosethesame4 pathof actions(thesymmetricpath). InSection6weallowplayers

tochoosedi¤erent actionpaths, and in thisSection, weobtain a(partial) characterization

of the Pareto-frontier of the set of equilibrium payo¤s, and how it changes with the

discount factor. In Section 7, we allow payers to move sequentially. We show that the

equilibriumpayo¤s in thisgameareasubset of thosein thesimultaneousmovegame, but

that as discounting goes to zero, the e¢cient symmetric payo¤ in the symmetric move

game can be arbitrarily closely approximated by equilibrium payo¤s in the sequential

game, so that asymptotically, theorder of moves has littlee¤ect on achievablepayo¤s.

There is a small literature on games with the features we consider here. Admati

andPerry (1991) andMarx andMatthews(1998) in particular haveconsidered sequential

publicgoodcontributiongamesinaformally similar context. Cooperation in suchmodels

4As themodel is symmetric, i.e. playershaveidentical per-period payo¤sgiven apermutation of their
actions, this is a natural basecase.

3



is thesumof an individual’s contributions, and this is irreversible. Gale(1997) has con-

sidered aclassof sequential movegameswhich hedubsmonotonegames. For gameswith

“positive spillovers”, which include the class of games considered here, he characterizes

long-run e¢cient outcomeswhen there is no discounting. In particular, his results imply

that in a sequential-move version of our model without discounting, …rst-best outcomes

areattainable.5

Of thesepapers, possibly theclosest isMarx andMatthews (1998). Therelationship

between thetwopapersisasfollows. First, thetwopapersconsider quitedi¤erent models,

although thereis someoverlap. Marx andMatthews(1998) consider anumber of di¤erent

voluntary contribution games, wherea number of players simultaneously makecontribu-

tions to a public project over T periods, and where T may be…nite or in…nite. Each

player gets a payo¤ that is linear in thesumof cumulativecontributions, plus possibly a

“bonus” when theproject is completed. Onecaseof their model (T in…nite, two players,

no bonus) can be reformulated as an “adjustment cost” variant of our model with linear

kinked payo¤s (as argued in detail in Section 4.1).

In this version of their model, Marx and Matthews (1998) construct a subgame-

perfect equilibriumwhichisapproximatelye¢ cient whendiscountingisnegligible6, whereas

weareable to characterisee¢ cient subgame-perfect equilibria for any …xed valueof the

discount factor. Speci…cally, our results show7 that in their model, theequilibriumwith

completionwhich they construct is in fact e¢ cient for any discount factor aboveacritical

value, and conversely when the discount factor is below the critical value, there are no

contributionsmade in thee¢cient equilibrium(seeSection 4.1 for moredetails).

We see our model as being applicable to a wide variety of situations in addition

to those already mentioned above. Nuclear disarmament between two countries is one

example— herecooperation would bemeasured by theextent of disarmament. While it

5Thegamesconsidered in this literatureallow for thepossibility that aplayer’spayo¤may beincreas-
ing in his or her own cooperation level (on completion of theproject in thepublic goodmodel). Thelack
of this featurehereallows us to obtain results without needing to impose linearity or no discounting.

6Corollary 3(ii), Marx and Matthews(1998). Note that their results arestated for n > 2players also.
7Wearealso able to characteriseequilibrium in the caseof linear kinked payo¤s (which includes the

in…nite-horizon contribution gamewithout a bonus as a special case) when the two players contribute
asymmetrically, whereas Marx and Matthews study only the symmetric equilibrium in this version of
their model (although in their paper, they study other versions of their model where players behave
asymmetrically).
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may bedesirable to move immediately to total disarmament, this is not an equilibrium

becauseeither country would prefer tohavetheother destroy itsstockpilewhileretaining

its own. Disarmament must proceed gradually, and our results give conditions under

which the limit of theprocess is completeor only partial disarmament.

Another examplewould be in tradenegotiations. For example, GATT negotiations

are known for their gradualism, although there has been little theoretical work on this

(seeBagwell and Staiger, 1997). If concessions are irreversible, or if irreversibilities arise

in investment such that shiftingcapital away fromimport competingtechnologiescannot

easily be reversed, then a similar story to theonewegive can be told to explain gradu-

alism. A formal treatment of a related idea in the negotiation context is in Comte and

J ehiel (1998) who consider the impact of outside options in a negotiation model where

concessions by oneparty increase thepayo¤ theother party gets in a dispute resolution

phase.

A further fruitful application is to environmental problems. For example, environ-

mental cooperation may take the form of installation of costly abatement technology.

Once installed, this technology may be very expensive to replacewith a “dirtier” tech-

nology, e.g., conversion of automobiles to unleaded petrol would beexpensive to reverse.

Consequently it will again be di¢ cult to punish deviants by reversing the investment.8

Similarly, destruction of capital which leads to over-exploitation of a common property

resource (e.g., …shing boats) will also …t into thegeneral framework of thepaper if it is

di¢ cult to reverse.

2. The Model and P reliminary Results

Thereare two players9 i =1;2: In each period, t=1;2;: : :; each player i simultaneously

chooses an action variable ci 2 <+, measuring i0s level of cooperation10. Theper-period

payo¤ to player 1 is¼(c1;c2) with that of player 2 being¼(c2;c1): So, payo¤s of the two

players are identical followinga permutation of thepair of actions. Also, weassumethat

¼is continuous, strictly decreasing in c1 and strictly increasing in c2. Payo¤s over the

8Wearegrateful to Anthony Heyes for suggesting this application.
9Our main results generalise straightforwardly tomore than two players.
10Theaction spaces can also bebounded, i.e., ci 2 [0;c], as long as c ¸ c¤.
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in…nitehorizon arediscounted by common discount factor ±; 0<±< 1:

In this setting, we shall initially be restricting attention to symmetric equilibria.

So, we can de…ne the…rst-best e¢ cient level(s) of cooperation as the value(s) of c, that

maximisew(c) :=¼(c;c):Weassumethe followingweak property of w(c) :

A1. There exists a c¤ > 0 such that w(c) is strictly increasing in c for all 0 · c< c¤,

andw(c) · w(c¤) for all c2 <+.

This issatis…ed ifw(c) isconcavewitha…nitemaximumor even single-peaked: Note

that c¤ is thesmallest …rst-best e¢ cient level of cooperation:Weassumethat thechoice

of action is irreversible in every period, i.e.,

ci;t ¸ ci;t¡ 1, i =1;2, t=1;2; :: : ; (2.1)

whereci;t is i ’s action in period t; and, without loss of generality, weset c1;0= c2;0=0.

A gamehistory at timet is de…ned in theusual way as f (c1;¿;c2;¿)gt¡ 1¿=1. Both players

can observegamehistories. A pure strategy for player i =1;2 is de…ned in theusual way

asasequenceof mappings fromgamehistories in periods t=1;2::: to valuesof ci;t in<+,

andwhereevery pair (ci;t¡ 1;ci;t) satis…es(2.1). Anoutcomepath of thegameisasequence

of actions fc1;t;c2;tg1t=1 that is generated by a pair of pure strategies. Weare interested

in characterizing subgameperfect Nash equilibriumoutcomepaths. For themoment, we

restrict our attention to symmetric equilibrium11 outcome paths where c1;t = c2;t = ct,

t=1;2;: : : ; and wedenotesuch paths by thesequence fctg1t=1.

Wenowderivenecessary and su¢cient conditions for some…xed symmetric outcome

path fctg1t=1 to bean equilibrium. Note that theworst punishment that j could impose

on i for deviating at date t from such a path is for j to set cj as low as possible. So, if

i deviates at t, theworst punishment is for j to set cj ;¿ = cj ;t, all ¿ > t: Also whatever

action is chosen by j , it is always a best response for i to set ci as low as possible. It

follows that thispunishment iscredible, and, given thepunishment, i0s optimal deviation

at t from thesymmetric path fctg1t=1 is to set ci;¿ = ct¡ 1 for all ¿ ¸ t. Consequently, for

a non-decreasing sequence fctg1t=1 to bean equilibriumoutcomepath it is necessary and

11In thesequel, it is understood that “equilibrium” refers to subgame-perfect Nash equilibrium.
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su¢ cient that fctg1t=1 satis…es, for all t ¸ 1; the inequalities

¼(ct¡ 1;ct)
1¡ ±

· ¼(ct;ct) +±¼(ct+1;ct+1) + ::: : (2.2)

So, as ct ¸ ct¡ 1 fromtheirreversibility constraint (2.1), theinterpretation of (2.2) is that

in theevent of defection, both players stop increasing their levels of cooperation.

Let CSE betheset of non-decreasingpaths fctg1t=1 that satisfy (2.2), andwerefer to

any path inCSE asa (symmetric) equilibrium path. Wenownotetwobasic propertiesof

sequences in CSE :

Lemma 2.1. If fctg1t=1 is an equilibriumpath, then (i) ct < c¤, for all t ¸ 1; and (ii) if

ct > ct¡ 1 for some t > 0, then for all ¿ ¸ 0, thereexists a ¿
0

> ¿ such that c¿0 > c¿ (i.e.,

thesequencenever attains its limit):

P roof. (i) Supposeto thecontrary that ct ¸ c¤ for some t > 0;with ct¡ 1<c¤. Fromthe

de…nition of c¤, and A1, wemust have

¼(ct;ct) ¸ ¼(ct+1;ct+1); ¿ ¸ 1

Consequently,

¼(ct;ct) +±¼(ct+1;ct+1) + : :: <
¼(ct;ct)
1¡ ±

:

Then, by (2.2), wehave
¼(ct¡ 1;ct)
1¡ ±

<
¼(ct;ct)
1¡ ±

:

But as ct¡ 1 < ct, and¼decreasing in its…rst argument, ¼(ct¡ 1;ct) >¼(ct;ct), a contra-

diction.

