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Abstract: This paper considers a class of two-player dynamic games
in which each player controls a one-dimensional variable which we interpret
as a level of cooperation. In the base model, there is an irreversibility con-
straint stating that this variable can never be reduced, only increased. It
otherwise satis..es the usual discounted repeated game assumptions. Under
certain restrictions on the payo= function, which make the stage game resem-
ble a continuous version of the Prisoners’ Dilemma, we characterize e¢cient
symmetric equilibria, and show that cooperation levels exhibit gradualism and
converge, when payowrs are smooth, to a level strictly below the one-shot ef-
..cient level: the irreversibility induces a steady-state as well as a dynamic
ineCciency. As players become very patient, however, payoas converge to
(though never attain) the eccient level. We also show that a related model
in which an irreversibility arises through players choosing an incremental vari-
able, such as investment, can be transformed into the base model with similar
results. Applications to a public goods sequential contribution model and a
model of capacity reduction in a declining industry are discussed. The analy-
sis is extended to incorporate partial reversibility, asymmetric equilibria, and
sequential moves.
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1. Introduction

We consider a model in which in every period, there is a Prisoner’s Dilemma structure;
agents have some mutual interest in cooperating, despite the fact that it is not in any
agent’s individual interest to cooperate. We suppose that this situation is repeated over
time, and, crucially, subject to irreversibility, in the sense that an agent cannot reduce her
level of cooperation once increased. In this setting, irreversibility has two opposing ecects.
First, it aids cooperation, through making deviations in the form of reduced cooperation
impossible. Second, it limits the ability of agents to punish a deviator. We consider the
complex interplay of these two forces.

The key role of irreversibility in acecting cooperation can be explained more precisely
as follows. In the above model, suppose that every player has a (continuous) scalar action
variable, which we interpret as a level of cooperation. We say that partial cooperation
occurs in some time period if some player chooses a level of this action variable higher
than the stage-game Nash equilibrium level, where the latter is the smallest feasible value
of the action variable. Full cooperation is a level of this action variable that maximizes
the joint payoa of the players?. In general, partial cooperation in any time-period can
only be achieved if deviation by any agent can be punished by the other agents in some
way.

Now the above model without reversibility is just a repeated Prisoner’s Dilemma,
and in that case, it is well-known that the most ecective (and credible) punishments
take the form of *“sticks”, i.e., threats to reduce cooperation back to the stage-game
Nash equilibrium. With irreversibility, such punishments are no longer feasible; instead,
deviators can only be punished by withdrawal of “carrots”, that is, threats take the form of
withdrawal of promised higher levels of cooperation in future. It follows immediately from
this that irreversibility causes gradualism, i.e., any (subgame-perfect) sequence of actions
involving partial cooperation cannot involve an immediate move to full cooperation®.

2The model is symmetric, i.e., players have identical per-period payoas given a permutation of their
actions. So, the full cooperation level is the same for each player.

3This observation is not entirely new; for example, Schelling (1960, p45) makes a similar point. Admati
and Perry (1991) and Marx and Matthews (1998) present equilibria of a dynamic voluntary contribution
game which exhibit gradualism. However, to the best of our knowledge, our paper provides the ..rst
general characterization of gradualism in cooperation due to irreversibility.



Our ..rst contribution is to re..ne and extend this basic insight. First, we show
that any (subgame-perfect) equilibrium sequence of actions involving cooperation must
have the level of cooperation rising in every period, but that full cooperation is never
reached in ..nite time. So, as the level of cooperation in any period is bounded above
by the full cooperation level, all equilibrium sequences will converge. We focus on the
(symmetric) e€cient equilibrium sequence i.e. the one that maximises the present value
of payows of either player. A key question then is: to what value does this eCcient
equilibrium sequence converge? It turns out that if payoas are smooth (dicerentiable)
functions of actions, convergence will be to a level strictly below the full cooperation
level, no matter how patient agents are. For the case where payogs are linear up to some
joint cooperation level, and constant or decreasing thereafter (the linear kinked case), the
results are dicerent — above some critical discount factor equilibrium cooperation can
converge asymptotically to the fully e¢cient level. Below this critical discount factor, no

cooperation at all is possible.

The reason for the asymptotic ine€ciency in the smooth payo= case is that close to
full cooperation, returns from additional mutual cooperation are second-order, whereas
the bene..ts to deviation (not increasing cooperation when the equilibrium path calls for it)
remain ..rst-order. The future gains from sticking to an increasing mutually cooperative
path will be insucCcient to oaset the temptation to deviate. It follows that it will be

impossible to sustain equilibrium paths close to full cooperation.

Despite this result, ineCciency disappears in the limit as players become patient in
the sense that the limit value of the sequence, and player payoss, both converge to fully
eccient levels as discounting goes to zero. However, the asymptotically eCcient path of
actions in our model is quite dicerent that in the standard “folk theorem” for repeated
games: that in the latter case, (without irreversibility) above some critical discount factor
the eCcient cooperation level can be attained exactly and immediately.

Later sections of the paper then extend the basic model in several directions. First,
we recognize that our basic model is very stylized. In many economic applications, irre-
versibility arises more naturally when the level of “cooperation” is a stock variable which
may bene..t both players, and it is incremental investment in cooperation that is costly
and non-negative, implying the stock variable is irreversible. Therefore, in Section 4, we



present an “adjustment cost” model with these features, and show that it can be refor-
mulated so that it is a special case of our base model. We then apply the adjustment
cost model to study sequential public good contribution games (Admati and Perry (1991),
Marx and Matthews (1998)) and capacity reduction in a declining industry (Ghemawat
and Nalebu=(1990)). These applications illustrate the extent to which our results are
applicable to variety of disparate areas of economics.

A second key extension is to allow a small amount of irreversibility, so that any
player can reduce his cooperation level by some (small) ..xed percentage. This has two
countervailing ecects. The ..rst is to make deviation more pro..table; the deviator at t can
lower his cooperation level below last period’s, rather than just keeping it constant. The
second exect is to make punishment more severe; the worst possible perfect equilibrium
punishment of the deviator is for the other player to reduce his cooperation over time,
rather than just not increase it. A priori, it is not clear which ezect will dominate.
Nevertheless, we are able to show that for a small amount of reversibility the second
ecect dominates, and in the linear kinked case it dominates for any degree of reversibility.
In our model, then, reversibility is desirable in that it allows more cooperative equilibria
to be sustained.

The base model also assumes that (two) players move simultaneously, and that they
both choose the same* path of actions (the symmetric path). In Section 6 we allow players
to choose dizerent action paths, and in this Section, we obtain a (partial) characterization
of the Pareto-frontier of the set of equilibrium payoss, and how it changes with the
discount factor. In Section 7, we allow payers to move sequentially. We show that the
equilibrium payo®s in this game are a subset of those in the simultaneous move game, but
that as discounting goes to zero, the e®cient symmetric payo= in the symmetric move
game can be arbitrarily closely approximated by equilibrium payogs in the sequential
game, so that asymptotically, the order of moves has little exect on achievable payoss.

There is a small literature on games with the features we consider here. Admati
and Perry (1991) and Marx and Matthews (1998) in particular have considered sequential
public good contribution games in a formally similar context. Cooperation in such models

4 As the model is symmetric, i.e. players have identical per-period payoss given a permutation of their
actions, this is a natural base case.



is the sum of an individual’s contributions, and this is irreversible. Gale (1997) has con-
sidered a class of sequential move games which he dubs monotone games. For games with
“positive spillovers”, which include the class of games considered here, he characterizes
long-run e¢cient outcomes when there is no discounting. In particular, his results imply
that in a sequential-move version of our model without discounting, ..rst-best outcomes
are attainable.’

Of these papers, possibly the closest is Marx and Matthews (1998). The relationship
between the two papers is as follows. First, the two papers consider quite dicerent models,
although there is some overlap. Marx and Matthews(1998) consider a number of dicerent
voluntary contribution games, where a number of players simultaneously make contribu-
tions to a public project over T periods, and where T may be ..nite or in..nite. Each
player gets a payoa that is linear in the sum of cumulative contributions, plus possibly a
“bonus” when the project is completed. One case of their model (T in..nite, two players,
no bonus) can be reformulated as an “adjustment cost” variant of our model with linear
kinked payoss (as argued in detail in Section 4.1).

In this version of their model, Marx and Matthews (1998) construct a subgame-
perfect equilibrium which is approximately e@cient when discounting is negligible®, whereas
we are able to characterise e¢cient subgame-perfect equilibria for any ..xed value of the
discount factor. Speci..cally, our results show’ that in their model, the equilibrium with
completion which they construct is in fact e€cient for any discount factor above a critical
value, and conversely when the discount factor is below the critical value, there are no
contributions made in the e¢cient equilibrium (see Section 4.1 for more details).

We see our model as being applicable to a wide variety of situations in addition
to those already mentioned above. Nuclear disarmament between two countries is one
example— here cooperation would be measured by the extent of disarmament. While it

5The games considered in this literature allow for the possibility that a player’s payoa may be increas-
ing in his or her own cooperation level (on completion of the project in the public good model). The lack
of this feature here allows us to obtain results without needing to impose linearity or no discounting.

6Corollary 3(ii), Marx and Matthews(1998). Note that their results are stated for n > 2 players also.

"We are also able to characterise equilibrium in the case of linear kinked payoss (which includes the
in..nite-horizon contribution game without a bonus as a special case) when the two players contribute
asymmetrically, whereas Marx and Matthews study only the symmetric equilibrium in this version of
their model (although in their paper, they study other versions of their model where players behave
asymmetrically).



may be desirable to move immediately to total disarmament, this is not an equilibrium
because either country would prefer to have the other destroy its stockpile while retaining
its own. Disarmament must proceed gradually, and our results give conditions under
which the limit of the process is complete or only partial disarmament.