(ii) If this is not the case, then ct > ct¡ 1 for some t > 0, and there exists a T ¸ t

with c¿ = ec for all ¿ ¸ T and c¿ < ec for ¿ < T. Player 1, by deviatingat T , would receive

¼(cT ¡ 1;ec)
1¡ ±

>
¼(ec;ec)
1¡ ±

;

where the inequality follows from¼decreasing in its …rst argument: Thus thedeviation

is pro…table, contradicting theequilibriumassumption. ¤
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Say that the path fbctg1t=1 2 CSE is e¢ cient12 (i.e., among symmetric equilibrium

paths) if theredoes not exist another sequence fc0tg
1
t=1 2 CSE such that

1X

t=1

±t¡ 1¼(c0t;c
0
t) >

1X

t=1

±t¡ 1¼(bct;bct):

Wenow have:

Lemma 2.2. An e¢ cient sequence fbctg1t=1 exists, and this sequencesatis…es inequalities

(2.2) with equality, i.e., for all t ¸ 1;

¼(bct¡ 1;bct)
1¡ ±

=¼(bct;bct) +±¼(bct+1;bct+1) + ::: : (2.3)

P roof. As all the inequalities in (2.2) areweak, existence follows from standard argu-

ments. Werefer to (2.2) holdingat t the t-constraint. To show that all the t¡ constraints

hold with equality, supposeto thecontrary that for some t,

¼(bct¡ 1;bct)
1¡ ±

<¼(bct;bct) +±¼(bct+1;bct+1) + ::: :

Then, by continuity, we can increase bct, holding bct+1;bct+2; : : :; …xed; without violating

the t¡ constraint. Moreover, the t+1-constraint is relaxed by an increase in bct, hold-

ing bct+1;bct+2; :: : …xed, as ¼ is decreasing in its …rst argument. Finally, we can hold

bct¡ 1;bct¡ 2; : :: ;bc1…xed sincetheonly e¤ect of an increaseinbct is to relax the¿-constraints,

for ¿ < t: ¤

It now follows quite straightforwardly from Lemmas 1 and 2 that thee¢ cient path

must satisfy a second-order di¤erence equation. First note that the e¢ cient path must

solvethesequenceof equations(2.3). Let thesequencefct(c1;±)g1t=1 solvethesecond-order

di¤erenceequation

¼(ct;ct+1) =
1

±
[¼(ct¡ 1;ct) ¡ ¼(ct;ct)]+¼(ct;ct); t > 1 (2.4)

with initial conditions c0 = 0;c1 ¸ 0: It is easily checked13 that any solution to this

di¤erence equation is non-decreasing, so the sequence fct(c1;±)g1t=1 has a limit c1 (c1;±)

which is…niteor +1 . Then wehave:

12Weuse the term ‘…rst-best’ to refer to unconstrained e¢ cient outcomes.
13This fact follows directly from theproof of Lemma 2.3 below.
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Lemma 2.3. Any sequence fctg1t=1 solves (2.3) if and only if it solves (2.4) with initial

conditions c0 =0;c1 ¸ 0, and c1 := limt! 1 ct <+1 :

P roof. Necessity. From the irreversibility constraint, fctg1t=1 is a non-decreasing se-

quence, so it converges to some…nite limit c1 or diverges to +1 . Since (2.3) implies

(2.2), fctg1t=1 is an equilibrium sequence and by Lemma 2.1, fctg1t=1 must converge to

c1 · c¤. Now, (2.3) can bewritten

¼(ct¡ 1;ct)
1¡ ±

= St;

whereweagain writeSt :=¼(ct;ct) +±¼(ct+1;ct+1) + : : : . Advancing by oneperiod, we

get
¼(ct;ct+1)
1¡ ±

= St+1:

Also,

St =¼(ct;ct) +±St+1:

So,
¼(ct¡ 1;ct)
1¡ ±

=¼(ct;ct) +
±¼(ct;ct+1)

1¡ ±
: (2.5)

Rearrangement of (2.5) gives (2.4).

Su¢ ciency. As just shown above, (2.4) is equivalent to (2.5). By successivesubsti-

tution using (2.5), weget

¼(ct¡ 1;ct)
1¡ ±

=¼(ct;ct) + : : :+±n¡ 1¼(ct+n¡ 1;ct+n¡ 1) +
±n¼(ct+n¡ 1;ct+n)

1¡ ±
(2.6)

Now, as fctg1t=1 converges by assumption, wemust have

lim
n! 1

±n¼(ct+n¡ 1;ct+n)
1¡ ±

=0

So, taking the limit in (2.6), werecover (2.3). ¤

Wenow know that thee¢ cient path solves thedi¤erenceequation (2.4) with initial

conditionsc0=0andc1 yet tobedetermined. Thefollowinglemmaallowsustodetermine

c1 andhencethee¢cient path itself. Thislemmashowsthat thee¢cient path istheupper

envelopeof all equilibriumpaths(andhenceit isunique). It then followsfromLemma2.5

(ii) below that c1 is simply thehighest valueconsistent with convergenceof thesolution

to thedi¤erenceequation.
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Lemma 2.4. Thee¢ cient path fbctg1t=1 istheupper envelopeof all equilibriumsequences,

i.e., theredoes not exist a fc0tg
1
t=1 2 CSE with c0t >bct, for some t:

P roof. SeeAppendix. ¤

As before, let the sequence fct(c1;±)g1t=1 solve the di¤erence equation (2.4), and

consider theset of initial conditions c1 such that fct(c1;±)g1t=1 converges to a…nite limit,

i.e.,

C1(±) = fc1 jc1 (c1;±) <+1 g:

Then wehaveour …nal result of this section:

Lemma 2.5. (i) If, for any c1 ¸ 0; fct(c1;±)g1t=1 is a convergent sequence, then it is

also an equilibrium sequence; (ii) The e¢cient path satis…es fbctg1t=1 = fct(bc1;±)g1t=1,

wherebc1=maxC1(±), and ct(bc1;±) ¸ ct(c
0

1;±); all c
0
1 2 C1(±); all t ¸ 0.

P roof. (i) Inviewof thefact that (2.3) guaranteesthesequenceisequilibrium, su¢ ciency

implies (i) of Lemma 2.3.

(ii) FromLemma2.2andLemma2.3, thee¢ cient pathexists, solves(2.4) with initial

conditions c0 = 0;c1 ¸ 0 and must also converge. Consequently, fbctg1t=1 = fct(bc1;±)g1t=1
for somebc1 2 C1(±): Now suppose that there exists another c01 2 C1(±) with ct(c

0

1;±) >

ct(bc1;±) at some t > 0. In this case, fct(c
0

1;±)g
1
t=1 is an equilibrium (by part (i)) with

ct(c
0

1;±) > ct(bc1;±) at some t, which contradicts Lemma 2.4. In particular this implies

that c
0

1 2 C1(±) and c
0

1>bc1 is not possible. ¤

3. M ain Results

Weknow that thee¢cient path is theequilibriumpath that is not crossed by any other,

and which is the highest (at each point) of all convergent sequences that satisfy the

di¤erence equation (2.4). We now proceed to get an exact characterization of the limit

bc1 . To do this, weconsider two particular cases.

The Di¤erentiable Case.
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¼is twicecontinuously di¤erentiable, with¼1 < 0;¼2> 0; ¼11;¼22< 0; ¼12 · 0:

The Linear K inked Case.

¼=
½

¼1c1+¼2c2 if c1+c2 · 2c¤

2¼2c¤ ¡ (¼2 ¡ ¼1)c1 if c1+c2> 2c¤

where¼1< 0;¼2> 0 areconstants14 with¼1+¼2> 0.

Notethat both thesecases satisfy our assumption A1aboveon theshapeof w(c): In the

di¤erentiable case, w(c) is strictly concave, asw00=¼11+¼22+2¼12 < 0, with a unique

maximumat c¤. In thelinear kinked case,w(c) is linear and increasingin cuntil c reaches

thee¢ cient level c¤, and after that, higher cooperation yields negativebene…t.

Consider thedi¤erentiablecase…rst. De…nethe function

°(c) :=
¡ ¼1(c;c)
¼2(c;c)

> 0:

Note fromtheassumed properties of¼; wehave

°0(c) =
¡ 1

¼2
[¼11+¼12+°(¼22+¼12)]> 0;

and also that c¤ solves °(c¤) = 1: Consequently, provided °(0) · ±; there is a unique

solution bc(±) to theequation

°(bc) =±; (3.1)

andmoreover, bc(:) isstrictly increasingin±. If °(0) >±;weset bc(±) = 0:Clearlybc(±) <c¤,

±< 1, with lim±! 1bc(±) = c¤. Wecan now stateour …rst main result:

P roposition 3.1. Assumethedi¤erentiablecase. Then thelimit of thee¢cient symmet-

ric path, bc1 ; is equal to bc(±). Consequently, for all ±< 1, thee¢cient path is uniformly

bounded below the…rst-best e¢ cient level of cooperation; i.e., bct <bc(±) <c¤ for all t.

14An interpretation is that payo¤sdepend positively on (c1+c2) up to2c¤ with a coe¢ cient of¼2, but
thereis amarginal utility cost of (¼2 ¡ ¼1) to increasingone’s own ci : For c1+c2 > 2c¤, thereis nomore
bene…t from joint contributions, only the cost remains, so that joint payo¤s are declining in (c1 + c2):
For c1+c2 > 2c¤; all that is needed for theresults is that joint payo¤sarenonincreasing in (c1+c2) and
also own payo¤s aredeclining in own ci :
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P roof. (a) By theMean ValueTheorem,

¼(ct¡ 1;ct) ¡ ¼(ct¡ 1;ct¡ 1) = ¼2(ct¡ 1;µt)¢ ct; µt 2 [ct¡ 1;ct]

¼(ct¡ 2;ct¡ 1) ¡ ¼(ct¡ 1;ct¡ 1) = ¡ ¼1(µt¡ 1;ct¡ 1)¢ ct¡ 1; µt¡ 1 2 [ct¡ 2;ct¡ 1];

where¢ ct := ct ¡ ct¡ 1: So, substituting in (2.4) and rearranging , weget

¢ ct = ¡
¼1(µt¡ 1;ct¡ 1)
±¼2(ct¡ 1;µt)

¢ ct¡ 1 (3.2)

´ a(ct¡ 1;ct)¢ ct¡ 1:

(b) Suppose that bc1 > bc(±). Theremust, by¼(¢;¢) being twice continuously di¤er-

entiableand a(bc1 ;bc1 ) = °(bc1 )=±> 1, exist a T such that for t > T , a(ct¡ 1;ct) > 1. But

then from (3.2), for all t > T; ¢ ct > ¢ ct¡ 1 whenever ¢ ct¡ 1 > 0 and by Lemma 2.1 (ii),

¢ ct¡ 1> 0 for somet¡ 1>T; soct cannot converge, contrary tohypothesis. Weconclude

bc1 · bc(±)

(c) Suppose that 0< bc1 < bc(±):Weshow that this is impossible. Find a neighbor-

hood aroundbc1 ; (bc1 ¡ ";bc1 +"), such that a(c;c0) <k< 1 for all c, c02 (bc1 ¡ ";bc1 +"):

De…neÃ := (1¡ k)", and consider T such that cT (bc1;±) > bc1 ¡ Ã (this must exist by

de…nition of bc1 ). Now, sincecT (bc1;±) <cT+1(bc1;±) <bc1 ; by cT (c1;±) beingcontinuous in

c1; wecan…nd c01> bc1 such that cT (c01) and cT+1(c
0
1) 2 (bc1 ¡ Ã;bc1 ), andmoreover, since

0<cT+1(bc1;±)¡ cT (bc1;±) <Ã, c01 canalsobechosensothat 0<cT+1(c
0

1;±)¡ cT (c
0

1;±) <Ã.