Another example would be in trade negotiations. For example, GATT negotiations
are known for their gradualism, although there has been little theoretical work on this
(see Bagwell and Staiger, 1997). If concessions are irreversible, or if irreversibilities arise
in investment such that shifting capital away from import competing technologies cannot
easily be reversed, then a similar story to the one we give can be told to explain gradu-
alism. A formal treatment of a related idea in the negotiation context is in Comte and
Jehiel (1998) who consider the impact of outside options in a negotiation model where
concessions by one party increase the payoz the other party gets in a dispute resolution
phase.

A further fruitful application is to environmental problems. For example, environ-
mental cooperation may take the form of installation of costly abatement technology.
Once installed, this technology may be very expensive to replace with a “dirtier” tech-
nology, e.g., conversion of automobiles to unleaded petrol would be expensive to reverse.
Consequently it will again be dic¢cult to punish deviants by reversing the investment.®
Similarly, destruction of capital which leads to over-exploitation of a common property
resource (e.g., ..shing boats) will also ..t into the general framework of the paper if it is
diccult to reverse.

2. The Model and Preliminary Results

chooses an action variable ¢; 2 <., measuring i’s level of cooperation®. The per-period
payo= to player 1 is %(cy; c) with that of player 2 being %(c;; c1): So, payogs of the two
players are identical following a permutation of the pair of actions. Also, we assume that
Y4 1s continuous, strictly decreasing in c; and strictly increasing in c,. Payoss over the

8We are grateful to Anthony Heyes for suggesting this application.
90ur main results generalise straightforwardly to more than two players.
10The action spaces can also be bounded, i.e., ¢; 2 [0;T], as long as T _ c°.



in..nite horizon are discounted by common discount factor +; 0 < + < 1:

In this setting, we shall initially be restricting attention to symmetric equilibria.
So, we can de..ne the ..rst-best e€cient level(s) of cooperation as the value(s) of c, that
maximise w(c) := %(c; c): We assume the following weak property of w(c) :

Al. There exists a ¢® > 0 such that w(c) is strictly increasing in ¢ for all 0 - ¢ < ¢,

and w(c) - w(c?) forall c 2 <.

This is satis..ed if w(c) is concave with a ..nite maximum or even single-peaked: Note
that c” is the smallest ..rst-best eCcient level of cooperation: We assume that the choice

of action is irreversible in every period, i.e.,
Cit - Citj1, 1 =12, t=1;2;::1; (2.1)

where cj. iS 1 ’s action in period t; and, without loss of generality, we set ¢;.0 = C.0 = 0.

A game history at time t is de..ned in the usual way as f(c;;; Cz;é)gzizll. Both players

can observe game histories. A pure strategy for player i = 1;2 is de..ned in the usual way
as a sequence of mappings from game histories in periods t = 1; 2::: to values of ¢;; in <4,
and where every pair (Cit;1; Ci:t) satis..es (2.1). An outcome path of the game is a sequence
of actions fcy.t; Co40iL; that is generated by a pair of pure strategies. We are interested
in characterizing subgame perfect Nash equilibrium outcome paths. For the moment, we

restrict our attention to symmetric equilibrium!! outcome paths where ¢;+ = ¢t = ¢y,

We now derive necessary and succient conditions for some ..xed symmetric outcome
path fc.gL, to be an equilibrium. Note that the worst punishment that j could impose
on i for deviating at date t from such a path is for j to set c; as low as possible. So, if
I deviates at t, the worst punishment is for j to set cj.; = ¢j., all ¢ > t: Also whatever
action is chosen by j, it is always a best response for i to set c; as low as possible. It
follows that this punishment is credible, and, given the punishment, i’s optimal deviation
at t from the symmetric path fc.gL, is to set ¢i;, = c¢;1 for all ¢ _ t. Consequently, for
a non-decreasing sequence fc.gL, to be an equilibrium outcome path it is necessary and

1In the sequel, it is understood that “equilibrium” refers to subgame-perfect Nash equilibrium.



succient that fc.gl, satis..es, for all t _ 1; the inequalities

]/ ot

M - Ya(Ce; ) + Y(Coa; Cra) + 110 (2.2)
1 =

So, as ¢; . Ct;1 from the irreversibility constraint (2.1), the interpretation of (2.2) is that

in the event of defection, both players stop increasing their levels of cooperation.

Let Cse be the set of non-decreasing paths fc.g;L, that satisfy (2.2), and we refer to
any path in Csg as a (symmetric) equilibrium path. We now note two basic properties of
sequences in Csg:

Lemma 2.1. If fcgk, is an equilibrium path, then (i) ¢, < c?, for all t _ 1; and (ii) if
Ct > C¢;1 for some t > 0, then for all ¢ _ 0, there exists a ;' > such that co>c¢, (e,
the sequence never attains its limit):

Proof. (i) Suppose to the contrary that c; _ c® for some t > 0; with c¢;; < c”. From the
de..nition of ¢, and Al, we must have

Y%(Ces Cr) o Ya(Can;Cewn); ¢ o 1

Consequently,
< u(ces cy)

1/4(Ct; Ct) + il/zl(Ct+j_; Ct+1) + 1311
s

Then, by (2.2), we have

%(Cti1; Ct) < Ya(Cy; Cr) .
1ij+ 1j+°
But as c¢;1 < ¢, and % decreasing in its ..rst argument, %(C¢;1; Ct) > Y%(ct; Ct), a contra-
diction.

(i) If this is not the case, then c; > c¢;1 for some t > 0, and there existsa T _ t
withc, =eforall, _ T andc, <efor; <T. Player 1, by deviating at T, would receive

Yi(Cr;1;€) >1/4(e;e)_
1ijt 1j¢t’

where the inequality follows from ¥% decreasing in its ..rst argument: Thus the deviation
is pro..table, contradicting the equilibrium assumption. ©



Say that the path fbgl, 2 Cse is e¢cient!? (i.e., among symmetric equilibrium
paths) if there does not exist another sequence fclgl, 2 Csg such that

. x
ttity ey > il by):

We now have:

Lemma 2.2. An eCcient sequence fbygiL, exists, and this sequence satis..es inequalities
(2.2) with equality, i.e., forall t _ 1;

1/“(t)l:il;bt)
1ijt

= Y(by; by) + % (Bt Brar) + 10 (2.3)

Proof. As all the inequalities in (2.2) are weak, existence follows from standard argu-
ments. We refer to (2.2) holding at t the t-constraint. To show that all the t j constraints

hold with equality, suppose to the contrary that for some t,

]/ i
OB ;) + 2t buee) + o
1 =
Then, by continuity, we can increase b, holding by+1; b i1 .. xed; without violating

the tjconstraint. Moreover, the t + 1-constraint is relaxed by an increase in b, hold-

iNg By+1;b2; 00 .Xed, as % is decreasing in its ..rst argument. Finally, we can hold
br;1;bey2; 00 by . Xed since the only exect of an increase in by is to relax the ¢ -constraints,
for; <t o

It now follows quite straightforwardly from Lemmas 1 and 2 that the e¢cient path
must satisfy a second-order dicerence equation. First note that the e€cient path must
solve the sequence of equations (2.3). Let the sequence fc,(c; +)giL, solve the second-order

dicerence equation
1
Ya(Cy; Cea1) = n [Ya(Cr;1;Cr) i Y(Ces co)] +%(Cr; cp); t>1 (2.4)

with initial conditions co = 0;c; _ 0: It is easily checked®® that any solution to this
dizerence equation is non-decreasing, so the sequence fci(cy;+)gk,; has a limit ¢4 (cy; )
which is ..nite or +7.. Then we have:

12\W\e use the term ‘..rst-best’ to refer to unconstrained edcient outcomes.
13This fact follows directly from the proof of Lemma 2.3 below.

8



Lemma 2.3. Any sequence fc,giL, solves (2.3) if and only if it solves (2.4) with initial
conditions ¢ =0;¢; _ 0,and cq :=Ilimgwq € < +1:

Proof. Necessity. From the irreversibility constraint, fc.gL, is a non-decreasing se-
guence, so it converges to some ..nite limit ¢4 or diverges to +1.. Since (2.3) implies
(2.2), fcgik, is an equilibrium sequence and by Lemma 2.1, fcigiz; must converge to
c1 - ¢ Now, (2.3) can be written

%(Ctz1; Ct)

1§t = Su

where we again write S; := %(Cy; C) + +%(C+1; Ce+1) + 111 . Advancing by one period, we
get

Yi(Ce; Ces

4(1t i ti 1) _ Sprr:
Also,

St = %(Cy; Ct) + £Seaa:

So,

Y(CrjniC) _ .. %(Ct; Crr1)
T1ii e 74(Ce; Cp) + ﬁ

Rearrangement of (2.5) gives (2.4).

(2.5)

Succiency. As just shown above, (2.4) is equivalent to (2.5). By successive substi-
tution using (2.5), we get

+"(Ct+n;1; Cten)
1+t

Y4(Ctj1; Cr)

11 :1/4(Ct;ct)+Z::+inill/4(ct+nil;ct+nil)+
l_

(2.6)

Now, as fcigiL; converges by assumption, we must have

Iim ir‘1/4((:t+nil;ct+n) _
nil 1+

0

So, taking the limit in (2.6), we recover (2.3). ©

We now know that the eCcient path solves the dicerence equation (2.4) with initial
conditions ¢, = 0 and c; yet to be determined. The following lemma allows us to determine
¢, and hence the e€cient path itself. This lemma shows that the e€cient path is the upper
envelope of all equilibrium paths (and hence it is unique). It then follows from Lemma 2.5
(i) below that c; is simply the highest value consistent with convergence of the solution
to the dizerence equation.



Lemma 2.4. The e¢cient path fbgl, is the upper envelope of all equilibrium sequences,
i.e., there does not exist a fclgiL, 2 Csg with ¢! > by, for some t:

Proof. See Appendix. ©

As before, let the sequence fce(ci;t)git, solve the dinerence equation (2.4), and
consider the set of initial conditions c; such that fc(c;; +)giL,; converges to a ..nite limit,
i.e.,

Ci() =fcrjea(cy;2) <+1g:

Then we have our ..nal result of this section:

Lemma 2.5. (i) If, for any ¢; _ 0; fce(cq; t)git, is a convergent sequence, then it is
also an equilibrium sequence; (ii) The eccient path satis..es fogiz, = fecu(br; t)git,,
where bp = max C,(t), and c¢(by; 1) . ct(c(]l;i); all ¢} 2 Cy(2); all't _ 0.

Proof. (i) In view of the fact that (2.3) guarantees the sequence is equilibrium, su¢ciency
implies (i) of Lemma 2.3.

(i) From Lemma 2.2 and Lemma 2.3, the eCcient path exists, solves (2.4) with initial
conditions ¢y = 0;c; . 0 and must also converge. Consequently, fbigt, = fei(by; t)gik;
for some by 2 C;(¢): Now suppose that there exists another ¢! 2 C;(+) with ci(c;;%) >
ce(by; +) at some t > 0. In this case, fci(c3;+)gk; is an equilibrium (by part (i)) with
ct(col;:r) > c¢(by;+) at some t, which contradicts Lemma 2.4. In particular this implies
that col 2 C.(¢) and c°l > by is not possible. &

3. Main Results

We know that the e€cient path is the equilibrium path that is not crossed by any other,
and which is the highest (at each point) of all convergent sequences that satisfy the
dicerence equation (2.4). We now proceed to get an exact characterization of the limit
b, . To do this, we consider two particular cases.

The Dicerentiable Case.

10



Y4 is twice continuously dicerentiable, with Y, < 0;Y, > 0; Yayq; %2 < 0; %y, - O:

The Linear Kinked Case.

s
YsCq + YarCy ifci+co - 2c°

Y =
a 2Y%,C% § (Yap § Ya)Cy ifcp +Cp > 2C°

where %, < 0; %, > 0 are constants!* with Y, + %, > 0.

Note that both these cases satisfy our assumption Al above on the shape of w(c): In the
dicerentiable case, w(c) is strictly concave, as W® = Y1 + Yy + 2Y%1, < 0, With a unique
maximum at c®. In the linear kinked case, w(c) is linear and increasing in ¢ until ¢ reaches
the eccient level c”, and after that, higher cooperation yields negative bene..t.

Consider the dicerentiable case ..rst. De..ne the function

i %41(c; ) =0

0= Yi2(C; C)

Note from the assumed properties of %; we have
ol — il 1 1 o1 1 .
() = T [Ya11 + Yo + © (Va2 + Yi12)] > 0;
2

and also that c® solves °(c”) = 1: Consequently, provided °(0) - %; there is a unique
solution b(t) to the equation
°(b) = 4; 3.1

and moreover, b(®) is strictly increasing in +. If °(0) > +; we set b(x) = 0: Clearly b(t) < c°,
+ <1, with lim. s 1 b(£) = ¢®. We can now state our ..rst main result:

Proposition 3.1. Assume the dicerentiable case. Then the limit of the e¢cient symmet-
ric path, b4 ; is equal to b(z). Consequently, for all £ < 1, the eCcient path is uniformly
bounded below the ..rst-best eCcient level of cooperation; i.e., by < b(z) < c” for all t.

4 An interpretation is that payoos depend positively on (c1 +¢2) up to 2¢® with a coeGcient of %, but
there is a marginal utility cost of (%2 j %) to increasing one’s own c;: For ¢, +c, > 2¢”, there is no more
bene..t from joint contributions, only the cost remains, so that joint payoss are declining in (c; + c2):
For ¢; +c, > 2¢7; all that is needed for the results is that joint payosas are nonincreasing in (c; + ¢2) and
also own payoss are declining in own c;:

11



Proof. (a) By the Mean Value Theorem,

Yi(Cez1;Ct) i ¥(Cri1iCrij1) = Ya2(Cri1s M) ®Ce; He 2 [Cry1; Ci

Y(Ci2iCrin) i Y(CriniCtin) = i%1(Hein Cein)CCeins Hei1 2 [Cei2s Ceinls

where €c; 1= C; j Ct;1: S0, substituting in (2.4) and rearranging , we get

i1/41(th;1;Ct;1)
%2(Ce; 15 Ht)
a(Cej1; C)®Crjat

¢ ¢ee; s (3.2)

(b) Suppose that by > b(t). There must, by ¥%(¢; ¢) being twice continuously dizer-
entiable and a(b1;b1) = °(b1)=t > 1, exist a T such that for t > T, a(c¢;1;¢t) > 1. But
then from (3.2), for all t > T; &c; > ¢c;1 Whenever €c;; > 0 and by Lemma 2.1 (ii),
¢ci;1 >0forsometj1>T,; soc: cannot converge, contrary to hypothesis. We conclude

b1 - b(z)

(c) Suppose that 0 < by < b(t): We show that this is impossible. Find a neighbor-
hood around by ; (b1 i ";by +"), such that a(c;c’) <k <1forallc,c® 2 (by § ";by +"):
De.ne A := (1 j k)", and consider T such that cr(b;;2) > by i A (this must exist by
de..nition of by ). Now, since ¢t (by; £) < cr+1(br; ) < bq; by cr(cq; ) being continuous in
C1; We can ..nd 001 > b, such that ct (col) and cT+1(col) 2 (b i A; b1 ), and moreover, since
0 < cra1(by; ) jor(br; ) <A, ¢} can also be chosen so that 0 < cT+1(c°l; t)jcr (001; 1) <A.
Hence for all t > T; €c; < k€®c;1 by (3.2), and consequently fct(cgl; +)giL, must converge
to some ¢4 (c};+) < by + % (= by +"): Since fct(cgl; +)giL, is a convergent path it is also
an equilibrium path (Lemma 2.5(i)) and c°l > by; which contradicts the envelope property
of the e¢cient equilibrium (Lemma 2.4). Finally, a minor modi..cation to this argument
establishes that by = 0 is impossible whenever b(t) > 0: &

Next, consider the linear kinked case. Here, we have the following striking result.

Proposition 3.2. Assume the linear kinked case. If there is su€ciently little discounting
(£ > j¥%1=Y%), then the limit of the e€®cient symmetric sequence, b, ; equals c”, i.e., ..rst-
best e¢cient cooperation can be asymptotically obtained. Otherwise, no cooperation can
ever be obtained, i.e., by =0, all t:
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Proof. From Lemma 2.1, we can restrict attention to those paths with ¢; < c”, all t,
as no other path can be an equilibrium one. Writing out (2.4) for this case, using the
de..nition of Y% for the kinked linear case, we get:

1
YuaCr + YigCrry = —[MaCeya + YioCr i YaaCe T YaoCe] + YaaCr + YaaCy;

which rearranges to
¢c. = alcy;q; 3.3)

3 -
where a:= 2L : €C:=C i Ct;1- Thus, €c, = atitdc; where ¢c; =c¢; j ¢ = ¢y,

Vi

and c; can be chosen freely. So, we have

X -
= €c, =(1+a+::a ) (3.4)
¢=1
First suppose that a _ 1: If ¢c; > 0, then from (3.4), ¢t ¥ A ast ¥ 1; contradicting
the assumption that c; < c”, all t: So, we must have ¢; = 0, in which case ¢; = 0, all t.
Thusifa _ 1 (O t - (j%i1=¥%); no cooperation is possible as claimed. Now suppose
that a < 1: Then the series in (3.4) converges, so we get

1 1

= €1 = 1/41C1:
lja 1+%

C1 =

So by appropriate choice of ¢;, we can choose a path that converges to c”; and this must
be the eCcient path by virtue of Lemma 2.4. ©

Note that in both cases, we have shown thatas+ ¥ 1, the limiting level of cooperation
on the eCcient equilibrium path, ¢4, tends to the ..rst-best eCcient level, c®. It turns
out that this fact implies that payosas also converge to their e¢cient levelsas + ¥ 1; i.e.,

there is no limiting ineC®ciency in this model.

Corollary 3.3. In either the dicerentiable or linear kinked cases, as £ ¥ 1, the normal-
P ]
ized discounted payom from the eccient path, # = (1 j £) tlzl +'i1y,(by; by); converges to

the ..rst-best payo= %(c%; c”):

Proof. Consider, for some ..xed #; rewriting the equilibrium condition (2.2) as, for each
t
x
Y(CejisCe) - (Lix)  xTW(c,;c,): (3.5)

=t

13



Now, if fcegL, is an equilibrium sequence at #; then fc.giL, is also an equilibrium at any
+! > + since, as %(ct; ¢¢) is a non-decreasing sequence, the R.H.S. of (3.5) is non-decreasing
in £; and the L.H.S. is constant.