Hencefor all t > T; ¢ ct <k¢ ct¡ 1 by (3.2), and consequently fct(c
0

1;±)g
1
t=1 must converge

tosomec1 (c01;±) <bc1 + Ã
1¡ k (=bc1 +"): Sincefct(c

0

1;±)g
1
t=1 isaconvergent path it isalso

an equilibriumpath (Lemma2.5(i)) and c
0

1> bc1;which contradicts theenvelopeproperty

of thee¢cient equilibrium (Lemma2.4). Finally, aminor modi…cation to this argument

establishes that bc1 =0 is impossiblewhenever bc(±) > 0: ¤

Next, consider the linear kinked case. Here, wehavethe following striking result.

P roposition 3.2. Assumethelinear kinked case. If thereissu¢ ciently littlediscounting

(±> ¡ ¼1=¼2), then thelimit of thee¢cient symmetric sequence, bc1 ; equals c¤, i.e., …rst-

best e¢ cient cooperation can beasymptotically obtained. Otherwise, nocooperation can

ever beobtained, i.e., bct =0, all t:

12



P roof. From Lemma 2.1, we can restrict attention to those paths with ct < c¤, all t,

as no other path can be an equilibrium one. Writing out (2.4) for this case, using the

de…nition of¼for thekinked linear case, weget:

¼1ct +¼2ct+1=
1

±
[¼1ct¡ 1+¼2ct ¡ ¼1ct ¡ ¼2ct]+¼1ct+¼2ct;

which rearranges to

¢ ct = a¢ ct¡ 1; (3.3)

where a :=
³
¡ ¼1

±¼2

´
; ¢ ct := ct ¡ ct¡ 1. Thus, ¢ ct = at¡ 1¢ c1 where¢ c1 = c1 ¡ c0 = c1,

and c1 can bechosen freely. So, wehave

ct =
tX

¿=1

¢ c¿ = (1+a+ :::at¡ 1)c1: (3.4)

First suppose that a ¸ 1: If c1 > 0, then from (3.4), ct ! 1 as t ! 1 ; contradicting

the assumption that ct < c¤, all t: So, wemust have c1 = 0, in which case ct = 0, all t.

Thus if a ¸ 1 ( ) ±· (¡ ¼1=¼2); no cooperation is possible as claimed. Now suppose

that a< 1: Then theseries in (3.4) converges, soweget

c1 =
1

1¡ a
c1=

1

1+ ¼1
±¼2

c1:

So by appropriatechoiceof c1, wecan choosea path that converges to c¤; and thismust

bethee¢cient path by virtueof Lemma 2.4. ¤

Notethat inbothcases, wehaveshownthat as±! 1, thelimitinglevel of cooperation

on the e¢cient equilibrium path, c1 , tends to the…rst-best e¢ cient level, c¤. It turns

out that this fact implies that payo¤s also convergeto their e¢ cient levels as±! 1; i.e.,

there is no limiting ine¢ ciency in thismodel.

Corollary 3.3. In either thedi¤erentiableor linear kinked cases, as±! 1, thenormal-

ized discounted payo¤ fromthee¢ cient path, ¦̂ = (1¡ ±)
P 1

t=1±
t¡ 1¼(bct;bct); converges to

the…rst-best payo¤¼(c¤;c¤):

P roof. Consider, for some…xed±; rewriting theequilibriumcondition (2.2) as, for each

t;

¼(ct¡ 1;ct) · (1¡ ±)
1X

¿=t

±¿¡ t¼(c¿;c¿): (3.5)

13



Now, if fctg1t=1 is an equilibriumsequenceat ±; then fctg1t=1 is also an equilibriumat any

±0>±since, as¼(ct;ct) isanon-decreasingsequence, theR.H.S. of (3.5) isnon-decreasing

in±; and theL.H.S. is constant.

Now for thedi¤erentiablecase, de…nebc(±) as in (3.1), and in the linear kinked case,

de…ne

bc(±) =
½
c¤ if ±> ¡ ¼1=¼2
0 otherwise

So, for any " > 0; …nd a±such that ¼(bc(±);bc(±)) >¼(c¤;c¤) ¡ " (where in the di¤eren-

tiable case, weuse the continuity of ¼(¢;¢); and, as already remarked, lim±! 1bc(±) = c¤).

From Propositions 3.1 and 3.2, at ±; bct ! bc(±); so holding fbctg1t=1 …xed, lim±! 1(1 ¡

±)
P 1

t=1±
t¡ 1¼(bct;bct) ! ¼(bc(±);bc(±)); and hencethereexists a±

0

>±such that for ±satis-

fying±
0

<±< 1; (1¡ ±)
P 1

t=1±
t¡ 1¼(bct;bct) >¼(c¤;c¤) ¡ ": Since fbctg1t=1 is an equilibrium

sequence for such ±; the e¢cient path at such ±must also give a payo¤ greater than

¼(c¤;c¤) ¡ ": As " is arbitrary, this completes theproof. ¤

Analternativewayof viewingthisresult istonotethat if weshrink theperiod length,

holding payo¤s per unit of time constant, then ine¢ ciency disappears as period length

goes to zero.15

4. A Model with Adjustment Costs

Themodel studied above is very stylized. In many economic applications, irreversibility

arises more naturally when there is a stock variable which bene…ts both players, and a

‡ow or incremental variable which is costly to increase, and is nonnegative. This non-

negativity constraint implies that the value of the stock variable can never fall i.e. the

stock variableis irreversible. Here, wepresent amodel with thesefeatures, and show that

it can bereformulated so that it is a special caseof our basemodel.

Player i0s payo¤ at time t is

u(ci;t;cj t) ¡ ®(ci;t ¡ ci;t¡ 1); (4.1)

15If ¼ is discontinuous but otherwise satis…es our assumptions then asymptotic e¢ ciency can fail.
Consider an example in which player i bene…ts only from j ’s cj ; with an upwards jump in payo¤ at
completion (cj = c¤), and su¤ers continuous (increasing) costs from ci : Lemma 2.1 still applies, so
ci ;t < c¤; all t; and thepayo¤ jump is never realised nomatter how patient theplayers.

14



with u increasing in both arguments, and with®> 0being thecost of adjustment:Here,

ci;t is to beinterpreted as i0s cumulative investment in, or thestock level of, thecoopera-

tiveactivity. Weassumethat the investment ‡ow is nonnegative, which implies that the

stock level of cooperation is irreversible, i.e., ci;t ¸ ci;t¡ 1, i =1;2:

Wenow proceed as follows. Thepresent valuepayo¤ for i in thismodel is

¦ i = u(ci;1;cj ;1) ¡ ®(ci;1 ¡ ci;0) +±[u(ci;2;cj ;2) ¡ ®(ci;2 ¡ ci;1)]+ : : :

=

1X

t=1

±t¡ 1[u(ci;t;cj t) ¡ ®(1¡ ±)ci;t]+®ci;0:

As initial levels of cooperation c1;0;c2;0 are…xed, wecan think of thismodel as a special

caseof themodel of theprevioussection (i.e. without adjustment costs) whereper-period

payo¤s are

¼(c;c0) = u(c;c0) ¡ ®(1¡ ±)c: (4.2)

Of course, werequirethat¼de…ned in (4.2) satis…es theconditions imposed in Section 2,

and also satis…es therelevant conditions of either thedi¤erentiableor linear kinked case.

If this is thecase, then Propositions 3.1 and 3.2apply directly.

Wenowstudy two important economicapplicationsusingthisextension of our basic

model. Thesearenot theonly topics that can bestudied in thisway, but they arechosen

to illustrate thepower and ‡exibility of our approach.

4.1. Dynamic Voluntary Contribution Games

Thereis nowa small literature(Admati and Perry (1991), Fershtman andNitzan (1991),

Marx and Matthews (1998)), on dynamic gameswhereplayers can simultaneously or se-

quentially make contributions towards the cost of a public project. The paper in this

literature(Marx andMatthews (1998)) that is closest to our work is onewherecontribu-

tions aremadesimultaneously, and where thebene…ts from theproject areproportional

to theamount contributed (up to amaximum, at which point theproject is completed).

We will show that a special case of Marx and Matthews’ model can be written as an

adjustment cost gameasabove, and that Proposition 3.2abovecan beapplied to extend

someof their results.
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Marx and Matthews (1998) consider amodel in which N individuals simultaneously

makenonnegativeprivate contributions, in each of a…niteor in…nitenumber of periods,

to a public project. Weassume that N = 2, and let ci ;t be the cumulative contribution

of a numeraireprivategood by i towards thepublic project. Individuals obtain a ‡ow of

utility u= (1¡ ±)v(¢) fromtheaggregatecumulativecontribution c1;t+c2;t, wherev(¢) is

piecewise linear:

v(c1;c2) =
½
¸(c1+c2) if c1+c2< 2c¤=C¤

¸C¤+b if c1+c2 ¸ C¤

wherewe follow as closely as possible thenotation of Marx and Matthews. Thus agents

get bene…t ¸ fromeach unit of cumulative contribution, and an additional bene…t b¸ 0

when theproject is ”completed”, i.e., when thesumof cumulativecontributions reaches

C¤. Also, thecost to i of an increment ci;t ¡ ci;t¡ 1 in thecumulativecontribution issimply

ci;t ¡ ci ;t¡ 1. Weconsider thecasewhereb=0 and the timehorizon is in…nite (theb= 0

caseunravelsotherwise). Also it isassumedthat 0:5< ¸ < 1, sothat it issocially e¢ cient

to complete the project (immediately, in fact), but not privately e¢ cient to contribute

anything.