Now for the dicerentiable case, de..ne b(t) as in (3.1), and in the linear kinked case,

de..ne 1y - o
" > jYy=

bz) = (E) | o_ther:/v:;e ’
So, for any " > 0; ..nd a * such that %(b(); b(¥)) > %(c®;c®) j " (where in the diceren-
tiable case, we use the continuity of %(¢;¢); and, as already remarked, lim, s 1 b(x) = c7).
From Propositions 3.1 and 3.2, at +; by ¥ b(); so holding fogl, .xed, lim.s:(1 j
1) Ptlzl +'ily (b by) ¥ 1/4%(1); b(+)); and hence there exists a + > * such that for + satis-
fying £ <t<l] 1i) tlzl +1iy,(by; by) > %(c®;c®) j " Since fbygik, is an equilibrium
sequence for such z; the eCcient path at such + must also give a payo= greater than
Ya(c®;c®) § " As " is arbitrary, this completes the proof. &

An alternative way of viewing this result is to note that if we shrink the period length,
holding payozs per unit of time constant, then ine€ciency disappears as period length
goes to zero.'®

4. A Model with Adjustment Costs

The model studied above is very stylized. In many economic applications, irreversibility
arises more naturally when there is a stock variable which bene..ts both players, and a
Fow or incremental variable which is costly to increase, and is nonnegative. This non-
negativity constraint implies that the value of the stock variable can never fall i.e. the
stock variable is irreversible. Here, we present a model with these features, and show that
it can be reformulated so that it is a special case of our base model.

Player i's payoa at time t is

UCit; Cjt) 1 ®(Ciit i Cirtj1); (4.1)

151f 4 is discontinuous but otherwise satis..es our assumptions then asymptotic eGciency can fail.
Consider an example in which player i bene..ts only from j’s c;; with an upwards jump in payoa at
completion (c; = c”), and sumers continuous (increasing) costs from c;: Lemma 2.1 still applies, so
Ci:t < c?; all t; and the payoo jump is never realised no matter how patient the players.

14



with u increasing in both arguments, and with ® > 0 being the cost of adjustment: Here,
Ci:¢ is to be interpreted as i’s cumulative investment in, or the stock level of, the coopera-
tive activity. We assume that the investment fow is nonnegative, which implies that the
stock level of cooperation is irreversible, i.e., Cit _ Cit;1, 1 = 1;2:

We now proceed as follows. The present value payo= for i in this model is

1i = Ui Cia) i ®Cin i Cio) +£[UCiz;Ci2) i ®(Ciz i Ci)] + 1
= T ce) 1 O i )] + @cip:
t=1
As initial levels of cooperation c;.o; C2.0 are ..xed, we can think of this model as a special
case of the model of the previous section (i.e. without adjustment costs) where per-period
payoss are
Y(c;c) = u(c;c) § ® j Hc: (4.2)

Of course, we require that % de..ned in (4.2) satis...es the conditions imposed in Section 2,
and also satis..es the relevant conditions of either the dicerentiable or linear kinked case.
If this is the case, then Propositions 3.1 and 3.2 apply directly.

We now study two important economic applications using this extension of our basic
model. These are not the only topics that can be studied in this way, but they are chosen
to illustrate the power and fexibility of our approach.

4.1. Dynamic Voluntary Contribution Games

There is now a small literature (Admati and Perry (1991), Fershtman and Nitzan (1991),
Marx and Matthews (1998)), on dynamic games where players can simultaneously or se-
guentially make contributions towards the cost of a public project. The paper in this
literature (Marx and Matthews (1998)) that is closest to our work is one where contribu-
tions are made simultaneously, and where the bene..ts from the project are proportional
to the amount contributed (up to a maximum, at which point the project is completed).
We will show that a special case of Marx and Matthews’ model can be written as an
adjustment cost game as above, and that Proposition 3.2 above can be applied to extend

some of their results.
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Marx and Matthews (1998) consider a model in which N individuals simultaneously
make nonnegative private contributions, in each of a ..nite orin..nite number of periods,
to a public project. We assume that N = 2, and let c;.; be the cumulative contribution
of a numeraire private good by i towards the public project. Individuals obtain a tow of
utility u = (1 § £)v(¢) from the aggregate cumulative contribution c;.¢ + C,.¢, where v(¢) is

piecewise linear:

1 _
J(cp+cy) ifcp+cpy<2c°=C"

VeI = T cony g te . Cf

where we follow as closely as possible the notation of Marx and Matthews. Thus agents
get bene..t _ from each unit of cumulative contribution, and an additional bene..tb _ 0
when the project is ”"completed”, i.e., when the sum of cumulative contributions reaches
C®. Also, the cost to i of an increment i j Ci:t;1 in the cumulative contribution is simply
Cit i Citj1- VVe consider the case where b = 0 and the time horizon is in..nite (the b =0
case unravels otherwise). Also it is assumed that 0:5 < _ < 1, so that it is socially eGcient
to complete the project (immediately, in fact), but not privately eCcient to contribute
anything.

Then, from (4.2), per period payoss in the equivalent repeated game are

%(C1;C0) = {/21 i V(e ) i (Lida
Qi i D+ ,c] ifeg+cp<2¢" =C"
Qi).Coij@i3dc ifc,+c, . C*
So,Yiu =@ i), il1)<0%=(1jzt). >0 Thus, all the conditions of the linear
kinked case are satis..ed, and so Proposition 3.2 applies directly to this version of the
Marx-Matthews model.

First, we can de..ne the critical value of £ in Proposition 3.2 as

i Y1 — Ti.),

d=
Yap

E3

Two results then follow directly from our Proposition 3.2 and its proof:

1. If + > %, there is a class of equilibria, indexed by the initial condition c;; where each
player’s cumulative contribution c; converges to c®, or indeed to any value less than or
equal to c. Along the equilibrium path, incremental contributions fall at rate %

N
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The e¢cient symmetric equilibrium has initial contribution ¢; = ¢®(1 § £i=2); and each
player’s cumulative contribution c; converges to c”:

2. If + - %, then no contributions are made in any equilibrium.

Result 1 sharpens Proposition 3 and Corollary 3(ii) of Marx and Matthews, who show
that for + > %; there is an equilibrium with ¢, ¥ ¢, and that for £ = 1, this equilibrium is
approximately e¢cient. In the special case of n =2 and b = 0; we not only con..rm their
results, but also show that the equilibrium they construct is the e€cient equilibrium for
any +.> #: Also, Result 2 is a complete converse result to their Proposition 3.

4.2. Capacity Reduction in a Declining Industry

There is now a literature on the equilibrium evolution of capacity in an industry where
demand is declining over time (See Ghemawat and Nalebua (1990) and the references
therein). For tractability, this literature assumes that product demand declines asymp-
totically to zero; a backward induction argument can then be used to establish the equi-
librium pattern of capacity reduction by ..rms. Our framework allows us to deal with the

more general case where demand does not decline to zero.

The model is a modi..cation of that of Ghemawat and Nalebuz (1990). There is a
duopoly where each ..rm i1 = 1; 2; has initial capacity at time zero of kg. In any period, the
output of ..rm i must be no greater than capacity, i.e., X - Ki.x. Demands and costs are
as follows. At time t, each ..rm faces the linear inverse demand schedule p; = a; i X1t § Xot.
There is no short-run cost of production, but there is a per-period cost of maintaining
capacity A > 0, and a cost % > 0 of scrapping capacity, with the tow cost of scrapping
less than maintenance, i.e., %(1 j ) < A. It is assumed that capacity, once withdrawn,
cannot be reintroduced (for example, the capital stock may consist of specialized capital

goods which are no longer manufactured).

Within a period, the production decision is delegated to myopic managers who engage
in Cournot competition, so output conditional on capacity is

Xi:t = minfk;.; a:=30; 4.3)
where a;=3 is unconstrained Cournot output at time t: We assume that at the beginning
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of period 1, a; falls permanently from a, to ay, i.e., the size of the market declines once
and for all.’® We suppose that initial capital stocks have been set so as to force managers
to produce at joint pro..t-maximizing outputs, taking into account the cost of capital, and
adjustment costs, at the initial level of demand, i.e.,

_ (@ i A+%(1 1),
7 :

Ko (4.4)

A story consistent with this is that in the (distant) past, this industry has already been
hit by a negative demand shock, and has adjusted to the old long-run equilibrium.!’ Note
that cutting capacity can act as a way of committing to a lower level of output than
the Cournot solution. The question is, if demand falls, can the ..rms cut their capacities
su€ciently so as to reach the joint pro..t maximising level?

It is convenient to assume that the decline in the market is not too large, i.e.,

3ag
4

- ap: (4.5)

In this case, managers will always be constrained by capacity.*® So, if (4.5) holds, pro..t
in period t can be written

1/4i;t = a-lki;t i ki;t i ki;tkj;t i Aki;t i 3/4(ki;til i ki;t)
T BKie Kin) i %Kit i Kip):

P
1 tijl

So, the fully e¢cient capital stock at the new level of demand, k®; maximizes
Yap.t), 1:€7; 3

_a i A+ulg 1),

= 7 :

and adjustment should be immediate. Note that k* < k.

kD

Now de..ne the level of cooperation of ..rm i to be the amount of capital scrapped,
Cit := ko i Kixt, SO Cip =0, ¢® = ko § K°. So, from (4.2) we can write pro..t as a function
of cooperation levels:

Y(Ci:t; Cjzt) = B(Ko i Ci:t; Ko i Cjr) i %(1 i )Cix: (4.6)

16This is in contrast to Ghemawat and Nalebuz who make the assumption of a constantly declining
market, an assumption which implies a backwards unravelling result and a unique equilibrium. By
contrast here there will be many equilibria.

17 Although, as we shall see, this statement is only approximately correct if + is near 1:

1870 see this, note that (4.5) implies kit - ko = Mj‘(“i)) - & as A>%(1 j £) by assumption.

18



As %(Cit; Cjr) is non-linear, the relevant case is the dicerentiable case. To apply Proposi-
tion 3.1, we need to verify the assumptions of the dicerentiable case. By direct calculation,
we have:

Yo = jar+A+2Kie + K i %1 2);
Yo = ki;t;

Yar = 12 Y =0; %p =il

So, all the dicerentiable case conditions are satis..ed if ¥%; < 0; which in turn is satis..ed
if (4.5) holds and capacity (net of scrapping) costs are small®.

Our results for the dicerentiable case then apply directly. In particular, on the
e¢cient symmetric path c;.¢ rises asymptotically to b, where b is de..ned in (3.1) above.
We can express this in terms of the capital stock: ki; declines asymptotically to K, where
R solves

17ﬁ1(QiQ) — 4
17ﬁ2(QiQ) B
Or, using (4.6), we get:
a i Aj2RiR+%1 i1
R

=z

Solving, we get .
P aa i A+%1 il _
3++

So, for £ < 1; the duopolists cannot credibly reduce capacity to the new joint pro..t-
maximizing level k®, even asymptotically. All they can manage is to force down capital
stocks to K, so there will be excess capacity and output in the industry (relative to joint
pro..t maximization), even in the long-run. As + ¥ 1, the amount of excess capacity goes
to zero.

5. Reversible Cooperation

So far, we have assumed that cooperation is completely irreversible. This is clearly a
strong assumption. In this section, we examine to what extent our results are robust to

1970 see this note that ¥%; < 0 if kjy < w: But if capacity (net of scrapping) costs are small
A = %1 i 1), kip - ko = @IATHAID) = 20 < & = 2iAALIY) 59 required.
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a relaxation of this assumption. Suppose that we modify the irreversibility constraint to
Ci;t - 1/ZCi;til; 0-1%- 1;

where the degree of irreversibility is parameterized by %; complete irreversibility is %> =1,
and a standard repeated game is %2 = 0. The ..rst—and important—point is that the
ecect of lowering % from 1 on the e®cient symmetric path is not clear without further
analysis, because of two eaects that work in opposite directions.

The ..rst ecect of a smaller % is to make deviation more pro..table; the deviator at
t can lower his cooperation level at t to %ci;1 < C¢;1, rather than keep it at ¢;;1. The
second exect is to make punishment more severe; the worst possible perfect equilibrium
punishment of the deviator is for the other player to reduce his cooperation as fast as
possible over time, rather than just not increase it. A priori, it is not clear which ezect will
dominate. Nevertheless, we are able to show that for a small amount of reversibility the
second exect dominates, and in the linear case it dominates for any degree of reversibility.

Speci..cally, we show that lowering % slightly from % = 1 relaxes the incentive con-
straints; that is, any path that is an equilibrium when % = 1 is also an equilibrium path
when % is slightly lower than one, and moreover because the incentive constraints become

slack, an improved path can be found, so that payoss increase.

Consider a deviation by i from some symmetric path fc,g:L, at t. The worst subgame-
perfect punishment that j can impose on 1 is to reduce cooperation by the maximum
amount in every period following t, i.e., to set Cj.t+1 = %Ct; Cj:t+2 = %°Cy, etc. Consequently,
the most pro..table deviation i can make is to lower his cooperation by the maximum
feasible amount at t, i.e., set cj.x = %C¢;1. SO, the maximal payo= to deviation at t is

C(%; Cey1; Cr) i= Ya(ther; 1; Cp) + a(h2Ce; 1 Yhee) + £ (h3Ce; 1, %2Cy) + 11
Then, fcgL, is an equilibrium path if and only if it satis..es forall t _ 1:

¢(1/2, Cei1s Ct) - 1/4(Ct; Ct) + il/zl(Ct+1; Ct+1) + izl/zl(Ct...z; 1/2Ct+2) + (51)

An eCcient (symmetric) equilibrium path is de..ned now as the path that maximizes

the utility of either agent subject to the sequence of constraints (5.1).
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In order to characterize eCcient payoss, the relevant results extending Lemmas 1-4
are collected below:

Lemma 5.1. With reversibility, there exists an e€cient symmetric equilibrium sequence
fbgl, such that (i) by;; - b - ¢® forall t _ 1; (ii) if b, < c%; then (5.1) holds with
equality, (iii) fbg is the upper envelope of all equilibrium sequences which never exceed
c™

Proof. See Appendix. ©

If ¢® is the unique maximizer of %(c;c);then the sequence fbygl, characterized in the
lemma is the unique e@cient symmetric equilibrium outcome path; otherwise there may
be multiple e¢cient paths dicering only in the interchange of e®cient levels of c; but they
do not dizer before such levels are attained. In what follows, the ‘e@cient equilibrium
path’ is understood to refer to the one which does not exceed c”:

Using Lemma 5.1, we now turn to discuss the impact of a small amount of irreversibil-
ity, and we begin with the dicerentiable case. Let fby(%)gL, be the eccient equilibrium
path in the % j reversible game, let by (*2) be its limit (which exists by Lemma 5.1), and
let

x
HOEE R IR Y()

t=1
be the payor from this e€cient path, all for some ..xed discount factor + < 1. Then we

have the following:

Proposition 5.2. In the dicerentiable case, provided b, (1) > 0; there exists %;1 > % >
0; such that if 1 > % > %, then (i) if fix(%)gk, is the eccient equilibrium path in the
irreversible case, it is also an equilibrium path in the % j reversible case; (ii) by (*2) > b4 (1)
(7 by; (i) §(») > (L

Proof. See Appendix. ©

The reasoning behind this result is that a small amount of irreversibility relaxes the
incentive constraints in every time period, allowing every components of the eCcient path
to be raised slightly as % decreases slightly from 1. This in turn implies that the limit
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value of the eC€cient path is higher, as well as the present discounted payo= from the
eCcient path.

We now turn to the linear kinked case. We shall ..rst characterize the sequence fc.gL;
described in Lemma 5.1. From (ii) of the lemma, if ¢; < ¢ and c¢y+; < ¢” then (5.1) holds
with equality at both dates, and substituting out the continuation equilibrium payowgs
after t + 1 yields

A !
LY W0y + Vi 116,) = YagCp + Yy + £ H LW o + YW i10)
j=1 j=1

or

M¥iCei1 + YapCe _ . YagYoCy + YapCrar |
= Y4 Cp + YapCt +
1 %t 1 %t

which can be simpli..ed to

Yaq

- 1 .
11/42 (Ct i /thil)-

Ct+1 1 7Ct = i
Given that ¢, j %cg = ¢q; this can be solved for

Ce = (W't + 12 + tidg2 o 4 ygti2 4 gtilyc,: (5.2)

where a = j ;/;‘/jz as before; and note that for % = 1 (irreversibility), (5.2) reduces to (3.4).

(If % & a then the solution can be written ¢, = (lfl;:g;)cl:)

We can now prove:

Proposition 5.3. In the linear kinked case, (i) if a(= i ;/;‘/32) < 1 (so a non-trivial equi-
librium exists with irreversibility) then payogs in e€cient symmetric equilibrium are a
strictly decreasing function of % whenever they are below the ..rst-best level (which they
are at » = 1). Moreover if % < 1 the project is completed in ..nite time (i.e., ¢, = c°
for some t < 1): (ii) If a > 1; then ¢, = 0 for all t; for all % 2 (0;1] in any symmetric

equilibrium. (iii) If a = 1; then the project is completed asymptotically for % 2 (0; 1):

Proof. See Appendix. ©

Recall that if %2 = 1; no non-trivial equilibrium exists if a _ 1; while if > = 0 (repeated
game) it can be checked that the ..rst best is attainable (immediately) if a - 1; otherwise
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there is no non-trivial equilibrium. The path used in the proof of part (i), which satis..es
(5.2) up to its maximum value, is not the e¢cient path unless this maximum occurs at
t = 1, since each incentive constraint up to t° is slack, violating Lemma 5.1(ii). So the
eCcient path also satis...es (5.2) so long as ¢; < c?; but c; is higher than in the construction
of the proof (otherwise Lemma 5.1(iii) is violated).

6. Asymmetric Cooperation

So far, we have only considered symmetric paths, i.e., where c;+ = C¢ = C¢: A natural
question is whether the agents could achieve higher (expected) equilibrium payoss by
playing asymmetrically. A further related question concerns the characteristics of e¢cient
equilibria in a model where agents are constrained to move sequentially; as we shall see,
this is a closely related issue and will be considered below.

We shall consider these questions for the linear kinked case only. Let fcy.; Cogil,
be an arbitrary (possibly asymmetric) path. Then, by a similar argument to that given
in Section 2, such a path is an equilibrium path if and only if fori; j = 1; 2; i & j;
t=1;2;:::;

Ya1Cirty1 + YaaCjie

1i

Let Ce be the set of equilibrium paths (i.e. sequences that satisfy (2.1) and (6.1)). Also,
let §i(fcie; C20it,) be the normalized (multiplied through by (1 § t)) present discounted

- Y1Ciye + YaoCjip + £ (YarCispar + YioCjipan) + 120 : (6.1)

1+

values of payoe to i associated with a path, and let ;g be the image of Cg in the space
of normalized present discounted values of payoss,, i.e.,

1= (D IHE :i(fcl;t;CZ;tgtjél); fCl;t;CZ;tgtjél 2Cg,1=12¢

Our focus in on the shape of the e®cient frontier of § g: As far as symmetric equilibria
go, we know from Proposition 3.2 if + - * = %= no cooperation is possible, whereas
if + > %, completion equilibria exist. From the symmetry assumption on payoss, ;e
iIs symmetric about the 45° line. One issue concerns the possibility that §g may be a
non-convex set, in which case it may be optimal for the players to randomize between
two pure-strategy equilibria rather than play the e@cient symmetric equilibrium. The
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following result, which characterizes '¢ when + > %; establishes that this is not the
case, and moreover shows that the e€cient frontier of § g is linear with slope -1 near the
45°line, so in terms of joint payosrs, a degree of asymmetry does not matter. This part of
the frontier consists of payoas from sequences which satisfy the incentive constraints with
equality (this is no longer true for e®cient paths with su€ciently asymmetric payoss).