Then, from(4.2), per period payo¤s in theequivalent repeated gameare

¼(c1;c2) = (1¡ ±)v(c1;c2) ¡ (1¡ ±)c1

=

½
(1¡ ±)[(¸ ¡ 1)c1+ ¸c2] if c1+c2< 2c¤=C¤

(1¡ ±)¸C¤ ¡ (1¡ ±)c1 if c1+c2 ¸ C¤

So, ¼1 = (1¡ ±)(¸ ¡ 1) < 0, ¼2 = (1¡ ±)¸ > 0. Thus, all the conditions of the linear

kinked case are satis…ed, and so Proposition 3.2 applies directly to this version of the

Marx-Matthewsmodel.

First, wecan de…nethecritical valueof ±in Proposition 3.2 as

±̂=
¡ ¼1
¼2

=
(1¡ ¸)

¸
:

Two results then follow directly fromour Proposition 3.2 and its proof:

1. If ±> ±̂, there is a class of equilibria, indexed by the initial condition c1; whereeach

player’s cumulative contribution ct converges to c¤, or indeed to any value less than or

equal to c¤. Along the equilibrium path, incremental contributions fall at rate (1¡ ¸)
±̧ :.
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Thee¢ cient symmetric equilibriumhas initial contribution c1 = c¤(1¡ (1¡ ¸)
±̧ ); and each

player’s cumulativecontribution ct converges to c¤:

2. If ±· ±̂, then no contributions aremade in any equilibrium.

Result 1 sharpens Proposition 3 and Corollary 3(ii) of Marx and Matthews, who show

that for±> ±̂; thereisan equilibriumwith ct ! c¤, and that for±' 1, thisequilibriumis

approximately e¢ cient. In thespecial caseof n=2and b=0;wenot only con…rmtheir

results, but also show that theequilibrium they construct is thee¢ cient equilibrium for

any ±.> ±̂: Also, Result 2 is a completeconverseresult to their Proposition 3.

4.2. Capacity Reduction in a Declining Industry

There is now a literature on the equilibrium evolution of capacity in an industry where

demand is declining over time (See Ghemawat and Nalebu¤ (1990) and the references

therein). For tractability, this literature assumes that product demand declines asymp-

totically to zero; a backward induction argument can then beused to establish theequi-

libriumpattern of capacity reduction by…rms. Our framework allowsus to deal with the

moregeneral casewheredemand does not decline to zero.

Themodel is a modi…cation of that of Ghemawat and Nalebu¤ (1990). There is a

duopolywhereeach…rm i =1;2; hasinitial capacity at timezeroof k0. In any period, the

output of …rm i must beno greater than capacity, i.e., xi;t · ki ;t. Demandsand costs are

asfollows. At timet, each…rmfacesthelinear inversedemandschedulept = at¡ x1t¡ x2t.

There is no short-run cost of production, but there is a per-period cost of maintaining

capacity Ã > 0, and a cost ¾> 0 of scrapping capacity, with the ‡ow cost of scrapping

less than maintenance, i.e., ¾(1¡ ±) < Ã. It is assumed that capacity, oncewithdrawn,

cannot bereintroduced (for example, thecapital stock may consist of specialized capital

goodswhich areno longer manufactured).

Withinaperiod, theproductiondecision isdelegatedtomyopicmanagerswhoengage

in Cournot competition, so output conditional on capacity is

xi;t =minfki;t;at=3g; (4.3)

whereat=3 is unconstrained Cournot output at time t:Weassumethat at thebeginning
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of period 1, at falls permanently from a0 to a1, i.e., the sizeof themarket declines once

and for all.16 Wesupposethat initial capital stockshavebeen set soas to forcemanagers

toproduceat joint pro…t-maximizingoutputs, takingintoaccount thecost of capital, and

adjustment costs, at the initial level of demand, i.e.,

k0 =
(a0 ¡ Ã+¾(1¡ ±))

4
: (4.4)

A story consistent with this is that in the (distant) past, this industry has already been

hit by anegativedemand shock, andhasadjusted to theold long-runequilibrium.17 Note

that cutting capacity can act as a way of committing to a lower level of output than

theCournot solution. Thequestion is, if demand falls, can the…rms cut their capacities

su¢ ciently so as to reach the joint pro…t maximising level?

It is convenient to assumethat thedecline in themarket is not too large, i.e.,

3a0
4

· a1: (4.5)

In this case, managerswill alwaysbeconstrained by capacity.18 So, if (4.5) holds, pro…t

in period t can bewritten

¼i;t = a1ki;t ¡ ki;t ¡ ki;tkj ;t ¡ Ãki;t ¡ ¾(ki;t¡ 1 ¡ ki;t)

´ ¼̂(ki;t;kj ;t) ¡ ¾(ki;t¡ 1 ¡ ki;t):

So, thefullye¢ cient capital stockat thenewlevel of demand, k¤;maximizes
P 1

t=1±
t¡ 1(¼1;t+

¼2;t), i:e:;

k¤=
a1 ¡ Ã+¾(1¡ ±)

4
;

and adjustment should be immediate. Note that k¤<k0.

Now de…ne the level of cooperation of …rm i to be the amount of capital scrapped,

ci;t := k0 ¡ ki ;t, so ci;0 = 0, c¤ = k0 ¡ k¤. So, from (4.2) wecan writepro…t as a function

of cooperation levels:

¼(ci;t;cj ;t) := ¼̂(k0 ¡ ci;t;k0 ¡ cj ;t) ¡ ¾(1¡ ±)ci;t: (4.6)

16This is in contrast to Ghemawat and Nalebu¤ who make the assumption of a constantly declining
market, an assumption which implies a backwards unravelling result and a unique equilibrium. By
contrast here therewill bemany equilibria.

17Although, asweshall see, this statement is only approximately correct if ±is near 1:
18To see this, note that (4.5) implies ki t · k0 =

(a0¡ Ã+¾(1¡ ±))
4

· a1
3
asÃ >¾(1¡ ±) by assumption.
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As¼(ci;t;cj ;t) is non-linear, therelevant case is thedi¤erentiablecase. To apply Proposi-

tion3.1, weneedtoverify theassumptionsof thedi¤erentiablecase. Bydirect calculation,

wehave:

¼1 = ¡ a1+Ã+2ki;t +kj ;t ¡ ¾(1¡ ±);

¼2 = ki;t;

¼11 = ¡ 2; ¼22=0; ¼12= ¡ 1:

So, all thedi¤erentiable case conditions are satis…ed if¼1 < 0; which in turn is satis…ed

if (4.5) holds and capacity (net of scrapping) costs aresmall19.

Our results for the di¤erentiable case then apply directly. In particular, on the

e¢ cient symmetric path ci;t rises asymptotically to bc, wherebc is de…ned in (3.1) above.

Wecan express this in terms of thecapital stock: kit declines asymptotically to k̂, where

k̂ solves
¼̂1(k̂; k̂)

¼̂2(k̂; k̂)
=±:

Or, using (4.6), weget:

a1 ¡ Ã ¡ 2̂k ¡ k̂+¾(1¡ ±)

k̂
=±:

Solving, weget

k̂=
a1 ¡ Ã+¾(1¡ ±)

3+±
>k¤:

So, for ±< 1; theduopolists cannot credibly reducecapacity to thenew joint pro…t-

maximizing level k¤, even asymptotically. All they can manage is to force down capital

stocks to k̂, so therewill beexcess capacity and output in the industry (relative to joint

pro…t maximization), even in thelong-run. As±! 1, theamount of excesscapacity goes

to zero.

5. Reversible Cooperation

So far, we have assumed that cooperation is completely irreversible. This is clearly a

strong assumption. In this section, weexamine to what extent our results are robust to

19To seethis notethat ¼1 < 0 if ki t <
(a1¡ Ã+¾(1¡ ±))

3
: But if capacity (net of scrapping) costs aresmall

(Ã ' ¾(1¡ ±)), ki t · k0 =
(a0¡ Ã+¾(1¡ ±))

4
' a0

4
< a1

3
' a1¡ Ã+¾(1¡ ±)

3
as required.
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a relaxation of this assumption. Supposethat wemodify the irreversibility constraint to

ci;t ¸ ½ci;t¡ 1; 0 · ½· 1;

wherethedegreeof irreversibility is parameterized by½; complete irreversibility is½=1,

and a standard repeated game is½= 0. The …rst—and important—point is that the

e¤ect of lowering½from 1 on the e¢ cient symmetric path is not clear without further

analysis, becauseof two e¤ects that work in oppositedirections.

The…rst e¤ect of a smaller ½is to make deviation more pro…table; the deviator at

t can lower his cooperation level at t to½ct¡ 1 < ct¡ 1, rather than keep it at ct¡ 1. The

second e¤ect is to makepunishment more severe; theworst possible perfect equilibrium

punishment of the deviator is for the other player to reduce his cooperation as fast as

possibleover time, rather than just not increaseit. A priori, it isnot clear whiche¤ect will

dominate. Nevertheless, weareable to show that for a small amount of reversibility the

seconde¤ect dominates, and in thelinear caseit dominates for any degreeof reversibility.

Speci…cally, we show that lowering½slightly from½= 1 relaxes the incentive con-

straints; that is, any path that is an equilibriumwhen½= 1 is also an equilibriumpath

when½is slightly lower than one, andmoreover becausetheincentiveconstraintsbecome

slack, an improved path can befound, so that payo¤s increase.