Proposition 6.1. Assume that £ > t= i %1=Y: Then, § g is convex. Moreover, the eC-
cient frontier of ! has the following form. There exist points A = (1% 1%), B =(1"; 10);
on the eGcient frontier of ¢ with 1°> '% > 0 such that between Aand B, ¥, and !,
sum to a constant 8 (i.e., the frontier of § g is linear between A and B with slope -1): For
any point on the frontier below A or above B, the sum of utilities is strictly less than 8:

Proof. See Appendix. ©

The Proposition is illustrated in Figure 1 below,
Figure 1 in here

which shows the general shape of the frontier (although we have no results about the
shape of the frontier to the left of B or below A, except that it must be described by a
concave function). We can also say something about how the frontier shifts as + changes:

Proposition 6.2. The segment of the eCcient frontier between A and B is increasing in
+ in the sense that both 1°=!% and & are increasing in %; and converges to the ..rst-best
frontier as+ ¥ 1 (i.e, "™=" 0 O0and § ¥ 2(Yy + ¥io)c®): As + ¥ £ = j¥y=Y, from
above, A ¥ Band 8 ¥ 0:

Proof. See Appendix. ©

Proposition 4 is illustrated in Figure 2 below, where the solid line represents the

frontier at a lower + and the dotted line the frontier at a higher value of .

Figure 2 in here
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Note that as £+ ¥ 1, the eCcient frontier becomes linear everywhere with slope equal
to minus one -1, i.e., it converges to the ..rst-best eCcient frontier. So, Proposition 6.2
generalizes Corollary 3.3 to the case of asymmetric paths, at least in the linear kinked

case.

7. Sequential Moves

So far, we have assumed that players can move simultaneously. However, it may be that
players can only move sequentially, e.g., Admati-Perry (1991), Gale (1997). In certain
public good contribution games, the assumption made can acect the conclusions substan-
tially. In the Admati-Perry model, where players move sequentially, a no contribution
result holds when no player individually would want to complete the project, even though
it might be jointly optimal to do so, but this result may disappear if the players can move
simultaneously (see Marx and Matthews (1997) for a full discussion of this issue). By
contrast, we shall ..nd that in our model, equilibria in the two cases are closely related;
indeed, the e®cient symmetric equilibrium can “approximately” be implemented in the

sequential move game.

Suppose w.l.0.g. that player 1 can move at even periods and player 2 at odd periods.
Then, this move structure imposes the constraint that

Cit = Cit;1, £=1;3;5: (7.1)
Cot = Cat;1, £=2;4;62
Let the set of all paths that satisfy (7.1) be C3¢%: To be an equilibrium in the sequential

game, any path fc;.; Co.(g must satisfy the following incentive constraints. When player
1 moves at t = 2; 4;:::; he prefers to raise his level of cooperation from c¢;, to c; only if

Yo(Crt32;C25eq1)
1+

= Ya(Cpt; Cot1) + 2Y(Coit; Coieer) + 005 €= 2,460 (7.2)
Similarly, when player 2 moves at t = 3;5:::; he prefers to raise his level of cooperation
from Cp.¢;2 to ¢ ONly if

1/4((:2;t i 23 Cl;t i 1)
1+

= Ya(Cot; Croty1) + 2%(Coit; Crisr) + 035 £ =3;5; 71 (7.3)
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When player 2 moves at period 1, (7.3) is modi..ed by the fact that 2 can revert to ¢, = 0,

rather than c;;, but otherwise the incentive constraint is the same, i.e.,
W1/4(0; 0)

1+

Let the set of paths in CS that satisfy (7.2),(7.3) and (7.4) be CZ* ¥, Csea:

= Y(Cp:1; 0) + £¥%(Cp:1; Cpop) + 130 : (7.4)

However, note that a path is in CZ™* if and only if it is an (asymmetric) equilibrium
path satisfying (7.1) in the simultaneous move game studied above. This is because in
the simultaneous move game, the incentive constraints in the periods where agents do not
have to move are automatically satis..ed, as no agent likes to choose a higher c;.; than
necessary (from % decreasing in its ..rst argument). So, CZ*is simply that subset of Cg
also in C*¢4  j.e.,

Ce'=Cg \C>:

So, the set of feasible present-value payozs § & is the image of C2™ in <2 under the payon
function , and consequently

1 seq .
1E H yE:

To say more than this, we shall go to the linear kinked case, in which case we have
the following. De..ne A := (1%; ") as in Proposition 6.1 above, and let # be the present
value payor from the e®cient symmetric path in the simultaneous move game, so that
S .= (f; ’:\) is the equal utility point on the Pareto-frontier for that game.

Proposition 7.1. 1 X9 is convex. Also, A is in §1&"; and for any .xed " > 0, there is
a+(") < 1; and a point B = (#3; #5¢9) 2 15 gqych that %% > % § " ;i = 1;2 for
+ _ %("): Consequently, as + ¥ 1, the Pareto frontier of }Z° is asymptotically linear
between S and A.

Proof. See Appendix. ©

This Proposition is illustrated in Figure 3 below. It shows that in the sequential
move game, for low discounting, we can approximate “half” the linear part of the Pareto-
frontier of the simultaneous move game, so sequential moves need not be a barrier to

ecciency.
Figure 3 in here
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8. Conclusions

This paper has studied a simple dynamic game where the level of cooperation chosen
by each player in any period is irreversible. We have shown that irreversibility causes
gradualism, i.e., any (subgame-perfect) sequence of actions involving partial cooperation
cannot involve an immediate move to full cooperation, and we have re..ned and extended
this basic insight in various ways. First, we showed that if payozs are dicerentiable in
actions, then (for a ..xed discount factor), the level of cooperation asymptotes to a limit
strictly below full cooperation, and this limit value is easily characterized. For the case
where payowrs are linear up to some joint cooperation level, and constant or decreasing
thereafter, the results are dicerent — above some critical discount factor equilibrium
cooperation can converge asymptotically to the fully e€cient level. Below this critical
discount factor, no cooperation is possible.

Later sections of the paper then extend the basic model in several directions. First,
we studied an “adjustment cost” model which is applicable to a variety of economic
situations, and showed that it can be reformulated so that it is a special case of our
base model. We then applied the adjustment cost model to study sequential public good
contribution games and capacity reduction in a declining industry.

Other extensions were to allow for irreversibility, asymmetry, and sequential moves.
However, in all these variants of the base case, we have continued to assume that the
underlying model is symmetric, i.e., both players have the same payogs, given a permu-
tation of their action variables. This is somewhat restrictive; in many situations where
irreversibility arises naturally, e.g. Coasian bargaining without enforceable contracts but
where actions are irreversible, payoas will be asymmetric. Another limitation of the model
is that players only have a scalar action variable; in many applications, players have sev-
eral action variables, as in, for example, capacity reduction games, where ..rms control
both capacity and output. Extending the model in these directions is a project for the
future.
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A. Appendix

Proof of Lemma 4. Suppose to the contrary there exists a fcig:L; in Csg with ¢! > by
for some t. De..ne for all t _ 0; & = maxfhy;clg: It is clear from Assumption Al and
Lemma 2.1 (i) that

(e &) . V(b by), all t; (A1)

with at least one strict inequality, so that fe.gL, gives both agents a higher payor than
foigl,. So, if we can show that fe.giL, is an equilibrium sequence, this will contradict
the assumed e¢ciency of fbygiL, and the result is then proved.

b,

Ed (4

Say the sequences gL, ; fcig; have a crossing point at ¢ if ¢} ., - b 1 ¢
with at least one strict inequality, or cCIl . b ci - b, with at least one strict

inequality. Also, de..ne S¢ = %(Ct; Ct) + +%(Ces1; Crv1) + 10 SO that S; _ ) ;Sz by (A.1).

There are then two possibilities at any time ¢: The ..rst is that there is no cross-
ing point at ;. Then, either (¢,;1;¢€,) = (b,;1;b,) or (¢;;1;¢,) = (¢";1;¢%,). Without
loss of generality, assume the former. As fhygL, is an equilibrium sequence, we have
(b, ;1;b,)=(1 i +) - 8,;s0 that (¢,;1;¢,) = (b,;1;b) and S, . §, together imply
(e, ;1,6,)=(1 i t) - S;; i.e., the ¢ jconstraint is satis..ed for fe,gL;.

Now assume that flygL, and fclgL, have a crossing point at ¢ ; and assume w.l.0.g.

that
¢ -biuc b (A.2)
Then as fcigik, is an equilibrium sequence, %(c] ;;;¢)=(1 j #) - S). Also, S, _ S} and
from (A.2), ¢, = coc.. Consequently,
1/4((:(,11’ 6) .
L s (A3)

Finally, again from (A.2), ¢} .; - b ;1 = €,;1: Using this fact, plus % decreasing in its
.rst argument, we have %(e; ;1;¢;) - 1/4(cc ;1:€;); so from (A.3) the ¢ j constraint holds
for fe,gl,. Consequently all ¢ jconstraints hold for the sequence fe.gil,, so it is an

equilibrium sequence, as required. ©

Proof of Lemma 5.1. (i) Take an e¢cient path fegiL;—such a sequence exists by a
similar argument to that of Lemma 2—and de..ne ¢ _ 1 to be the ..rst period such that
e, > c” (if such a period does not exist, then (i) holds immediately): De..ne a new sequence
withb, :=&; fort <¢;and b :=c" fort _ ;: fbgL,clearly yields as much utility as feigl,
at every point, and it will be shown that it also satis..es (5.1) for all t: First, (5:1) holds
at ¢ since €(%; fe, ;1;¢6,0) > ¢, (% fb,;1;b,0) as b, < e, while b, ;1 = e,;1 (and using %
increasing in its second argument); moreover the RHS of (5.1) is no smaller. Likewise, for
t' > ¢; we have ©(%; fcp;1; cog) < ©(%; fc,;1;¢,0) since by = b,; and bw;1 > b, ;1; while
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continuation path payoas (RHS of (5.1)) are the same at ¢ and t”: So (5.1) holds at t’; it
clearly holds at t < ¢ as the LHS is unchanged relative to the fe,gL, sequence while the
RHS is no smaller. The proof of b;1 - b is straightforward but tedious and is omitted.
(i) The argument is similar to the proof of Lemma 2.2. (iii) Assume the contrary, so
there is an equilibrium sequence fclgL, yielding a higher payoa than foxgl,; and both
sequences lie below or equal to c®: Hence the construction of Lemma 2.4 can be followed
to create a new sequence fe.giL, which yields a higher overall payos. That it satis..es (5.1)
at each t follows from similar arguments. &

Proof of Proposition 5.2. (a) Let by(1) = b to ease notation. To prove part (i), it is
su¢cient to show that we can ..nd & such that

Clhb ) < €(Lb; ), t=12000 1>% > & (A4)

For then, for 1 > % > @&, fbgL, satis..es the incentive constraints (5.1).

(b) Fix t; then

1
Ci(h) i C(1) = ¢ + §¢°t°(1)"2 +0("); (A.5)
where " := 1 j %; and to ease notation, we set €(%) := ¢ (%; fby;1; b:g). Routine calculation
gives:
¢l(l) = Al +2t+3£2+443+ ) (A.6)
¢l1) = A2t +62+ 1243 + 1) + By (A.7)

where A¢ = Yby;1 + Yok, and By is the sum of terms involving %i1; Ya22; %412, and where
it is understood that all derivatives of % are evaluated at (b;;1;b). Also the series 1 +
2+ +3+% + 4+3 + ;31 and 2+ + 6+% + 1243 + ::::both converge (to s;;S; > 0 respectively).
Useful properties of A; By; proved in (c) below, are: A > 0; By <0, limgs1 Ay = 0,
limgs 1 By <O:

Consequently, we can write
1
i el + E¢2°(1)"2 = (Yarbx; 1 + #Yby) (§S1" + 0:55,"%) + 0:5"°By: (A.8)

Clearly there exists "; such that for " satisfying 0 <" <", the RHS of (A.8) is negative.
It follows from (A.5) that for " <", €(%%) < €¢(1).

(c) (Properties of A¢; By): First we show that A > 0: We have by _ b;1, so (as
Y1, > 0) we only need show that

Yip(Be;1; by) + (b1 bBe) > 0 (A.9)
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Now, we know from Section 3 that provided the maximum attainable level of cooperation
b> 0; then by < ball t; and thus °(b) = j¥%:1(b; b)=%2(by; b)) < £, which implies

Yay (bx; br) + £ (bx; br) > 0 (A.10)

Also, from the assumptions on ¥% that Y%, < O0; %3, - 0; we have

Yia(Bras br) o Y (b br); Yao(bryasby) o Yao(br by): (A.11)
Consequently, (A.9) follows from (A.10) and (A.11). Also note
lim Ac = ¥a(Beyo; B)brya + (b1 B)be

tf
[%1(b; b) + ¥, (b; b)]b
= 0

where the term in the square brackets is zero by de..nition of b: The properties of B, follow
from the fact that B is the sum of terms involving Yi;1; %; Y41, with coe@cients bounded
(in t) above zero.

(d) We now show that the sequence fi,gl, := f1 j "gl, can be chosen to be
bounded below 1; this would imply (A.4) with & := sup'%, < 1. If such a sequence does
not exist, then there must be a subsequence which w.l.0.g. we take to be g, itself,
converging to 1; i.e., % ¥ 1 and

C(h; by by) o C(Lbyb); allt (A.12)
Butnowast ¥ 1; b ¥ b, so from (A.5), we have
C;bb) §j ¢(Lbb) = limfjei)"+ %d:ot(l)"zg
0:5"?B; = 0:5"’B < 0
So, for some ..xed p > 0, there exists %, < 1 such that
C(rbb) < E¢(L;bb) i3 1>%>4: (A.13)

Also,ast ¥ 1; b ¥ b and ¢(%) is continuous in % and b;1; bx, there exists a T, such
that forallt _ T,:

Clhbnb) < Clhbb) +p 1>%>%);
¢C(l;Bb) < ¢(1barb) + (A.14)

Combining (A.13) and (A.14), we get
Clhbnb) < C(Libgub) T 1>%>%; t, Ty (A.15)

31



But (A.12) and (A.15) are in contradiction.

(e) To prove part (ii) of the Proposition, let

y
b ot<T,

b+~ t_ T,

-

€ =

Also, choose ~ < ¢” j bsmall enough so that (by continuity)
C(heri1,60) < Clobyb) +p=2; 1>%>%; t_ Ty (A.16)

We show that fe,gL, is an equilibrium symmetric path in the % i reversible game, if
1> % > maxfsup;¥%,g. To see this, note ..rst that &; < c"; so for any t the continuation
payor from fe,gL, is strictly greater than that from fbygL,: Hence, it su¢ces to show
that the deviation payor in the % reversible game from fegL, is no higher than the
deviation payoa from fbygL, in the irreversible case. But from (A.15) and (A.16), we
have

Clh e 6) < G(Libb) i u=2, 1>%>%,;t_ T,

as required; provided %, > & ~ sup';; (A.4) ensures (from (a)-(d) above) that (5.1) holds
for t < T,: Thus setting % = maxfsup %; %, g implies that (5.1) holds for all 1 > % > %; t |
1: Then from Lemma 5.1 (iii), ba (*2) _ bp (1) + ™

(f) To prove part (iii), it follows immediately from the construction of fe;g;L, that

x
HECE (D) £ 11 (6 ) > ?(1)
t=1

and as fe;g:L, is an equilibrium (but not necessarily the e¢cient) path in the % j reversible
game, # (%) _ * and so the result is proved. ©

Proof of Proposition 5.3. Let % = 1; and suppose fcgiL, is an ec¢cient path; assuming
a < 1; this path is increasing by earlier arguments. The derivative of &.(%; fcigl,) ~
(Yaa¥her ;1 +YaC)=(1 § %) with respect to % has the sign of c; j act;1; which is positive for all
t . lasa<1landc;>c;1 . 0 Hence for any b 2 [0;1), fcigik, remains an equilibrium
path as the deviation payor ¢(1; fcigiL,) is smaller than at % = 1, while the continuation
payo= is unchanged. By Lemma 5.1(i) and (iii), there exists a non-decreasing e¢cient
path for i < 1; say fbgiL,; which lies no lower than fc.gL, and no higher than c° at each
point. Next, the above argument can be repeated for any '/ < < 1; so that at %"; fixgl,
is an equilibrium path. Moreover, the incentive constraint at each t is strictly looser, so
that by Lemma 5.1(ii) if the ..rst-best is not attainable at %, i.e., if by < c” for some t, b is
not part of an e¢cient equilibrium path for %': The conclusion is then that at %'; fiygl,
is equilibrium but not e€cient, i.e., there is an equilibrium path yielding a higher payo=
than gL ,: To prove that c® is attained in ..nite time, consider the path generated by
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(5.2) for some choice of ¢;: Note that (%'t +%ti2a+:::+%ati2+atil) attains a maximum
at some t* _ 1; and declines to zero. Choose ¢; = e so that e= = c”: If (5.2) is followed
for all t; the same argument as in Lemma 2.4 establishes that the incentive constraint
holds for all t as lim¢s 1. & = 0 ( < 1): (It does not matter if this path violates e _ %e;1
beyond t":) Now change the path by setting e, = ¢® for t > t°; Continuation payoos are
increased at each date. Deviation payozs are the same at each date up to t*; and since
the incentive constraint is thus satis..ed at t* it must also be satis..ed at all t > t°: Thus
this path satis..es all incentive constraints and c” is attained in ..nite time. By Lemma
5.1(iii) there is an e¢cient path that attains c” by t° or earlier. (ii) If a _ 1; then consider
the incentive condition for a stationary path at c:
Vi Yo + YaoC YiC + YrC .
Tiw 1%

Rearranging, this is equivalent to a - 1: Hence if a > 1; if ¢ is attained, the incentive
constraint is violated at c” (likewise if a higher e€cient level is attained, should one exist);
if ¢, < c¢” for all t, then the path must satisfy (5.2) for all t; implyingc; ® A1 ifc, > 0
; a contradiction; hence ¢c; = 0; so ¢g = 0 all t. If a = 1; (A.17) holds with equality; if
c” is attained at t; the incentive constraint at t is stricter than (A.17), and so is violated;
hence ¢; < ¢® all t; in which case (5.2) applies, and setting ¢; = (1 j %)c” implies that
lim¢s 1 ¢ = ¢7; and because the limit is ..nite, all incentive constraints are satis..ed (as
argued earlier).o

(A.17)

Proof of Proposition 6.1. First, we show that j g is a convex set. First; the constraints
in (6.1) are linear. Consequently, if fc}.;;c}. g, and fc?; c3. g, satisfy (6.1), a convex
combination of the two must also satisfy (6.1) and so Cg is a convex set. Also, adapting
Lemma 2.1, any sequence in Ce must have cy.¢ + Cp.¢ < 2, all i;t, so payoss are linear in
any path in Cg: It follows immediately that § g is a convex set also.