Consider adeviationby i fromsomesymmetricpath fctg1t=1 at t. Theworst subgame-

perfect punishment that j can impose on i is to reduce cooperation by the maximum

amount ineveryperiodfollowingt, i.e., toset cj ;t+1 =½ct; cj ;t+2=½2ct, etc. Consequently,

the most pro…table deviation i can make is to lower his cooperation by the maximum

feasibleamount at t, i.e., set ci;t =½ct¡ 1. So, themaximal payo¤ to deviation at t is

¢ (½;ct¡ 1;ct) :=¼(½ct¡ 1;ct) +±¼(½2ct¡ 1;½ct) +±2¼(½3ct¡ 1;½2ct) + : : :

Then, fctg1t=1 is an equilibriumpath if and only if it satis…es for all t ¸ 1:

¢ (½;ct¡ 1;ct) · ¼(ct;ct) +±¼(ct+1;ct+1) +±2¼(ct+2;½ct+2) + : :: (5.1)

An e¢cient (symmetric) equilibriumpath isde…ned nowas thepath that maximizes

theutility of either agent subject to thesequenceof constraints (5.1).
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In order to characterizee¢ cient payo¤s, the relevant results extending Lemmas 1-4

arecollected below:

Lemma 5.1. With reversibility, thereexists an e¢cient symmetric equilibriumsequence

fbctg1t=1 such that (i) bct¡ 1 · bct · c¤ for all t ¸ 1; (ii) if bct < c¤; then (5.1) holds with

equality, (iii) fbctg is theupper envelopeof all equilibriumsequences which never exceed

c¤:

P roof. SeeAppendix. ¤

If c¤ is the unique maximizer of ¼(c;c);then the sequence fbctg1t=1 characterized in the

lemma is theunique e¢ cient symmetric equilibriumoutcomepath; otherwise theremay

bemultiplee¢ cient pathsdi¤eringonly in theinterchangeof e¢ cient levelsof c; but they

do not di¤er before such levels are attained. In what follows, the ‘e¢ cient equilibrium

path’ is understood to refer to theonewhich does not exceed c¤:

UsingLemma5.1, wenowturn todiscusstheimpact of asmall amount of irreversibil-

ity, and webegin with thedi¤erentiable case. Let fbct(½)g1t=1 be thee¢cient equilibrium

path in the½¡ reversible game, let bc1 (½) be its limit (which exists by Lemma 5.1), and

let

¦̂ (½) := (1¡ ±)
1X

t=1

±t¡ 1¼(bct(½);bct(½))

be thepayo¤ from this e¢ cient path, all for some…xed discount factor ±< 1. Then we

havethe following:

P roposition 5.2. In thedi¤erentiablecase, provided bc1 (1) > 0; thereexists½;1>½>

0; such that if 1 > ½> ½, then (i) if fbct(½)g1t=1 is the e¢cient equilibrium path in the

irreversiblecase, it isalsoanequilibriumpath in the½¡ reversiblecase; (ii) bc1 (½) >bc1 (1)

(´ bc); (iii) ¦̂ (½) > ¦̂ (1):

P roof. SeeAppendix. ¤

Thereasoningbehind this result is that a small amount of irreversibility relaxes the

incentiveconstraints in every timeperiod, allowingevery componentsof thee¢cient path

to be raised slightly as½decreases slightly from 1. This in turn implies that the limit
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value of the e¢cient path is higher, as well as the present discounted payo¤ from the

e¢ cient path.

Wenowturn tothelinear kinkedcase. Weshall …rst characterizethesequencefctg1t=1

described in Lemma5.1. From(ii) of thelemma, if ct <c¤ and ct+1<c¤ then (5.1) holds

with equality at both dates, and substituting out the continuation equilibrium payo¤s

after t+1yields

1X

j=1

±j ¡ 1(¼1½j ct¡ 1+¼2½j ¡ 1ct) =¼1ct +¼2ct +±

Ã
1X

j=1

±j ¡ 1(¼1½j ct +¼2½j ¡ 1ct+1)

!

or
¼1½ct¡ 1+¼2ct

1¡ ½±
=¼1ct +¼2ct +

¼1½ct+¼2ct+1
1¡ ½±

;

which can besimpli…ed to

ct+1 ¡ ½ct = ¡
¼1
±¼2

(ct ¡ ½ct¡ 1):

Given that c1 ¡ ½c0= c1; this can besolved for

ct = (½t¡ 1+½t¡ 2a+½t¡ 3a2 : ::+½at¡ 2+at¡ 1)c1; (5.2)

wherea= ¡ ¼1
±¼2

asbefore; and notethat for½=1 (irreversibility), (5.2) reduces to (3.4).

(If½6= a then thesolution can bewritten ct =
(½t ¡ at )
(½¡ a) c1:)

Wecan now prove:

P roposition 5.3. In the linear kinked case, (i) if a(= ¡ ¼1
±¼2

) < 1 (so a non-trivial equi-

librium exists with irreversibility) then payo¤s in e¢ cient symmetric equilibrium are a

strictly decreasing function of½whenever they arebelow the…rst-best level (which they

are at ½= 1). Moreover if ½< 1 the project is completed in …nite time (i.e., ct = c¤

for some t < 1 ): (ii) If a > 1; then ct = 0 for all t; for all ½2 (0;1] in any symmetric

equilibrium. (iii) If a=1; then theproject is completed asymptotically for ½2 (0;1):

P roof. SeeAppendix. ¤

Recall that if½=1; nonon-trivial equilibriumexistsif a ¸ 1;whileif½=0(repeated

game) it can bechecked that the…rst best isattainable(immediately) if a · 1; otherwise
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there is no non-trivial equilibrium. Thepath used in theproof of part (i), which satis…es

(5.2) up to its maximumvalue, is not the e¢cient path unless this maximumoccurs at

t = 1; since each incentive constraint up to t¤ is slack, violating Lemma 5.1(ii). So the

e¢ cient pathalsosatis…es(5.2) so longasct <c¤; but c1 ishigher than in theconstruction

of theproof (otherwiseLemma5.1(iii) is violated).

6. A symmetric Cooperation

So far, we have only considered symmetric paths, i.e., where c1;t = c2;t = ct: A natural

question is whether the agents could achieve higher (expected) equilibrium payo¤s by

playingasymmetrically. A further relatedquestion concernsthecharacteristicsof e¢ cient

equilibria in amodel whereagents areconstrained tomovesequentially; as weshall see,

this is a closely related issueand will beconsidered below.

We shall consider these questions for the linear kinked case only. Let fc1;t;c2;tg1t=1
bean arbitrary (possibly asymmetric) path. Then, by a similar argument to that given

in Section 2, such a path is an equilibrium path if and only if for i; j = 1; 2; i 6= j ;

t=1;2;: : : ;

¼1ci;t¡ 1+¼2cj ;t
1¡ ±

· ¼1ci;t+¼2cj ;t+±(¼1ci;t+1+¼2cj ;t+1) + ::: : (6.1)

Let CE betheset of equilibriumpaths (i.e. sequences that satisfy (2.1) and (6.1)). Also,

let ¦ i(fc1;t;c2;tg1t=1) bethenormalized (multiplied through by (1¡ ±)) present discounted

values of payo¤ to i associated with a path, and let ¦ E be the imageof CE in thespace

of normalized present discounted values of payo¤s„ i.e.,

¦ E = f (¦ 1; ¦ 2) j¦ i = ¦ i(fc1;t;c2;tg1t=1); fc1;t;c2;tg
1
t=1 2 CE , i =1;2g

Our focusinon theshapeof thee¢cient frontier of ¦ E : Asfar assymmetricequilibria

go, weknow fromProposition 3.2 if ±· ±̂= ¡ ¼1=¼2; no cooperation is possible, whereas

if ±> ±̂, completion equilibria exist. From the symmetry assumption on payo¤s, ¦ E

is symmetric about the 45o line. One issue concerns the possibility that ¦ E may be a

non-convex set, in which case it may be optimal for the players to randomize between

two pure-strategy equilibria rather than play the e¢cient symmetric equilibrium. The
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following result, which characterizes ¦ E when ±> ±̂; establishes that this is not the

case, andmoreover shows that thee¢cient frontier of ¦ E is linear with slope-1near the

45oline, so in termsof joint payo¤s, a degreeof asymmetry doesnot matter. This part of

thefrontier consistsof payo¤s fromsequenceswhich satisfy theincentiveconstraintswith

equality (this is no longer true for e¢ cient pathswith su¢ ciently asymmetric payo¤s).

P roposition 6.1. Assumethat ±> ±̂= ¡ ¼1=¼2: Then, ¦ E isconvex. Moreover, thee¢ -

cient frontier of ¦ E has thefollowingform. Thereexist pointsA = (¦ 0;¦ 00), B =(¦ 00; ¦ 0);

on thee¢cient frontier of ¦ E with ¦ 0> ¦ 00> 0 such that between A and B, ¦ 1 and ¦ 2

sumtoaconstant § (i.e., thefrontier of ¦ E is linear betweenA andB with slope-1): For

any point on thefrontier belowA or aboveB, thesumof utilities is strictly less than § :

P roof. SeeAppendix. ¤

TheProposition is illustrated in Figure1below,

Figure1 in here

which shows the general shape of the frontier (although we have no results about the

shape of the frontier to the left of B or below A, except that it must be described by a

concavefunction). Wecan also say somethingabout how thefrontier shifts as±changes:

P roposition 6.2. Thesegment of thee¢ cient frontier between A and B is increasing in

± in thesensethat both ¦ 0=¦ 00and § are increasing in±; and converges to the…rst-best

frontier as ±! 1 (i.e., ¦ 00=¦ 0 ! 0 and § ! 2(¼1+¼2)c¤): As ±! ±̂= ¡ ¼1=¼2 from

above, A ! B and § ! 0:

P roof. SeeAppendix. ¤

Proposition 4 is illustrated in Figure 2 below, where the solid line represents the

frontier at a lower ±and thedotted line the frontier at a higher valueof ±.

Figure2 in here
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Note that as ±! 1, the e¢cient frontier becomes linear everywhere with slope equal

to minus one -1, i.e., it converges to the…rst-best e¢ cient frontier. So, Proposition 6.2

generalizes Corollary 3.3 to the case of asymmetric paths, at least in the linear kinked

case.

7. Sequential M oves

So far, wehaveassumed that players can movesimultaneously. However, it may bethat

players can only move sequentially, e.g., Admati-Perry (1991), Gale (1997). In certain

publicgood contribution games, theassumptionmadecan a¤ect theconclusionssubstan-

tially. In the Admati-Perry model, where players move sequentially, a no contribution

result holdswhennoplayer individually wouldwant tocompletetheproject, even though

it might bejointly optimal todoso, but this result may disappear if theplayerscanmove

simultaneously (see Marx and Matthews (1997) for a full discussion of this issue). By

contrast, we shall …nd that in our model, equilibria in the two cases are closely related;

indeed, the e¢ cient symmetric equilibrium can “approximately” be implemented in the

sequential movegame.

Supposew.l.o.g. that player 1canmoveat even periodsand player 2at odd periods.

Then, thismovestructure imposes theconstraint that

c1;t = c1;t¡ 1, t=1;3;5:::: (7.1)

c2;t = c2;t¡ 1, t=2;4;6::::

Let theset of all paths that satisfy (7.1) beCseq: To bean equilibrium in thesequential

game, any path fc1;t;c2;tgmust satisfy the following incentive constraints. When player

1moves at t=2;4;:::; heprefers to raisehis level of cooperation from ct¡ 2 to ct only if

¼(c1;t¡ 2;c2;t¡ 1 )
1¡ ±

· ¼(c1;t;c2;t¡ 1) +±¼(c1;t;c2;t+1) + :::; t=2;4;6::: (7.2)

Similarly, when player 2moves at t = 3;5:::; heprefers to raise his level of cooperation

from c2;t¡ 2 to c2;t only if

¼(c2;t¡ 2;c1;t¡ 1)
1¡ ±

· ¼(c2;t;c1;t¡ 1) +±¼(c2;t;c1;t+1) + :::; t=3;5;7::: (7.3)
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Whenplayer 2movesat period 1, (7.3) ismodi…edby thefact that 2can revert toc0=0,

rather than c¡ 1, but otherwise the incentiveconstraint is thesame, i.e.,

w
¼(0;0)
1¡ ±

· ¼(c2;1;0) +±¼(c2;1;c1;2) + :::: : (7.4)

Let theset of paths in Cseq that satisfy (7.2),(7.3) and (7.4) beCseq
E ½Cseq:

However, notethat a path is in Cseq
E if and only if it is an (asymmetric) equilibrium

path satisfying (7.1) in the simultaneous move game studied above. This is because in

thesimultaneousmovegame, theincentiveconstraints in theperiodswhereagentsdonot

have to move are automatically satis…ed, as no agent likes to choose a higher ci;t than

necessary (from¼decreasing in its …rst argument). So, Cseq
E is simply that subset of CE

also in Cseq, i.e.,

Cseq
E =CE \ Cseq:

So, theset of feasiblepresent-valuepayo¤s ¦ seq
E is theimageofCseq

E in<2 under thepayo¤

function , and consequently

¦ seq
E µ ¦ E :

To say more than this, weshall go to the linear kinked case, in which casewehave

the following. De…neA := (¦ 0; ¦ 00) as in Proposition 6.1 above, and let ¦̂ bethepresent

value payo¤ from the e¢ cient symmetric path in the simultaneous move game, so that

S := (¦̂ ; ¦̂ ) is theequal utility point on thePareto-frontier for that game.

P roposition 7.1. ¦ seq
E is convex. Also, A is in ¦ seq

E ; and for any …xed " > 0, there is

a ±(") < 1; and a point B = (¦̂ seq
1 ; ¦̂ seq

2 ) 2 ¦ seq
E such that ¦̂ seq

i > ¦̂ ¡ " ; i = 1;2 for

±¸ ±("): Consequently, as ±! 1, the Pareto frontier of ¦ seq
E is asymptotically linear

between S and A.

P roof. SeeAppendix. ¤

This Proposition is illustrated in Figure 3 below. It shows that in the sequential

movegame, for lowdiscounting, wecan approximate“half” thelinear part of thePareto-

frontier of the simultaneous move game, so sequential moves need not be a barrier to

e¢ ciency.

Figure3 in here
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8. Conclusions

This paper has studied a simple dynamic game where the level of cooperation chosen

by each player in any period is irreversible. We have shown that irreversibility causes

gradualism, i.e., any (subgame-perfect) sequenceof actions involving partial cooperation

cannot involvean immediatemoveto full cooperation, andwehavere…ned and extended

this basic insight in various ways. First, we showed that if payo¤s are di¤erentiable in

actions, then (for a…xed discount factor), the level of cooperation asymptotes to a limit

strictly below full cooperation, and this limit value is easily characterized. For the case

where payo¤s are linear up to some joint cooperation level, and constant or decreasing

thereafter, the results are di¤erent — above some critical discount factor equilibrium

cooperation can converge asymptotically to the fully e¢ cient level. Below this critical

discount factor, no cooperation is possible.

Later sections of thepaper then extend thebasic model in several directions. First,

we studied an “adjustment cost” model which is applicable to a variety of economic

situations, and showed that it can be reformulated so that it is a special case of our

basemodel. Wethen applied theadjustment cost model to study sequential public good

contribution gamesand capacity reduction in a declining industry.

Other extensions were to allow for irreversibility, asymmetry, and sequential moves.

However, in all these variants of the base case, we have continued to assume that the

underlyingmodel is symmetric, i.e., both players have thesamepayo¤s, given a permu-

tation of their action variables. This is somewhat restrictive; in many situations where

irreversibility arises naturally, e.g. Coasian bargainingwithout enforceablecontracts but

whereactionsareirreversible, payo¤swill beasymmetric. Another limitationof themodel

is that players only havea scalar action variable; in many applications, players havesev-

eral action variables, as in, for example, capacity reduction games, where…rms control

both capacity and output. Extending themodel in these directions is a project for the

future.
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A . Appendix

P roof of Lemma 4. Supposeto thecontrary thereexists a fc0tg
1
t=1 in CSE with c0t > bct

for some t. De…ne for all t ¸ 0; ~ct = maxfbct;c0tg: It is clear from Assumption A1 and

Lemma2.1 (i) that

¼(~ct;~ct) ¸ ¼(bct;bct), all t; (A.1)

with at least onestrict inequality, so that f~ctg1t=1 gives both agents a higher payo¤ than
fbctg1t=1. So, if we can show that f~ctg1t=1 is an equilibrium sequence, this will contradict

theassumed e¢ciency of fbctg1t=1 and theresult is then proved.

Say thesequences fbctg1t=1; fc
0
tg
1
t=1 havea crossingpoint at ¿ if c

0
¿¡ 1 · bc¿¡ 1; c0¿ ¸ bc¿

with at least one strict inequality, or c0¿¡ 1 ¸ bc¿¡ 1; c0¿ · bc¿ with at least one strict

inequality. Also, de…neSt =¼(ct;ct) +±¼(ct+1;ct+1) + : :: ; so that ~St ¸ bSt;S
0

¿ by (A.1).

There are then two possibilities at any time ¿: The…rst is that there is no cross-
ing point at ¿. Then, either (~c¿¡ 1;~c¿) = (bc¿¡ 1;bc¿) or (~c¿¡ 1;~c¿) = (c0¿¡ 1;c0¿). Without

loss of generality, assume the former. As fbctg1t=1 is an equilibrium sequence, we have

¼(bc¿¡ 1;bc¿)=(1 ¡ ±) · bS¿; so that (~c¿¡ 1;~c¿) = (bc¿¡ 1;bc¿) and ~S¿ ¸ bS¿ together imply

¼(~c¿¡ 1;~c¿)=(1¡ ±) · ~S¿; i.e., the¿¡ constraint is satis…ed for f~ctg1t=1.

Now assumethat fbctg1t=1 and fc
0
tg
1
t=1 havea crossingpoint at ¿; and assumew.l.o.g.

that

c0¿¡ 1 · bc¿¡ 1; c0¿ ¸ bc¿: (A.2)

Then as fc0tg
1
t=1 is an equilibriumsequence, ¼(c0¿¡ 1;c

0
¿)=(1¡ ±) · S0

¿. Also,
~S¿ ¸ S0

¿ and

from(A.2), ~c¿ = c0¿. Consequently,

¼(c0¿¡ 1;~c¿)
1¡ ±

· ~S¿: (A.3)

Finally, again from (A.2), c0¿¡ 1 · bc¿¡ 1 = ~c¿¡ 1: Using this fact, plus¼decreasing in its

…rst argument, we have¼(~c¿¡ 1;~c¿) · ¼(c0¿¡ 1;~c¿); so from (A.3) the ¿¡ constraint holds
for f~ctg1t=1. Consequently all ¿¡ constraints hold for the sequence f~ctg1t=1, so it is an

equilibriumsequence, as required. ¤

P roof of Lemma 5.1. (i) Take an e¢cient path fectg1t=1—such a sequence exists by a

similar argument to that of Lemma 2—and de…ne¿ ¸ 1 to be the…rst period such that

ec¿ >c¤ (if suchaperioddoesnot exist, then (i) holdsimmediately):De…neanewsequence

withbct :=ect; for t < ¿;andbct := c¤ for t ¸ ¿: fbcg1t=1clearlyyieldsasmuchutilityasfectg
1
t=1

at every point, and it will beshown that it also satis…es (5.1) for all t: First, (5:1) holds
at ¿ since¢ (½;f~c¿¡ 1;~c¿g) > ¢ ¿(½;fbc¿¡ 1;bc¿g) as bc¿ < ec¿ whilebc¿¡ 1 = ec¿¡ 1 (and using¼
increasing in its second argument);moreover theRHS of (5.1) isno smaller. Likewise, for

t0> ¿; wehave¢ (½;fct0¡ 1;ct0g) < ¢ (½;fc¿¡ 1;c¿g) sincebct0 = bc¿; and bct0¡ 1 > bc¿¡ 1; while
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continuation path payo¤s (RHS of (5.1)) are thesameat ¿ and t0: So (5.1) holds at t0; it
clearly holds at t < ¿ as theLHS is unchanged relative to the fectg1t=1 sequencewhile the
RHS is no smaller. Theproof of bct¡ 1 · bct is straightforward but tedious and is omitted.
(ii) The argument is similar to the proof of Lemma 2.2. (iii) Assume the contrary, so

there is an equilibrium sequence fc0tg
1
t=1 yielding a higher payo¤ than fbctg1t=1; and both

sequences liebelow or equal to c¤: Hence theconstruction of Lemma 2.4 can befollowed
tocreateanewsequencefectg1t=1which yieldsahigher overall payo¤. That it satis…es(5.1)
at each t follows fromsimilar arguments. ¤

P roof of P roposition 5.2. (a) Let bct(1) = bct to easenotation. To provepart (i), it is
su¢ cient to show that wecan…nd e½such that

¢ (½;bct¡ 1;bct) < ¢ (1;bct¡ 1;bctg); t=1;2;:::; 1>½>e½: (A.4)

For then, for 1>½>e½, fbctg1t=1 satis…es the incentiveconstraints (5.1).

(b) Fix t; then

¢ t(½) ¡ ¢ t(1) = ¡ ¢ 0
t(1)"+

1

2
¢ 00

t (1)"
2+O("3); (A.5)

where" := 1¡ ½;andtoeasenotation, weset ¢ t(½) :=¢ (½;fbct¡ 1;bctg). Routinecalculation
gives:

¢ 0
t(1) = At(1+2±+3±2+4±3+ :::) (A.6)

¢ 00
t (1) = At(2±+6±2+12±3+ :::) +Bt (A.7)

whereAt =¼1bct¡ 1+±¼2bct, and Bt is the sumof terms involving¼11;¼22;¼12, and where
it is understood that all derivatives of ¼are evaluated at (bct¡ 1;bct). Also the series 1+
2±+3±2+4±3+ :: : and 2±+6±2+12±3+ ::::both converge (to s1;s2 > 0 respectively).