Let Ceg 1 Ce be the set of all paths fcy.; ¢o.1giL; Which satisfy the incentive con-
straints (6.1) with equality ateacht _ 1; and ;e M1 3 e the corresponding set of payoss.
Straightforward manipulation implies that these paths can be written as a system of two
linked ..rst-order dicerence equations in dicerences €cCi+ = Ci+ i Citj1;

Ccir = alcyi;s (A.18)
€Ccyy = alcii;s (A.19)

where a = 1% g5 before. As + > 5_?; it follows that a < 1: Also, note that the initial

Yaot
conditions
€Ciy = Cix i Cip =Ciy, 1 =1;2
can be set freely. Routine manipulation of the system (A.18), (A.19) gives the solutions
Y.
ko (i &) +ag; (1 at); todd

Lol (i a)+aga(lja)l; teven I TLEIEE(A0)

Ci;t =
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Taking limits in (A.20), we get two equations that give, as a < 1; the limit values of

C1.t; C2:¢ @S functions of the initial values:

limciy = €14 = C1.1 +acy1];
cn Lt 1,1 1ia2[1,1 2]

limcy,y = Cpq = Cyr.1 +acy1]:
cnn ot 2,1 1ia2[2,1 11]

Inverting and solving, we get

C1;1 =Cp;a 1 AC;a; Cp1 =C2:1  ACpq:

(A.21)

Note that we can think of c;.; and c,.; as being determined by c;.4 and c,.q4 where the
latter can be freely chosen subject to the constraint that c;.q + C,.q - 2¢” and that

Ci1 . 0,1=1;2: The latter requires

Coia L
“a - C1;a . aCzia !

(A.22)

Cee is characterized by sequences satisfying (A.20) and (A.22) since convergent sequences

satisfying (A.18) and (A.19) also satisfy (6.1) with equality as in Lemma 2.4.

Substituting (A.20) back in the payors gives, after some rearrangement, for i;j =

1,2, &1,

o= (i) £ (YaCie + YaoCi)
t=1

=7 il 2 [ (Cix + acj1) + Y2 (Cj1 + aCi1)]
L Qi)

(1ia)(liad
1i1)

(1§a)( ja%td)

£ o]
Yoy a(aciy + Cj1) + ta® (Ciq + acj)

—+

Now, from (A.21), we have
Cip +acj: = (1 i @)cia:

So, we get, after some manipulation,

- Lin@+a
ni 1 (1ia.2i2)

and so
11+ 52 = A@@) (% + Yi2)(Cy;a + Co1);

h i
where A(#) ;= 1 j 7(12f?§12)2i) :
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Yip a(acj.y + Ciq) +1a’ (Cj.1 + aCi1)

(A.23)

(A.24)



So as long as 1.4 + Cpq = 2¢°, 31+ 1y = A(®)(%y + Y%2)2¢°, no matter how the
sum c;.q +Cp.q is distributed. This says that the frontier is linear between two endpoints
de..ned by the restrictions (A.22). Let A be one endpoint, de..ned by the condition that
C1.1 = acy;1, and B the other endpoint, de..ned by c,;5 = ac;.q4 (B is symmetric to
A) Combining this with c;.q + ¢4 = 2¢” implies that A is generated by the path with

endpoints
2ac” o = 2c®
1+a #t 7 1+a

and therefore with payoas (! %) where

Ci.a =

2c° (1j+)a+a)’

[ [ — - 1 1 .
' T+a 1 (1 i a2£?) Haa el
2¢° . (1i)(a+a)’
o= 20 GEN@YAN L )

1+a ' (a2t

So,
Ya(t) + Y
m_ 7 2.
=— = A.25
Vg + a(i)1/42 ( )
Now, it is easily checked that 1’; *® > 0 and that the RHS of (A.25) is strictly greater

than 1, so !> ! >0 as claimed.

QU
1"

To complete the proof, we need to show that points A and B lie on the frontier of § ;
the convexity of § g then implies that the whole of line segment AB lies on this frontier.
First, note that the point S where the line segment AB crosses the 45°line is generated
by the symmetric path

¢; = 0:5¢;.¢ + 0:5C.¢;

where fcy;c,.git, is the path supporting A; so every incentive constraint holds with
equality for fcfgl,. But then fcfg, is the symmetric e@cient path characterized in
Sections 2 and 3. So, S must be on the frontier since otherwise there is an asymmetric
path which Pareto-dominates S;and by symmetry another path with the player indices
switched which also Pareto dominates S; a convex combination of these two paths is a
symmetric path which Pareto dominates S; a contradiction of the de..nition of S:

Suppose ..nally that points A; B are not on the frontier of ;. Then, there must be
points C; D where C (resp. D) Pareto-dominates A (resp. B) which are on the frontier
of §e: Butif S;C; D are all on the frontier of § g, it must be non-convex, contrary to the
result already established. &

Proof of Proposition 6.2. From the proof of Proposition 6.1, we have

U
't Yy + a(i)l/zlz ’

(A.26)
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As a is decreasing in #, and the right-hand side of (A.26) is decreasing in a, 1'=1% js
increasing in +. Moreover, as+ ¥ 1; "=1% 8 0:andas+ ¥ %,, 1'=1" ¥ 1 as required.
Likewise from (A.24) in the proof of Proposition 6.1, on the line segment AB,

§= 11+ 12 = A@) (% + %) 2c"
) ] , i ) h a1
where A(+) := 1j % . Rearrangement gives A(x) = 1 j % . It is then
* (14

clear that A(}) = 0; A(1) = 1; and A'(+) > 0; + 2 (%;1); and so § has the desired properties
on the line segment AB: ©

Proof of Proposition 7.1. To prove convexity of 1 &, note that since Cg; C%® are both
convex, so C24 = Cg \ C% s also convex. Consequently, § £ is also convex, by linearity
of payougs.

To prove A in 1£", we proceed as follows. Point A is generated by a path described
in (A.20) with c;.; = 0. All we have to do is show that this path is in C%% as this path
is already in Cg by construction. Now setting ¢;.; = 0 in (A.20), we see that the path
generating A satis...es:

1

2 -
A = mzlca@iai)l; todd
T, mwlaca@i ) teven
2
A = mela(@ia™)] todd
2t nxzla(lia)l; teven

So, by inspection, fcf;; c5.0:i=, has the property that player 1 only changes her level
of cooperation in even periods, and player 2 in odd periods.

Next, let fbgiL,; be the (unique) symmetric e¢cient path in the simultaneous move
game: Now de..ne the asymmetric path fby.¢; brgl, in C* as follows:

bie = buws =By t=0;24;6:;
Byt = bptes = by t=1;3;5::

This is simply the path where an agent whose turn it is to move at t chooses b. Next, we

show that fby.; byrgiL; is incentive-compatible, i.e., in CZ in the sequential move game.

De..ne as before ¢; := b j b;1; and recall ¢; = aC;; on the eccient path. For the

player who moves at t _ 2; and writing ¢ for €;. the constraints (7.2) and (7.3) can be

written as:

YCriz + Yio(Cin + ¢)
1+

Yp(Crz2 + € +ad) + Y%y(Cey1 + €) (A.27)

+ (% (Cri2 + € +aC) +Yip(Cyy + € +aC +a°¢))
+ 2y (Cryo+ €+ 1+ a3C) + Yp(Cyr + € +aC +a2E)) + 10
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or
Yo®  (1+a)€ + (1 j %2 +ta+1ad)lnd

1jt (1iHA i) ’
which holds with equality as a = j¥%;=(%;). Thus fby.; b.gl, satis..es equilibrium
conditions from t = 2 onwards; at t = 1 the constraint would hold with equality if player
2’s inherited ¢ was j €1=a; since it is higher, the constraint will be slack (as %; < 0):

The payosrs from the path fb,.¢; b,.cg are;

RS0 = (1§ +)f[Vioby] + +[%h1by + Yioby] + +2[ag by + Yapbs] + 1
RS0 = (1§ £)fVuby] + +[%1by + Yioby] + +2[tagbs + Yapby] + 1

Now since the payoss from the e®cient symmetric path in the simultaneous move game
are

§ = (0§ )F[haby + Yoobn] + £[liybp + Yeoby] + +°[Yig by + Viohs] + 2

f 5 RS = (1 )by + £ (by i br) + (s i b) + (b § bs) + g

= (i :r)bﬂg%zbl + +Ynaby + +2Vpa’h, + 34 a%h g
= (1j )b Y%(l++%2++%a* + 1) + ravy (1 + +%a% + %% + 1)
1+
= LI+ 2
1 =

1
< Qin—t
1 i (1/41:1/42)2

So, rearranging, ® i (1 § £)u < #3% u > 0. Consequently, for any " >0, # j " < #3
for all £ _ (") =1 j "=y; as required. (A similar argument applies for i = 2). &
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