Useful properties of At;Bt; proved in (c) below, are: At > 0; Bt < 0, limt! 1 At = 0,

limt! 1 Bt < 0:

Consequently, wecan write

¡ ¢ 0
t(1)"+

1

2
¢ 00

t (1)"
2= (¼1bct¡ 1+±¼2bct)(¡ s1"+0:5s2"2) +0:5"2Bt: (A.8)

Clearly thereexists "t such that for " satisfying0< " < "t, theRHS of (A.8) is negative.
It follows from(A.5) that for " < "t, ¢ t(½) < ¢ t(1).

(c) (Properties of At;Bt): First we show that At > 0: We have bct ¸ bct¡ 1, so (as

¼2> 0) weonly need show that

¼1(bct¡ 1;bct) +±¼2(bct¡ 1;bct) > 0: (A.9)
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Now, weknow fromSection 3that provided themaximumattainablelevel of cooperation

bc> 0; then bct <bc all t; and thus °(bct) ´ ¡ ¼1(bct;bct)=¼2(bct;bct) <±, which implies

¼1(bct;bct) +±¼2(bct;bct) > 0: (A.10)

Also, fromtheassumptions on¼that ¼11< 0; ¼12 · 0; wehave

¼1(bct¡ 1;bct) ¸ ¼1(bct;bct); ¼2(bct¡ 1;bct) ¸ ¼2(bct;bct): (A.11)

Consequently, (A.9) follows from(A.10) and (A.11). Also note

lim
t! 1

At = ¼1(bct¡ 1;bct)bct¡ 1+±¼2(bct¡ 1;bct)bct

= [¼1(bc;bc) +±¼2(bc;bc)]bc

= 0

wherethetermin thesquarebrackets iszerobyde…nitionof bc: ThepropertiesofBt follow

fromthefact that Bt is thesumof terms involving¼11;¼22;¼12 with coe¢cientsbounded
(in t) abovezero.

(d) We now show that the sequence f½tg
1
t=1 := f1 ¡ "tg1t=1 can be chosen to be

bounded below 1; this would imply (A.4) with e½:= sup½t < 1. If such a sequencedoes

not exist, then theremust be a subsequencewhich w.l.o.g. we take to be f½tg
1
t=1 itself,

converging to 1; i.e.,½t ! 1and

¢ (½t;bct¡ 1;bct) ¸ ¢ (1;bct¡ 1;bct); all t: (A.12)

But now as t ! 1 ; bct ! bc, so from(A.5), wehave

¢ (½;bc;bc) ¡ ¢ (1;bc;bc) ' lim
t! 1

f ¡ ¢ 0
t(1)"+

1

2
¢ 0

t(1)"
2g

= lim
t! 1

0:5"2Bt =0:5"2B < 0:

So, for some…xed µ> 0, thereexists½µ< 1 such that

¢ (½;bc;bc) < ¢ (1;bc;bc) ¡ 3µ; 1>½>½µ: (A.13)

Also, as t ! 1 ; bct ! bc; and ¢ t(½) is continuous in½and bct¡ 1;bct, thereexists a Tµ such
that for all t ¸ Tµ :

¢ (½;bct¡ 1;bct) < ¢ (½;bc;bc) +µ; 1>½>½µ;

¢ (1;bc;bc) < ¢ (1;bct¡ 1;bct) +µ: (A.14)

Combining (A.13) and (A.14), weget

¢ (½;bct¡ 1;bct) < ¢ (1;bct¡ 1;bct) ¡ µ; 1>½>½µ; t ¸ Tµ: (A.15)
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But (A.12) and (A.15) are in contradiction.

(e) To provepart (ii) of theProposition, let

~ct =
½

bct t < Tµ
bct +´ t ¸ Tµ

Also, choose´ < c¤ ¡ bc small enough so that (by continuity)

¢ (½;~ct¡ 1;~ct) < ¢ (½;bct¡ 1;bct) +µ=2; 1>½>½µ; t ¸ Tµ: (A.16)

We show that f~ctg1t=1 is an equilibrium symmetric path in the ½¡ reversible game, if

1>½>maxfsup½t;½µg. To seethis, note…rst that ~ct <c¤; so for any t thecontinuation
payo¤ from f~ctg1t=1 is strictly greater than that from fbctg1t=1: Hence, it su¢ ces to show
that the deviation payo¤ in the½¡ reversible game from f~ctg1t=1 is no higher than the

deviation payo¤ from fbctg1t=1 in the irreversible case. But from (A.15) and (A.16), we

have

¢ (½;~ct¡ 1;~ct) < ¢ (1;bct¡ 1;bct) ¡ µ=2; 1>½>½µ; t ¸ Tµ

as required; provided½> e½́ sup½t; (A.4) ensures (from (a)-(d) above) that (5.1) holds

for t < Tµ: Thussetting½=maxfsup½t;½µg impliesthat (5.1) holdsfor all 1>½>½; t ¸
1: Then fromLemma5.1 (iii), bc1 (½) ¸ bc1 (1) + ":

(f) To provepart (iii), it follows immediately fromtheconstruction of f~ctg1t=1 that

~¦ := (1¡ ±)
1X

t=1

±t¡ 1¼(~ct;~ct) > ¦̂ (1)

andas f~ctg1t=1 isanequilibrium(but not necessarily thee¢ cient) path in the½¡ reversible
game, ¦̂ (½) ¸ ~¦ and so theresult is proved. ¤

P roof of P roposition 5.3. Let½=1; and supposefctg1t=1 isan e¢cient path; assuming
a < 1; this path is increasing by earlier arguments. The derivative of ¢ t(½;fctg1t=1) ´
(¼1½ct¡ 1+¼2ct)=(1¡ ½±)with respect to½hasthesignof ct¡ act¡ 1;which ispositivefor all
t ¸ 1asa< 1and ct >ct¡ 1 ¸ 0: Hencefor any b½2 [0;1), fctg1t=1 remains an equilibrium
pathasthedeviationpayo¤ ¢ t(b½;fctg1t=1) issmaller thanat½=1, whilethecontinuation

payo¤ is unchanged. By Lemma 5.1(i) and (iii), there exists a non-decreasing e¢cient

path for b½< 1; say fbctg1t=1;which liesno lower than fctg
1
t=1 and nohigher than c

¤ at each

point. Next, theaboveargument canberepeated for any½0<b½< 1; so that at½0; fbctg1t=1
is an equilibriumpath. Moreover, the incentiveconstraint at each t is strictly looser, so
that by Lemma5.1(ii) if the…rst-best isnot attainableat½, i.e., if bct <c¤ for somet, bct is
not part of an e¢cient equilibriumpath for ½0: Theconclusion is then that at ½0; fbctg1t=1
is equilibriumbut not e¢ cient, i.e., there is an equilibriumpath yielding a higher payo¤

than fbctg1t=1: To prove that c
¤ is attained in …nite time, consider thepath generated by
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(5.2) for somechoiceof c1:Notethat (½t¡ 1+½t¡ 2a+:: :+½at¡ 2+at¡ 1) attainsamaximum
at some t¤ ¸ 1; and declines to zero. Choosec1 = ec1 so that ect¤ = c¤: If (5.2) is followed
for all t; the same argument as in Lemma 2.4 establishes that the incentive constraint

holds for all t as limt! 1 ect =0 ( < 1 ): (It doesnot matter if thispath violatesect ¸ ½ect¡ 1
beyond t¤:) Now change thepath by setting ect = c¤ for t > t¤: Continuation payo¤s are
increased at each date. Deviation payo¤s are the sameat each date up to t¤; and since

the incentiveconstraint is thus satis…ed at t¤ it must also besatis…ed at all t > t¤: Thus
this path satis…es all incentive constraints and c¤ is attained in …nite time. By Lemma

5.1(iii) thereisan e¢cient path that attainsc¤ by t¤ or earlier. (ii) If a ¸ 1; then consider
the incentivecondition for a stationary path at c:

¼1½c+¼2c
1¡ ½±

·
¼1c+¼2c
1¡ ±

: (A.17)

Rearranging, this is equivalent to a · 1: Hence if a > 1; if c¤ is attained, the incentive
constraint isviolatedat c¤ (likewiseif ahigher e¢ cient level isattained, shouldoneexist);
if ct < c¤ for all t, then thepath must satisfy (5.2) for all t; implying ct ! 1 if c1 > 0;
; a contradiction; hence c1 = 0; so ct = 0 all t. If a = 1; (A.17) holds with equality; if

c¤ isattained at t; the incentiveconstraint at t is stricter than (A.17), and so is violated;
hence ct < c¤ all t; in which case (5.2) applies, and setting c1 = (1¡ ½)c¤ implies that
limt! 1 ct = c¤; and because the limit is …nite, all incentive constraints are satis…ed (as

argued earlier).¤

P roof of P roposition 6.1. First, weshowthat ¦ E isaconvexset. First; theconstraints
in (6.1) are linear. Consequently, if fc01;t;c

0
2;tg

1
t=1 and fc

00
1;t;c

00
2;tg

1
t=1 satisfy (6.1), a convex

combination of the twomust also satisfy (6.1) and soCE is a convex set. Also, adapting

Lemma2.1, any sequenceinCE must havec1;t+c2;t < 2c¤, all i;t, sopayo¤sarelinear in
any path in CE : It follows immediately that ¦ E is a convex set also.

Let CE E µ CE be the set of all paths fc1;t;c2;tg1t=1 which satisfy the incentive con-

straints (6.1) with equality at each t ¸ 1; and ¦ EE µ ¦ E thecorrespondingset of payo¤s.

Straightforwardmanipulation implies that thesepaths can bewritten as a systemof two

linked…rst-order di¤erenceequations in di¤erences¢ ci;t = ci;t ¡ ci;t¡ 1;

¢ c1;t = a¢ c2;t¡ 1 (A.18)

¢ c2;t = a¢ c1;t¡ 1 (A.19)

where a = ¡ ¼1
¼2±

as before. As ±> ±̂; it follows that a < 1: Also, note that the initial
conditions

¢ ci;1= ci;1 ¡ ci;0= ci;1, i =1;2

can beset freely. Routinemanipulation of thesystem(A.18), (A.19) gives thesolutions

ci;t =
½

1
1¡ a2 [ci;1 (1¡ at+1) +acj ;1 (1¡ at¡ 1)]; t odd

1
1¡ a2 [ci;1 (1¡ at) +acj ;1 (1¡ at)]; t even

; i; j =1;2; j 6= i: (A.20)
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Taking limits in (A.20), we get two equations that give, as a < 1; the limit values of
c1;t;c2;t as functions of the initial values:

lim
t! 1

c1;t = c1;1 =
1

1¡ a2
[c1;1+ac2;1];

lim
t! 1

c2;t = c2;1 =
1

1¡ a2
[c2;1+ac1;1]:

Invertingand solving, weget

c1;1= c1;1 ¡ ac2;1 ; c2;1= c2;1 ¡ ac1;1 : (A.21)

Note that we can think of c1;1 and c2;1 as being determined by c1;1 and c2;1 where the

latter can be freely chosen subject to the constraint that c1;1 + c2;1 · 2c¤ and that

ci;1 ¸ 0, i =1;2: The latter requires

c2;1
a

¸ c1;1 ¸ ac2;1 : (A.22)

CEE ischaracterizedby sequencessatisfying(A.20) and (A.22) sinceconvergent sequences

satisfying (A.18) and (A.19) also satisfy (6.1) with equality as in Lemma2.4.

Substituting (A.20) back in the payo¤s gives, after some rearrangement, for i; j =
1;2; j 6= i;

¦ i = (1¡ ±)
1X

t=1

±t¡ 1 (¼1ci;t+¼2cj ;t)

=
1

1¡ a2
[¼1 (ci;1+acj ;1) +¼2 (cj ;1+aci;1)]

+
(1¡ ±)

(1¡ a2)(1¡ a2±2)
¼1
£
a(aci;1+cj ;1) +±a2 (ci;1+acj ;1)

¤

+
(1¡ ±)

(1¡ a2)(1¡ a2±2)
¼2
£
a(acj ;1+ci;1) +±a2 (cj ;1+aci;1)

¤
:

Now, from(A.21), wehave

ci;1+acj ;1 = (1¡ a2)ci;1 : (A.23)

So, weget, after somemanipulation,

¦ i =

·

1¡
(1¡ ±)(a+a2±)

(1¡ a2±2)

¸

(¼1ci;1 +¼2cj ;1 ); i =1;2

and so

¦ 1+¦ 2=Á(±)(¼1+¼2)(c1;1 +c2;1 ); (A.24)

whereÁ(±) :=
h
1¡ (1¡ ±)(a+a2±)

(1¡ a2±2)

i
:
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So as long as c1;1 + c2;1 = 2c¤, ¦ 1 + ¦ 2 = Á(±)(¼1 +¼2)2c¤, no matter how the

sumc1;1 +c2;1 isdistributed. Thissays that thefrontier is linear between twoendpoints

de…ned by the restrictions (A.22). Let A beoneendpoint, de…ned by thecondition that

c1;1 = ac2;1 , and B the other endpoint, de…ned by c2;1 = ac1;1 (B is symmetric to

A) Combining this with c1;1 +c2;1 = 2c¤ implies that A is generated by thepath with

endpoints

c1;1 =
2ac¤

1+a
; c2;1 =

2c¤

1+a
;

and thereforewith payo¤s (¦ 0; ¦ 00) where

¦ 0 =
2c¤

1+a

·

1¡
(1¡ ±)(a+a2±)

(1¡ a2±2)

¸

[¼1a+¼2];

¦ 00 =
2c¤

1+a

·

1¡
(1¡ ±)(a+a2±)

(1¡ a2±2)

¸

[¼1+a¼2]:

So,

¦ 0=¦ 00=
¼1a(±) +¼2
¼1+a(±)¼2

: (A.25)

Now, it is easily checked that ¦ 0; ¦ 00> 0 and that theRHS of (A.25) is strictly greater

than 1, so ¦ 0> ¦ 00> 0as claimed.

Tocompletetheproof, weneed toshowthat pointsA andB lieon thefrontier of ¦ E ;

theconvexity of ¦ E then implies that thewholeof linesegment AB lies on this frontier.

First, note that thepoint S where the line segment AB crosses the45oline is generated

by thesymmetric path

c¤t =0:5c1;t +0:5c2;t;

where fc1;t;c2;tg
1
t=1 is the path supporting A; so every incentive constraint holds with

equality for fc¤tg
1
t=1. But then fc¤tg

1
t=1 is the symmetric e¢ cient path characterized in

Sections 2 and 3. So, S must be on the frontier since otherwise there is an asymmetric

path which Pareto-dominates S;and by symmetry another path with the player indices

switched which also Pareto dominates S; a convex combination of these two paths is a

symmetric path which Pareto dominatesS; a contradiction of thede…nition of S:

Suppose…nally that pointsA;B arenot on thefrontier of ¦ E . Then, theremust be

points C;D whereC (resp. D) Pareto-dominates A (resp. B) which areon the frontier
of ¦ E : But if S;C;D areall on thefrontier of ¦ E , it must benon-convex, contrary to the

result already established. ¤

P roof of P roposition 6.2. Fromtheproof of Proposition 6.1, wehave

¦ 0=¦ 00=
¼1a(±) +¼2
¼1+a(±)¼2

: (A.26)
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As a is decreasing in ±, and the right-hand side of (A.26) is decreasing in a, ¦ 0=¦ 00 is

increasing in±. Moreover, as±! 1; ¦ 0=¦ 00! 0; and as±! ±̂+, ¦ 0=¦ 00! 1, as required.

Likewise from(A.24) in theproof of Proposition 6.1, on the linesegment AB,

§ = ¦ 1+¦ 2 =Á(±)(¼1+¼2)2c¤

where Á(±) :=
h
1¡ (1¡ ±)(a+a2±)

(1¡ a2±2)

i
. Rearrangement gives Á(±) =

h
1¡ ±̂(1¡ ±)

±(1¡ ±̂
2
)

i
. It is then

clear that Á(±̂) = 0;Á(1) = 1;andÁ0(±) > 0; ±2 (±̂;1);andso§ hasthedesiredproperties

on the linesegment AB: ¤

P roof of P roposition 7.1. Toproveconvexity of ¦ seq
E , notethat sinceCE ;Cseq areboth

convex, soCseq
E =CE \ Cseq isalso convex. Consequently, ¦ seq

E isalsoconvex, by linearity

of payo¤s.

To proveA in ¦ seq
E , weproceed as follows. Point A is generated by a path described

in (A.20) with c1;1 = 0. All wehave to do is show that this path is in Cseq as this path

is already in CE by construction. Now setting c1;1 = 0 in (A.20), we see that the path

generatingA satis…es:

cA1;t =

½
1

1¡ a2 [ac2;1 (1¡ at¡ 1)]; t odd
1

1¡ a2 [ac2;1 (1¡ at)]; t even

cA2;t =

½
1

1¡ a2 [c2;1 (1¡ at+1)] t odd
1

1¡ a2 [c2;1 (1¡ at)]; t even

So, by inspection, fcA1;t;c
A
2;tg

1
t=1 has theproperty that player 1only changes her level

of cooperation in even periods, and player 2 in odd periods.

Next, let fbctg1t=1 be the (unique) symmetric e¢ cient path in thesimultaneousmove
game:Now de…netheasymmetric path fbc1;t;bc2;tg1t=1 in C

seq as follows:

bc1;t = bc1;t+1=bct; t=0;2;4;6:::;

bc2;t = bc2;t+1=bct; t=1;3;5:::

This is simply thepathwherean agent whoseturn it is tomoveat t choosesbct. Next, we
show that fbc1;t;bc2;tg1t=1 is incentive-compatible, i.e., in C

seq
E in thesequential movegame.

De…ne as before ¢ t := bct ¡ bct¡ 1; and recall ¢ t = a¢ t¡ 1 on the e¢cient path. For the

player whomovesat t ¸ 2; andwriting¢ for ¢ t¡ 1; theconstraints (7.2) and (7.3) can be

written as:

¼1ct¡ 2+¼2(ct¡ 1+¢ )

1¡ ±
· ¼1(ct¡ 2+¢ +a¢ ) +¼2(ct¡ 1+¢ ) (A.27)

+ ±(¼1(ct¡ 2+¢ +a¢ ) +¼2(ct¡ 1+¢ +a¢ +a2¢ ))

+ ±2(¼1(ct¡ 2+¢ + : : :+a3¢ ) +¼2(ct¡ 1+¢ +a¢ +a2¢ )) + : : :
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or
¼2¢
1¡ ±

·
(1+a)¼1¢ +(1¡ ±2a2+±a+±a2)¼2¢

(1¡ ±)(1¡ ±2a2)
;

which holds with equality as a = ¡ ¼1=(±¼2). Thus fbc1;t;bc2;tg1t=1 satis…es equilibrium
conditions from t=2onwards; at t=1 theconstraint would hold with equality if player

2’s inherited cwas ¡ ¢ 1=a; since it is higher, theconstraint will beslack (as¼1< 0):

Thepayo¤s fromthepath fbc1;t;bc2;tg are;

¦̂ seq
1 = (1¡ ±)f [¼2bc1]+±[¼1bc2+¼2bc1]+±2[¼1bc2+¼2bc3]+ :::

¦̂ seq
2 = (1¡ ±)f [¼1bc1]+±[¼1bc1+¼2bc2]+±2[¼1bc3+¼2bc2]+ :::

Now since thepayo¤s from thee¢cient symmetric path in thesimultaneousmovegame

are

¦̂ = (1¡ ±)f [¼1bc1+¼2bc1]+±[¼1bc2+¼2bc2]+±2[¼1bc3+¼2bc3]+ :::;

weget

¦̂ ¡ ¦̂ seq
1 = (1¡ ±)f¼2bc1+±¼1(bc2 ¡ bc1) +±2¼2(bc3 ¡ bc2) +±3¼1(bc4 ¡ bc3) + ::g

= (1¡ ±)bc1f¼2bc1+±¼1abc1+±2¼2a2bc1+±3¼1a3bc1:::g

= (1¡ ±)bc1
£
¼2(1+±2a2+±4a4+ ::) +±a¼1(1+±2a2+±4a4+ ::)

¤

=
(1¡ ±)bc1
1¡ ±2a2

[¼2+±a¼1]

< (1¡ ±)
bc1¼2

1¡ (¼1=¼2)2

So, rearranging, ¦̂ ¡ (1¡ ±)µ< ¦̂ seq
1 , µ> 0. Consequently, for any " > 0, ¦̂ ¡ " < ¦̂ seq

1

for all ±¸ ±(") = 1¡ "=µ; as required. (A similar argument applies for i =2). ¤
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